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Abstract 

A numerical method based on asymptotic homogenization theory is presented for the design of 

lattice materials against fatigue failure. The method is applied to study the effect of unit cell 

shape on the fatigue strength of hexagonal and square lattices. Cell shapes with regular and 

optimized geometry are examined. A unit cell is considered to possess a regular shape if the 

geometric primitives defining its inner boundaries are joined with an arc fillet, whose radius is 

1% of the cell length. An optimized cell shape, on the other hand, is obtained by minimizing the 

curvature of its interior borders, which are conceived as continuous in curvature to smooth stress 

localization. 

For a given multi-axial cyclic loading, failure surfaces of metallic hexagonal and square lattices 

are provided along with their Modified Goodman diagrams to assess the effect of mean and 

alternating stresses on the fatigue strength. In good agreement with the experimental data 

available in literature, the numerical results show that the shape of the unit cell has a major 

impact on the fatigue performance of the lattice material. For example under fully reversible 

tension, the fatigue strength of optimized square lattices of 10% relative density is shown to be 

54% higher than that of their conventional counterparts with regular cell geometry. 

 

1. Introduction  

A lattice material is a cellular material with a periodic arrangement of cells in either two or three 

dimensions. Besides mechanically superior to any other material [1-3], lattice materials have 

been shown to be attractive for their multifunctional properties, e.g. thermal insulation, sound 

resistance and shock energy damping, and thus to be of potential use in a broad range of 

applications, including battery electrodes, catalyst supports, vibration insulators, jet-engine 

nacelles, ultra lightweight sandwich panels, and biomedical implants, [3-8].  
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In several applications, the load applied to a lattice material is far from being static. The 

recurring waves on a ship hull, the aero-acoustic excitation of a turbine engine, and the rhythmic 

forces acting on an orthopedic implant during the swing phase of walking are all classical 

examples of time-dependent loads [9-14]. A cyclic load has generally a detriment impact on the 

resistance of the lattice material. Factors that govern fatigue failure are not limited to the 

alternating and mean stresses, load frequency, environment conditions, and macroscopic form of 

the structure, but include also the geometry of the microstructure, i.e. the geometry in which the 

unit cell of the lattice is shaped. If geometric discontinuities are embedded at either the macro 

or/and the micro scale, then a severe drop in the fatigue resistance is observed.  

From literature, it appears that the study of fatigue failure in cellular materials, with both random 

(foam) and periodic arrangement of cells (lattice), has received less attention than their 

monotonic quasi-static and dynamic properties [8, 15-21]. Among the investigations, both 

experimental and theoretical approaches have been developed for metallic and polymeric cellular 

materials under fatigue conditions. The experimental works are predominant and mainly stem 

from studies on foams [22-29], which aim at determining the stress-life curves under shear and 

axial loadings. For example, Burman [28] experimentally characterized the fatigue behavior of 

sandwich panels with polymeric PVC and PMI foam cores. The effect of the alternating strain on 

the fatigue life of polymeric cellular materials was shown to be more significant than that of the 

mean stress. It was also observed that reversible cyclic loadings, with negative max to min stress 

ratio, drastically reduce the fatigue resistance of polymeric foams. In another work, closed-cell 

aluminum alloy foams, Alulight and Alporas, were tested under alternating loads of fracture 

mode I to measure their fatigue resistance to crack propagation [29]. Crack evolution was 

observed to be controlled by linear elastic fracture mechanics. On the other hand, due to the high 

sensitivity of the crack propagation rate to the alternating stress intensity, the conventional 
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damage-tolerant methodology was found to be inappropriate for use in the fatigue design of 

aluminum foams. McCullough et al. [30] observed that ratcheting in closed cell Alulight foam is 

the dominant cyclic deformation mode for a tension–tension and compression–compression load. 

In another study on crack propagation, Motz et al. [31] experimentally showed that a cellular 

solid with hollow spheres made of a stainless steel (316L) has fatigue strength 50% to 60% lower 

than that of a closed cell aluminum foam. Such strength reduction was attributed to the presence 

of stress concentration at the bonding points between spheres.  

Studies on the fatigue of lattice materials are even less than those on foams. On the experimental 

side, Côté et al. [9], among few researchers, characterized the stress-life curves of sandwich 

panels with a lattice core made of stainless steel. Sandwich panels with a unit cell of diamond 

shape have been observed under alternating shear weaker than under axial load. A fatigue 

collapse map was generated for stainless steel sandwich beams with pyramidal core [10] and 

crack nucleation sites leading to failure were identified in the micro structure. Under cycling 

loading it was shown that the brazed joints are the weakest points of the panel core, hence their 

effect is to significantly reduce the shear fatigue strength. In another study, Côté et al. [11] 

examined the available experimental data for metallic lattice and foam cores and showed that the 

fatigue to monotonic strength ratio, 
ulte

 / , are close to 0.3 and 0.2, respectively, for R=0.1 

and R=0.5. The data, gathered from a wide range of lattice cores, suggested that the fatigue to 

monotonic strength ratio generally does not depend on core topology, relative density, and 

material properties.  

On the theoretical side, empirical relationships of finite/infinite life as well fracture mechanics 

approaches have been employed to predict the fatigue life of a periodic cellular solid [32-34]. In 

these studies, the cell walls were assumed to flex like a beam. However, as observed by Simone 

et al [35], the use of beam elements, rather than continuum elements, such as plane elements, is 
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not appropriate to capture accurately the real stress distribution in the lattice cells. In fact, this 

assumption can lead to unrealistic results that may limit the use of these methods for fatigue 

design.  

From the literature on lattice materials, it appears that most of the methods for fatigue design rely 

on experiments, which are tailored to handle selected lattice topologies and materials, besides 

being time consuming and often expensive. Current theoretical approaches, on the other hand, 

seem to lack accuracy, since they might fail to capture the real stress distribution in the lattice 

cells.  

This work proposes a fatigue design methodology that can assess with accuracy the real stress 

distribution in the lattice cell wall. Since the failure mechanisms of a cellular material strongly 

depend on the properties of the bulk solid material, we have decided here to focus our attention 

on metallic cellular materials. Based on computational mechanics, the method is validated 

through experimental data from literature. As described in section 2, asymptotic homogenization 

theory is used to computationally model the elastic-plastic behavior of the lattice, as well as 

determine strength values and real stress distribution in the lattice cells. In section 3, modified 

Goodman diagrams for fatigue design of planar lattices with regular geometry, i.e. cell shapes 

with sharp corners, and optimized geometry, i.e. cells with smoothened inner profiles, are 

generated. The maps provide insight into the impact that both alternating and mean stress have 

on the fatigue life of hexagonal and square lattice cells with regular and optimized geometry. 

 

2. Fatigue design methodology 

Infinite-life, safe-life, fail-safe, and damage-tolerant criteria are well-established approaches for 

the design of a material against fatigue fracture and degradation. Each method requires specific 

properties to characterize the material behavior under fatigue. Certain properties, e.g. the 
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endurance limit, can be generally obtained from traditional approaches, e.g. the stress (strain)-life 

method, other can determined though more recent techniques based on fracture mechanics. The 

stress (strain)-life method introduced by Wholer is one approach that provides the number of 

cycles that a smooth test specimen can resist under alternating stresses (strains) of constant 

amplitude before fracture. The Wholer’s strain-life curves help to gain insight into the influence 

of the number of cycles on the alternating stress, but they fail to capture the detrimental effect of 

the mean stress. For this purpose, other methods have been proposed. One of these is the 

constant-life diagram (Figure 1), which is constructed by curve fitting of experimental data for 

various combinations of stress amplitudes and mean stresses. Goodman, Soderberg, Gerber, and 

modified Goodman are the most common curve fitting models.  

In this work, we develop the modified Goodman diagrams for lattice materials [36] under high 

cycle fatigue loading. We assume the specimen to be free of damage, since the endurance limit is 

very sensitive to the specimen conditions, such as scratches, notches and nicks [36]. As shown in 

Figure 1, the material properties necessary to generate the diagram are: yield strength, ultimate 

strength and fatigue strength for a given life, or endurance limit for materials with infinite life. 

Once these properties are determined, the diagram can be constructed (Figure 1) from the 

intersection of i) the line connecting the material ultimate and fatigue strengths for a given life 

with ii) a 4 5
 degree sloped line, originated from the monotonic yield strength of the material. 

To extend the application of the modified Goodman model to planar lattice materials, we assume 

the reference lattice material be free of defects. We also assume that the cell wall material is a 

continuum media with properties comparable to those of its bulk material, which means that the 

material has one level of structural hierarchy. This hypothesis sets the limit of applicability of the 

proposed method to a minimum length-scale that depends on the material microstructure, slip 

system, grain and size [37-39]. If the effect of nanostructure defects, grain and size of the 
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material, has to be modeled, then two length scales in the lattice microstructure should be 

considered, as described by Zienkiewicz and Taylor [40].  

Next section describes how to obtain the properties required to generate the modified Goodman 

diagram. For this purpose, asymptotic homogenization theory, one among other homogenization 

approaches [2, 4, 15, 21, 41], is chosen here and implemented in a computational framework, 

since its mathematical foundation has been proved together with its capacity to accurately 

capture the real stress distribution within the cell walls of a lattice.  

2.1 Homogenized strength of lattice materials 

The analysis of a lattice material is often performed by isolating a representative volume element 

(RVE) and calculating its properties, which under certain assumptions represent the 

homogenized properties of the macro material. Theoretical, numerical, and experimental 

approaches can be used to homogenize the properties of a lattice [2, 15, 16, 42-52]. Here, we use 

asymptotic homogenization to determine its effective mechanical properties, including the 

effective stiffness, yield and ultimate strength. Besides the linear elastic terms [53, 54], we model 

also the effect of material non-linearity as a result of plastic deformation [55, 56]. Asymptotic 

homogenization allows obtaining the macroscopic stresses that lead to the microscopic yield, or 

fracture, as well as the endurance limit of the lattice. While in this work the method is 

demonstrated with reference to two common loadings, i.e. in-plane uni-axial and pure shear 

loadings, yield surfaces are also provided for the fatigue design of lattice materials under any 

combination of load.  

The underlying assumption of asymptotic homogenization is that each field quantity depends on 

two different scales: one on the macroscopic level x, and the other on the microscopic level, 

y=x/ε, where ε is a magnification factor that scales the dimensions of a unit cell to those of the 
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material at the macroscale. In addition, the field quantities, such as displacement, stress, and 

strain are considered periodic at the microscale and assumed to vary smoothly at the macroscopic 

level [47, 53].  

Under the assumption of small deformation, the standard weak form of the equilibrium equations 

for a cellular body 
  with the pertinent geometrical details of voids and cell wall is by [53] 

         
0 1 *

ε ( ) ε ( ) E ε ( ) ε ( )  t v  
t

T T

v v u u d d




 

       (1) 

where  E is the local elasticity tensor that depends on the position within the RVE,  
0

ε ( )v  and 

 
1

ε ( )v are the virtual macroscopic and microscopic strains, respectively,  ε ( )u  is the average 

or macroscopic strain,  
*

ε ( )u  is the fluctuating strain varying periodically at the microscale 

level, and  t  is the traction at the traction boundary 
t

 . Being the virtual displacement,  v  

may be chosen to vary only on the microscopic level and be constant on the macroscopic level. 

Based on this assumption, the microscopic equilibrium equation can be obtained as 

     
1 *

ε ( ) E ε ( ) ε ( )  0
T

v u u d






    (2) 

Taking the integral over the RVE volume (VRVE), equation (2) may be rewritten as 

           
1 * 1

ε ( ) E ε ( )  ε ( ) E ε ( )  
R V E R V E

T T

R V E R V E
V V

v u d V v u d V             (3) 

The above equation represents a local problem defined on the RVE. For a given applied 

macroscopic strain, the material can be characterized if the fluctuating strain,  
*

ε ( )u , is known. 

The periodicity of the strain field is ensured by imposing periodic boundary conditions on the 

RVE edges (figure 2); the nodal displacements on the opposite edges are set to be equal [53, 57]. 

equation (3) can be discretized and solved via finite element analysis as described in [46, 53-55]. 
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For this purpose, equation 3 can be simplified to obtain a relation between the microscopic 

displacement field  D  and the force vector  f
 
as  

     K D f

 
         (4) 

where  K  is the global stiffness matrix defined as 

 
1

K k

m

e

e 

 
  ,      t

k B E B
e

T
e e

Y

d Y  
  

 

         (5 a,b) 

being 




m

1e

)(  the finite element assembly operator, m the number of elements,  B  the strain-

displacement matrix,  t
E  the tangent modulus of the elastic–plastic bulk material, and e

Y  the 

element volume. The force vector  f  in equation 4 is expressed as  

   
1

f f

m

e

e 

  ,        
t

f B E ε ( )  
e

e e

Y

u d Y 
 

         (6) 

It is interesting to note that   ε ( )u
 
in equation 6 describes the initial strain field applied to each 

element of the unit cell. As a result, the force vector  f  is a function not only of the applied 

strain but also of the properties of the solid material. Since in this work plastic deformation is 

required to determine fatigue strength, equation (4) can be considered as a system of non-linear 

equations that can be solved with the Newton-Raphson scheme. As shown in figure 3, the 

computational analysis is accomplished by imposing increments of macroscopic strain, as 

described in plastic theory [58, 59]. While the macroscopic strain  ε ( )u  is increased 

monotonically, the force vector increment is computed and replaced in equation (4) to evaluate 

the displacement field. During the procedure (right hand side of Fig. 3), the effective material 

coefficients are kept constant until the stress reaches the yield strength of the base material. The 

mechanical properties of the yielded elements are replaced, iteratively, with the tangent modulus 
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of the elastic–plastic bulk material [58, 59]. Once the displacement field is obtained, the 

fluctuating strain  
*

ε ( )u  is determined by the product of the strain-displacement matrix,
 
 B , 

and the nodal displacement vector. The increment of the microscopic strain is then determined 

through the equation: 

     
*

ε ( ) ε ( ) ε ( )u u u      (7) 

The stress field in the unit cell is updated with respect to the elastic strain, and the stress average 

is computed over the unit cell to attain the effective macroscopic strength as: 

   
1

σ ( )
R V E

R V E
V

R V E

u d V
V

    (8) 

The macroscopic stress, Eq. (8), represents either the yield 
 y


 or the ultimate 
 u l t


 strength 

of the unit cell when the stress level at any local point of the microstructure reaches respectively 

the yield or ultimate strength of the solid material. The whole procedure, which includes the 

generation of the model and its mesh, as well as the nonlinear plasticity analysis, has been 

implemented into ANSYS (Canonsburg, Pennsylvania, U.S.A), where the von Mises yield 

criterion with the associated flow rule has been considered for plasticity analysis.  

Since for a high cycle fatigue failure, as it is considered in this work, the stress level is lower 

than the yield of the bulk material, the linear elasticity assumption holds. Hence, the fatigue 

strength of the unit cell can be obtained through the product of the unit cell yield strength with 

the ratio of the endurance limit to yield strength of the bulk material as: 

   
e

e y

y


 




 (9) 

where 
y

  and 
e

  are respectively the yield strength and the endurance limit of the bulk 

material, and   
e

  is the endurance limit of the unit cell. These properties are required to 
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construct the modified Goodman diagram (Figure 1) for any type of cell topology, as shown in 

the next section. 

3. Cell geometries under investigation 

Square and hexagon are here selected as representative shapes of the unit cell. Since for a given 

cell geometry the shape of the cell has a significant effect on the static and fatigue properties of 

the lattice material [60-62], we examine regular and optimized shapes for square and hexagonal 

lattices. As shown in the flowchart of Fig. 3, the methodology to obtain the fatigue properties of 

the optimized cell geometry consists of three integrated parts that combine notions of design 

optimization and asymptotic homogenization theory. First, the shape synthesis of the unit cell is 

carried out to obtain a cell free of stress concentration (details given below); then its fatigue 

properties are computed to generate the modified Goodman diagram at given relative densities; 

the last step involves the minimization of the von Mises stress in the cell wall. 

For square and hexagonal lattices, we study cell shapes with the following characteristics: 

1. G
1
 cells with sharp corners. These cells represent a conventional lattice with regular cell 

geometry. The fillets at the cell joints are specified by an arc with radius equal to 1% of the 

RVE length, which is representative of a sharp fillet resulting from a given manufacturing 

process. The choice of the small-arc fillet enables to obtain a realistic material distribution in 

a cell member [35], approximately similar to that measured through experiments [10, 11]. 

These cells are named here G
1
, where G represents “geometry” and the superscript shows the 

degree of continuity of the geometry. As seen in figure 4, G
1
 cells have continuous tangent 

along their inner boundary profile, but the curvature at the blending points between the 

straight and arc geometric primitives is discontinuous.  

2. G
1
 cells with optimum fillet radius. The G

1
 cells with sharp corners are here optimized to 

obtain a value of the fillet radius that reduces the effect of stress concentration. A classical 
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optimization problem is formulated with the objective of minimizing the maximum value of 

the microscopic von Mises stress in the lattice under a given loading. The fillet radius and the 

thickness at the middle of the struts (Figure 4) are considered as interdependent design 

variables. A design constraint is set on the relative density. The problem is solved by 

implementing a conjugate gradient method. For given relative density and design variables a 

unique solution is found, as described in section 5. 

3. G
2
 cell with continuous optimum curvature of the fillet. The inner profile of these unit cells 

are here synthesized through a methodology recently introduced to obtain lattice structures 

free of stress-concentration [63]. The method is based on a well-known engineering theory 

stating that the stress concentration due to the presence of curvature discontinuity in a 

component has the effect of localizing high peak of stress [64]. Thus, synthesizing the inner 

boundary of a cell with curves that are continuous in their curvature, i.e. G
2
-continous curves 

[65], improves the fatigue and monotonic strengths of the lattice. Furthermore, to avoid high 

bending moments caused by curved cell members, the cell walls can be designed to be as 

straight as possible, i.e. with the smallest possible curvature. The top left quadrant of Figure 

3 shows the optimization formulation used in this study, while the details are given in [63]. 

Figure 5 (a-b) shows the parametric view of square and hexagonal cells, whose G
2
 

continuous profiles of their inner profiles are optimized with minimum curvature. Besides 

curvature minimization, a step of size optimization follows the computational analysis of the 

yield strength (Figure 3). Here, the wall size in the middle and corner of a cell (Figure 4) is 

optimized with the goal of minimizing the maximum von Mises stress. The optimum values 

of these variables are found through a conjugate gradient optimization method, where the 

density is set as a constraint.  

4. Numeric modeling 
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Both G
1
 and G

2
 optimum cell geometries have been automatically obtained via in-house Matlab 

(MathWorks, Natick, Massachusetts) subroutines, which have been coupled with ANSYS 

(Canonsburg, Pennsylvania, U.S.A) to build, mesh, and solve the 2D model of the lattice 

material. Assuming in-plane loading conditions, a 2D eight-node element type, Plane 82, with 

plane strain formulation was used since it can model curved boundaries with high accuracy. 

Different combinations of axial and shear loadings are considered to obtain the data required to 

plot the failure surfaces. 

The effect of the material properties on the normalized fatigue to monotonic strength ratio,
 

ulte
 / , is studied by using aluminum and titanium alloys as bulk properties of the solid 

materials. Aluminum was selected because of its broad application for lightweight foams; 

Titanium is of interest because it is widely used in the aerospace, automobile, sport equipment, 

and biomedical sectors. Table 1 lists the material properties used in this study [66-69]. A bilinear 

elasto-plastic constitutive law was considered to obtain the macroscopic ultimate stress of the 

cellular material. An analysis of the mesh sensitivity (Figure 6) was performed to ensure the 

independency of the results from the mesh size. During this test, the element size of FE model 

was refined, especially around regions of high stress concentration, until the value of the 

maximum stress converged.  

 

5. Results 

Figures 7 and 8 show the distribution of von Mises stress (MPa) in the titanium square and 

hexagon with G
1
 and G

2
 cell boundaries under fully reversed uni-axial and shear loading 

conditions. The stress level significantly changes at the blending points of the G
1
 cells, while the 

stress in G
2
 cells is distributed uniformly along the cell struts. In addition, it can be seen that 

under uni-axial loading there is no stress concentration at the joints of the G
2
 square cell; stress 
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concentration, in fact, occurs at each blending point between an arc and a straight segment, as 

shown in the G
1
 unit cell.  

Figure 9 shows the yield (solid marks) and ultimate (open marks) surfaces for both G
1
 and G

2
 

cells, calculated at relative density of 10%. Here, the geometric parameters of the unit cells were 

selected to optimize the fatigue performance of the lattice under uni-axial and shear loading 

conditions. Figure 9 shows that G
2
 cells have higher yield and ultimate strength than those of G

1
 

cells. Also, the results show the detrimental effect of the sharp corner, i.e. small-arc fillet radius, 

on the strength of G
1
 cells.  

Figure 10 illustrates the effective yield strength of both cells under uni-axial and shear loadings 

as a function of the relative density. As mentioned previously, the values are extracted from the 

intersection of yield/ultimate surfaces with the 
xx

  and 
xy

  axes. Figures 10 (c) and (d) show 

that at low relative densities, the hexagonal G
2
 cell has up to 50% higher yield strength in 

comparison to the optimum hexagonal G
1
 cell; for higher relative density, on the other hand, the 

two unit cells have comparable yield strength. Figures 10(a) and (b) show that although both 

optimum G
1
 and G

2
 square lattices have comparable yield strengths under axial loading 

condition, the effect of stress concentration at the joints of the G
1
 cell significantly reduces its 

yield strength under shear loading. Table 2 lists the yield/ultimate stresses of the G
1
 and G

2
 cells 

for different relative densities. Table 3 reports the fatigue to monotonic performance ratio, 

ulte
 / , of the G

1
 and G

2
 lattices made of titanium and aluminum 6061T6 alloy [68, 69]. It can 

be observed that the numerical results for conventional lattices with small arc are close to the 

experimental values (0.3 and 0.2 respectively for R=0.1 and R=0.5) reported by  Côté et al [11]. 

Furthermore, in agreement with [11], the fatigue to ultimate monotonic stress ratio does not 

depend on the geometry of the unit cell, its relative density, and its material. The conformity of 
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the results with the experimental data obtained by Côté et al [10, 11] contributes to validate the 

computational-mechanics approach presented in this work. 

Figure 11 shows the modified Goodman diagrams of the G
1
 and G

2
 cells at given relative 

densities, obtained with the values listed in Table 2. The intersection of the diagram with the 

horizontal axis is the ratio of the yield strength of the unit cell to the relative density. The 

corresponding value on the vertical axis is the alternative macroscopic stress, which - as 

described in section 2 - generates a stress level equal to the fatigue endurance limit of the solid 

material. 

 

6. Discussion 

Figures 7 and 8 show the pivot role that cell shape has on yield, ultimate and fatigue strengths of 

square and hexagon lattices. For each case, stress localization can be observed in G
1
 cells with 

sharp corners, an instance that reduces fatigue strength as opposed to what occurs with smooth 

G
2
 corners. As shown in Figures 7(a-b) and 8(a-b), the fatigue strength of a regular lattice, 

obtained with G
1
 cells with sharp corners, can be substantially improved by optimizing the unit 

cell variables that control the occurrence of stress concentration. For example, Table 2 shows 

that at relative density of 10% optimum square G
1
 or G

2
 cells have respectively 48.8% and 54% 

higher yield strength (fatigue strength) under fully reverse tension. This and other observations 

are also confirmed for dissimilar relative density by the data in Table 3, which shows the fatigue 

to monotonic performance ratio, 
ulte

 / , of the G
1
 and G

2
 lattices made of Ti-6Al-4V and 

aluminum 6061T6 alloy [68, 69]. In addition, Table 3 shows the results of the unit cells with 

small arc are in good agreement with the experimental values reported by Côté et al [11].  

A comparison between the maximum stress (Figures 7 and 8) and failure surfaces (Figure 9) of 

the optimum G
1
 and G

2
 cells shows the benefit of a systematic cell shape optimization for fatigue 
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life. The results show that G
2
 cells, especially the hexagonal cell, can distribute more efficiently 

the material within the RVE, thereby lowering the maximum stress and leveling stress 

localization (Figures 7 and 8). Thus, in comparison with G
1
 cells, the failure surfaces of G

2
 cells 

are wider, showing a higher fatigue resistance. 

By comparing the failure surfaces of G
2
 and G

1
 cells (Figure 9), we notice that the former have a 

higher fatigue resistance for bending dominated lattices. In contrast for the square geometry, 

which is stretching dominated under uni-axial loading, G
2
 cells have fatigue resistance 

comparable to G
1
 cells. Here, the stress in the cell walls is parallel to the applied load and fairly 

uniform (Figure 7), with maximum value mainly controlled by the thickness of the cell members. 

Thus, the material distribution around cell joints and the curvature discontinuity at its blending 

points have a minor effect on the stress regime of the lattice. On the other hand for a bending 

dominated lattice, the bending moment at the cell corners is maximum, which indicates that the 

maximum stress and fatigue resistance is controlled by the material distribution in this region. 

Figure 11 shows that an optimized distribution of material at the G
2
 cell joints increases the 

fatigue strength of bending dominated lattices, i.e. lattices with hexagonal cells under in-plane 

pure shear and uni-axial loadings, and square cell under in-plane pure shear.  

As expected, the modified Goodman diagrams of G
2
 cells cover a wider range of applied 

alternating/mean stresses in comparison with their G
1
 counterparts. It should be noted that figure 

11 shows the modified Goodman of lattices only for uni-axial and pure shear loadings. In 

practice, however, a mechanical component should resist complex load combinations, which 

produce multi-axial macroscopic stress states in each point. Thus for fatigue design, the modified 

Goodman diagrams should be obtained at critical regions subjected to a multi-axial stress state. 

Figure 9 illustrates the failure surfaces, which are given here for this purpose. For example, for a 

prescribed multi-axial stress state, such as 
12

5.0    and 0  , the distance between the origin 
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and intersection points with the ultimate/yield surfaces can be chosen as yield and ultimate 

stresses to derive the corresponding modified Goodman diagram. Such a methodology can be of 

interest to find the optimized unit cells in a component made of a graded lattice material. In 

addition, the method can be further extended to consider the stress distribution in the unit cells 

close to the material boundaries and to model the effect of the grain size distribution in thin-wall 

cells [40] 

 

7. Conclusion 

A methodology based on computational mechanics has been presented to design planar lattice 

materials for fatigue failure. Asymptotic homogenization has been used to determine the 

macroscopic yield strength, ultimate strength, and endurance limit, each required to generate the 

modified Goodman diagrams of the lattice. A comparison with the experimental data available in 

literature shows a good agreement of the results.  

As a case study, the methodology has been applied to investigate the effect of cell shape on the 

fatigue/monotonic strength of lattices with hexagonal and square cells. Failure surfaces of unit 

cells with their respective material distribution within the RVE and with no geometric stress 

concentration have been obtained. The results show that for bending dominated lattices, cells 

with continuous and minimum curvature geometry have superior fatigue performance than cells 

with shape boundaries defined by line and arc primitives. In addition in bending dominated 

lattice materials, unit cells with G
2
 minimum curvature should be preferred over cells with arc-

rounded joints, especially if manufacturability is not a constraint. 
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Table 1. Material properties of bulk solid materials 

 
Young’s 

Modulus (
s

E ) 

Poisson’s ratio 

( ) 

Yield 

strength 

Ultimate 

tensile 

strength 

Fatigue 

endurance limit 

Elongation 

to fracture 

(%) 

Ti-6Al-4V  

[67, 68] 
GPa 110  3.0  901 MPa 984 MPa 486 MPa 8.9 

Aluminum 

6061 

 [69, 70] 

GPa 69  3.0  276 MPa 310 MPa 158 MPa 12 

 

 

 

Table 1



Table 2. Yield and ultimate strength of G
1
 and G

2
 unit cells for square and hexagonal lattices. 

 

%10  %10  %20  %20  %30  %30  

Uni-axial tension shear Uni-axial tension shear Uni-axial tension shear 

y
  

(MPa) 

ult
  

(MPa) 

y
  

(MPa) 

ult
  

(MPa) 

y
  

(MPa) 

ult
  

(MPa) 

y
  

(MPa) 

ult
  

(MPa) 

y
  

(MPa) 

ult
  

(MPa) 

y
  

(MPa) 

ult
  

(MPa) 

Square unit 

cell 

G
1
 cell with 

Small arc 

25.3 49.2 0.519 1.29 46.2 112.4 1.48 3.7 65.4 159.3 3.29 8.5 

Optimum G
1
 

unit cell 

37.65 48.17 0.813 1.5 73 98.4 3.89 7.1 127 138.7 11.3 19.8 

Optimum G
2
 

unit cell 

38.97 43.39 1.26 1.98 77.34 93.4 6.11 9.9 131.7 145.8 15.5 25.3 

Hexagonal 

unit cell 

G
1
 cell with 

Small arc 

2.29 5.7 1.1 2.56 7.7 21.8 3.78 11.23 17.45 53.18 8 25.6 

Optimum G
1
 

unit cell 

3.68 6.52 1.63 2.9 20.6 40.5 9.63 16 54.2 110.4 25.8 44.7 

Optimum G
2
 

unit cell 

5.48 8.96 2.45 4.25 22.4 44.6 10.4 17.3 56.3 113.86 27.2 47.3 

 

Table 2



Table 3. Fatigue to monotonic performance ratio, /e ult  , for G
1
 and G

2
 lattices made of Ti-6Al-4V  and Al 6061T6 (material 

properties in Table 1) at given relative densities. 

 

%10  %20  %30  

ult

e




 ( 1.0R ) 

ult

e




 ( 5.0R ) 

ult

e




 ( 1.0R ) 

ult

e




 ( 5.0R ) 

ult

e




 ( 1.0R ) 

ult

e




 ( 5.0R ) 

Al Ti Al Ti Al Ti Al Ti Al Ti Al Ti 

Square unit cell 

G
1
cell with 

Small arc 

0.35 0.34 0.19 0.2 0.3 0.34 0.16 0.2 0.26 0.335 0.14 0.19 

Optimum G
1
 unit cell 0.44 0.43 0.26 0.27 0.44 0.44 0.265 0.27 0.445 0.45 0.267 0.29 

Optimum G
2
 unit cell 0.48 0.487 0.28 0.318 0.475 0.476 0.28 0.31 0.47 0.474 0.28 0.31 

hexagonal unit cell 

G
1
cell with 

Small arc 

0.36 0.36 0.2 0.21 0.31 0.3 0.17 0.17 0.28 0.28 0.15 0.156 

Optimum G
1
 unit cell 0.45 0.446 0.27 0.282 0.46 0.467 0.278 0.3 0.47 0.45 0.29 0.288 

Optimum G
2
 unit cell 0.455 0.45 0.27 0.288 0.46 0.467 0.28 0.3 0.475 0.45 0.29 0.288 

 

Table 3



 

Figure 1. Fatigue design diagrams showing the relation between alternating stress and mean stress for 

a given number of cycles. 
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Figure 2. Periodic boundary conditions for a pair of nodes located on the opposite surfaces, 


A  and 


A , 

of the RVE. 
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Figure 3. Flowchart of the design methodology. For a given cell geometry, shape synthesis is 

coupled with computational analysis follow by size optimization. The goal of the first step is to 

smooth the transitions between the geometric primitives defining the cell inner boundaries, 

thereby reducing stress localization. In the second module, the effective strength properties of the 

lattice are determined through asymptotic homogenization theory. The third step involves the 

cell size optimization to reduce at minimum the maximum von Mises stress in the cell wall. 
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Figure 4. Schematic views of: (a) G
1
 square unit cell; (b) G

1
 hexagonal unit cell 
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Figure 5. Schematic views of: (a) G
2
 continuous square cell; (b) G

2 
continuous hexagonal cell; (c) 

Parameterization of the inner profile of a unit cell portion. 

 

1t 2t
1t 2t

(b)(a) (c)

y

x

B



A ds kP

Figure 5



 

Figure 6. Mesh sensitivity showing the independency of the results from the mesh size. 
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Figure 7. Von Mises stress (MPa) distribution in hexagonal (a) and square (b) unit cells made 

out of Ti-6Al-4V . Lattices under fully reversed uni-axial loading, defined by: G
1
 cell with small 

arc (left), optimum G
1
 cell (middle), and optimum G

2
 cell (right). 
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Figure 8. Von Mises stress (MPa) distribution in hexagonal (a) and square (b) unit cells made out of Ti-

6Al-4V. Lattices under fully reversed pure shear, defined by: G
1
 cell with small arc (left), optimum G

1
 

cell (middle), and optimum G
2
 cell (right). 
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Figure 9. Yield and ultimate surfaces of Ti-6Al-4V square and hexagonal unit cells for relative density of 

10%. Projection of yield and ultimate surfaces of G
1
 and G

2
 square cells in the planes: 

yyxx
  (a), 

xyxx
   (b), 

yyxx
   (c), 

xyxx
   (d).  
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Figure 10. Effective yield strength of the square and hexagonal unit cells under uni-axial and shear 

loading as a function of relative density. Yield strength for square cell under uni-axial (a) and shear 

loading respectively (b); (c) and (d) pertain to the hexagonal cell. 

 

0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

0.02

0 0.1 0.2 0.3 0.4
0

0.04

0.08

0.12

0.16

 

 

(a) (b)

(c) (d)

ys

xy





ys

xy





ys

xx





ys

xx





0 50 100 150 200 250 300
0

50

100

150

G 2 cell  

Sm all arc  

O pt arc  

G 2 cell  

Sm all arc  

O pt arc  

G 2 cell  

Sm all arc  

O pt arc  

0 50 100 150 200 250 300
0

50

100

150

G 2 cell  

Sm all arc  

O pt arc  

G 2 cell  

Sm all arc  

O pt arc  

G 2 cell  

Sm all arc  

O pt arc  

0 50 100 150 200 250 300
0

50

100

150

G 2 cell  

Sm all arc  

O pt arc  

G 2 cell  

Sm all arc  

O pt arc  

G 2 cell  

Sm all arc  

O pt arc  

G  cell with small arc (     =10%)1 

G  cell with optimum arc (     =10%)1 

G  cell with small arc (     =20%)1 

G  cell with optimum arc (     =20%)1  G  cell with optimum arc (     =30%)1 
G  cell with small arc (     =30%)1 

Optimum G  cell (     =10%)2  Optimum G  cell (     =30%)2 2 Optimum G  cell (     =20%)

-40 -20 0 20 40

-40

-20

0

20

40

O pt arc (Y ield)

O pt arc (U lt)

G 2 (Y ield)

G 2 (U lt)

Sm all arc (Y ield)

Sm all arc (U lt)

-40 -20 0 20 40

-40

-20

0

20

40

O pt arc (Y ield)

O pt arc (U lt)

G 2 (Y ield)

G 2 (U lt)

Sm all arc (Y ield)

Sm all arc (U lt)

-40 -20 0 20 40

-40

-20

0

20

40

O pt arc (Y ield)

O pt arc (U lt)

G 2 (Y ield)

G 2 (U lt)

Sm all arc (Y ield)

Sm all arc (U lt)

G  cell with small arc (Yield)1

G  cell with small arc (Ultimate)
1

G  cell with optimum arc (Yield)1

G  cell with optimum arc (Ultimate)1

Optimum G  cell (Yield)2

Optimum G  cell (Ultimate)2

-40 -20 0 20 40

-40

-20

0

20

40

O pt arc (Y ield)

O pt arc (U lt)

G 2 (Y ield)

G 2 (U lt)

Sm all arc (Y ield)

Sm all arc (U lt)

-40 -20 0 20 40

-40

-20

0

20

40

O pt arc (Y ield)

O pt arc (U lt)

G 2 (Y ield)

G 2 (U lt)

Sm all arc (Y ield)

Sm all arc (U lt)

G  cell with small arc1 G  cell with optimum arc1 Optimum G  cell2

-40 -20 0 20 40

-40

-20

0

20

40

O pt arc (Y ield)

O pt arc (U lt)

G 2 (Y ield)

G 2 (U lt)

Sm all arc (Y ield)

Sm all arc (U lt)

Figure 10



 
 
 

 

Figure 11. Modified Goodman diagram for Ti-6Al-4V square and hexagonal unit cells at given relative 

densities. G
1 
and G

2
 square under uni-axial loading (a), and shear loading condition (b); G

1
 and G

2
 

hexagon under uni-axial loading (c), and shear loading (d). 
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