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Abstract

The influence of asphaltenes and resins on bacterial adhesion to model crude oils was examined using
a modified Microbial Adhesion to Hydrocarbons assay. Well-controlled bacterial adhesion
experiments were conducted at three solution pHs (4, 6 and 7) using Pseudomonas aeruginosa and
Pseudomonas putida and four model crude oil systems containing up to four representative
hydrocarbon compounds found in crude oils. The model crude oils were designed to independently
evaluate the influence of asphaltenes and resins on hydrocarbon surface charge (i.c., electrophoretic
mobility) and on bacterial adhesion to the liquid hydrocarbon phase. Asphaltenes and resins were
found to make the hydrocarbon droplet surface charge less negative (or more positive) and to generally
decrease microbial adhesion to the hydrocarbon. The experimental results were not in qualitative
agreement with theoretical predictions of bacteria-hydrocarbon interactions based on the classical or
extended Derjaguin-Landau-Verwey-Overbeck interaction energy profiles calculated from measured
physicochemical properties of the microorganisms and hydrocarbons. Model calculations considering
the role of steric repulsion in bacteria-hydrocarbon interactions suggest that the decreased adhesion

behavior in the presence of asphaltenes and resins may be linked to a mechanism of steric hindrance.
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1. Introduction

In situ bioremediation is a technology of growing interest for remediation of crude oil contaminated
soils and waters. Effective biodegradation depends on various parameters, in particular on the crude
oil composition and on the ability of bacteria to adhere to and degrade the hydrocarbon phase. Much
research has been performed to understand the physicochemical properties of various crude oil
constituents [1]. However, our understanding of how the major components of crude oil can affect
bacterial adhesion is still very limited.

Crude oil consists of a complex mixture of aliphatic and aromatic hydrocarbons, as well as
asphaltenes and resins. Asphaltenes are high molecular weight compounds containing numerous polar
functional groups [1, 2] and are often defined as the crude oil fraction which is insoluble in 7-pentane
or n-heptane, but soluble in aromatic solvents such as benzene or toluene [3, 4]. Resins are smaller
molecules than asphaltenes and soluble in 7-pentane and n-heptane [1, 5]. Resins are structurally
similar to amphiphilic surfactant molecules. In crude oil, they act as peptizing agents keeping
asphaltenes in suspension [1, 3, 6].

Within crude oil-water emulsions, the polar groups of asphaltenes and resins position
themselves relative to their affinities for water. Consequently, polar functional groups move to the
oil-water interface. Asphaltenes and resins contribute to the surface charge of aqueous oil dispersions
[6]. This contribution is partly due to the orientation of the polar functional groups at the oil-water
interface [6], and also by ionization of asphaltene and resin acidic and basic functional groups [3, 6].
In bioremediation applications, the charge at the oil-water interface may give rise to electrical double-

layer interactions between crude oil dispersions and bacteria.



Favorable interactions between bacteria and oil dispersions may lead to direct adhesion,
thereby facilitating hydrocarbon biodegradation [7-12]. The common uptake mechanism for aliphatic
hydrocarbon non-aqueous phase liquids (NAPLs) of negligibly low aqueous solubility (e.g.,
hexadecane), is generally found to be direct uptake associated with bacterial adhesion to oil-water
interfaces [13]. The importance of adhesion in the biodegradation process is further demonstrated by
the work of Volkering et al. [13], who suggest that inhibition of bacterial adhesion to NAPL-water
interfaces, caused by the presence of surfactants, could reduce degradation rates. Hence, the
physicochemical properties of the hydrocarbon-water interface may be of particular importance in
controlling the rates and extent of biodegradation.

Microbial adhesion to a surface or interface can sometimes be explained by the Derjaguin-
Landau-Verwey-Overbeeck (DLVO) theory of colloidal stability [14]. The DLVO theory
quantitatively evaluates the total free energy of interaction between the cell and surface, based on
electrical double-layer and van der Waals considerations. Although the DLVO theory was initially
developed for inert colloidal particles, it can nonetheless sometimes be used to qualitatively describe
microbial adhesion behavior [15], even if the interactions between chemically and structurally complex
particles such as bacteria make adhesion predictions difficult.

The Microbial Adhesion to Hydrocarbon (MATH) assay was developed over 25 years ago by
Rosenberg et al. [16] to determine microbial cell surface hydrophobicity. The MATH assay involves
vortexing a bacterial suspension in the presence of a test liquid hydrocarbon. During the vortexing
period, the hydrocarbon phase breaks up into small droplets to which microorganisms adhere,

resulting in removal of microorganisms from the bulk aqueous phase. However, Van der Mei et al.



[17] subsequently found that in addition to surface hydrophobicity, the adhesion of microorganisms
to hydrocarbon droplets was pH dependent. The MATH assay was thus disqualified as a
hydrophobicity assay as it was shown to take into account a combination of forces [17-21]. The
MATH assay has since become a common method for evaluating bacterial adhesion to a hydrocarbon
phase [22, 23]. For example, Abbasnezhad et al. [23] used the MATH assay to show that adhesion to
low solubility hydrocarbons was increased by the presence of cationic compounds and long chain
alcohols. A modified MATH assay has been proposed that overcomes the recently identified
limitations of the classical approach [24].

The objective of this study is to examine the influence of asphaltenes and resins on the surface
properties of hydrocarbon droplets and on bacterial adhesion to the hydrocarbon phase. The adhesion
of two microorganisms to hydrocarbon droplets is examined over a range of solution pHs in the
presence and absence of asphaltenes and resins using a modified MATH assay [24]. The DLVO
theory and a steric model are used to interpret the experimental results, by considering sphere-sphere

interactions between bacteria and hydrocarbon droplets during the mixing period of the MATH assay.

2. Materials and methods

2.1. Solution chemistry

Bacteria and hydrocarbons were prepared in NaCl (Sigma) solutions at pH 4, 6, or 7 at a total ionic
strength (IS) of 0.2 mM. Although this IS is on the lower end of natural freshwater environments,
this low IS solution was chosen as a conservative condition where significant droplet and bacterial

surface charges would exist. Solution pH was adjusted using HCl or NaOH. Analytical reagent grade



chemicals were used throughout and deionized (DI) (Milli-Q) water was used in washing procedures

and solution preparation. All experiments were performed at room temperature (20£1°C).

2.2. Bacteria selection and preparation

The Gram negative organisms Pseudomonas aeruginosa (P. aeruginosa) ATCC 27853 and Pseudomonas
putida (P. putida) F1G4 were used in this study. The species were selected based on their
environmental relevance as they are known hydrocarbon degraders and/or naturally present in soils
[10, 25]. The bacteria were plated onto Luria-Bertani (LB) agar plates from frozen stocks kept at -
80°C. Single colonies were used to inoculate cultures in 150 mL LB broth at 37°C and 200 rpm
gyratory shaking. After 18 hrs growth (to late stationary phase), cells were harvested by centrifuging
25 mL of the culture (Sorvall RC6) for 15 min at 5860¢ in an SS-34 rotor (Kendro). The growth
medium was decanted and the pellet was resuspended in 0.2 mM NaCl. To remove all traces of the
growth medium, the cells were centrifuged and resuspended in fresh electrolyte one additional time

before use.

2.3. Hydrocarbon selection and preparation

Given the complexity of the composition of crude oils, it is of interest to assess adhesion to
representative, model hydrocarbon systems. Experiments were performed with four simple model
hydrocarbons, prepared as follows: (i) n-hexadecane (Sigma, purity 2 99%); (ii) #-hexadecane + 0.1

wt% resins; (iii) 7-hexadecane + 50 wt% toluene (Sigma); and (iv) #-hexadecane + 50 wt% toluene +



0.1 wt% asphaltenes. These hydrocarbons are commonly present in crude oil. Furthermore,
asphaltenes cannot be dissolved in 7-hexadecane alone, and thus toluene was added as a co-solvent.
There is a considerable difference in hydrophobicity between toluene and hexadecane: the octanol-
water partition coefficient for z-hexadecane (logKw=8.25) is much larger than that of toluene
(logKsw=2.69)[26, 27]. Comparing the results from mixtures (i) and (iii) will reveal the effect of
toluene on hydrocarbon droplet surface charge and on bacterial adhesion. Comparison of mixtures
(i) and (ii) will reveal the effect of resins, while comparison of mixtures (iii) and (iv) will provide insight
on the effect of asphaltenes. Asphaltenes and resins were extracted from Cold Lake crude oil obtained
from Shell Canada. Resins were extracted as described in the ASTM D2007 method [28]. Asphaltenes
were extracted via z-pentane precipitation, as per the ASTM D2007 Appendix X1 method [28] and
then dissolved in toluene. Although the selected concentrations of asphaltenes, resins and toluene are
not representative of most crude oils, the compositions above ensured that resins and asphaltenes were

well dispersed in the hydrocarbon, and did not precipitate out.

2.4. Characterization of bacteria and hydrocarbon droplets

Bacterial surface charge was determined from electrophoretic mobility (EPM) measurements (Nano-
ZS, Malvern) conducted on bacterial suspensions prepared in 0.2 mM NaCl at pH 4, 6 and 7. EPM
measurements were also performed on silica particles (1.2 pm diameter, Spherotech) at pH 6, and on
hydrocarbon droplets at pH 4, 6 and 7. The hydrocarbon droplets were prepared by adding 10 puL of
the defined hydrocarbon to 1 mL of the electrolyte in a 10 x 10 mm square quartz cuvette (Hellma).

The use of a square cuvette was chosen to enhance mixing during the 3 min of vortexing (vortex mixer,



setting 10, Fisher Scientific). This step was followed by 3 min of sonication in a bath sonicator
(FS60H, Fisher Scientific). Bacteria and hydrocarbon zeta potential values were determined from the
EPM measurements using the Smoluchowski equation [29].

Relative cell surface hydrophobicity was evaluated by contact angle measurements (sessile drop
technique, OCA 20, Future Digital Scientific Corp.) on bacterial lawns formed on a cellulose acetate
membrane filter (0.45 pm, 47 mm diameter, Millipore). Bacterial pellets were resuspended in 10 mL
electrolyte and these suspensions were filtered using a vacuum filtration setup with a water aspirator.
The bacterial lawn was air-dried before contact angle measurements were conducted. Water (polar),
formamide (polar) and diiodomethane (apolar) were used as the three contact angle liquids with
known surface tension components. Contact angle measurements were performed on the two bacteria,
as well as on a clean quartz surface. For each microorganism tested, at least four measurements were
made per contact angle liquid.

Average equivalent spherical radii of the bacteria were determined through analysis of
microscope images (IX-71, Olympus) obtained at 30x magnification. The hydrodynamic radii of
hydrocarbon droplets were determined by dynamic light scattering (DLS) (Nano-ZS, Malvern). The
weighted averages of the hydrodynamic size distributions are used in the interaction energy
calculations.

Cell viability during the length of experimentation was confirmed using standard plate
counting (CFU) assay. Transmission electron microscopy (TEM) was used to confirm that the
integrity of bacterial cells was maintained during the time-scale of the experiments. Samples were

prepared by adding a drop of cell suspension (108 CFU/mL) to a drop of 2% uranyl acetate. A formvar



coated copper grid (200 mesh) was placed on top of this mixture for 1 min. The grid was then placed
on a drop of filter sterilized DI water for 30 sec. The grid was blotted dry to remove excess water
followed by air drying for 5 min. Measurements were performed on a Philips 410 LS transmission
electron microscope (Philips/FEI Corporation, Eindhoven, Holland), fitted with MegaView Il CCD
camera (Olympus Soft Imaging Solutions GmbH, Munster, Germany).

2.5. Cleaning procedure

All glassware in contact with hydrocarbons was rinsed with acetone, washed with DI water, then acid-
washed with 12 M HCl and flushed repeatedly with DI water. Glassware that had not been in contact
with hydrocarbons was simply acid-washed. To ensure that surface characteristics of hydrocarbon
droplets or microorganisms were not modified by the presence of undesired surface active agents, the

use of detergents was avoided.

2.6. Measurement of bacterial adhesion to hydrocarbons

A modified version of the MATH assay was used to evaluate bacterial adhesion to the different
hydrocarbon systems [24]. Briefly, the initial concentration of the prepared microbial cell suspensions
was determined using a Helber counting chamber (230000, Hawksley), viewed under a microscope
(IX71, Olympus) operating in phase contrast mode at 10x magnification. In a clean borosilicate glass
tube (16x150 mm), 300 pL of the model crude oil was added to 5 mL of the bacterial suspension.
The tube was vortexed for 2 min (vortex mixer, setting 8, Fisher), and set aside for 15 min to allow
for phase separation. A sample of the bacterial suspension was retrieved with a clean Pasteur pipet,

while taking great care to avoid uptake of the hydrocarbon layer into the pipet. This bacterial sample



was retrieved at a time point where the hydrocarbon droplet size was determined to be stable. Ten puL
of this sample was transferred to the Helber counting chamber and the cell concentration was
determined. The fraction partitioned to the hydrocarbon phase was calculated as (FP = 1-Ci/ C,),
where G, is the concentration of the bacterial suspension before mixing and C is the concentration
after mixing. The modified MATH assays were performed for P. putida and P. aeruginosa (at pH 4,
6 and 7), as well as for silica particles (at pH 6), with an initial concentration C, of approximately

5x107 particles/mL or cells/mL. The pH of the suspensions was stable over the timescale of the

MATH assays for each pH examined.

3. Results and discussion

3.1. Characterization of bacteria
EPM measurements obtained at pH 4, 6 and 7 for both microorganisms are shown in Figure 1. The
selected bacteria are negatively charged at the three pH values examined. The EPM of the two

Pseudomonas strains becomes less negative at the lowest pH and their isoelectric points seem to be less

than 4.

[FIGURE_1_HERE]

Contact angle measurements on bacterial lawns are commonly used to characterize the relative
hydrophobicity of cell surfaces [14, 30]. Measurements performed on lawns of the two
microorganisms prepared in 0.2 mM NaCl at pH 6 are reported in Table 1. P. aeruginosa is slightly
hydrophobic, with a water contact angle of -~ 95°, whereas P. putida is hydrophilic, with a water contact

angle of ~ 35°. Contact angle results are used for the calculation of the apolar surface tension value



Y"" and the polar surface tension values y* and y° (Table 1) which are then used to evaluate the

Hamaker constant for the bacteria-hydrocarbon droplet interaction [30].

The equivalent spherical diameters P. putida and P. aeruginosa were determined through
analysis of microscope images and range from 0.7 um to about 1 um. Results are presented in Table
1 and are used along with determined zeta potentials in interaction energy profile calculations. TEM
analysis of bacterial cells collected before and after MATH assays revealed no observable damage to
cell walls. Cells were observed to be similar in shape and size and exhibited flagella, both before and

after exposure to hydrocarbons.

[TABLE_1_HERE]

3.2. Characterization of hydrocarbon droplets

EPM measurements were performed on (i) hexadecane (H), (ii) hexadecane/resins (HR), (iii)
hexadecane/toluene (HT) and (iv) hexadecane/toluene/asphaltene (HTA) droplets suspended in 0.2
mM NaCl at pH 4, 6 and 7. Data shown in Figure 2a allow us to evaluate the effect of resins on
hydrocarbon droplet EPM. Results in Figure 2a generally show that the presence of resins makes the
charge at the oil-water interface less negative; however the difference was statistically significant only
at pH 6 (Exact Mann-Whitney U test, @ = 0.1). Experiments conducted to evaluate the influence of
asphaltenes on hydrocarbon charge (Figure 2b) demonstrate that the EPM of hydrocarbon droplets is

significantly less negative in the presence of asphaltenes at pH 4, 6 and 7 (Exact Mann-Whitney U

10



test, @ = 0.1). The data presented in Figure 2 suggest that both asphaltenes and resins make the surface

charge of hydrocarbon droplets less negative (or more positive) for any of the pH values examined.

[FIGURE_2_HERE]

Parra-Barraza et al. [3] found that 7-heptane insoluble asphaltenes extracted from bitumen of
high resin/asphaltene ratio carry a negative charge at pH values greater than pH 5, and a positive
charge at pH values below pH 5. Asphaltenes contain pH-dependent ionizable functional groups. A
negative charge could arise by dissociation of acidic functional groups such as carboxylic acid, and a
positive charge from protonation of basic functional groups [3]. The positive shift in charge observed
in Figure 2b in the presence of asphaltenes was likely caused by protonation of basic nitrogen-
containing functional groups such as pyridine [3].

EPMs measured for H and HT droplets in Figure 2 were negative and comparable to results
obtained by other researchers [18, 31-33]. Busscher et al. [18] and Marinova et al. [31] attributed this
negative charge to the specific adsorption of hydroxyl ions from dissociation of water molecules. The
negative charge may also be contributed by adsorption of anions such as bicarbonate or carbonate ions
[18, 32], or chloride ions from the electrolyte components [33]. Unlike Busscher et al. [18] who
observed a more negative charge for aliphatic hydrocarbon droplets in comparison to aromatic
hydrocarbon droplets, results in this study showed no significant difference when samples were
prepared with or without the aromatic compound toluene at pH 4, 6 and 7 (Exact Mann-Whitney U

test, a = 0.1) (Figure 2).
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The average hydrodynamic diameters of hydrocarbon droplets were determined for all
hydrocarbon systems at pH 4, 6 and 7. Negligible variation in diameter was found between pH values
(Table 1). The average diameters of H, HR, HT and HTA droplets ranged between 1.3 and 2.3 pm

(averaged for all pH values).

3.3. Bacterial adhesion to hydrocarbons

A modified MATH assay [24] was used to evaluate adhesion of P. putida and P. aeruginosa to the four

model hydrocarbon systems over a range of pH values. These data (Figure 3) are used to provide

insight on the effect of pH and the presence of asphaltenes and resins on microbial adhesion behavior.
[FIGURE_3_HERE]

The total interaction energy upon approach of a bacterial cell to a hydrocarbon droplet was
evaluated within the context of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory which is
commonly used to explain the physicochemical processes that govern the initial phase of bacterial
adhesion [34, 35]. The electrical double layer interaction energy was estimated using a linear
superposition approximation presented by Bell ez 2/. [36] and the retarded Liftshitz-van der Waals
interaction energy for the interaction of two spherical particles was evaluated using the expression of
Gregory [37]. It should be noted that the shape of the interaction energy profiles based on the classical
DLVO theory (Figures 4 and 5) are very similar to the profiles predicted based on the XDLVO theory
[22] that also considers the contribution of acid-base interactions (XDLVO profiles not shown).

[FIGURE_4_HERE]

[FIGURE_5_HERE]
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3.3.1. Effect of solution pH on bacterial adhesion

DLVO calculations resulted in a minimal height of the predicted interaction energy barrier for both
Pseudomonas species at pH 4 versus the two higher pH values examined (Figure 4). Accordingly,
higher partitioning fractions are observed for these organisms at pH 4 and lesser adhesion at pH 6 and
7 (Figure 3), where repulsive forces are strong and the energy barriers are non-negligible. These trends
in adhesion at different pH values for the two Pseudomonas species are in qualitative agreement with
the DLVO theory. The addition of toluene generally resulted in greater adhesion values for both
microorganisms, as shown by the partitioning fractions in Figure 3. However, the observed increased
adhesion in the presence of toluene is generally not in qualitative agreement with predictions based on
DLVO theory when considering attachment in the primary energy minimum (Figures 4 and 5).
Specifically, the predicted heights of the energy barriers for the interaction of each organism with a
droplet containing toluene (i.e., HT) (Figure 5) are generally greater than those calculated for the

interaction with a droplet containing #-hexadecane alone (i.e., H) (Figure 4).

3.3.2. Effect of asphaltenes and resins on bacterial adhbesion

The effect of resins on bacterial adhesion can be evaluated by examining the partitioning fractions in
Figure 3 for the H and HR systems. Both microorganisms demonstrate an increase in adhesion to
HR in comparison to H at pH 4. However, at pH 6, the presence of resins resulted in decreased
adhesion for the two organisms considered. A decrease in adhesion was also observed at pH 7 for 2.

aeruginosa.
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Fractions partitioned to HT and HTA in Figure 3 can be compared in an effort to understand
the effect of asphaltenes on adhesion of both Pseudomonas species. In the presence of asphaltenes,
adhesion decreased for P. aeruginosa at all pH values, and for P. putida at pH 6 and pH 7. For instance,
asphaltenes significantly decreased adhesion for P. putida (28% cells partitioned to HT and only 7%
to HTA) and for P. aeruginosa (59% cells partitioned to HT and only 40% to HTA) at pH 6 (Figure
3).

The decrease in adhesion observed in the presence of asphaltenes and resins cannot be
explained from a purely electrostatics point of view. Figure 2 reveals that the surface charges of HR
and HTA droplets are more positive than H and HT droplets, respectively. A more positive
hydrocarbon droplet surface charge is expected to result in a decrease in electrostatic repulsion and
therefore an increase in bacterial adhesion (based on DLVO theory). When total DLVO interaction
energy profiles are considered (Figure 5), the presence of asphaltenes theoretically results in attractive
interactions at pH 4 and 6, and in a lower repulsive energy barrier between cells and hydrocarbon
droplets at pH 7, thereby facilitating adhesion. Yet, the general observation in the experiments (Figure
3) is that asphaltenes cause the opposite behavior. In effect, the data in Figure 3 show that the presence

of asphaltenes in hydrocarbons generally reduces bacterial adhesion, contrarily to what could be

expected based on DVLO theory.

3.3.3. Possible role of steric interactions
The measurements of bacterial adhesion to the four model hydrocarbon systems (Figure 3) do not

always follow the predictions based on DLVO theory. Bacteria possess surface macromolecules
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including lipopolysaccharides, proteins, and complex lipids extending from the cell surface which may
inhibit adhesion through steric interactions [14, 38-41]. Asphaltenes and resins, which are surface
active, extend from the hydrocarbon droplet interface [42]. Such polymers extending from the cell
surfaces and from HR and HTA droplets may give rise to steric repulsion due to compression and
interpenetration of polymers. Steric repulsion could explain the observed decrease in adhesion to HR
and HTA that could not be explained by the DLVO calculations.

To estimate the magnitude of interaction between bacteria and asphaltene-containing
hydrocarbon droplets, repulsive steric interaction energies were calculated using the Alexander-de-
Gennes equation [43]. In this approach, the Pseudomonas species and HTA droplets were
approximated as two polymer brush systems, and it was assumed that the polymers are completely
soluble or miscible in the electrolyte. Other researchers [44-46] determined the surface polymer
lengths and grafting densities needed for these steric calculations. Sztukowski et al. [44] determined
the values for n-heptane insoluble asphaltenes extracted from Athabasca oil sands bitumen. These
asphaltenes were found to extend 2 to 9 nm from the oil-water interface, with an average molecular
area of 1.55 nm?, which is equivalent to a surface coverage of approximately 50 self-associated
asphaltene molecules per nm?. Arora [45] has shown that P. putida KT2442 has a polymer grafting
density of 2.48x107 polymers/nm? with an average length of 728 nm. According to Emerson and
Camesano [46], P. aeruginosa ATCC 10145 has two polymer layers, each with a different grafting
density and brush length. The shorter polymer layer of 24.0 nm has 7.5x10? polymers/nm?, and the
longer polymer layer has 2.5x10 polymers/nm? with a brush length of 92.6 nm. These values were

used to calculate the total interaction energy (electrical double layer+Liftshitz-van der Waals+steric
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interaction energies) between HTA droplets and Pseudomonas species. Highly repulsive interaction
energies resulted from the calculations at all separation distances (energy profiles not shown).
Repulsive energy barriers were estimated to be on the order of 10° #7 per cell for P. putida, and ~ 10*
to 10° &7 per P. aeruginosa cell at pH 6. The total interaction energy values are completely dominated
by the highly repulsive steric interaction. Although this analysis is a rough estimation of steric
interaction energies, it implies a definite hindrance to adhesion in the presence of asphaltenes.

To further evaluate whether polymers extending from microbial cells may have contributed to
the decrease in adhesion to HR and HTA droplets, the adhesion assay was performed with model
control particles. Silica particles were chosen as they are non-biological, relatively smooth and expected
to demonstrate comparable adhesion behavior as bacteria, minus the effect of steric repulsion by
interpenetration of polymers. The experimental adhesion results for silica particles at pH 6 show a
significant increase in adhesion in the presence of asphaltenes and resins (Figure 6). This result reflects
well the DLVO interaction energy profiles in Figure 6¢ based on EPM measurements for silica (3.52
+ 0.03 umcem/Vs). The calculated energy profile predicts an attractive interaction between silica and
the asphaltene-containing hydrocarbon (Figure 6¢). Silica particles and microorganisms exhibit very
different adhesion behaviors (Figures 6 and 3) despite their similar predicted interaction energy profiles
(Figures 4 and 6¢). This difference may be an indication that, unlike silica particles which are smooth,
microorganisms may indeed be repelled by HR and HTA droplets through steric stabilization caused

by polymer interpenetration.

[FIGURE_6_HERE]
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The increased adhesion of silica particles to the HR and HTA hydrocarbons could also be
explained by attractive steric interactions. Polymers which have an affinity to a surface with free
binding sites generally undergo a bridging mechanism, giving rise to an attractive bridging force [47].
Asphaltenes and resins are known to have a strong affinity to mineral surfaces, such as silica [4, 48].
Asphaltene and resin molecules extending from the hydrocarbon droplets may have been attracted to
the smooth silica particles. This would give rise to an attractive bridging force, thereby increasing
adhesion in the presence of asphaltenes and resins.

Steric effects possibly play a role in the interaction between the smooth H and HT droplets
and the biopolymers expressed by the Pseudomonas species. An attractive bridging force is expected
only if the polymers extending from the cells are compatible with H and HT surfaces. Minimal
adhesion to H and HT was observed for both Pseudomonas species (Figure 3), implying a possible
incompatibility for the biopolymers with the hydrocarbons. Therefore, it is likely that Pseudomonas
cells experienced steric repulsion due to compression of biopolymers upon approach of the smooth H

and HT hydrocarbon droplets.

4. Conclusions

DLVO (and XDLVO) interaction energies were found to inadequately predict the interactions
between microorganisms and model crude oils, in the presence of asphaltenes and resins. Steric
interactions may play an important role in the observed discrepancies between the DLVO (and
XDLVO) predictions and observed bacterial adhesion behavior. It should be noted that bacteria-
hydrocarbon interactions are very complex and the simplified model calculations presented here do

not take into account all possible synergistic molecular level interactions. Nevertheless, the
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experimental results in this study contribute to our understanding of bacterial adhesion to
hydrocarbons.

Asphaltenes and resins were shown to make the hydrocarbon droplet surface charge more
positive, and to generally decrease microbial adhesion. This result has not previously been shown in
other studies and may have significant environmental implications. Furthermore, adhesion was found
to be more favorable in the presence of toluene, therefore such aromatic hydrocarbons may increase
adhesion and direct uptake of hydrocarbons. NAPLs containing asphaltene and resin fractions are
likely to be harder to degrade by microorganisms that depend on adhesion to hydrocarbon phases for
hydrocarbon uptake. The surface properties of specific bacteria, as well as the specific asphaltenes and
resins present in a hydrocarbon phase will however determine the extent of adhesion. Ongoing studies
in our laboratory are aimed at evaluating the combined effects of surface active agents (e.g., resins and

asphaltenes) at various doses representative of common crude oils.
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Table 1

Summary of bacteria and hydrocarbon properties

Contact Angle® (°) Surface Tension”® (mJ/m?) Diameter” (um)
0 6 6 LW + -
w f d V Y )4
P. putida 34.7+129 55.4 + 3.7 46.2 +2.8 36.2 0 68.2 0.95+0.10
P. aeruginosa 946 +9.3 59.8 +3.2 472 +2.3 35.8 0.91 0.02 0.65 + 0.06
n-hexadecane 27.47° 0° 0° 1.80 +0.63
n-hexadecane + resins n/a n/a n/a 1.39 £ 0.52
n-hexadecane + toluene 28.0 o of 2.29 +0.85
n-hexadecane + toluene + asphaltenes 29.67° 0.003¢ 2,519 1.32+0.38

#Contact angles of the bacterial films with water (6,,), formamide (¢,) and diiodomethane (6,) (values are presented
as means + SD, sample size n = 4).

> Bacteria surface tension values for apolar Liftshitz-van der Waals (y
components determined by means of contact angle measurements [49].

¢ The effect of pH on surface tension is ignored [50].

¢ Equivalent spherical diameter of microorganisms determined by microscopy, and hydrodynamic diameter of
hydrocarbon droplets determined by DLS (values are averaged over all three pHSs).

¢ From ref. [30]

f Average of surface tension of hexadecane and toluene (values from ref.[30])

9 From ref. [51]

"Wy and polar acid (y*) and base (3-)



FIGURE 1. Electrophoretic mobility of bacteria at pH 4, 6 and 7. Cells were suspended in 0.2
mM NaCl for all measurements. Error bars denote + 1 standard deviation (SD), with sample size

n=>5.
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FIGURE 2.

(HR) droplets, and (b) electrophoretic mobility of hexadecane/toluene (HT) droplets and

hexadecane/toluene/asphaltenes (HTA) droplets.

mM NaCl at pH 4, 6 and 7. Error bars denote + 1 SD. * Significantly larger, with a = 0.1 (Exact

Mann-Whitney U test, n = 5).
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FIGURE 3. Fraction of (a) P. putida and (b) P. aeruginosa cells partitioned to (i) the
hexadecane phase (H) or to the hexadecane/resins phase (HR), and (ii) to the hexadecane/toluene
phase (HT) or to the hexadecane/toluene/asphaltene phase (HTA). Cells were suspended in 0.2

mM NacCl at pH 4, 6 and 7. Error bars denote + 1 SD. *Significantly larger, with o = 0.1 (Exact

Mann-Whitney U test, n = 5).
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FIGURE 4. Total interaction energy as a function of separation distance calculated using
DLVO model for (a) Pseudomonas putida and (b) Pseudomonas aeruginosa cells interacting

with n-hexadecane droplets at pH 4, 6 and 7.
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FIGURE 5. Total interaction energy as a function of separation distance calculated using

DLVO model for (a)-(c) P. aeruginosa or (d)-(f) P. putida interacting with HT and HTA

droplets.
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FIGURE 6. (a) Fraction of silica particles partitioned to the hexadecane phase (H) or to the
hexadecane/resins phase (HR), and (b) to the hexadecane/toluene phase (HT) or to the
hexadecane/toluene/asphaltenes phase (HTA). Silica particles were suspended in 0.2 mM NaCl
at pH 6. Error bars denote + 1 SD. *Significantly larger, with o = 0.1 (Exact Mann-Whitney U
test, n = 5). (c) Total interaction energy with distance for silica particles interacting with H, HT

and HTA droplets at pH 6 calculated using DLVO model.
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