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hiérarchies multi-niveaux sans imposer de conditions structurelles sur les différents paramètres et cop-
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1. INTRODUCTION
Multi-level hierarchical clustered data arise in practice whenever the sampling scheme involves a
hierarchical structure. Consider for example the study of chronic granulomatous disease (CGD)
from a multi-center placebo-controlled randomized trial which aimed to investigate the effect of
gamma interferon on the disease (Fleming and Harrington, 1991, Section 4.4). There are two
levels of clustering; the upper-level and lower-level cluster is formed, respectively, by patients
from the same hospital and by the same patient’s infection records.

Hierarchical clustered data are typically analyzed using frailty or copula models. In the frailty
approach, the hierarchical dependence structure is accounted for through nested random effect
models. For example, Sastry (1997) considers a proportional hazards model with two nested
independent Gamma frailty variables, while a similar model of Yau (2001) relies on independent
normal frailties. Rondeau et al. (2006) also use a model similar to that of Sastry (1997) but
handle the baseline estimation nonparametrically through spline-smoothing. Shih and Lu (2009)
consider a nested random effect proportional hazards model with an unspecified baseline hazard
function, and finally Ha and Lee (2005) assume an accelerated failure time model with nested
and independent frailty variables.

In the copula-based strategy, the dependence structure is modelled explicitly. At the heart of
this approach is the decomposition of Sklar (1959), which states that the joint survival function
of any random vector (X1, . . . , Xd) can be expressed in terms of its univariate survival func-
tions F̄1, . . . , F̄d, and a copula C, i.e., a d-variate distribution function with standard uniform
univariate margins. Specifically, for all x1, . . . , xd 2 R, one has

Pr(X1 > x1, . . . , Xd > xd) = C{F̄1(x1), . . . , F̄d(xd)}. (1)

Furthermore, for any copula C and margins F̄1, . . . , F̄d, the expression on the right-hand side
is a valid d-variate survival function with marginal survival functions F̄1, . . . , F̄d. A copula
model thus consists of assuming that in Sklar’s representation (1), the copula C and the mar-
gins F̄1, . . . , F̄d belong to suitably chosen parametric (or semiparametric) families of copulas
and univariate survival functions, respectively. The key advantage of this approach is that the de-
pendence structure can be modelled, fitted, and validated independently of the margins (Nelsen,
2006; Joe, 2015; Durante and Sempi, 2016; Mai and Scherer, 2017).

Although copula models have gained substantial popularity in various fields, their use in the
analysis of hierarchical clustered data is less frequent. This is likely because more sophisticated
copula models need to be constructed that reflect the hierarchical dependence specific to clustered
data. In addition, inference is more complex when the data are incomplete. Shih and Lu (2007)
applied hierarchical Archimedean copulas (HAC) of Joe (1993) with Clayton generators to two-
level clustered survival data, and proposed a three-stage estimation procedure that can handle
right censoring. The HAC model was also used by Andersen (2004) to model familial data, where
the siblings and parents are assumed to have an exchangeable dependence structure. Familial data
were further analyzed using Gaussian copula models by Zhao and Joe (2005) and Othus and Li
(2010). Very recently, Prenen et al. (2017) studied a model for one-level clustered data with
Archimedean dependence and variable cluster sizes. The copula approach also underlines the
work of Romdhani et al. (2014), who propose the exchangeable Kendall’s tau as a nonparametric
intracluster association measure.

In this article, we propose a new copula model for hierarchical clustered data using the hier-
archical Kendall copula construction of Brechmann (2014) with Archimedean clusters. As in the
HAC model, we use exchangeable Archimedean copulas to describe within-cluster dependence
at the first level. To model dependence between clusters at subsequent levels of the hierarchy, a
different strategy is adopted, however. Particular variables are chosen as cluster representatives
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and their dependence is captured by an Archimedean copula model. This construction has sev-
eral advantages over the HAC model. First, clusters of unequal size are easily accommodated.
Second, no conditions on the within-cluster dependence are needed, and no restrictions on the
parameter space are required. Moreover, the model is easy to simulate from and fitted sequen-
tially, level by level, when the data are complete. Unlike Brechmann (2014), we allow the data
to be right-censored, which makes inference more challenging as the amount of censoring of the
cluster representatives increases with the level of the hierarchy. To overcome this problem, we
obtain complete observations through an imputation algorithm, and base estimation and model
validation on the imputed sample.

The paper is organized as follows. In Section 2, we recall the hierarchical Kendall copula
construction of Brechmann (2014) with Archimedean clusters. Using this approach, we then
propose a new model for hierarchical clustered data in Section 3. Parameter estimation for right-
censored observations and the accompanying imputation algorithm are discussed in Section 4,
where the asymptotic distribution of the proposed estimators is also derived. Section 5 contains
a new goodness-of-fit test that can be used to validate whether the proposed hierarchical Kendall
dependence structure with Archimedean clusters is indeed well-suited. The performance of the
estimators and the goodness-of-fit procedure is investigated through simulations in Section 6.
In the same section, the new model is applied to the two-level clustered CGD data. Section 7
contains concluding remarks. The Online Supplement contains details about the marginal esti-
mation, explicit formulas when the Archimedean generators are Clayton, additional simulations,
outstanding proofs, R code and implementation instructions.

2. HIERARCHICAL KENDALL COPULAS WITH ARCHIMEDEAN CLUSTERS
Let X = (X1, . . . , Xd) be a random vector with univariate marginal survival functions
F̄1, . . . , F̄d. As stated in the Introduction, the joint survival function of X can be decomposed as
in Equation (1); the copula C appearing therein is unique if and only if F̄1, . . . , F̄d are continu-
ous. Continuity of the margins is assumed throughout this paper; discontinuity of the marginals
causes C to be unidentifiable, thereby invalidating copula inference procedures developed for
continuous data; for discussion, see, e.g., Genest and Nešlehová (2007).

The class of Archimedean copulas plays a special role in the model proposed here. A
d-variate copula is called Archimedean if it can be expressed, for all u1, . . . , ud 2 [0, 1], as
C ,d(u1, . . . , ud) =  { �1(u1) + · · ·+  

�1(ud)}.
The Archimedean generator  : [0,1) ! [0, 1] must be non-decreasing and such that

 (0) = 1 and  (x) ! 0 as x ! 1;  �1(0) = inf{x � 0 :  (x) = 0} by convention. Further-
more C ,d is a bona fide copula if and only if  is d-monotone (Malov, 2001; McNeil and
Nešlehová, 2009). This property means that for all k 2 {1, . . . , d� 2}, the kth derivative  (k)

of  exists on (0,1) and satisfies (�1)k (k) � 0, and further that (�1)(d�2)
 
(d�2) is non-

increasing and convex. According to McNeil and Nešlehová (2009), the density c ,d of C ,d
exists if and only if  (d�1) exists and is absolutely continuous on (0,1). One then has, for all
u1, . . . , ud 2 (0, 1),

c ,d(u1, . . . , ud) =  
(d){ �1(u1) + · · ·+  

�1(ud)}
dY

j=1

1

 (1){ �1(uj)}
. (2)

In the context of clustered data, Archimedean copulas are particularly well-suited for mod-
elling intracluster dependence. The latter is often assumed to be exchangeable, meaning that for
any permutation ⇡ of {1, . . . , d}, the survival copulas of X and (X⇡(1), . . . , X⇡(d)) are the same.
Because C ,d is invariant with respect to any permutation of its arguments, it indeed induces ex-
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4 C.-L. SU, J. G.NEŠLEHOVÁ, AND W. WANG Vol. xx, No. xx

changeable dependence. Another appealing property of Archimedean copulas is that when  is
a Laplace transform of some positive random variable, C ,d is the dependence structure of a
multiplicative frailty model (Marshall and Olkin, 1988).

For the hierarchical Kendall copula construction, it is further important to recall that for
any d-monotone Archimedean generator  , C ,d is the survival copula of R⇥ (S1, . . . , Sd),
where the radial random variable R is strictly positive and independent of the random vector
(S1, . . . , Sd), which is uniformly distributed on the unit simplex Sd = {x 2 [0, 1]d : x1 + · · ·+
xd = 1} (McNeil and Nešlehová, 2009; Genest et al., 2011). The survival function F̄ ,d of R is
uniquely determined by  , i.e., for any r > 0,

F̄ ,d(r) = Pr(R > r) =
d�2X

k=0

(�1)k

k!
r
k
 
(k)(r) +

(�1)d�1

(d� 1)!
r
d�1

 
(d�1)
+ (r), (3)

where  (d�1)
+ denotes the right-hand derivative of  (d�2). If U = (U1, . . . , Ud) is distributed

as C ,d, then R
d
=  

�1(U1) + · · ·+  
�1(Ud) where d

= denotes equality in distribution. The
distribution function K ,d of W = C(U)

d
=  (R) is the so-called Kendall distribution (Genest

and Rivest, 1993; Barbe et al., 1996).
Now consider a partition C = {C1, . . . , Cn} of {1, . . . , d} into disjoint subsets C1, . . . , Cn,

which specify the clusters. For each i 2 {1, . . . , n}, denote the cardinality of cluster Ci by
|Ci| = mi. The hierarchical Kendall copula with Archimedean clusters is defined as follows
(Brechmann, 2014, Remark 2.5).

Definition 1. The hierarchical Kendall copula with Archimedean clusters is the distribution
function of (U1, . . . , Ud) with the following properties:

(i) For all i 2 {1, . . . , n}, the distribution function of (Uj , j 2 Ci) is an Archimedean copula with
generator  i; let Ri =

P
j2Ci

 
�1
i

(Uj).
(ii) Given R1, . . . , Rn, the vectors (Uj , j 2 Ci) defined for all i 2 {1, . . . , n} are mutually in-

dependent, and for each i 2 {1, . . . , n}, the distribution of (Uj , j 2 Ci) given R1, . . . , Rn

depends only on Ri.
(iii) The survival copula of R1, . . . , Rn is Archimedean with generator  0.

Notice that the key idea behind the construction in Definition 1 is that the inter-cluster depen-
dence is accounted for through the radial variables R1, . . . , Rn, which can be thought of as
cluster representatives.

Remark 1. For each i 2 {1, . . . , n}, the survival function of the variable Ri defined in (i) in
Definition 1 is as in Equation (3) with  replaced by  i and d by mi. Consequently, the distri-
bution of Wi =  i(Ri) = C i(Uj , j 2 Ci) is the Kendall distribution K i,mi . The construction
in Definition 1 is thus indeed a hierarchical Kendall copula as defined by Brechmann (2014).
In his paper, the variables R1, . . . , Rn are replaced by W1, . . . ,Wn in (i), and (iii) is replaced
by (iii*) stating that the copula of W1, . . . ,Wn is Archimedean with generator  0. Note also
that although Archimedean copulas are considered here, the construction of Brechmann (2014)
allows the copulas in (i) and (iii*) to be arbitrary.

The density of the hierarchical Kendall copula with Archimedean clusters exists provided
that the copulas C 0,n and C i,mi for i 2 {1, . . . , n} have densities; these densities are of the
form (2). From Theorem 2.8 in Brechmann (2014), the density c of the hierarchical Kendall
copula is then as follows. For arbitrary u1, . . . , ud 2 (0, 1) and each i 2 {1, . . . , n}, let ri =
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P
j2Ci

 
�1
i

(uj). Then

c(u1, . . . , ud) = c 0,n{F̄ 1,m1(r1), . . . , F̄ n,mn(rn)}
nY

i=1

c i,|Ci|(uj , j 2 Ci). (4)

Definition 1 can be extended to multiple levels of hierarchy by assuming that the survival
copula of R1, . . . , Rn in (iii) is again a hierarchical Kendall copula with Archimedean clusters;
see also Remark 2.7 in Brechmann (2014).

3. HIERARCHICAL KENDALL COPULA MODEL FOR CLUSTERED DATA
3.1. Description of the model
For simplicity, we restrict our attention to two-level clustered data, noting that the model could
be extended to the multi-level case. Suppose that there are n clusters at the upper level (e.g., hos-
pitals), and that for each i 2 {1, . . . , n}, the ith cluster is divided into mi sub-clusters containing
mij subjects each (e.g., patients’ records from the ith hospital). The lengths of the clusters at the
upper and lower level respectively need not be the same.

The failure time and the covariate vector of the subject ` in the jth sub-cluster of the ith
upper-level cluster are denoted by Tij` and Zij`, respectively. The covariate vector can depend
on time but we write Zij` instead of Zij`(t) if no confusion can arise. We assume that for each
i 2 {1, . . . , n}, j 2 {1, . . . ,mi} and ` 2 {1, . . . ,mij}, the length of the covariate vector Zij`

is the same and equal to p. The vectors T ij = (Tij1, . . . , Tijmij ) defined for all i 2 {1, . . . , n},
j 2 {1, . . . ,mi} form the clusters at the lower level, while the clusters at the upper level are
given by T i = (T i1, . . . ,T imi) for all i 2 {1, . . . , n}. Also let T = (T 1, . . . ,T n) be the entire
vector of failure times.

As in the CGD clinical study, clustered survival times are typically right-censored. The ob-
served failure times are thus Xij` = min(Tij`, T

c
ij`

) for i 2 {1, . . . , n}, j 2 {1, . . . ,mi}, and
` 2 {1, . . . ,mij}, where T

c
ij`

denotes a censoring variable that is assumed independent of Tij`

conditional on Zij`. We further observe the censoring indicators �ij` = 1(Tij`  T
c
ij`

), so that
the entire available data are {(Xij`, �ij`,Zij`), i = 1, . . . , n; j = 1, . . . ,mi; ` = 1, . . . ,mij}.

In a conditional copula model for T given the covariates, the univariate survival functions
are specified first. For each t > 0, i 2 {1, . . . , n}, j 2 {1, . . . ,mi} and ` 2 {1, . . . ,mij}, let
F̄ij`(t) = Pr{Tij` > t|Zij`(t)} be the conditional survival function of the subject ` in the jth
sub-cluster of the ith cluster given the covariate vector Zij`(t). Typically, F̄ij` is specified
through a regression model. For example, Shih and Lu (2007) consider the Cox proportional
hazards model with hazard function �ij`{t|Zij`(t)} = �(t)eZij`(t)�

>
, where � is a parame-

ter vector of length p and �(t) denotes the baseline hazard function. Even though it is not
considered here, the baseline hazard function can be allowed to depend on i (Spiekerman and
Lin, 1998). The marginal survival function F̄ij` is then given, for each t > 0, by F̄ij`(t) =

exp{�e
Zij`(t)�

>
⇤(t)} in terms of ⇤(t) =

R
t

0 �(u)du.
Now for each i 2 {1, . . . , n}, j 2 {1, . . . ,mi} and ` 2 {1, . . . ,mij}, let Uij` = F̄ij`(Tij`)

and set U ij = (Uij1, . . . , Uijmij ), U i = (U i1, . . . ,U imi), and U = (U1, . . . ,Un). The sur-
vival copula of T given the covariates is then the distribution function of U . We assume the
latter to be as follows.

Assumption 1.

(i) The vectors U1, . . . ,Un are mutually independent.
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(ii) For each i 2 {1, . . . , n}, the distribution function of U i is a hierarchical Kendall copula with
Archimedean clusters as given in Definition 1; the Archimedean generators at the lower level
are denoted by  ij , j 2 {1, . . . ,mi}, while the generator at the upper level is  i.

(iii) For each i 2 {1, . . . , n} and j 2 {1, . . . ,mi},  ij ⌘  1 and  i ⌘  2.

Note that because the cluster lengths need not be the same, the generators  1 and  2 in (iii)
of Assumption 1 have to be d-monotone for a sufficiently large d. In particular, for k 2 {1, 2},
 k has to be dk-monotone, where d1 = max(mij , i 2 {1, . . . , n}, j 2 {1, . . . ,mi}) and d2 =
max(m1, . . . ,mn).

Example 1. In applications to survival data like the one considered in this paper, the gener-
ators  1 and  2 in (iii) of Assumption 1 are often taken to be Clayton with parameters ✓1 and
✓2, respectively. For arbitrary ✓ 2 [�1/(d� 1),1), the generator of the d-dimensional Clayton
copula is given for all t > 0 by  ✓(t) = {max(1 + ✓t, 0)}�1/✓; the case ✓ = 0 corresponds to
the independence copula generator e�t. When ✓ > 0,  ✓ is the Laplace transform of a Gamma
variable G(1/✓, ✓) and hence completely monotone. The kth derivative of  ✓ with ✓ > 0 is ex-
plicit (Hofert et al., 2012); the formula may be found in Section 2 of the Online Supplement.
From Equation (3), the survival function of the radial variable R of the d-variate Clayton copula
with ✓ > 0 is given, for all r > 0, by

Pr(R > r) =
d�1X

k=0

(✓r)k

k!

�(k + 1/✓)

�(1/✓)
(1 + ✓r)�(k+1/✓)

.

When  1 =  ✓1 and  2 =  ✓2 , the parameters ✓1 and ✓2 can typically be interpreted through
inter- and intra-cluster associations, respectively. For example, for the bivariate Clayton copula, ✓
is in one-to-one correspondence with Kendall’s ⌧ , viz. ⌧ = ✓/(✓ + 2), so that ✓1 = 2⌧1/(1� ⌧1),
where ⌧1 is Kendall’s ⌧ between two members of the same cluster at the lower level. Moreover,
✓2 is related to Kendall’s ⌧ of two members of different clusters at the lower level that belong to
the same cluster at the upper level, but no simple formula is available.

3.2. Comparison with the HAC model
In this section, we compare the model from Section 3.1 to the HAC model of Shih and Lu
(2007). First note that the latter model also assumes mutual independence of U1, . . . ,Un. Next,
for each i 2 {1, . . . , n}, the HAC model takes the distribution function of U i to be hierarchical
Archimedean. This means that for each i 2 {1, . . . , n}, the distribution function of the variables
U ij with i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, is the mij-variate Archimedean copula with gen-
erator  1, as in the model proposed here; we denote the latter by C 1 for simplicity. However,
the distribution function of U i1, . . . ,U imi is given, for all j 2 {1, . . . ,mi} and uij 2 [0, 1]mij ,
by  2[ 

�1
2 {C 1(ui1)}+ · · ·+  

�1
2 {C 1(uimi)}]. The difficulty with the HAC model is that

this expression is not necessarily a copula, unless  1 and  2 satisfy further conditions, see, e.g.,
Joe (1993). When  1 and  2 are Clayton generators with parameters ✓1 > 0 and ✓2 > 0, respec-
tively, as in Shih and Lu (2007), these conditions hold if ✓2 < ✓1. This additional constraint on
the parameters makes estimation of their model more intricate. Another disadvantage is that the
HAC model treats the vectors Uij and Uik equally for j 6= k, even though their dimensions may
differ. In contrast, the model advocated here is fully flexible in that  1 and  2 can be any gener-
ators of a sufficient degree of monotonicity. Furthermore, the different lengths of Uij and Uik

are accounted for through the corresponding radial variables, which have different distributions.
The advantage of the HAC model is the more tractable form of intra-cluster dependence. Let

i 2 {1, . . . , n}, j1 6= j2 2 {1, . . . ,mi}, `1 2 {1, . . . ,mij1}, and `2 2 {1, . . . ,mij2}. The distri-
bution function of Uij1`1 and Uij2`2 is the bivariate Archimedean copula with generator  2, and
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the parameter of  2 is directly interpretable in terms of intra-cluster correlation. In the model
proposed here, the dependence between Uij1`1 and Uij2`2 is more cumbersome (Brechmann,
2014, Equation (2.13)). However, Brechmann (2014) shows in his Example 2.13 that it is close
to the Archimedean copula C 2,2 when the generators are Gumbel.

4. ESTIMATION
To fit the hierarchical Kendall copula model with Archimedean clusters to two-level clustered
data, first recall that the available data are the triplets (Xij`, �ij`,Zij`) for i 2 {1, . . . , n}, j 2
{1, . . . ,mi} and ` 2 {1, . . . ,mij}.

Assume that  1 and  2 in (iii) of Assumption 1 are in single-parameter classes of generators
 1 = { ✓1 , ✓1 2 ⇥1} and  2 = { ✓2 , ✓2 2 ⇥2}, respectively; this is the case for most com-
monly used Archimedean families. To be estimated are thus the marginal parameters � and ⇤,
and the association parameters ✓1 and ✓2. As the density of a hierarchical Kendall copula with
Archimedean clusters has the product form (4), we propose the following step-wise approach.

The marginal parameters � and ⇤ are fitted first as in Spiekerman and Lin (1998) under the
working assumption that all subjects are independent; the estimators are given in Section 1 of the
Supplementary Material. For formulas for standard errors that take clustering into account, see
Spiekerman and Lin (1998).

The estimates �̂ and ⇤̂ then serve to obtain the estimates ˆ̄
Fij` of the conditional marginal sur-

vival functions for all i 2 {1, . . . , n}, j 2 {1, . . . ,mi} and ` 2 {1, . . . ,mij}. Next, set Ûij` =
ˆ̄
Fij`(Xij`) = max{ ˆ̄Fij`(Tij`),

ˆ̄
Fij`(T c

ij`
)}. Because ˆ̄

Fij` is decreasing, Ûij` is left-censored
whenever �ij` = 0.

For each i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, let Û ij = (Ûij1, . . . , Ûijmij ), Û i =

(Û i1, . . . , Û imi). Because the marginal survival functions are estimated, Û = (Û1, . . . , Ûn) is
a noisy, left-censored observation of the vector U from Section 3.1. Nonetheless, it can be used
to estimate ✓1 and ✓2. Similarly to Algorithm 3.9 in Brechmann (2014), we proceed sequentially.

4.1. Estimation of ✓1
Under the working assumption that the lower-level clusters are independent, ✓1 can be estimated
by maximizing the pseudo-loglikelihood

L1(✓1) =
1

n

nX

i=1

miX

j=1

Lij(Û ij), (5)

where Lij(Û ij) is the contribution of the jth sub-cluster of the ith cluster, viz.

Lij(Û ij) = ln
h
(�1)dij 

(dij)
✓1

nmijX

`=1

 
�1
✓1

(Ûij`)
oi

�
mijX

`=1

�ij` ln
h
� (1)

✓1

n
 
�1
✓1

(Ûij`)
oi

,

where dij = �ij1 + · · ·+ �ijmij denotes the number of uncensored observations in the sub-
cluster. Note that this procedure for estimating ✓1 reduces to the method of Shih and Lu (2007)
when the generators are Clayton, and to the one of Prenen et al. (2017) when mij = 1 for all
i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, which coincides with the approach of Andersen (2005)
when mi = 2 for all i 2 {1, . . . , n}. The asymptotic behavior of ✓̂1 that maximizes Equation (5)
follows. The proof, based on the ideas of Prenen et al. (2017), is given in the Appendix.
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Theorem 1. Suppose that F̄ij`(t) = exp{�e
Zij`(t)�

>
⇤(t)}, Assumption 1 holds and the fam-

ilies  1 and  2 are correctly specified. Let (�0,⇤0, ✓10) denote the true values of (�,⇤, ✓1).
Under the regularity conditions (C1)–(C5) and conditions (A.2) and (A.4) given in the Ap-
pendix, (�̂, ⇤̂, ✓̂1) is a consistent estimator of (�0,⇤0, ✓10) as n ! 1. Furthermore, as n ! 1,p
n (✓̂1 � ✓10) converges weakly to a centred Gaussian random variable with variance �2

✓10
=

�
2
�/{I1(✓10)}2; the expressions for I1(✓10) and �2

� are given in the Appendix.

The asymptotic variance of ✓̂1 in Theorem 1 can be estimated consistently by �̂2
�/{I1(✓̂1)}2;

an expression for �̂2
� is given in the Appendix. Explicit formulas when the generator is Clayton

are given in Section 3.2 of the Online Supplement.

4.2. Estimation of ✓2
Turning to the estimation of ✓2, define, for each i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, the vari-
ables R̂ij =  

�1
✓̂1

(Ûij1) + · · ·+  
�1
✓̂1

(Ûijmij ). These are noisy, censored pseudo-observations of
the radial variables from (i) of Definition 1 whose survival copula is assumed to be C ✓2

. To
estimate ✓2, we first propose to transform the variables R̂ij to the uniform scale, i.e., set, for
each i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, V̂ij = F̄ ✓̂1

,mij (R̂ij), where for any generator  and

integer d � 1, F̄ ,d is as in Equation (3). Note that for each j 2 {1, . . . ,mi}, V̂ij is left-censored
with censoring indicator �R

ij
= �ij1 ⇥ · · ·⇥ �ijmij .

Because the upper-level clusters are taken to be independent and for each i 2 {1, . . . , n}, one
can, in principle, maximize a likelihood for censored data based on the pseudo-sample (V̂ij , �

R
ij
),

i 2 {1, . . . , n}, j 2 {1, . . . ,mi} constructed analogously to the one in Equation (5). According
to a preliminary simulation not shown here, the resulting estimator performs poorly, however.
This is because for any i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, �R

ij
= 0 whenever at least one of

the observations Xij1, . . . , Xijmij in the jth sub-cluster is censored. The censoring rate of the
variables V̂ij is thus much higher than that of the variables Xij`.

Instead, we propose, for each i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, to impute the obser-
vation V̂ij whenever �R

ij
= 0. To describe the imputation procedure, assume, without loss

of generality, that all censored observations are the first hij = mij � (�ij1 + · · ·+ �ijmij ),
i.e., �ij1 = · · · = �ijhij = 0 and �ij(hij+1) = · · · = �ijmij = 1. Denoting the realizations of
(Ûij1, . . . , Ûijmij ) by (ûij1, . . . , ûijmij ), Algorithm 1 below imputes ûij` with �ij` = 0 sequen-
tially for ` 2 {1, . . . , hij}.

Algorithm 1 Imputation of missing observations
1) Generate ũij1 from the conditional distribution function

Pr(Uij1  u|Uij1  ûij1, . . . , Uijhij  ûijhij ,

Uij(hij+1) = ûij(hij+1), . . . , Uijmij = ûijmij ).

2) For k 2 {2, . . . , hij}, draw ũijk from the conditional distribution function

Pr(Uijk  u|Uij1 = ũij1, . . . , Uij(k�1) = ũij(k�1),

Uijk  ûijk, . . . , Uijhij  ûijhij , Uij(hij+1) = ûij(hij+1), . . . , Uijmij = ûijmij ).
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The conditional distributions in Algorithm 1 are explicit and given in Section 3.1 of the
Online Supplement along with the special case when  ✓1 is Clayton. Because ✓1 is unknown, it
is first replaced by its estimate ✓̂1 from Section 4.1.

Now let Ũ = (Ũ1, . . . , Ũn) denote the imputed complete data set, with Ũ i =
(Ũ i1, . . . , Ũ imi) for i 2 {1, . . . , n} and Ũ ij = (Ũij1, . . . , Ũijmij ) for j 2 {1, . . . ,mi}. Also,
for each i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, let R̃ij =  

�1
✓̂1

(Ũij1) + · · ·+  
�1
✓̂1

(Ũijmij ) and

Ṽij = F̄ ✓̂1
,mij (R̃ij). To estimate ✓2, we propose to maximize the pseudo-loglikelihood

L2(✓2) =
1

n

nX

i=1

ln{c ✓2 ,mi(Ṽi1, . . . , Ṽimi)}, (6)

where c ✓2 ,mi denotes the density of the mi-dimensional Archimedean copula with generator
 ✓2 as given in Equation (2). Note that c ✓2 ,mi involves the derivative  (mi)

✓2
, which may be

intractable for some i when mi is large. To avoid this problem, one can maximize the pair-wise
pseudo-loglikelihood (Cox and Reid, 2004), viz.

L
c
2(✓2) =

1

n

nX

i=1

miX

j=1

miX

k=j+1

ln{c ✓2,2(Ṽij , Ṽik)}, (7)

where c ✓2 ,2
is the density of the bivariate Archimedean copula with generator  ✓2 . Maximizing

Equation (7) typically leads to a loss in efficiency; this can be partly remedied by adding a weight
function such as 1/(mi � 1) (Joe and Lee, 2009).

Asymptotic normality of the estimator ✓̂2 based on the imputed sample is stated next. The
proof is similar to that of Theorem 1 and reported in Section 2 of the Online Supplement.

Theorem 2. Let ✓̂2 be a value that maximizes either L2 or L
c
2 given in Equations (6) and

(7), respectively. Also let ✓20 be the true value of ✓2. Under the conditions of Theorem 1, con-
dition (C6) in the Appendix, and condition (A.8) from Section 2 of the Online Supplement,p
n (✓̂2 � ✓20) converges weakly to a centred Gaussian random variable whose variance is either

�
2
✓20

= �
2(✓20, ✓10)/{I2(✓20)}2 or �2

✓20,c
= �

2
c
(✓20, ✓10)/{I2,c(✓20)}2, depending on whether

L2 or Lc
2 is used. The expressions for I2(✓20), I2,c(✓20), �2(✓20, ✓10), and �2

c
(✓20, ✓10) are given

in Section 3.3 of the Online Supplement, with explicit formulas for Clayton generators.

In order to reduce the effect of randomness in the imputation procedure, the latter can be
repeated K times (Rubin, 1987). Let ✓̂2,k denote the estimator based on the kth imputed sample
and the maximization of either L2 or Lc

2 given in Equations (6) and (7), respectively. The final
estimate of ✓2 is then the average

✓̄2,K =
1

K

KX

k=1

✓̂2,k. (8)

Using Rubin (1987), the variance and asymptotic behavior of ✓̄2,K are as follows.

Theorem 3. Let ✓̄2,K be as in Equation (8) for some K � 1 and ✓20 denote the true
value of ✓2. Under the hypothesis of Theorem 2, ✓̄2,K converges in probability to ✓20. Fur-
thermore, var(✓̄2,K) = WK + (1 + 1/K)BK , with BK =

P
K

k=1(✓̂2,k � ✓̄2,K)2/(K � 1) and
WK =

P
K

k=1 var(✓̂2,k)/K, where var(✓̂2,k) denotes the estimate of the asymptotic variance of
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✓̂2 based on the kth imputed sample. Finally, (✓̄2,K � ✓20)/
q
var(✓̄2,K) converges weakly to the

Student t distribution with ⌫ = (K � 1)[1 + {K/(K + 1)}(WK/BK)]2 degrees of freedom.

In the expression for the variance of ✓̄2,K given in Theorem 3, WK and BK reflect the
variation within the estimators ✓̂2,1, . . . , ✓̂2,K and the variation among imputations, respectively,
while the factor (1 + 1/K) accounts for the extra variability of ✓̄2,K when the imputation number
K is finite. The finite-sample properties of the estimators of the dependence parameters ✓1 and
✓2 proposed in this section are investigated via simulations in Section 6.

5. A GOODESS-OF-FIT TEST
Before proceeding with simulations, we propose a test to validate the assumption that the de-
pendence structure of T is indeed a hierarchical Kendall copula with Archimedean clusters as
proposed in Section 3.1. Because a fully consistent test would be too cumbersome, we propose
to test the following two hypotheses:

(a) For each i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, the distribution of the vector U ij is an
Archimedean copula with generator  ✓1 , ✓1 2 ⇥1.

(b) For each i 2 {1, . . . , n}, the survival copula of the variables Rij =
Pmij

`=1  
�1
✓1

(Uij`), j 2
{1, . . . ,mi} is Archimedean with generator  ✓2 , ✓2 2 ⇥2.

To construct a suitable test statistic, recall from Section 2 and McNeil and Nešlehová (2009)
that if a vector (U1, . . . , Ud) is distributed as an Archimedean copula C ,d, R =  

�1(U1) +
· · ·+  

�1(Ud) and S = ( �1(U1), . . . , �1(Ud))/R are independent, S is uniformly dis-
tributed on the unit simplex Sd and R has survival function given in Equation (3). In particular,
R is independent of Q =  

�1(U1)/R and Q is distributed as the ratio of two independent Erlang
variables with parameters 1 and d� 1, respectively. Hence, for any t > 0, F̄Q(t) = Pr(Q > t) =
(t+ 1)1�d. As this expression is independent of  , Y = (Q+ 1)1�d is a pivotal statistic. To test
that the distribution of (U1, . . . , Ud) is the Archimedean copula C ,d, we thus propose to test that
Spearman’s % between R and Q is 0, where % = corr{F̄Q(Q), F̄ ,d(R)} = corr{Y, F̄ ,d(R)}.

To turn these observations into a test of Hypothesis (a), suppose that Ũ is an imputed com-
plete data set obtained from Algorithm 1. As in Section 4, define, for each i 2 {1, . . . , n}
and j 2 {1, . . . ,mij}, R̃ij =  

�1
✓̂1

(Ũij1) + · · ·+  
�1
✓̂1

(Ũijmij ) and Ṽij = F̄ ✓̂1
,mij (R̃ij), set

Q̃ij =  
�1
✓̂1

(Ũij1)/R̃ij and introduce Ỹij = (Q̃ij + 1)1�mij . Let N =
P

n

i=1 mi and set Ṽ•• =

(1/N)
P

n

i=1

P
mi

j=1 Ṽij and Ỹ•• = (1/N)
P

n

i=1

P
mi

j=1 Ỹij . The combined sample version of
Spearman’s % is then

r̄1 =

P
n

i=1

P
mi

j=1(Ṽij � Ṽ••)(Ỹij � Ỹ••)qP
n

i=1

P
mi

j=1(Ṽij � Ṽ••)2
P

n

i=1

P
mi

j=1(Ỹij � Ỹ••)2
.

Following the approach of Fisher (1915), we consider the test statistic

z̄1 =
1

2
ln
⇣1 + r̄1

1� r̄1

⌘
. (9)

To test Hypothesis (b) based on a single imputed sample Ũ , set, for each i 2 {1, . . . , n},
R̃i =  

�1
✓̂2

(Ṽi1) + · · ·+  
�1
✓̂2

(Ṽimi), Ṽi = F̄ ✓̂2
,mi(R̃i), Q̃i =  

�1
✓̂2

(Ṽi1)/R̃i and Ỹi = (Q̃i +

1)1�mi . Let also Ṽ• =
P

n

i=1 Ṽi/n and similarly Ỹ• =
P

n

i=1 Ỹi/n. The sample version of Spear-
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FIGURE 1: Histograms of 2000 values of

p
n z̄1 (left panel) and

p
n z̄2 (right panel) when n = 200. For

each i 2 {1, . . . , n} and j 2 {1, . . . ,mij}, mi = m1 and mij = m2; in the left and right panel these
values are set to be m1 = 10, m2 2 {3, 5}, and m1 2 {10, 30}, m2 = 5, respectively. The generators are
Clayton with ✓1 = 2, ✓2 = 0.86, no observations are censored, and the marginal model is as in Section 6.1.
In each panel, the left and right columns correspond to the case when the margins are known and estimated.

man’s % and the resulting Fisher test statistic are then given by

r̄2 =

P
n

i=1(Ṽi � Ṽ•)(Ỹi � Ỹ•)qP
n

i=1(Ṽi � Ṽ•)2
P

n

i=1(Ỹi � Ỹ•)2
, z̄2 =

1

2
ln
⇣1 + r̄2

1� r̄2

⌘
. (10)

If no censoring is present,
p
n z̄1 and

p
n z̄2 are approximately standard Normal under Hy-

potheses (a) and (b). This is illustrated in Figure 1, which shows histograms of N = 2000 values
of

p
n z̄1 and

p
n z̄2 when n = 200, and for each i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, mi ⌘

m1 2 {10, 30} and mij ⌘ m2 2 {3, 5}. The generators are Clayton with parameters ✓1 = 2 and
✓2 = 0.86, which correspond to values of 0.5 and 0.3 in terms of Kendall’s ⌧ , respectively. The
marginal model is as in Section 6.1 and the marginal parameters are estimated as in Spiekerman
and Lin (1998), given that the data are complete. The overlaid standard normal density curves
show that the normality assumption seems reasonable even if the margins are estimated.

As in Equation (8), the variability introduced through the imputation procedure can be re-
duced by taking averages over K imputation samples. For each k 2 {1, . . . ,K}, let z̄(k)1 and
z̄
(k)
2 denote the statistics in Equations (9) and (10) corresponding to the kth imputed sample,

respectively. Let z̄1,K =
P

K

k=1 z̄
(k)
1 /K and z̄2,K =

P
K

k=1 z̄
(k)
2 /K. Following Rubin (1987), the

variance D1,K of z̄1,K is

D1,K =
1

K

KX

k=1

var(z̄(k)1 ) +
K + 1

K
B1,K , B1,K =

1

K � 1

KX

k=1

(z̄(k)1 � z̄1,K)2,

while the variance of z̄2,K equals D2,K = (1/n) +B2,K(K + 1)/K with B2,K = {1/(K �
1)}

P
K

k=1(z
(k)
2 � z̄2,K)2. Hypotheses (a) and (b) are then tested using the statistics T1,K =

z̄1,K/

q
D̂1,K and T2,K = z̄2,K/

p
D2,K , respectively. Here, D̂1,K is obtained by estimating

var(z̄(k)1 ) by the bootstrap procedure of Monaco et al. (2005) in which clusters are sampled with
replacement. If Hypotheses (a) and (b) hold and K � 2, the work of Rubin (1987) implies that
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the distribution of T1,K and T2,K is approximately Student t with degrees of freedom ⌫1 and ⌫2,
respectively, where for ◆ 2 {1, 2}, ⌫◆ = [{K(K � 1)D◆,K}/{(K + 1)B◆,K}]2.

6. SIMULATION STUDY AND DATA ANALYSIS
In this section, we use simulations to evaluate the finite-sample performance of the parameter
estimators from Section 4, and of the goodness-of-fit procedure from Section 5. We also use the
hierarchical Kendal copula model to analyze data on chronic granulomatous disease (CGD).

6.1. Simulation study of the proposed estimators
Throughout, the parameters of the hierarchical Kendall copula model are fixed as follows. For
each i 2 {1, . . . , n}, j 2 {1, . . . ,mi} and ` 2 {1, . . . ,mij}, p = 2 and Zij`1 is uniform on (0, 1)
and independent of Zij`2, which is Bernoulli(0.5). Given Zij`, Tij` follows the Cox proportional
hazards model with � = (0.5, 1) and the Weibull baseline hazard function given, for all t > 0,
by �(t) = (ata�1)/(ba) with a = 0.91 and b = 52.57. The latter are the parameter estimates
obtained by fitting the Cox proportional hazards model with Weibull baseline hazard function to
the CGD data. Finally, the generators are Clayton with ✓1 = 2 and ✓2 = 0.857, corresponding to
Kendall’s ⌧ of 0.5 and 0.3, respectively.

To generate the vector T of survival times, first draw the vector U using Algorithm 3.1
and Algorithm 3.7 of Brechmann (2014). Applying the marginal inverse survival functions then
yields Tij` = [{� ln(Uij`)}e�Zij`�

>
b
a]1/a. The lifetimes are then censored by independent

variables T
c
ij`

, uniform on (0, c), where c is chosen to reach the targeted censoring rate 10%,
30%, or 70%.

The censoring rate, the number of upper-level clusters n, and the cluster sizes typically in-
fluence the performance of the estimators �̂ = (�̂1, �̂2), ✓̂1, ✓̄2,K and ✓̄c2,K , where the last two
are obtained by maximizing Equations (6) and (7), respectively. To investigate this in detail, we
consider the following three scenarios:

A. n 2 {50, 100, 200}, mi ⌘ m1 = 10 and mij ⌘ m2 = 5;
B. n = 100, mi ⌘ m1 2 {10, 30} and mij ⌘ m2 2 {3, 5};
C. n = 100, and mi and mij drawn once prior to the simulation study from the shifted Poisson

distribution with means 10 and 5, respectively.

From preliminary simulation results not reported here, we choose K = 10, K = 30, and K =
100 when the censoring rate is 10%, 30%, and 70%, respectively. Throughout, each result is
based on 500 simulation runs.

Table 1 shows an excerpt of the results under Scenarios A and B; the complete tables for all
scenarios are provided in Tables 3–7 in Section 4 of the Online Supplement. For each estimator,
we report the average bias, the empirical standard error (SE), the average estimated standard
error (ESE), the root mean squared error (RMSE), and the empirical coverage rate of its large-
sample 95% confidence interval. Also shown are the average censoring rates �R

ij
of the cluster

representatives R̂ij . These are indeed much higher than the censoring rates of the univariate
lifetimes, and this becomes worse as the size of the lower-level clusters increases. Overall, the
performance of all estimators is reasonable, although the association parameter estimators seem
to be systematically negatively biased. It is also reassuring that SE and ESE are close, even for
n = 50.

As expected, all estimators improve as n increases. The coverage rate is surprisingly good
even if n = 50, except when the censoring rate is high and ✓̄2,K is used. As the censoring rate
increases, so does the standard error of all estimators. The bias of ✓̄2,K and ✓̄c2,K also increases
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TABLE 1: Finite-sample performance of the association parameter estimates under Scenario B.

(n,m1,m2) Est. Cens. rate Av. cens. rate of R̂ Bias SE ESE RMSE CR

(50, 10, 5) ✓̂1 10% 38% –0.0328 0.1722 0.1707 0.1738 94.7%
30% 67% –0.0224 0.1957 0.1939 0.1952 93.6%
70% 96% –0.0154 0.2579 0.2784 0.2788 94.2%

✓̄2,K 10% 38% –0.0694 0.1136 0.1035 0.1246 93.9%
30% 67% –0.1246 0.1338 0.1257 0.1770 88.8%
70% 96% –0.1674 0.2356 0.2277 0.2826 81.6%

✓̄c2,K 10% 38% –0.0452 0.1636 0.1597 0.1660 93.4%
30% 67% –0.0857 0.1732 0.1716 0.1918 93.6%
70% 96% –0.1312 0.2864 0.2781 0.3075 85.2%

(100, 10, 3) ✓̂1 10% 26% –0.0250 0.1506 0.1476 0.1497 94.0%
30% 55% –0.0326 0.1593 0.1561 0.1595 96.0%
70% 92% 0.0253 0.2354 0.2691 0.2702 94.8%

✓̄2,K 10% 26% –0.0657 0.0915 0.0908 0.1121 90.0%
30% 55% –0.1133 0.1096 0.1087 0.1570 87.0%
70% 92% –0.1571 0.1698 0.1684 0.2303 78.6%

✓̄c2,K 10% 26% –0.0573 0.1141 0.1172 0.1305 92.0%
30% 55% –0.0882 0.1227 0.1215 0.1501 89.0%
70% 92% –0.1155 0.1938 0.1922 0.2242 84.5%

(100, 10, 5) ✓̂1 10% 36% –0.0077 0.1184 0.1080 0.1083 96.7%
30% 67% –0.0347 0.1259 0.1244 0.1291 94.0%
70% 96% 0.0011 0.1961 0.2084 0.2084 93.0%

✓̄2,K 10% 36% –0.0614 0.0983 0.0921 0.1107 94.8%
30% 67% –0.1066 0.1156 0.1036 0.1486 91.0%
70% 96% -0.1411 0.1671 0.1653 0.2173 83.4%

✓̄c2,K 10% 36% –0.0383 0.1269 0.1145 0.1207 94.0%
30% 67% –0.0738 0.1407 0.1337 0.1527 93.2%
70% 96% –0.1031 0.2031 0.1987 0.2239 88.0%

(100, 30, 5) ✓̂1 10% 36% –0.0159 0.0989 0.0938 0.0951 95.3%
30% 67% –0.0204 0.1161 0.1034 0.1054 96.0%
70% 96% 0.0175 0.1785 0.1811 0.1819 93.6%

✓̄2,K 10% 36% –0.0701 0.0711 0.0717 0.1003 88.0%
30% 67% –0.1369 0.0747 0.0738 0.1555 83.0%
70% 96% –0.1701 0.1338 0.1341 0.2166 76.0%

✓̄c2,K 10% 36% –0.0384 0.0839 0.0833 0.0917 94.2%
30% 67% –0.0863 0.0876 0.0866 0.1223 93.6%
70% 96% –0.1084 0.1457 0.1441 0.1803 93.6%
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with the censoring rate. However, the impact of the latter on the bias of �̂1, �̂2 and ✓̂1 is less clear
and it may even seem that the bias decreases when the censoring rate is 70%. Although counter-
intuitive, the same phenomenon appears in the simulation experiments of Andersen (2005), Shih
and Lu (2007), and Prenen et al. (2017). Further, the estimators of �1 and �2 perform better than
those of ✓1 and ✓2. Moreover, the estimator of ✓1 performs better than the estimators of ✓2 in
terms of bias but not necessarily in terms of the standard error; the RMSE is actually of a similar
magnitude.

Scenario B explores the effect of the cluster size when n = 100. When the size of the lower-
level clusters increases from m2 = 3 to m2 = 5, more information becomes available. This re-
duces the bias and especially the standard error of the marginal parameter estimates. Also re-
duced are the bias and standard error of ✓̂1. Because the number of clusters at the upper level
is unchanged, the bias and standard error of the estimates of ✓2 remain similar. However, the
coverage rate is clearly improved. Similarly, when the size of the upper-level clusters increases
from m1 = 10 to m1 = 30, the performance of �̂1, �̂2 and ✓̂1 improves. The RMSE of ✓̄2,K re-
mains about the same while the RMSE of ✓̄c2,K improves and becomes smaller than the RMSE
✓̄2,K when m1 = 30. This means that when the upper-level clusters are large, the composite
likelihood leads to an estimator with a comparable, if not slightly better performance.

When cluster sizes vary under Scenario C, the behaviour of all estimators is similar to the
case (100, 10, 5) except for slightly larger standard errors.

6.2. Simulation study of the proposed goodness-of-fit procedures
To examine the goodness-of-fit procedures proposed in Section 5, we consider the same marginal
model as in Section 6.1. The hypothesized generators are taken to be Clayton parametrized by
Kendall’s ⌧ , viz. ⌧1 = ✓1/(✓1 + 2) and ⌧2 = ✓2/(✓2 + 2), respectively. Further, mi ⌘ m1 and
mij ⌘ m2 for each i 2 {1, . . . , n} and j 2 {1, . . . ,mi}. All tests are carried out at the 5% level
and the results are based on 500 simulation runs and 500 bootstrap replicates for the computation
of D̂1,K . The test based on T2,K uses the estimator ✓̄c2,K .

The level of the tests based on T1,K and T2,K pertaining to the association in the lower-
level and upper-level clusters, respectively, is investigated in Table 3 in the Online Supplement
for various censoring rates, degrees of association, numbers of upper-level clusters, and cluster
sizes. The number of imputations is taken to be K = 0 if no observation is censored, and K = 30
if the censoring rate is 30%. Even though the margins are estimated, the test holds its level fairly
well overall. To investigate the power, we take the generators of the lower and upper level copulas
to both be either in the Gumbel or the Frank family parametrized by Kendall’s ⌧ . The top left
panel of Figure 2 shows the power of the tests based on T1,K and T2,K for various values of n, as
a function of ⌧1, when ⌧2 = 0.3. As expected, power increases with n for each value of ⌧1. The
power also increases with ⌧1, which makes sense given that when ⌧1 = 0, the Frank and Gumbel
copulas become the independence copula, which also belongs to the Clayton family. One can
further see from these plots that the power depends on the alternative, and that it is negatively
affected by the censoring rate, although this phenomenon is less pronounced for the test based
on T2,K . Also apparent is the higher power of the test based on T1,K , which is not surprising in
view of the fact that this test is based on a higher number of observations. The bottom panel of
Figure 2 shows the effect of the cluster sizes m1 and m2 on the power of the test based on T1,K ;
as expected, the power increases with the cluster size.

6.3. Data Analysis
In this section, we apply the hierarchical Kendall copula model with Archimedean clusters to the
data from the study of chronic granulomatous disease (CGD). The dataset contains 128 patients
from n = 13 hospitals. The number mi of patients from a given hospital ranges from 4 to 26
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FIGURE 2: Power of the tests based on T1,K (top left, bottom left, and bottom right) and T2,K (top right)
for the Frank and Gumbel alternatives as a function of ⌧1 when ⌧2 = 0.3. In the top panels, (n,m1,m2) =
(n, 20, 5), while in the bottom left and right panels (n,m1,m2) equals (200, 10,m2) and (100,m1, 5),

respectively. The colours represent the censoring rates 0% (red), 10% (green) and 30% (blue).

with mean 9.8. The length mij of a single patient’s record ranges from 1 to 8 with mean 1.6. The
censoring rate for patient’s record is around 62.5%. Given that n is small, we ran an additional
simulation study using the same values of n, mi and mij as in the dataset, and the same degree
of inter- and intra-cluster association, as detailed in Section 4 of the Online Supplement. The
results reported in Table 8 show that the performance of ✓̂1 and ✓̂2 is still reasonable, particularly
when the pair-wise likelihood is used. This may seem surprising; the tolerable coverage rate can
be attributed to the fact that the association at both the lower and upper level is rather mild. Note
also that while the entire data set is exploited to estimate the marginal parameters, only patients
who experienced at least one infection and one censored time (last observation) contribute to (5).

We first evaluate the of gamma interferon on the disease. From the top part of Table 2, we
see that the treatment effect of �-IFN is significant, as also observed by Ha and Lee (2005) and
Rondeau et al. (2006).

The results of the association analysis are summarized in the bottom panel of Table 2. The
numbers of imputations and bootstrap replicates for the calculation of D̂1,K are K = 1000 and
B = 500, respectively. For both the lower and upper level, we chose the generators to be Clayton;
from the p-values of the tests from Section 5 displayed in the last column, this assumption seems
reasonable. The penultimate column shows the p-values of the test of the hypothesis that the

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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TABLE 2: Analysis of the Chronic Granulomatous Disease (CGD) data.

Marginal parameters
Covariates �̂ SE 95% CI p-value (� = 0)

Treatment �1.0860 0.2680 (�1.6112,�0.5607) < 0.0001

Association parameters
Estimators Est. SE 95% CI p-value (Ind.) p-value (GOF)

✓̂1 0.4447 0.1916 (0.0692, 0.8203) 0.0202 0.1228

✓̄2,K 0.1570 0.1510 (�0.1389, 0.4529) 0.2984 0.8909

✓̄c2,K 0.0780 0.0719 (�0.0629, 0.2189) 0.2779 0.8785

Est.: Estimate; SE: estimated standard error; CI: confidence interval; GOF: Goodness-of-fit test

association is not significant, i.e., that ✓1 = ✓2 = 0. We can see that the within-patient association
is significant albeit mild, with ✓̂1 = 0.4447 corresponding to Kendall’s ⌧1 = 0.18. The same
conclusion was obtained using the random-effect approach by Ha and Lee (2005). However, ✓̂1
is not significantly different from 0 when the covariates age and gender are also included in
the Cox proportional hazard model; this is not surprising given the small sample size (results
not reported here). The estimated association between patients treated at the same hospital is
✓̄2,K = 0.157 and ✓̄c2,K = 0.078, corresponding to Kendall’s ⌧2 = 0.07 and 0.04, respectively.
None of these values are significantly different from 0, however. This is in agreement with Ha
and Lee (2005) and Rondeau et al. (2006), who conclude from their random effects model that
there is no hospital effect.

7. CONCLUDING REMARKS
In this paper, we adapted the hierarchical Kendall copula model with Archimedean clusters of
Brechmann (2014) to clustered data with multiple levels of clustering. This model aims to re-
duce dimensionality through clustering. The way it is built reflects the cluster structure, which
makes it natural and easy to interpret. Clusters can have unequal size and the model is easily ex-
panded to multiple levels of hierarchy without imposing restrictions on the parameter space. As
we discussed, these are clear advantages over the previously proposed hierarchical Archimedean
model. Because of the way the model is constructed, association parameters can be estimated
sequentially level by level. We extended the work of Brechmann (2014) in that we developed an
estimation procedure that can be used for right-censored observations. Because the censoring rate
of the cluster representatives increases with the level of the hierarchy, we relied on imputation.
The proposed estimators are shown to be asymptotically Gaussian and well-behaved in finite
samples. Furthermore, we developed goodness-of-fit tests which can be used to check whether
at a given level of the hierarchy, the Archimedean generator indeed belongs to a specific para-
metric class. As we demonstrated through simulations, the tests hold their level well and have
reasonable power in finite samples. We used the proposed model to analyze two-level clustered
data and reached similar conclusions as previous analyses based on random effects models.

Acknowledgments
The authors thank the Editor, the Associate Editor and an anonymous referee whose comments
led to a substantial improvement of the paper. Chien-Lin Su and Weijing Wang gratefully ac-

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



xx 17

knowledge the financial support by the Taiwanese Ministry of Science and Technology, ROC
(Su: 104-2811-M-009-067; Wang: 104-2118-M-009-003-MY2). Partial funding in support of
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APPENDIX
Regularity conditions. Let T > 0 be the end of study time, and (�0,⇤0, ✓10, ✓20) refer to the
true values of the parameters (�,⇤, ✓1, ✓2). Also, for each i 2 {1, . . . , n}, j 2 {1, . . . ,mi},
` 2 {1, . . . ,mij} and t � 0, Yij` = 1(Xij` � t). Furthermore, following Spiekerman and Lin
(1998), introduce the following notation. For an arbitrary vector a, let a⌦0 = 1, a⌦1 = a, and
a⌦2 = a>a. For r 2 {0, 1, 2}, write

S
(r)(�, t) =

1

n

nX

i=1

miX

j=1

mijX

`=1

Yij`(t) exp{Zij`(u)�
>}Z⌦r

ij`
(t), s

(r)(�, t) = E{S(r)(�, t)}.

and let

E(�, t) = S
(1)(�, t)/S(0)(�, t), e(�, t) = s

(1)(�, t)/s(0)(�, t),

V (�, t) = {S(2)(�, t)/S(0)(�, t)}� E(�, t)⌦2
, v(�, t) = {s(2)(�, t)/s(0)(�, t)}� e(�, t)⌦2

.

(C1) � 2 B, where B is a compact subset of Rp, ⇤(T ) < 1, and for k 2 {1, 2}, ✓k 2 Ok, where
Ok is a compact subset of ⇥k.

(C2) For all i 2 {1, . . . , n}, j 2 {1, . . . ,mi}, ` 2 {1, . . . ,mij}, Pr(8t2[0,T ] T
c
ij`

� t) > �c > 0.
(C3) Writing Zij`(t) = {Zij`1(t), . . . , Zij`p(t)} one has, for all i 2 {1, . . . , n}, j 2

{1, . . . ,mi}, ` 2 {1, . . . ,mij} and k 2 {1, . . . , p}, and some constant BZ that
|Zij`k(0)|+

R
T

0 |dZij`k(t)|  BZ < 1 almost surely.

(C4) A=
R
T

0 �(�0, u)s
(0)(�0, u)d⇤0(u) is positive definite.
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(C5) For all i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, E{lnLij(✓1;�0,⇤0)/Lij(✓⇤1 ; �0,⇤0)} exists for
all ✓1, ✓⇤1 2 ⇥1.

(C6) For all i 2 {1, . . . , n}, E {lnL2i(✓2; ✓10,�0,⇤0)/L2i(✓⇤2 ; ✓10,�0,⇤0)} exists for all ✓2, ✓⇤2 2
⇥2, where L2i denotes the ith summand of the joint likelihood (6) or the composite likelihood
(7), as the case may be.

Proof of Theorem 1. Consistency: For consistency of �̂ and ⇤̂, see Spiekerman and Lin
(1998). As for consistency of ✓̂1, we proceed as in the proof of Theorem 2 in Prenen et al.
(2017), which uses the ideas of Othus and Li (2010). For each i 2 {1, . . . , n}, j 2 {1, . . . ,mi}
and ` 2 {1, . . . ,mij}, define

Dij` =

2

4
 
(dij+1)
✓1

nPmij

`=1  
�1
✓1

(Qij`)
o

 
(dij)
✓1

nPmij

`=1  
�1
✓1

(Qij`)
o + �ij`

 
00
✓1
{ �1

✓1
(Qij`)}

 0
✓1
{ �1

✓1
(Qij`)}

3

5 �Qij`

 0
✓1
{ �1

✓1
(Qij`)}

,

with

Qij` = exp
h
�
Z
⌧

0
Yij`(u) exp{Zij`(u)�

>}d⇤(u)
i
. (A.1)

Similarly to Prenen et al. (2017), the Hadamard derivative of L1 with respect to ⇤ at (�� ⇤) of
bounded variation in [0, T ] is

R
T

0 ⇣n(✓1;⇤)(u)d(�� ⇤)(u), where for any u 2 [0, T ],

⇣n(✓1;⇤)(u) =
1

n

nX

i=1

miX

j=1

mijX

`=1

Dij`Yij`(u) exp{Zij`(u)�
>}.

Furthermore, the derivative of L1(✓1) with respect to � is given by

⇣n(✓1;�) =
1

n

nX

i=1

miX

j=1

mijX

`=1

Dij`

Z
⌧

0
Yij`(u)Zij`(u) exp{Zij`(u)�

>}d⇤(u).

From the regularity condition in Equation (C5), the variables kYij` exp{Zij`(u)�
>}k1 and

k
R
T

0 Yij`(u)Zij`(u) exp{Zij`(u)�
>}d⇤(u)k are bounded. Next, assume that for some D > 0,

kDij`k1< D < 1, (A.2)

which holds, e.g., for the Clayton generator in view of the regularity condition (C2) (Prenen
et al., 2017). Consequently, k⇣n(✓1;⇤)k1 and k⇣n(✓1;�)k are bounded. An expansion of L1(✓1)
around �0 and ⇤0 is given by

L1(✓1) = L
0
1(✓1) + ⇣n(✓1;�0)(�̂ � �0) +

Z
T

0
⇣n(✓1;⇤)(t)d(⇤̂� ⇤0)(t) +R,

where L0
1 denotes the log-likelihood L1 with �0 and ⇤0 instead of �̂ and ⇤̂. As argued in Prenen

et al. (2017), R = op(1) as k�̂ � �0k and k⇤̂� ⇤0k1 are oP (1) (Spiekerman and Lin, 1998).
Using the same arguments as in the proof of Theorem 2 in Prenen et al. (2017), one has, for

all ✓1 2 ⇥1,

sup
✓12O1

|L1(✓1)� E{L0
1(✓1)}| = op(1), E{L0

1(✓1)}� E{L0
1(✓10)} < 0. (A.3)
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Because ✓̂1 maximizes L1(✓1), we have 0  L1(✓̂1)� L1(✓10) = L1(✓̂1)� E{L0
1(✓10)}+

op(1) so that, in view of Equation (A.3), E{L0
1(✓10)}� E{L0

1(✓̂1)}  L1(✓̂1)� E{L0
1(✓̂1)}+

op(1) = op(1). Now take ✓1 with |✓1 � ✓10| � " for some fixed " > 0. By Equation (A.3), there
must exist some �" such that E{L0

1(✓̂1)}+ �" < E{L0
1(✓10)}. It follows that limn!1 Pr(|✓̂1 �

✓10| � ")  limn!1 Pr[E{L0
1(✓̂1)}+ �" < E{L0

1(✓10)}] = 0.

Normality. Let S1n(✓1; �̂, ⇤̂) be the score function, i.e., the derivative of L1(✓1) with respect
to ✓1. Its Taylor series expansion around ✓10 is

S1n(✓̂1; �̂, ⇤̂) = S1n(✓10; �̂, ⇤̂) + (✓̂1 � ✓10)
dS1n(✓1; �̂, ⇤̂)

d✓1

���
✓1=✓⇤1

where ✓
⇤
1 is between ✓̂1 and ✓10. Since ✓̂1 is a root of S1n(✓1; �̂, ⇤̂),

p
n (✓̂1 � ✓10) =

{�@S1n(✓⇤1 ; �̂, ⇤̂)/@✓1}�1p
nS1n(✓10; �̂, ⇤̂). The Law of Large Numbers and the consistency

of (�̂, ⇤̂, ✓̂1) implies that

�@S1n

@✓1
(✓⇤1 , �̂, ⇤̂)

Pr! I1(✓10) = � lim
n!1

@S1n

@✓1
(✓10,�0,⇤0).

Thus it only remains to show the asymptotic normality of
p
nS1n(✓10; �̂, ⇤̂), which can be

derived as in the proof of Theorem 3 in Prenen et al. (2017).
Recall the definition of Qij` in Equation (A.1) and introduce D

S

ij`
= (d/d✓)Dij`, i.e.,
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The Hadamard derivative of S1n(✓1;�,⇤) with respect to ⇤ at � � ⇤ of bounded variation in
[0, T ] can be expressed as

R
T

0 ⇠n(✓1;⇤)(u)d(� � ⇤)(u), where

⇠n(✓1;⇤)(u) =
1

n

nX

i=1

miX

j

mijX

`=1

D
S

ij`
Yij`(u) exp{Zij`(u)�

>},

while the derivative of S1n(✓1;�,⇤) with respect to � is given by

⇠n(✓1;�) =
1

n

nX

i=1

miX

j=1

mijX

`=1

D
S

ij`

Z
T

0
Yij`(u)Zij`(u) exp{Zij`(u)�

>}d⇤(u).
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By the regularity condition (C5), the terms kYij` exp{Zij`(u)�
>}k1 and

k
R
⌧

0 Yij`(u)Zij`(u) exp{Zij`(u)�
>}d⇤(u)k are bounded. If for some D

S
> 0

kDS

ij`
k1 < D

S
< 1, (A.4)

which again holds for the Clayton generator, the terms k⇠n(✓1;⇤)k1 and k⇠n(✓1;�)k are
bounded. Using a Taylor series expansion and the same arguments as in Prenen et al. (2017),

p
nS1n(✓10; �̂, ⇤̂) =

p
n

h
S1n(✓10;�0,⇤0) + ⇠(✓10;�0)(�̂ � �0)

+

Z
T

0
⇠(✓10;⇤0)(t)d{⇤̂(t)� ⇤0(t)}

i
+ op(1), (A.5)

where ⇠(✓1,⇤)(t) is the pointwise limit of ⇠n(✓1,⇤)(t) and ⇠(✓1;�) = E{⇠n(✓1;�)}. By the
working independence assumption and the results of Spiekerman and Lin (1998), we find

p
n (�̂ � �0) = A�1

⇣ 1p
n

nX

i=1

Wi++

⌘
+ oP (1), (A.6)

where for i 2 {1, . . . , n},

Wi++ =
miX

j=1

mijX

`=1

Z
T

0

�
Zij`(u)� e(�0, u)

 
dMij`(u)

with Mij`(t) = �ij`1(Xij`  t)�
R
t

0 Yij`(u)e{Zij`(u)�
>
0 }d⇤0(u). Now for each t 2 [0, T ]

and i 2 {1, . . . , n}, let Mi++ =
P

mi

j=1

Pmij

`=1 Mij` and

h(t) = �
Z

t

0
e(�0, u)d⇤0(u),  i(t) =

Z
t

0

dMi++(u)

s(0)(�0, u)
+ hT (t)A�1

Wi++.

From the proof of Theorem 3 in Spiekerman and Lin (1998), it then follows that

p
n {⇤̂(t, �̂)� ⇤0(t)} =

1p
n

nX

i=1

 i(t) + oP (t), (A.7)

where oP (t) is uniform in t  T . Substituting Equations (A.6) and (A.7) into the
right-hand side of Equation (A.5) and denoting the ith summand of S1n(✓10;�0,⇤0)
as �i(✓10;�0,⇤0), i.e. S1n(✓10;�0,⇤0) =

P
n

i=1 �i(✓10;�0,⇤0)/n, we find thatp
nS1n(✓10; �̂, ⇤̂) =

P
n

i=1 �i/
p
n+ oP (1), where for each i 2 {1, . . . , n},

�i = �i(✓10;�0,⇤0) + ⇠(✓10;�0)A
�1

Wi++ +

Z
T

0
⇠(✓10;⇤0)(t)d i(t).

By the Central Limit Theorem,
p
nS1n(✓10; �̂, ⇤̂) N (0,�2

�) as n ! 1, where  denotes
weak convergence and �

2
� = var(�1). By Slutsky’s Lemma,

p
n (✓̂1 � ✓10) N (0,�2

✓10
) as

n ! 1, where �
2
✓10

= �
2
�/{I1(✓10)}2, as claimed. The variance �

2
� can be estimated byP

n

i=1 �̂
2
i
/n where �̂i is obtained from �i replacing all unknown parameters by their estima-

tors; I1(✓10) can be estimated by plugging in the estimator ✓̂1. ⌅
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1. MARGINAL PARAMETER ESTIMATION
The estimation of � and ⇤ is done using the step-wise approach of Spiekerman and Lin (1998).
In this section, we give the details of the procedure.

Define the counting process Nij`(t) = I(Xij`  t, �ij` = 1) and N...(t) =Pn
i=1

Pmi

j=1

Pmij

`=1 Nij`(t). Let Yij`(t) = I(Xij` � t) be the at risk process. The maxi-
mum follow-up time is denoted by ⌧ .

Under the working independence assumption, the estimate �̂ of � is obtained by solving the
score equation

U(�) =
nX

i=1

miX

j=1

mijX

`=1

Z ⌧

0

⇢
Zij`(u)�

S(1)(�, t)

S(0)(�, t)

�
dNij`(u), (1)

where for r 2 {0, 1, 2}, S(r)(�, t) is as defined in the regularity conditions section of the Ap-
pendix.

Once the estimate �̂ has been obtained, ⇤(t) is estimated by the Nelson-type estimator given,
for any t 2 (0, ⌧), by

⇤̂(t) =
1

n

Z t

0

dN...(u)

S(0)(�̂, u)
.

2. PROOF OF THEOREM 2
In this section, we give the proof of Theorem 2 and the form of the asymptotic variance when the
pair-wise pseudo-loglikelihood is used.

Proof of Theorem 2. The consistency and asymptotic normality of ✓̂2 follows similarly as in
the proof of Theorem 1. We only sketch the proof of the latter when L2(✓2) is used; the proof for
the composite likelihood is analogous.
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Let S2n(✓2, ✓1) be the derivative of L2(✓2). Using Taylor series expansion,

p
n (✓̂2 � ✓20) =

⇢
�@S2n

@✓2
(✓⇤2 , ✓̂1)

��1 p
nS2n(✓20, ✓̂1).

where ✓⇤2 is between ✓̂2 and ✓20. By the Law of Large Numbers and the consistency of ✓̂1 and ✓̂2,

�@S2n

@✓2
(✓⇤2 , ✓̂1)

Pr! I2(✓20) = � lim
n!1

@S2n

@✓2
(✓20, ✓10).

It thus remains to show that
p
nS2n(✓20, ✓̂1) converges to a zero-mean normal distribution. The

derivative of S2n(✓2, ✓1) with respect to ✓1 can be expressed as

⇠n(✓2, ✓1) =
1

n

nX

i=1

" @2

@✓1@✓2
 (mi)
✓2

�Pmi

j=1  
�1
✓2

(Vij)
 

 (mi)
✓2

�Pmi

j=1  
�1
✓2

(Vij)
 

�

@

@✓1
 (mi)
✓2

�Pmi

j=1  
�1
✓2

(Vij)
 @

@✓2
 (mi)
✓2

�Pmi

j=1  
�1
✓2

(Vij)
 

⇥
 (mi)
✓2

�Pmi

j=1  
�1
✓2

(Vij)
 ⇤2

�
miX

j=1

@2

@✓1@✓2
 (1)
✓2

{ �1
✓2

(Vij)}

 (1)
✓2

{ �1
✓2

(Vij)}
+

miX

j=1

@

@✓1
 (1)
✓2

{ �1
✓2

(Vij)}
@

@✓2
 (1)
✓2

{ �1
✓2

(Vij)}
⇥
 (1)
✓2

{ �1
✓2

(Vij)}
⇤2

#
;

note that ✓1 appears in each of the Vij’s. If the generators are such that

k⇠n(✓2, ✓1)k < 1 (A.8)

then ⇠(✓2, ✓1) = E{⇠n(✓2, ✓1)} is bounded. Thus from the proof of Theo-
rem 1,

p
nS2n(✓20; ✓̂1) =

Pn
i=1 ⇧i/

p
n, where for each i 2 {1, . . . , n}, ⇧i =

⌅i + ⇠(✓20, ✓10)I
�1
1 (✓10)�i and ⌅i denotes the ith summand of S2n(✓20, ✓10), i.e.,

S2n(✓20, ✓10) =
Pn

i=1 ⌅i/n. The Central Limit Theorem thus implies that as n ! 1,p
nS2n(✓20; ✓̂1) N [0,�2(✓20, ✓10)], where �2(✓20, ✓10) = var(⇧1). By Slutsky’s Lemma,

as n ! 1,
p
n (✓̂2 � ✓20) N (0,�2

✓20
), where �2

✓20
= �2(✓20, ✓10)/{I2(✓20)}2. Note that

�2(✓20, ✓10) can be estimated by
Pn

i=1 ⇧̂
2
i /n; ⇧̂i is obtained from ⇧i replacing all unknown

parameters by their estimates. ⌅

Remark 2. When the pairwise likelihood Lc
2(✓2) is used, the asymptotic variance �2

✓20,c
=

�2
c (✓20, ✓10)/{I2,c(✓20)}2 of ✓̂2 can be derived as in the proof of Theorem 2 above. Let

Sc
2n(✓2, ✓1) be the derivative of Lc

2(✓2). Then

I2,c(✓20) = lim
n!1

�dSc
2n(✓2; ✓10)

d✓2

���
✓2=✓20

while �2
c (✓20, ✓10) is the asymptotic variance of

p
nSc

2n(✓20; ✓̂1). Concretely, �2
c (✓20, ✓10) =

var(⇧c
1) where for each i 2 {1, . . . , n}, ⇧c

i = ⌅c
i + ⇠c(✓20, ✓10)I

�1
1 (✓10)�i, ⌅c

i denotes the ith
summand of Sc

2n(✓20, ✓10) =
Pn

i=1 ⌅
c
i/n and ⇠c(✓2, ✓1) is the expected value of the derivative

of Sc
2n(✓2, ✓1) with respect to ✓1.
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3. EXPLICIT FORMULAS WHEN THE CLAYTON GENERATOR IS USED
3.1. Conditional distribution used in Algorithm 1
For k 2 {1, . . . , hij}, the conditional distribution function

Fijk(u; ✓1) = Pr(Uijk  u|Uij1 = ũij1, . . . , Uij(k�1) = ũij(k�1),

Uijk  ûijk, . . . , Uijhij  ûijhij , Uij(hij+1) = ûij(hij+1), . . . , Uijmij = ûijmij )

can be computed to be

Fijk(u; ✓1) =
(�1)r (r)

✓1
{
Pk�1

`=1  
�1
✓1

(ũij`) +  �1
✓1

(u) +
Pmij

`=k+1  
�1
✓1

(ûij`)}

(�1)r (r)
✓1

{
Pk�1

l=1  
�1
✓1

(ũij`) +
Pmij

l=k  
�1
✓1

(ûij`)}
, (*)

where r = (k � 1) +
Pmij

`=1 �ij`.
When the generator is Clayton with ✓ > 0, Hofert et al. (2012) computed that the kth deriva-

tive of  ✓ is given, for all k � 1 and t > 0, by

(�1)k (k)
✓ (t) =

�(k + 1/✓)

�(1/✓)
✓k(1 + ✓t)�(k+1/✓).

The inverse of (�1)d (d), say fd, thus equals

fd(x) =
1

✓

hn x�(1/✓)

✓d�(d+ 1/✓)

o�✓/(d✓+1)
� 1

i
.

An observation from Ũijk can then be generated by drawing a standard uniform variable V and
setting

Ũijk =  ✓1

n
fr(V )�

k�1X

`=1

 �1
✓1

(ũij`)�
mijX

`=k+1

 �1
✓1

(ûij`)
o
,

where  denotes the denominator on the right-hand side of (*).

3.2. Formulas for the asymptotic variance of ✓̂1 when ✓1 > 0

For i 2 {1, . . . , n} and j 2 {1, . . . ,mi}, define

Lij =

mijX

`=1

exp(✓1Qij`)�mij + 1, A1ij =
�
�
1/✓1 +

Pmij

`=1 �ij`
�

�(1/✓1)

and A2ij = (@A1ij)/(@✓1). Then

I1(✓1) = � 1

n

nX

i=1

miX

j=1

h
� 1

{�(1/✓1 +
Pmij

`=1 �ij`)}2
n @

@✓1
�
⇣ 1

✓1
+

mijX

`=1

�ij`
⌘o2

+
1

{�(1/✓1)}2
n @

@✓1
�
⇣ 1

✓1

⌘o2
+

1

�(1/✓1 +
Pmij

`=1 �ij`)

@2

@✓21
�
⇣ 1

✓1
+

mijX

`=1

�ij`
⌘
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� 1

�(1/✓1)

@2

@✓21
�
⇣ 1

✓1

⌘
� 2 logLij

✓31
+

2

✓21Lij

mijX

`=1

exp(✓1Qij`)Qij`

+
1/✓1 +

Pmij

`=1 �ij`
L2
ij

nmijX

`=1

exp(✓1Qij`)Qij`

o2

�
1/✓1 +

Pmij

`=1 �ij`
Lij

mijX

`=1

exp(✓1Qij`)Q
2
ij` �

1

✓21

mijX

`=1

�ij`
i
.

Furthermore,

�i(✓1,�,⇤) =
miX

j=1

hA2ij

A1ij
+

logLij

✓21
�

1/✓1 +
Pmij

`=1 �ij`
Lij

mijX

`=1

exp(✓1Qij`)Qij`

+

mijX

`=1

�ij`(Qij` + 1/✓1)
i
.

Moreover, ⇠(✓1;�) can be estimated by

⇠̂(✓1;�) =
1

n

nX

i=1

miX

j=1

h 1

✓1Lij

mijX

`=1

exp(✓1Qij`)Qij`Zij` +

mijX

`=1

exp(✓1Qij`)Qij`

+
(1 + ✓1

Pmij

`=1 �ij`)

L2
ij

mijX

`=1

exp(✓1Qij`)Qij`Zij` +

mijX

`=1

�ij`Qij`Zij`

�
(1/✓1 +

Pmij

`=1 �ij`)

Lij

mijX

`=1

exp(✓1Qij`)Qij`Zij`(✓1Qij` + 1)
i
,

while ⇠(✓1;⇤)(t) can be estimated by

⇠̂(✓10;⇤)(t) =
1

n

nX

i=1

miX

j=1

mijX

`=1

eZij`(t)�
T

Yij`(t)
h
✓�1
1 L�1

ij exp(✓1Qij`)

+ (1 + ✓1

mijX

`=1

�ij`)

mijX

`=1

exp(✓1Qij`)Qij`L
�2
ij exp(✓1Qij`)

� (✓�1
1 +

mijX

l=1

�ij`)L
�1
ij exp(✓1Qij`)(1 + ✓1Qij`) + �ij`

i
.
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3.3. Formulas for the asymptotic variance of ✓̂2 when ✓2 > 0

Suppose first the joint likelihood (6) is used. For i 2 {1, . . . , n}, let B1i = �(1/✓2 +Pmi

j=1 �
R
ij)/�(1/✓2) and B2i(✓2) = {@B1i(✓2)}/(@✓2). Then

⌅i =
B2i(✓2)

B1i(✓2)
+

(1/✓2 +
Pmi

j=1 �
R
ij)(

Pmi

j=1 ṽ
�✓2
ij log ṽij)

Pmi

j=1 ṽ
�✓2
ij �mi + 1

+
1

✓2
log

⇣miX

j=1

ṽ�✓2
ij �mi + 1

⌘
�

miX

j=1

�vij(log ṽij � 1/✓2)

and

I2(✓2) = � 1

n

nX

i=1

h
�

� @

@✓2
�(1/✓2 +

Pmi

j=1 �
R
ij)
 2

�(1/✓2 +
Pmi

j=1 �
R
ij)

2
+

{ @

@✓2
�(✓�1

2 ))}2

{�(1/✓2)}2

+
1

�(1/✓2 +
Pmi

j=1 �
R
ij)

@2

@✓22
�
⇣ 1

✓2
+

miX

j=1

�Rij

⌘
� 1

�(1/✓2)

@2

@✓22
�
⇣ 1

✓2

⌘
�

miX

j=1

�Rij
✓22

�
2 log(

Pmi

j=1 ṽ
�✓2
ij �mi + 1)

✓32
�

2
Pmi

j=1 ṽ
�✓2
ij log(ṽij)

✓22(
Pmi

j=1 ṽ
�✓2
ij �mi + 1)

+
⇣ 1

✓2
+

miX

j=1

�Rij

⌘
⇥

(
Pmi

j=1 ṽ
�✓2
ij log ṽij)2 � {

Pmi

j=1 ṽ
�✓2
ij (log ṽij)2}(

Pmi

j=1 ṽ
�✓2
ij �mi + 1)

(
Pmi

j=1 ṽ
�✓2
ij �mi + 1)2

i
.

Finally, ⇠(✓2, ✓1) can be estimated by

⇠̂(✓2, ✓1) =
1

n

nX

i=1

miX

j=1

ṽ�✓2�1
ij

⇣ @

@✓1
ṽij

⌘h (1 + ✓2
Pmi

j=1 �
R
ij)

(
Pmi

j=1 ṽ
�✓2
ij �mi + 1)2

(
miX

j=1

ṽ�✓2
ij log ṽij)

+
(1/✓2 +

Pmi

j=1 �
R
ij)

(
Pmi

j=1 ṽ
�✓2
ij �mi + 1)

(1� ✓2 log ṽij)�
1

✓2(
Pmi

j=1 ṽ
�✓2
ij �mi + 1)

� �Rij ṽ
✓2
ij

i
.

When the composite likelihood (7) is used, we have

⌅c
i =

miX

j=1

miX

k=j+1

@

@✓2
Bc

i,jk(✓2)

Bc
i,jk(✓2)

�

@

@✓2
Dij(✓2)

Dij(✓2)
�

@

@✓2
Dik(✓2)

Dik(✓2)

where

Bc
i,jk(✓2) =

�(2 + ✓�1
2 )

�(✓�1
2 )

�
ṽ�✓2
ij + ṽ�✓2

ik � 1
��(2+✓�1

2 )
,

Dc
ij(✓2) =

�(1 + ✓�1
2 )

�(✓�1
2 )

�
ṽ1+✓2
ij

�
and Dc

ik(✓2) =
�(1 + ✓�1

2 )

�(✓�1
2 )

�
ṽ1+✓2
ik

�
.
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Moreover,

I2,c(✓2) =
�1

n

nX

i=1

miX

j=1

miX

k=j+1

(
⇣ @2

@✓22
Bc

i,jk(✓2)
⌘
Bc

i,jk(✓2)�
h @

@✓2
Bc

i,jk(✓2)
i2

⇣
Bc

i,jk(✓2)
⌘2

�

⇣ @2

@✓22
Dc

ij(✓2)
⌘
Dc

ij(✓2)�
h @

@✓2
Dc

ij(✓2)
i

⇣
Dc

ij(✓2)
⌘2

�

⇣ @2

@✓22
Dc

ik(✓2)
⌘
Dc

ik(✓2)�
h @

@✓2
Dc

ik(✓2)
i

⇣
Dc

ik(✓2)
⌘2

)

where

@

@✓2
Bc

i,jk(✓2) =
⇣ @

@✓2

�(2 + ✓�1
2 )

�(✓�1
2 )

⌘
(ṽ�✓2

ij + ṽ�✓2
ik � 1)�(2+✓�1

2 )

+
�(2 + ✓�1

2 )

�(✓�1
2 )

@

@✓2
(ṽ�✓2

ij + ṽ�✓2
ik � 1)�(2+✓�1

2 ),

@2

@✓22
Bc

i,jk(✓2) =
⇣ @2

@2✓2

�(2 + ✓�1
2 )

�(✓�1
2 )

⌘
(ṽ�✓2

ij + ṽ�✓2
ik � 1)�(2+✓�1

2 ),

+ 2
⇣ @

@✓2

�(2 + ✓�1
2 )

�(✓�1
2 )

⌘⇣ @

@✓2
(ṽ�✓2

ij + ṽ�✓2
ik � 1)�(2+✓�1

2 )
⌘

+
⇣�(2 + ✓�1

2 )

�(✓�1
2 )

⌘⇣ @2

@✓22
(ṽ�✓2

ij + ṽ�✓2
ik � 1)�(2+✓�1

2 )
⌘
,

@

@✓2
Dc

ij(✓2) = ṽ1+✓2
ij

h @

@✓2

�(1 + ✓�1
2 )

�(✓�1
2 )

+
�(1 + ✓�1

2 )

�(✓�1
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4. ADDITIONAL SIMULATION RESULTS
This section gathers results of additional simulation studies. Table 3 reports the finite sample
performance of the marginal and association parameter estimators under Scenario B. Tables 4
and 5 show the finite sample performance of the marginal and association parameter estimators
under Scenarion B. Finally, Tables 6 and 7 display results under Scenario C. The design and both
scenarios are described in the main paper.

Table 8 displays results of a simulation study that was run in order to assess the performance
of the estimators of ✓1 and ✓2, and the coverage rate of the confidence intervals for these param-
eters for sample size n and cluster sizes that match those observed in the CGD dataset. Specifi-
cally, we set n = 13 and (m1, . . . ,m13) = (4, 16, 4, 26, 8, 9, 4, 4, 6, 16, 8, 19, 4); the average of
the cluster sizes mi is 9.8. The sizes of the lower-level clusters mij were also chosen exactly
as in the data; their values range from 1 to 8 with an average of 1.6. For each i 2 {1, . . . , n},
j 2 {1, . . . ,mi} and ` 2 {1, . . . ,mij}, we generated a Bernoulli(0.5) variable Zij` and drew
Tij` conditionally on Zij` from the Cox proportional hazard model with � = �1.0860 and a
Weibull baseline hazard function with a = 0.91 and b = 52.57. The survival times Tij` were
subsequently censored by an independent censoring variable, uniform on (0, c); c was chosen as
to achieve the censoring rate of 62.5% observed in the CGD data. Furthermore, the generators
are Clayton with parameters ✓1 = 0.4447 and ✓2 = 0.0780 which correspond to Kendall’s ⌧ of
0.18 and 0.04, respectively. These parameter values are equal to the estimates ✓̂1 and ✓̄c2,K from
the CGD data analysis.

Finally, Table 9 shows results of a simulation study assessing the level of the tests based on
T1,K and T2,K .
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TABLE 3: Finite-sample performance of the association parameter estimates under Scenario A.

(n,m1,m2) Est. Cens. rate Av. cens. rate of R̂ Bias SE ESE RMSE CR

(50, 10, 5) �̂1 10% 38% 0.0109 0.0526 0.0515 0.0526 93.3%
30% 67% 0.0025 0.0574 0.0534 0.0535 92.4%
70% 96% 0.0035 0.0781 0.0746 0.0747 93.4%

�̂2 10% 38% 0.0106 0.0953 0.0941 0.0947 92.4%
30% 67% 0.0126 0.1008 0.0952 0.0960 93.4%
70% 96% 0.0060 0.1233 0.1306 0.1307 95.8%

✓̂1 10% 38% –0.0328 0.1722 0.1707 0.1738 94.7%
30% 67% –0.0224 0.1957 0.1939 0.1952 93.6%
70% 96% –0.0154 0.2579 0.2784 0.2788 94.2%

✓̄2,K 10% 38% –0.0694 0.1136 0.1035 0.1246 93.9%
30% 67% –0.1246 0.1338 0.1257 0.1770 88.8%
70% 96% –0.1674 0.2356 0.2277 0.2826 81.6%

✓̄c2,K 10% 38% –0.0452 0.1636 0.1597 0.1660 93.4%
30% 67% –0.0857 0.1732 0.1716 0.1918 93.6%
70% 96% –0.1312 0.2864 0.2781 0.3075 85.2%

(200, 10, 5) �̂1 10% 38% 0.0010 0.0301 0.0294 0.0294 94.6%
30% 67% 0.0029 0.0322 0.0316 0.0317 94.0%
70% 96% –0.0018 0.0379 0.0377 0.0377 93.6%

�̂2 10% 38% 0.0097 0.0605 0.0622 0.0630 94.4%
30% 67% 0.0080 0.0636 0.0631 0.0636 95.0%
70% 96% 0.0029 0.0664 0.0656 0.0656 94.0%

✓̂1 10% 38% –0.0116 0.1073 0.1038 0.1044 96.4%
30% 67% –0.0135 0.1147 0.1128 0.1136 95.2%
70% 96% –0.0015 0.1257 0.1236 0.1236 94.0%

✓̄2,K 10% 38% –0.0523 0.0813 0.0817 0.0970 94.9%
30% 67% –0.0978 0.0854 0.0844 0.1292 92.8%
70% 96% –0.1362 0.1348 0.1337 0.1908 88.2%

✓̄c2,K 10% 38% –0.0415 0.0855 0.0867 0.0961 94.2%
30% 67% –0.0657 0.0938 0.0929 0.1138 94.6%
70% 96% –0.1012 0.1783 0.1766 0.2035 92.8%
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TABLE 4: Finite-sample performance of the association parameter estimates under Scenario B.

(n,m1,m2) Est. Cens. rate Av. cens. rate of R̂ Bias SE ESE RMSE CR

(100, 10, 3) �̂1 10% 26% 0.0082 0.0517 0.0494 0.0501 93.6%
30% 55% 0.0109 0.0525 0.0514 0.0525 94.0%
70% 92% 0.0016 0.0674 0.0689 0.0689 94.0%

�̂2 10% 26% 0.0052 0.0904 0.0891 0.0893 94.0%
30% 55% 0.0128 0.0915 0.0907 0.0916 95.0%
70% 92% –0.0096 0.1219 0.1204 0.1208 94.3%

✓̂1 10% 26% –0.0250 0.1506 0.1476 0.1497 94.0%
30% 55% –0.0326 0.1593 0.1561 0.1595 96.0%
70% 92% 0.0253 0.2354 0.2691 0.2702 94.8%

✓̄2,K 10% 26% –0.0657 0.0915 0.0908 0.1121 90.0%
30% 55% –0.1133 0.1096 0.1087 0.1570 87.0%
70% 92% –0.1571 0.1698 0.1684 0.2303 78.6%

✓̄c2,K 10% 26% –0.0573 0.1141 0.1172 0.1305 92.0%
30% 55% –0.0882 0.1227 0.1215 0.1501 89.0%
70% 92% –0.1155 0.1938 0.1922 0.2242 84.5%

(100, 10, 5) �̂1 10% 36% 0.0050 0.0377 0.0371 0.0374 91.3%
30% 67% 0.0040 0.0392 0.0388 0.0390 94.1%
70% 96% 0.0023 0.0554 0.0535 0.0535 94.0%

�̂2 10% 36% –0.0007 0.0680 0.0669 0.0669 91.7%
30% 67% 0.0161 0.0721 0.0696 0.0714 93.3%
70% 96% 0.0017 0.0997 0.0945 0.0945 93.5%

✓̂1 10% 36% –0.0077 0.1184 0.1080 0.1083 96.7%
30% 67% –0.0347 0.1259 0.1244 0.1291 94.0%
70% 96% 0.0011 0.1961 0.2084 0.2084 93.0%

✓̄2,K 10% 36% –0.0614 0.0983 0.0921 0.1107 94.8%
30% 67% –0.1066 0.1156 0.1036 0.1486 91.0%
70% 96% -0.1411 0.1671 0.1653 0.2173 83.4%

✓̄c2,K 10% 36% –0.0383 0.1269 0.1145 0.1207 94.0%
30% 67% –0.0738 0.1407 0.1337 0.1527 93.2%
70% 96% –0.1031 0.2031 0.1987 0.2239 88.0%
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TABLE 5: Finite-sample performance of the association parameter estimates under Scenario B continued.

(n,m1,m2) Est. Cens. rate Av. cens. rate of R̂ Bias SE ESE RMSE CR

(100, 30, 5) �̂1 10% 36% 0.0054 0.0285 0.0277 0.0282 94.0%
30% 67% 0.0096 0.0319 0.0295 0.0310 94.6%
70% 96% 0.0011 0.0413 0.0405 0.0405 94.0%

�̂2 10% 36% 0.0045 0.0484 0.0472 0.0474 95.2%
30% 67% 0.0089 0.0578 0.0577 0.0584 94.2%
70% 96% 0.0024 0.0779 0.0738 0.0738 93.3%

✓̂1 10% 36% –0.0159 0.0989 0.0938 0.0951 95.3%
30% 67% –0.0204 0.1161 0.1034 0.1054 96.0%
70% 96% 0.0175 0.1785 0.1811 0.1819 93.6%

✓̄2,K 10% 36% –0.0701 0.0711 0.0717 0.1003 88.0%
30% 67% –0.1369 0.0747 0.0738 0.1555 83.0%
70% 96% –0.1701 0.1338 0.1341 0.2166 76.0%

✓̄c2,K 10% 36% –0.0384 0.0839 0.0833 0.0917 94.2%
30% 67% –0.0863 0.0876 0.0866 0.1223 93.6%
70% 96% –0.1084 0.1457 0.1441 0.1803 93.6%
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TABLE 6: Finite sample performance of the association parameter estimates under Scenario C.

(n,m1,m2) Est. Cens. rate Av. cens. rate of R̂ Bias SE ESE RMSE CR

(100,10,Poi(5)) �̂1 10% 42% 0.0021 0.0364 0.0347 0.0348 90.0%
30% 70% 0.0033 0.0370 0.0357 0.0358 92.3%
70% 97% -0.0022 0.0488 0.0492 0.0492 93.6%

�̂2 10% 42% 0.0058 0.0669 0.0647 0.0650 92.8%
30% 70% 0.0143 0.0706 0.0656 0.0671 93.6%
70% 97% 0.0012 0.0864 0.0856 0.0856 94.6%

✓̂1 10% 42% -0.0044 0.1209 0.1302 0.1303 93.2%
30% 70% -0.0146 0.1302 0.1321 0.1330 94.7%
70% 97% 0.0083 0.1668 0.1742 0.1744 96.0%

✓̄2,K 10% 42% -0.0638 0.0972 0.0966 0.1183 94.0%
30% 70% -0.1166 0.1054 0.1032 0.1557 91.6%
70% 97% -0.1476 0.1625 0.1618 0.2190 84.2%

✓̄c2,K 10% 42% -0.0434 0.1096 0.1078 0.1162 93.8%
30% 70% -0.0754 0.1436 0.1411 0.1600 93.6%
70% 97% -0.1081 0.2066 0.2054 0.2321 86.6%

(100,Poi(10),5) �̂1 10% 36% 0.0032 0.0371 0.0355 0.0356 93.0%
30% 67% 0.0068 0.0381 0.0363 0.0369 94.0%
70% 96% –0.0010 0.0521 0.0516 0.0516 93.6%

�̂2 10% 36% 0.0115 0.0647 0.0654 0.0664 92.6%
30% 67% 0.0147 0.0709 0.0687 0.0702 92.6%
70% 96% 0.0028 0.0927 0.0884 0.0884 92.8%

✓̂1 10% 36% -0.0069 0.1148 0.1068 0.1070 94.5%
30% 67% -0.0242 0.1229 0.1167 0.1192 93.6%
70% 96% 0.0026 0.1813 0.2000 0.2000 97.1%

✓̄2,K 10% 36% -0.0653 0.1030 0.1132 0.1306 93.6%
30% 67% -0.1168 0.1192 0.1200 0.1674 90.2%
70% 96% -0.1488 0.1682 0.1697 0.2257 83.6%

✓̄c2,K 10% 36% -0.0401 0.1395 0.1266 0.1327 94.5%
30% 67% -0.0787 0.1607 0.1533 0.1723 93.6%
70% 96% -0.1164 0.2136 0.2077 0.2381 88.2%
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TABLE 7: Finite sample performance of the association parameter estimates under Scenario C continued.

(n,m1,m2) Est. Cens. rate Av. cens. rate of R̂ Bias SE ESE RMSE CR

(100,Poi(10),Poi(5)) �̂1 10% 42% 0.0038 0.0329 0.0342 0.0344 95.4%
30% 70% 0.0055 0.0378 0.0362 0.0366 93.6%
70% 97% 0.0016 0.0482 0.0465 0.0465 92.6%

�̂2 10% 42% 0.0060 0.0674 0.0637 0.0640 92.8%
30% 70% 0.0088 0.0705 0.0687 0.0691 92.6%
70% 97% -0.0014 0.0856 0.0812 0.0812 93.0%

✓̂1 10% 42% -0.0316 0.1221 0.1278 0.1316 91.4%
30% 70% -0.0182 0.1278 0.1388 0.1400 95.0%
70% 97% 0.0078 0.1614 0.1683 0.1684 94.8%

✓̄2,K 10% 42% -0.0658 0.1069 0.1033 0.1224 94.5%
30% 70% -0.1192 0.1244 0.1201 0.1692 90.0%
70% 97% -0.1557 0.1793 0.1755 0.2346 83.8%

✓̄c2,K 10% 42% -0.0399 0.1327 0.1298 0.1357 95.0%
30% 70% -0.0883 0.1631 0.1611 0.1837 93.6%
70% 97% -0.1159 0.2284 0.2156 0.2448 88.4%

TABLE 8: Small sample performance of the association parameter estimates with sample and cluster sizes
as in the CGD data.

(n,m1,m2) Est. Cens. rate Av. cens. rate of R̂ Bias SE ESE RMSE CR

�̂1 62.5% 90% -0.0252 0.2496 0.2295 0.2308 95.8%
✓̂1 62.5% 90% -0.0156 0.3225 0.3237 0.3241 90.0%
✓̄2,K 62.5% 90% -0.0367 0.0199 0.0211 0.0423 84.5%
✓̄c2,K 62.5% 90% -0.0322 0.0288 0.0233 0.0397 88.6%
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TABLE 9: Level of the tests based on T1,K and T2,K .

(200, 10,m2) (100,m1, 5) (n, 20, 5)

Cens. rate (⌧1, ⌧2) 2 3 5 10 30 50 100 200 300

Test based on T1,K

0% (0.1,0.3) 5.0% 6.6% 4.8% 6.0% 4.6% 5.8% 5.4% 5.0% 6.0%
(0.3,0.3) 6.4% 5.0% 6.6% 3.6% 4.5% 6.4% 6.4% 6.4% 4.8%
(0.5,0.3) 6.4% 6.0% 6.4% 5.6% 5.2% 6.4% 6.4% 5.8% 5.2%
(0.7,0.3) 5.6% 6.0% 4.4% 6.4% 6.2% 5.8% 6.0% 6.0% 4.2%

30% (0.1,0.3) 6.4% 4.8% 3.8% 3.4% 4.0% 4.0% 4.6% 4.8% 4.5%
(0.3,0.3) 4.2% 5.4% 4.0% 3.8% 3.8% 4.4% 3.7% 3.2% 3.3%
(0.5,0.3) 6.0% 3.8% 3.6% 3.2% 4.0% 3.6% 4.2% 4.2% 4.4%
(0.7,0.3) 3.6% 4.0% 4.2% 3.6% 3.4% 3.2% 3.6% 4.8% 4.6%

Test based on T2,K

0% (0.5,0.1) 5.2% 5.8% 4.4% 5.2% 3.6% 5.2% 6.8% 4.4% 4.8%
(0.5,0.3) 7.2% 4.0% 5.4% 5.0% 6.8% 5.0% 5.8% 5.2% 6.0%
(0.5,0.5) 6.0% 5.4% 4.0% 3.6% 6.0% 5.0% 6.2% 5.8% 5.0%
(0.5,0.7) 4.2% 4.6% 5.8% 5.2% 4.6% 6% 6.2% 5.4% 4.2%

30% (0.5,0.1) 3.4% 3.8% 3.6% 3.2% 4.6% 5.4% 4.0% 5.4% 4.0%
(0.5,0.3) 6.3% 5.2% 4.6% 6.4% 7.0% 5.6% 6.4% 4.2% 4.7%
(0.5,0.5) 5.7% 4.4% 4.0% 3.6% 4.2% 4.3% 3.8% 3.6% 4.0%
(0.5,0.7) 3.8% 3.6% 5.6% 4.3% 5.8% 5.4% 4.2% 3.8% 4.2%
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14 C.-L. SU, J. G.NEŠLEHOVÁ, AND W. WANG Vol. xx, No. xx

5. IMPLEMENTATION
To run the procedures proposed in this paper and to analyze the data from the study of chronic
granulomatous disease (CGD), load the following packages and source functions; the code below
is available in DemoSNW.R.

library(survival)

library(copula)

library(numDeriv)

source('CodeSNW.R')

Data from the hierarchical Kendall copula with Clayton generators can be generated using
the function rCopulaHKCC. First, determine the cluster sizes.

culevel <- c(10,4,4,10,4,6,6)

cllevel <- c(rep(5,10),1,4,5,6,rep(2,4),

rep(5,10),2,3,4,2,rep(3,6),rep(2,6))

In this example, there are 7 clusters at the upper level with sizes given in culevel; the
sizes of the lower level clusters are stored in cllevel. A sample from the hierarchical Kendall
copula with Clayton clusters is then

U <- rCopulaHKCC(ulevel=culevel,llevel=cllevel,theta1=2,theta2=1,

method="simple")

The parameter method has one of the values "default", "simple", "sort",

"discrete", "monoH.FC" and is passed on to the function qK from the package copula
for the inversion of the Kendall function. The output U is in the form of a list, the i-th element is
again a list such that U ij can be recovered as U[[i]][[j]].

Next, U can be transformed into T, which corresponds to the vector T of failure times using
the function rFailure. Here, only the Weibull hazard rate is implemented and two covariates,
one uniformly distributed and the other Bernoulli with parameter prob.

T <- rFailure(U,a=0.91,b=52.5779,prob=0.5,beta=c(0.5,1))

The function rFailure can be easily modified to accommodate a different number of
covariates and/or their distributions. The output T is in the same format as U, except that the
values of the covariates are also stored. The vector T ij of failure times can be retrieved as
T[[i]][[j]]$failure and the corresponding covariates are stored as a mij ⇥ 2 matrix
in T[[i]][[j]]$covariates.

The failure times can then be censored by independent censoring variables that are assumed
to be uniform on (0, c) using the function rCensor.

X <- rCensor(T,c=300)

The format of X is again a list of lists as T and U. The observed failure times Xij , censoring
indicators �ij and the corresponding covariates can be retrieved as X[[i]][[j]]$failure,
X[[i]][[j]]$delta, and X[[i]][[j]]$covariates, respectively. The observed cen-
soring rate can be calculated as follows.
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cens <- unlist(lapply(X,FUN=function(l){
lapply(l,FUN=function(ml){
length(ml$delta)-sum(ml$delta)

})
}))
sum(cens)/sum(cllevel)

Finally, X can be turned into a data frame using the function getMyDF.

data <- getMyDF(X)

# head(data)

# ulevel llevel failure delta cov1 cov2

#1 1 1 4.5385334 1 0.20103526 1

#2 1 1 6.2049466 1 0.01022154 0

#3 1 1 1.1793810 1 0.71061659 1

#4 1 1 12.9517248 1 0.42965971 1

#5 1 1 16.7325076 1 0.11957299 0

#6 1 2 0.5041147 1 0.28785984 0

To fit the hierarchical Kendall copula model with Clayton clusters, first fit the Cox pro-
portional hazard model. The example below assumes that the data frame contains the columns
ulevel and llevel (indicating the cluster structure), failure (failure times), and delta
(censoring indicator), and that the covariates are stored in columns 5 and above in the data frame.

xnam <- c(names(data)[5:ncol(data)],"cluster(ulevel)")

fmla <- as.formula(paste("Surv(failure,delta) ˜ ",

paste(xnam, collapse= "+")))

results <- coxph(fmla, robust=T,data=data,x=TRUE)

est_beta <- as.numeric(summary(results)$coefficients[,1])

# est_beta

# [1] 0.7435947 1.4327068

The pseudo observations Û can then be computed as follows; the format of Uhat is again a
list of lists as X above.

covariates <- as.matrix(results$x)

pseudos <- getPseudos(failure=data$failure,delta=data$delta,

covariates=covariates,beta=est_beta)

Uhat <- getMylist(failure=pseudos,delta=data$delta,

covariates=covariates,ulevel=data$ulevel,llevel=data$llevel)

# Uhat[[1]][[2]]

# $failure

# [1] 0.4995937 0.5072516 0.7129800 0.4911173 0.2094866

#

# $delta

# [1] 1 1 0 1 1

#

# $covariates

# [,1] [,2]

# [1,] 0.9619747 0

# [2,] 0.6622585 1

# [3,] 0.8820604 1

# [4,] 0.3467289 0

# [5,] 0.7248627 1

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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The estimate of ✓1 can be calculated using the function fitTheta1. The input are the
pseudo-observations Uhat and the parameter method is passed on to the R optimization routine
optim.

theta1 <- fitTheta1(Uhat,start=c(1),method="BFGS")

# theta1

# [1] 1.626126

The estimate of ✓2 can be calculated using the function fitTheta2. The input is again
Uhat, as well as the estimate theta1 of ✓1, a boolean variable pairwise indicating whether
the pair-wise likelihood is used, the number of imputations nimp, the starting value start and
the optimization method that is passed on to optim.

theta2 <- fitTheta2(Uhat,theta1=theta1,pairwise=FALSE,nimp=100,

start=1,method="BFGS")

theta2p <- fitTheta2(Uhat,theta1=theta1,pairwise=TRUE,nimp=100,

start=1,method="BFGS")

# theta2

# [1] 0.8782442

# theta2p

# [1] 0.5830707

The test of the hypothesis that the lower level cluster copula is Clayton is implemented
through the function gofLlevel. Its input is Uhat, the estimate theta1 of ✓1, the number
nimp of imputations and the number nboot of bootstrap samples.

gofLlevel(Uhat,theta1=theta1,nimp=100,nboot=100)

# $statistic

# [1] -0.8574091

#

# $p.value

# [1] 0.3912202

The test of the hypothesis that the upper level cluster copula is Clayton is implemented in the
function gofUlevel. Its input is Uhat, the estimate theta1 of ✓1, the estimate theta2 of
✓2, and the number nimp of imputations.

gofUlevel(Uhat,theta1=theta1,theta2=theta2,nimp=100)

# $statistic

# [1] -1.669194

#

# $p.value

# [1] 0.09508078

Finally, the standard errors of ✓̂1 and ✓̂2 may be computed as follows.

# Standard error of theta1

output_se_theta1=se_Theta1(data,method="BFGS",start=1)

# as.vector(output_se_theta1$se_theta1)

# [1] 0.5968761

# Standard error of theta2 using the full likelihood

output_se_theta2=se_Theta2(data,pairwise=FALSE,nimp=100,

es_theta1=theta1,Ky=output_se_theta1$Ky,output_se_theta1$Info_theta1)

# output_se_theta2$se_theta2
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# [1] 0.2520027

# Standard error of theta2 using the pair-wise likelihood

output_se_theta2=se_Theta2(data,pairwise=TRUE,nimp=100,

es_theta1=theta1,Ky=output_se_theta1$Ky,output_se_theta1$Info_theta1)

# output_se_theta2$se_theta2

# [1] 0.2986248

The data from the study of chronic granulomatous disease (CGD) is freely available in the R
package survival.

library(survival)

data(cgd)

It can be put in the format that is required to run the above code as follows.

len=length(cgd[,1])

sex=rep(0,len)

treatment=rep(0,len)

Hospital=rep(0,len)

Hospital[which(levels(cgd$center)[1]==as.character(cgd$center))]=1

Hospital[which(levels(cgd$center)[2]==as.character(cgd$center))]=2

Hospital[which(levels(cgd$center)[3]==as.character(cgd$center))]=3

Hospital[which(levels(cgd$center)[4]==as.character(cgd$center))]=4

Hospital[which(levels(cgd$center)[5]==as.character(cgd$center))]=5

Hospital[which(levels(cgd$center)[6]==as.character(cgd$center))]=6

Hospital[which(levels(cgd$center)[7]==as.character(cgd$center))]=7

Hospital[which(levels(cgd$center)[8]==as.character(cgd$center))]=8

Hospital[which(levels(cgd$center)[9]==as.character(cgd$center))]=9

Hospital[which(levels(cgd$center)[10]==as.character(cgd$center))]=10

Hospital[which(levels(cgd$center)[11]==as.character(cgd$center))]=11

Hospital[which(levels(cgd$center)[12]==as.character(cgd$center))]=12

Hospital[which(levels(cgd$center)[13]==as.character(cgd$center))]=13

Patient_id=cgd[,1]

sex[which("male"==as.character(cgd[,5]))]=1

treatment[which("rIFN-g"==as.character(cgd[,4]))]=1

age=cgd[,6]

failure=(cgd[,15]-cgd[,13])

delta=cgd[,16]

data=data.frame(ulevel=Hospital,llevel=Patient_id,failure=failure,

delta=delta,cov1=treatment)

# using more covariates

# data=data.frame(ulevel=Hospital,llevel=Patient_id,failure=failure,

# delta=delta,cov1=sex,cov2=age,cov3=treatment)
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