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Abstract 

 
Membrane flexoelectricity is an electromechanical coupling effect between the membrane 

average curvature and macroscopic electric polarization.  Flexolelectricity is a biological 

actuation mechanism involved in the functioning of hearing.  This thesis uses theory and 

simulation to develop a fundamental understanding of flexolectricity  of relevance to hearing 

processes by integrating membrane elasticity and flexolectricity with viscoelastic processes.   

Flexoelectric actuation uses an imposed electric field to create membrane bending.  In this 

thesis we model the small amplitude oscillatory dynamics of a membrane immersed in 

viscoelastic media driven by a small amplitude harmonic electric field.  The model is based on 

the integration of the flexoelectric membrane shape equation applied to a circular membrane 

attached to the inner surface of a circular capillary and the coupled capillary flow of the 

contacting viscoelastic phases, such that the membrane flexoelectric oscillations drive   periodic 

viscoelastic capillary flows.  The model for curvature dynamics as a function of the electric field  

is second order in both inputs and outputs and   maps into the mechanical  Burgers solid model.  

The  material space of the viscoelastic fluid/flexoelectric membrane material system is defined 

and used to classify and characterize the frequency response of the material system.   The 

frequency response is characteristic of a second order system with a second order input  and 

displays a single resonant peak in the complex curvature and the total power.  The amplitude, 

frequency and width of the power peak, of relevance to the functioning of outer hair cells is 

dependent on the inertia emerging from the contacting viscoelastic phases and the ratio 

between the membrane elasticity  and the elasticity of contacting liquids.  The integrated 

flexoelectric/viscoelastic model and the novel findings contribute to the ongoing quest for a 

fundamental understanding of the functioning of outer hair cells. 
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Abstract 

La flexoélectricité de une membrane est un effet d'accouplement électromécanique entre la 

membrane, la courbure moyenne et la divergence électrique macroscopique. La flexolélectricité 

est un mécanisme de commande biologique impliqué dans le fonctionne d'audience. Cette 

thèse utilise la théorie et la simulation pour développer une compréhension fondamentale de 

"flexolectricity" de pertinence aux processus d'audience en intégrant l'élasticité de membrane 

et flexolectricity avec les processus de viscoelastique. La mise en action "Flexoelectric" utilise 

un champ électrique imposé pour créer la membrane qui courbe. Dans cette thèse nous 

modelons la petite amplitude dynamique oscillatoire d'une membrane immergée dans les 

médias viscoelastiques motivés par une petite amplitude un champ électrique harmonique. Le 

modèle est fondé sur l'intégration de l'équation de forme de membrane flexoelectrique s'est 

appliqué à une membrane circulaire attachée à la surface intérieure d'un capillaire circulaire et 

le flux capillaire couplé des phases viscoelastiques contactant, tel que les oscillations 

flexoelectriques de membrane conduisent les flux capillaires viscoelastiques. Le modèle pour la 

dynamique de courbure comme une fonction du champ électrique est le deuxième ordre dans 

les données et les productions et les cartes dans les mécaniques de modèle solide (modele 

Burger). L'espace matériel de la membrane de fluide/flexoelectrique/viscoelastique et le 

système matériel sont définis et classifiés et la réponse de fréquence du système matériel est 

caracterise. La réponse de fréquence est la caractéristique d'un deuxième système d'ordre avec 

une deuxièmes données d'ordre et affiche un sommet résonnant seul dans la courbure 

complexe et le pouvoir total. L'amplitude, la fréquence et la largeur du sommet de pouvoir, de 

pertinence au fonctionner de cellules de cheveux extérieures dépend de l'inertie naissante des 

phases de viscoelastic contactant et la proportion entre l'élasticité de membrane et l'élasticité 

de contacter des liquides. Le modèle intégré "flexoelectric/viscoelastic" et les conclusions 

originales contribuent à la quête continuante pour une compréhension fondamentale du 

fonctionnement des "Outer Hair Cells". 
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Chapter 1 

Introduction 
Liquid crystals [1] in biology and elsewhere exhibit a form of mechanoelectric coupling 

known as flexoelectricity – curvature-induced polarization – due to high strain gradients at the 

nanoscale.  Mechanoelectric transduction, indeed at the very core of our hearing system, helps 

generate mechanical gain from an oscillating membrane.  This process happens to counteract 

the effects of viscous dampening and serves to fine-tune our hearing allowing us to hear with 

high resolution across a broad spectrum of audio frequencies.  Previous work by Petrov [2-6] 

underpin the mathematics behind the flexoelectricity of such bending lipid bilayer membranes, 

and while his model assumed inviscid media our integrated approach will make use of and 

combine a membrane bending model with the Helfrich membrane shape equation in order to 

study the viscoelastic dynamics of such a membrane. 

1.1 Flexoelectricity and its Applications 

Following many advancements on the effects of curvature on the electrical characteristics of 

certain compounds, flexoelectricity in a material can now be quantitatively described. Petrov’s 

work provides the mathematical foundation for describing flexoelectricity in lipid bilayers by 

establishing the theoretical background of the polarization-curvature relationship. 

Although its effect tends to be smaller flexoelectricity is actually a more general mechanism 

than piezoelectricity - electricity resulting from pressure – and surface gradients are large at the 

nanoscale because the relaxation length scale is short, so small structures of high permittivity 
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can have flexoelectric polarizations comparable to those achievable through piezoelectricity 

(see Figure 1).  This has led to interest in all things flexoelectric as higher material coefficients 

continue to be found. 

 

Figure 1 – Flexoelectric polarization of curved bilayer. Lipids have negative partial charge βe and 
permanent dipole moment μ. The diffuse electric double layer Debye length is λD, βeλD and 
represents the dipole moment per lipid in the double layer, while d is the membrane thickness. [4]  

From sensors and nanowires to oxides and thin films, this field presents a bright stream of 

future research in many disciplines linked to this mechanoelectric coupling phenomenon and its 

applications, which include energy harvesting, lipid-protein electroelastic interactions, 

curvature thermal fluctuations and elements of blood diffusion and membrane ion transport. 
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1.2 Actuators and Sensors in Nature 

It is not surprising that the study of sensors is a natural one, we all depend on our senses to 

perceive and interconnect with our surroundings. A prime example is the actuation-sensing 

biomechanism behind the mammalian hearing system.  Spiraling through the human cochlea 

with a ratio of around 3:1 are 30,000 Outer and Inner Hair Cells (OHC, IHC) responsible for the 

amplification and detection, respectively, of incoming sound.  As shown in Figure 2 from [6] the 

cylinder-shaped OHC resonates to electrical inputs extending and contracting in phase with 

electro-acoustic stimulation to counter the effects of viscosity and significantly power the 

incoming signal.  The IHC is then capable of processing these sounds, otherwise too faint for 

detection.  Different OHCs can vary in height from 10-80 μm providing an astounding hearing 

range of 10-20,000 Hz.   

 

The phenomenon of electromotility is the inspiration behind our work as we empirically 

explore the dynamics of an electrically-driven membrane in viscoelastic media and aim to 

contribute to the ongoing knowledge evolution of the OHC. 

Figure 2 – Illustration of OHC Electromotility: De-/Hyper-polarization. 
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1.3 Thesis Objectives and Outlook 

This research seeks to contribute to the on-going efforts to characterize flexoelectricity in liquid 

crystal membranes based on previous actuation models [1-6]. We introduce embedded 

viscoelastic media and choose a capillary geometry used in the experimental characterization of 

flexoelectricity, where the oscillating membrane due to an oscillating E field is attached to the 

wall of the capillary as shown in Figure 3. 

 

Figure 3 – Schematic of the geometry and operation of flexoelectric mechanics in a capillary geometry of 
radius a.  Input E field distorts a flat circular membrane into a spherical cap of radius R and height h. The 
flexoelectric actuation creates a capillary viscoelastic flow in the contacting fluids of viscosity { }t b,η η  

and retardation time { }t b,λ λ . 
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The specific objectives of this thesis are: 

1. To derive a dynamic linear model for a flexoelectric membrane attached to a capillary 

tube that contains viscoelastic liquids and is subjected to a fluctuating small amplitude 

input electric field of arbitrary frequency; 

2. To compute the frequency response of the  electromechanical membrane taking into 

account the viscoelastic nature of the contacting fluids;  

3. To compute the viscoelastic functions and power output of the oscillating flexoelectric 

membrane;  

4. To use the modeling results to characterize the role of membrane flexoelectricity and 

contacting fluid viscoelasticity on the resonance features of the electromechanical 

oscillator. 

 

Finally, the power efficiency curves found in Rabbitt’s [7] model are very important to our 

research as a validation tool.  The resonant behaviour of the OHC as described will be used as a 

measuring stick both for comparison and analysis of our own model results. 

1.4 Organization of the Thesis 

In this project we investigate the feasibility of an electric field induced membrane bending 

model. A tethered membrane, defined using the spherical cap geometry and applied to the 

Helfrich membrane shape equation, moves between upper and lower viscoelastic fluids in a 

capillary.  This effect is coupled with the force-balance equation for viscoelastic flows and we 

thus present our results by comparing power and energy results with those of similarly 

behaving membranes in nature.  This thesis conveys the results obtained during the course of 

this work at the Department of Chemical Engineering, McGill University, Canada. 
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In Chapter 2 we present an overview of the important background topics including 

flexoelectricity, the membrane shape equation and biological models of flexoelectric liquid 

crystals and viscoelasticity.  This chapter will serve as the elementary backdrop for 

understanding the latter results in the thesis. 

Chapter 3 presents our results on curvature, energy and power of a membrane with variable 

stiffness inside media with variable viscoelastic properties.  We address comparative models, 

critical similarities as well relevance and validation. 

Chapter 4 summarizes the thesis work and presents an outline of future work as well as 

considerations on innovative and versatile applications of our technique in the engineering 

world; with a particular focus on biology. 

 

Figure 4 – Illustration of thesis organization.  Model of bioinspired mechanotransduction is based on 
coupling three fundamental concepts shown in green boxes.  Blue  and red boxes represent the chapters 
and appendices as well as topics covered within. 
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Chapter 2 

Background 
 

First we recapitulate the multi-disciplinary history of liquid crystal flexoelectricity as it 

applies to biological membranes and provide an in-depth review of the physiology and function 

of the Outer Hair Cell (OHC).  For in-situ biological considerations several models couple 

flexoelectricity with viscoelastic behaviour to characterize biomembranes such as the OHC in 

their natural environment and in this chapter we go over techniques to couple viscoelastic 

effects to a curvature-electric field relation, extracting salient points from literature on 

flexoelectricity and membrane shaping. 

2.1 Flexoelectricity in Nematic Liquid Crystals 
 

Nematic liquid crystals (NLC) are multifunctional self-organizing viscoelastic anisotropic 

materials whose  orientational order responds to external flow, electromagnetic, chemical, 

optical and surface fields [1]; the orientational order is defined by the director n and the elastic 

distortions by director gradient n∇ . A distinguishing and novel property of nematics is 

flexoelectricity, which describes the coupling between orientational gradients and electric 

polarization such that an applied electric field creates orientational distortions and distortions 

create macroscopic polarization. The polar nature of splay S n n= ∇ ⋅  and bend = − ×∇×B n n  

orientational deformations can polarize the NLC medium (see Figure 5): 

 f s Bc cP S B= +  (1) 
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fP  is the flexoelectric polarization and the flexoelectric coefficients for splay and bend 

{ }s Bc ,c   are of the order of  10pCm-1.  Equation 1 describes a sensor or the “direct” 

flexoelectric effect where the deformation creates polarization.   The actuation or “converse” 

flexoelectric effect [2-5] describes the flexoelectric director torque fΓ  due to an electric field E: 

 
( ) ( ) ( ){ }f S B S Bc c c c= × − ∇ ⋅ − ∇ ⋅ + + ⋅∇  Γ n E n n E n E

 
(2) 

where we note that fΓ  depends on E and ∇E .  The  torque fΓ  is given by the sum of a  

flexoelectric stress  fT  and flexoelectric coupling stress  fC : 

 f f f:= − + ∇ ⋅Γ ε T C  (3) 

This indicates an E field creating a mechanical effect.  Current potential applications of LC 

flexoelectricity include energy harvesting, electro-mechanical transducers, and displays [7-13]. 

The electroelasticity of synthetic and biological membranes can be efficiently described by 

liquid crystal models, using an approach denoted by nemato-membranology.   For example the 

elasticity of biological lipid bilayer membranes are well described by the well-known Helfrich 

energy HE  for bending 2
c2k H  and twisting ck K  (see Figure 5): 

 

2
H c cE 2k H k K= +  (4) 

where H is the average curvature and K the Gaussian curvature (Appendix A), which follows 

from the nematic Frank elastic energy  FE [13]: 

 ( ) ( )21
F 24

KE K
2

= ∇ ⋅ − ∇ ⋅ ∇ ⋅ + ×∇×n n n n n  (5) 
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where K1 is the splay and K24 the saddle splay constants; the geometric quantities and 

definitions used here are defined in Appendix 1.   Nemato-membranology follows by identifying 

the director n in relation to the outer unit normal ≡n k  and considering the tangential 

deformation gradient s∇  to obtain: 

 
( )21

F 24 24
KE 4K H 2K K
2

 = + + − 
 

 (6) 

which coincides with HE  and gives ( )c 1 24 c 244k K 8K , k 2K= + = − ; the surface gradient is 

given by the tangential projection of the total gradient: ( ) ( )s s s,∇ • ≡ ⋅∇ • =I I I - kk . Since thin 

layers behave like liquid crystals membranes exhibit flexoelectricity.  Figure 5 shows a 

schematic of flexoelectric polarization in rod-like and banana-like molecules and the 

corresponding membrane flexoelectric polarization;  as noted above the physics and modeling 

is affected by relating the director field n with the membrane normal k.   

 

Figure 5 – (Left panel) Flexoelectricity in rod and banana shaped NLC due to splay and bend 
deformations of the director n.  (Right panel) Flexoelectricity in biological membranes due to bending 
curvature described by surface gradients of the unit normal k.  The correspondence between nematic 
flexoelectricity and membrane flexoelectricity occurs when the director n is parallel to unit normal k. 
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Using the same approach as above, equation (1) gives the membrane polarization P due to 

membrane bending  ( )s∇ ⋅k : 

 ( )f sc= ∇ ⋅P k k  (7) 

where cf is the membrane flexoelectric coefficient, as indeed found experimentally.  The 

converse flexoelectric effect found from equation (2) gives the torque Γ  due to an imposed 

electric field E: 

 ( ) ( ){ }f s / / sc= × ∇ ⋅ − ∇ ⋅  Γ k k E k E   (8) 

where ( )/ / = ⋅E I - kk E  is the tangential field. This equation shows that the converse 

flexoelectric effect in membranes exists when fc 0> , and / / 0≠E  or ( )s 0∇ ⋅ ≠k E . 

 In partial summary both the direct and converse membrane flexoelectric effects are sensor-

actuator properties when membrane curvature and polarization are coupled as in nematic 

liquid crystals.  This thesis is motivated by observed flexoelectric actuation in biological 

membranes, notably in outer hair cells as described below.   

Membrane flexoelectricity due to its inherent sensor-actuator capabilities is an area of 

current interest in soft matter materials [14-21].  Soft matter flexoelectricity complements and 

extends the performance of piezoelectrics which are based on strain/polarization couplings in 

hard materials like crystals and ceramics.  Many biological complex structures exhibit liquid 

crystals behavior such as concentrated protein solutions found in spider silk and elsewhere or 

the phenomenon of electromotility in outer hair cells [22-24]. Over the years much literature 

has dealt with the problem of measuring flexoelectric coefficients in various liquid crystals and 

for typical LC membranes these coefficients range from 3-20 pC/m.  Recent experiments by Jákli 
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and collaborators have reported flexoelectricity coefficients of up to 35 nC/m in bent-core 

liquid crystals.  Such large bend coefficients make bent-core liquid crystals practical materials 

for mechanoelectric transduction [25-27]. 

Observed to behave as a flexoelectric along the lateral walls of their cell membranes, Outer 

Hair Cells (OHCs) exhibit an actuator-based phenomenon called “electromotility” [28-35]. OHCs 

produce a gain in the cochlear amplifier of over 50 dB and the cochlear amplifier provides 

mammalian physiology with the capacity of “hearing” a wide range of frequencies. Power 

generation inside the OHC  motor is of interest to the  study of hearing loss which in most cases 

is caused by OHC deterioration.   A key issue in OHC research is response amplification in the 

presence of viscous dissipation and elastic storage.  Hence an accurate description and 

understanding of electromotility has to include the frequency response of flexoelectric 

membranes embedded in a viscoelastic medium due to an oscillating E field [16].  The generic 

features of this electrical to mechanical energy conversion are described in Figure 6.   The  

oscillating E field produces oscillations in the elastic membrane through the  electromechanical 

flexoelectric effect.   On the other hand the oscillating elastic membrane displaces viscoelastic 

liquids through the  mechanical  viscoelasto-elasticity effect.  The combined effect that allows 

the energy conversion is the integration of the flexoelectric effect and the mechanical effect. 

 
 

 

Figure 6 – Schematic of the processes and mechanisms currently accepted to be involved in the 
functioning of OHC.  The electric filed distorts the membrane through the flexoelectric effect. The 
membrane distortions are transferred to contacting viscoelastic fluids.  The combination of flexoelectric 
actuation and mechanical actuation is flexoelectric mechanics. 

   elastic 
membrane 

  electric field viscoelastic flow 
flexoelectric 

 

Flexoelectric Mechanics 

mechanical 
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2.2 Biological Review 

Given the complex nature of the biological process of hearing, we will pursue herein only an 

overview of the pertinent functions and workings of the ear and in particular that of the inner 

ear containing the cochlea and OHC. 

Implicitly, the ear is divided into parts known as the outer-, middle-, and inner- ear regions 

(Figure 7). The outer ear contains the pinna and lobule – the visible region of the ear, the 

external ear canal and the tympanic membrane – or eardrum.  The middle ear contains three 

tiny bones known as the ossicles – malleus, incus and stapes.  Finally, the inner ear contains the 

vestibular apparatus and the cochlea.  

A longitudinal sound wave is trapped by the pinna and channeled through the external 

auditory canal into the vibrating tympanic membrane causing the Ossicle Chain – Malleus, Incus 

and Stapes – to oscillate accordingly.  These oscillations are felt at the oval window, 

propagating information in the form of fluid vibrations through the hollowed cochlea.  

 
Figure 7 – The Ear: Illustration of overall structure of the human ear. 
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Hair cells along the insides of the winding coil react specifically to unique frequencies and 

relay the information to the primary auditory cortex where in the comfort of the brain’s huge 

processing power the complex sounds of nature are ultimately analyzed. 

In order to develop working models at the hair cell level, it is important to understand the 

behaviour of the inner ear at the cochlear level.  A common proverb when studying biological 

mechanisms, ”structure defines function”, drives us to examine the inner cochlea and to begin 

to understand both its function and potentially underlying causes of abnormalities induced by 

damage or degenerative diseases.  

As a small cavity in the temporal bone, the cochlear interior is a mostly hollowed portion of 

the ear starting at the oval window and spiralling into a close 2.5 turns later at around 5 mm in 

height as depicted in Figure 7 from [36].  This provides the spirit of its nomenclature originally 

derived from the Greek kokhlias – snail, screw, or kokhlos – spiral shell. 

 Figure 8 – The Cochlea: The arrows show the direction of propogation of acoustic pressure vibrations. 
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Zooming into the cochlea provides a more detailed radial cross-section of the cochlea 

showing inner components including the sensory organ for hearing, the organ of Corti.  

Distributed along the scala media, a partition separates the top and bottom fluid chambers 

coiling around the cochlear duct.  With 15,000- 20,000 auditory nerve receptors, the Organ of 

Corti senses the fluid-borne vibrations in the neighbouring scala vestibuli and scala tympani 

regions, which contain the same fluid called perilymph and actually link together at the apex of 

the spiral shell called the helicotrema shown in Figure 8.  These receptors, each with their own 

hair cell, are collectively responsible for converting the pressure signals of sound into electrical 

signals that are ultimately sent to the brain for analysis. 

As shown in Figure 9 from [36-37] on the next page, the organ of Corti is further subdivided 

into two regions between the outer wall of the cochlea lined by the basilar membrane and the 

inner components including the auditory nerve through to the tectorial membrane, floating 

atop the organ in the endolymph-rich region of the scala media. On the external side of the 

organ can be found the Deiters’ cells, which connect the basilar membrane to the Outer Hair 

Cells (OHCs) and that in conjunction with Hensen, Claudius and Boettcher cells provide the 

support structure for the organ of Corti within the cochlea.  The triangular space delimiting the 

external and internal regions is called the Corti tunnel, filled by a liquid called the cortilymph. 

The inner section of the organ or Corti includes the auditory nerve fibres, the tectorial 

membrane as well as the Inner Hair Cells (IHCs), which are directly connected to the auditory 

nerve fibres and collectively serve as the launching pad for signals sent through the nerves. 
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Figure 9 – Organ of Corti: Radial cochlear cross-sections illustrate the organ of Corti at the structural 
level between the endolymph-filled scala vestibuli and scala tympani regions (left [36]) and at the 
cellular level (right [37]). 

 
In a human cochlea there up to 30,000 hair cells at birth with a 3:1 ratio of Outer to Inner 

Hair Cells.  While IHCs are responsible for detecting and converting vibrations into electrical 

signals, the OHCs’ role is to amplify sounds that are above the sensitivity threshold of the IHC 

and also to fine tune the resonance of incoming vibrations. 

The IHC work with the OHC, sensing pressure vibrations through their own stereocilia 

bundles arranged in a linear fashion.  In contrast with the OHCs, which line entire the organ of 

Corti in three continuous rows of cells, there is only one row of IHCs lining the basilar floor of 

the organ of Corti as it spirals up and down the cochlea.  The IHC converts the mechanical 

signals detected at their apical surfaces into electrical signals sent through their basal surfaces, 

containing their nuclei, along the auditory nerve and finally through to the brain. 
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This function is to be emphasized since 95% of the afferent (to the brain) nerve fibres in the 

auditory nerve system are connect to IHC pathways, highlighting the critical function of IHCs as 

the ‘messengers’ of the hearing system.  Indeed our “sense of hearing depends on this fast, 

finely graded neurotransmission at the ribbon synapses connecting (inner) hair cells to afferent 

nerve fibers.”  Figure 10 from [38] shows the structures and contents of both IHC and OHC cells. 

The process of amplifying and tuning of sounds by OHCs has been described as ‘stimulated 

acoustic emission’ as early as 1978 by D. T. Kemp [39], indicating the requirement of an input to 

trigger the system.  As the OHC resonates at the frequency of this input, it stretches and 

contracts length-wise to amplify the signal.  Three rows of OHCs line up side by side all along the 

basilar membrane of the organ of Corti, feeding mechanical power into the organ of Corti by 

way of amplifying sound.  Incoming vibrations are detected by the bundle of hair-like stereocilia 

Figure 10 – Cochlear Hair Cells: Inner (green) and Outer (blue) hair cells are shown in contrast.  The 
ovoid shape of the IHC shows that nature has emphasized its neurotransmitter function while the 
cylindrical shape of the OHCs (with the nucleus at the basal end of the cell – purple) allows them to 
perform their roles as tuners by amplifying and enhancing sound vibrations.  IHCs are separated from 
each other by inner phalangeal supporting cells (PhC) while OHCs instead rely on Deiters’ supporting 
cells.  Inner and Outer Pillar Cells (IPC, OPC) are also distinguished. 
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fibres on their apical surfaces.  Once detected, the flexoelectric properties of the OHC cell wall 

coupled with viscoelastic interfacial surroundings allow the resonant OHCs (determined by 

length) to vibrate along with the frequency of input vibrations, amplifying and modulating the 

resonance in the process.  The average lengths of the OHCs vary along the cochlea, ranging from 

shortest at the basal end of the cochlea – high frequency detection, and longest at the apex of 

the cochlea – low frequency detection, as cell lengths range from 20μm up to 80μm.  

In Figure 11 from [6], a longitudinal OHC cross section shows a stereocilia bundle in a “W” 

pattern formed by rows of three to four cells that curve together.  The outermost stereocilia are 

longer than their inner counterparts and are lodged in the overhanging tectorial membrane. 

Between individual stereocilia are links that connect the stereocilia.  Two sets of links exist: 

lateral links and tip links.  While tip links are discussed later, lateral links form between 

stereocilia of the same as well as different rows, fastening the entire structure.  

 

Figure 11 – Apical Surface of OHC: Shown above through the cuticular plate of the OHC are the 
stereocilia, forming a bundle.  The cytoskeletal layer, called the subsurface cisternae, is held together by 
a pillar-like lattice.  
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2.2.1 OHC Structure and Function 

Structurally, the OHC can be divided into three main areas: the apical pole, the basal pole 

and the lateral wall of the cell.  The apical pole (top of the OHC) consists of a stereocilia bundle 

and a cuticular plate (CP) above which the bundle is attached.  The OHC’s CP is thick enough 

such that the stereocilia rootlets do not penetrate the layer.  The tips of the tallest stereocilia 

reach up into the tectorial membrane where they are securely attached.  The basal pole 

(bottom of the OHC) contains the cell nucleus and nerve synapses.  While very few afferent 

synapses are found in the OHC there are many efferent synapses, suggesting OHCs also behave 

as sensors, picking up tuning signals from the brain and determinately altering their 

amplification factors.  This functionality allows the brain to control the ‘gain’ of the OHC, very 

useful for instance as a response to excessive volume and other stresses.  Finally, the vehicle of 

amplification in the OHC is its flexoelectric lateral wall, where the plasma membrane (PM) and 

subsurface cisternae (SSC) are found. 

The third part of the OHC is the most important in the electromotility of the cell.  The lateral 

wall of the OHC is a three layer structure, as seen in Figure 12 from [40]. The outer most layer is 

the plasma membrane, which may contain less cholesterol than  other parts of the OHC. 

 

 

                 Figure 12 – The plasma membrane (PM) the cortical lattice and the subsurface cistern (SSC) 
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A membrane that contains less cholesterol is  “softer” and more flexible. The inner most 

layer is an about 30 nm wide structure related to the endoplasmic reticulum called the 

subsurface cisterna (SSC). The SSC is actually suspected to be apparented to the sarcoplasmic 

reticulum in the muscle and be a container of Ca2+. The other layer between the plasma 

membrane and the SSC is an arrangement of macromolecules called the cortical lattice (CL). 

This set of macromolecules is composed of actin filaments and spectrin molecules 

perpendicular to each other. The actin filaments are generally circumferential and the spectrin 

proteins are generally longitudinal. Pillars of unknown molecular composition are also present 

in the CL and are oriented radially to the cell. These pillars tether strongly the PM and make, 

with the help of the spectrin molecules, microvillosities all along the length of the OHC. There is 

a 40 to 50 nm space between the molecules of spectrin [41].  The plasma membrane of the 

lateral wall contains a few transmembrane proteins that are greatly expressed such as a 

modified anion exchanger AE2, a sugar transporter GLUT-5 and prestin [42]. Stretch-activated 

ion channels were also found in the plasma membrane of the lateral wall of OHC even though 

the nature of these channels is not known. 

The Inner Hair Cells are the “true” sensitive cells. They are the one which transmit the 

information to the auditory nerve and, therefore, to the brain. The role of the OHC amplifies the 

information for the IHC. That is, the IHC would be insufficient to detect sound waves without 

the effect of the OHC. Furthermore, the “cochlear amplifier” refines the sensitivity and 

frequency selectivity of the mechanical vibrations of the cochlea. The fact that the cochlea is a 

liquid filled structure dampens the effect of a sound wave coming from the air [43]. This 

characteristic is suspected to be inherited from our animal ancestors that lived underwater. This 
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amplification has permitted mammals to increase the range of frequencies perceived, especially 

in the high frequency domain. The evolution selection has favored the development of the OHC, 

which are considered to be the “most exotically specialized hair cells” [44]. OHC amplify the 

signal by changing it's length and, therefore, enhancing the movement of the tectorial 

membrane. The change in length is called the electromotility and is ATP-independent.  This 

amplification, called the otoacoustic emissions (OAE), can be detected by clinical methods. 

Audiologists detect malfunctions in OHC by measuring the OAE. It can be considered as a sound 

coming from the cochlea in response to an external stimulus. If the patient doesn't “return” any 

OAE, it means that his OHC are not functioning correctly, more precisely they do not exhibit 

electromotility, thus not amplifying the sound for the IHC. The patient, therefore, has a hearing 

disorder. 

When a sound is detected by the tympanic membrane, it will oscillate the ossicles at a given 

frequency, that will themselves oscillate the oval window.  The changes in pressure will deform 

the basilar membrane that will have a maximal amplitude at a given location known as the 

characteristic frequency (CF) because of the different mechanical properties at each locations of 

the cochlea. The organ of Corti being seated on the basilar membrane, the OHC located at the 

CF will move with the transmission of the sound wave. As stated above, the tips of the tallest 

stereocilia are embedded in the tectorial membrane and all the stereocilia of a same cell are 

connected by links. When the basilar membrane is deformed, it pushes on the Dieter’s cells, 

which make the OHC move. Since the tectorial membrane is practically floating in the 

endolymph, the movement of the OHC will create a shear movement between the tectorial 

membrane and the OHC and make the tallest stereocilia tip on a side, pulling on the entire 
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bundle attached. The pressure imposed by these tip links will open some gate channels on the 

stereocilia and there will be an entrance of Ca2+ ions in the cell. The OHC will then be 

depolarized and shortened while it's membrane will get stiffer.  The entrance of Ca2+ will also 

make the channel lower on the stereocilia by the use of actin filaments and motor proteins like 

myosin, making the pressure imposed on the tip links drop.  The gate will then close and 

hyperpolarization will be possible, see Figure 13 from [45].  Hyperpolarization will have the 

opposite effect on the cell, elongating the cell and making reducing membrane stiffness.  It is 

the vibrational operation back and forth from hyperpolarization to depolarization that allows 

the OHC to be studied as a bending membrane along its lateral wall.  This effect is called 

electromotility, the motion of a cell’s body in response to externally or internally produced 

electric fields. 

 

Figure 13 – Scheme of a part of two cilias: When the stereocilia bundle tips to a side, the tip link will 
open a gate channel. The entrance of Ca2+ will activate a motor complex that will use an actin filament to 
diminish the pressure imposed on the tip link, closing the gate channel. 
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2.2.2 OHC Electromotility 

The electric potential has an effect on the curvature of the plasma membrane of the cell by a 

mechanism called flexoelectricity.  Flexoelectricity is a physical property of liquid crystals similar 

to piezoelectricity in solid crystals [17].  Liquid crystals are liquids that have some sort crystalline 

organisation. Plasma membranes are therefore considered as liquid crystals since their 

molecules have a constant orientation. In the case of OHC, the converse flexoelectric effect is 

considered to play an important role. The electric field potential imposed by the action of the 

molecular motor prestin will make the membrane bend. Since the lateral wall of the OHC is 

formed of many microvillosities, the sum of all the changes in the bending of each of these 

microvillosities will shorten the cells in the axial direction (Figure 14 from [6]). The 

circumferential direction remains the same because of the array of actin filaments that prevents 

the deformation of the cell in the circumferential direction. The cell will then shorten when it 

will be depolarized, which is what is observed in experiments. The spectrin molecules located 

between the microvillosities will impose some resistance to the length changes in the cell. 

 
 
Figure 14 – Illustration of OHC bending. [A] and [B] show an OHC hyperpolarized. The cell is longer and 
the curvature of the plasma membrane of is less than depolarized OHC [C, D]. 
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2.3 Modeling a Bending Membrane in Viscoelastic Media 

In order to completely account for surrounding effects, dynamic models for bending 

membranes must account for viscoelasticity.  Since many biological systems operate in a 

viscoelastic environment, one must consider ‘elasticity’ as well as the ‘viscosity’ of materials in 

the system.  Petrov [2-6] is widely recognized as a pioneer in the field of nematic liquid crystal 

flexoelectricity and his formulations for membrane deformations including curvature remain in 

use and act as important references.  After briefly reviewing some groundwork in the field we 

explain linear material viscoelasticity before describing some simple models for viscoelastic 

systems.  We finally discuss the relation of viscoelasticity to soft bio-matter such as the OHC as 

well as its particular resonant behaviour, hypothesized to counteract viscosity by amplifying 

incoming high frequency vibrations to support our hearing system. 

In this thesis we liken the function of the OHC to a bending membrane between two 

viscoelastic fluids.  This viscoelastic-electromechanical coupling represents two thirds of the 

main strategy of our research, where the final segment involves the membrane shape equation 

derived earlier from Helfrich equations.  To avoid redundancy these details are omitted from 

the thesis as considerable detail for this derivation is provided in the literature [16,18].  

Whereas elasticity is usually the result of bond stretching along crystallographic planes in an 

ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous 

material.  Viscoelasticity is defined as the property of materials that exhibit both viscous and 

elastic characteristics under deformation.  Purely viscous materials resist shear flow and strain 

linearly with time when a stress is applied, purely elastic materials strain instantaneously when 

stretched and just as quickly return to their original state once the stress is removed, while 



24 
 

 
 

viscoelastic materials have elements of both of these properties and as such exhibit time 

dependent strain.  Another way to understand viscous and elastic effects is to consider a 

material with “infinite memory” and for which stress and strain are related elastically, as 

springs, and viscidly, as dashpots: 

𝜎 = 𝐸𝜀 

𝜎 = 𝜂
𝑑𝜀
𝑑𝑡

 

Where 𝜎 is stress and 𝜀 is strain, E is the material elastic modulus and 𝜂 the material viscosity.  

Simple spring-and-dashpot models are used to model viscoelastic materials, the simplest of 

which are Maxwell (left) and Kelvin-Voigt (right) models, shown respectively in Figure 15: 

  
𝒅𝜺
𝒅𝒕

= 𝝈
𝜼

+ 𝟏
𝑬
𝒅𝝈
𝒅𝒕

    𝝈(𝒕) = 𝑬𝜺(𝒕) + 𝜼 𝒅𝜺

𝒅𝒕
 

 

 

 

Figure 15 – (a) Maxwell viscoelastic model and (b) Kelvin-Voigt viscoelastic model. 

Though useful for a variety of applications the level of accuracy of both these simple models 

is generally inadequate for dynamic modeling in biological materials.  Also, these models aim to 

identify stress-strain relations whereas in our model we analogously relate curvature to electric 

field.  In our integrated model we generalize and make use of the nonlinear Upper Convected 

Maxwell Model which allows for robust modeling of material surroundings and is generally 

acceptable for biological modeling.  For the case of small deformations the nonlinearities 

disappear and the model becomes an ordinary Maxwell model. 

a) b) 
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2.4 Research and Methodology 

In undertaking this project the bulk of the labor has come through innovative mathematical 

derivations and understanding subsequent results.  Since the inspiration of our research came 

largely from the biophysical phenomenon of the OHC, our results were measured and reflected 

off literature to ensure accurate representation.  Beyond the background provided in this 

chapter, we proceed in Chapter 3 to connect the five key aspects of our thesis: (i) OHC 

mechanotransduction, (ii) Flexoelectricity in biological membranes, (iii) Liquid crystal model of 

flexoelectric membranes, (iv) Viscoelastic fluids and (v) Membrane elasticity.  These five topics 

form the basic input into the model we present, solve, analyze, and validate in Chapter 3.  A 

flow-chart in Figure 16 below breaks down the methodology followed in the chapter. 

  

 

 

 

 

 

 

 

 

 

Figure 16 – Results are understood through 5 key components in our proposed model shown in green. 
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Chapter 3 

Flexoelectric-Viscoelastic Model 
 

A rigorous procedure was required to develop our 2nd order ODE membrane bending 

flexoelectric model from first principles, so in this Chapter the body of pertinent derivations of 

our mathematical model is presented as well as results and analysis.  First we summarize the 

model background and delve into mapping and contextualizing our analytical equations and 

corresponding coefficients.  As an integrated model of 2nd order flexoelectric behaviour we 

further describe properties such as mechanical response, energy and power considerations 

after which we analyze the viscous, elastic and inertial forces in our system.  In closing, we 

tabulate and categorize our results to provide reference and facilitate the expansion of future 

work in this field. 

3.1 Actuator Model for Flexoelectric Membranes 

To avoid repetition of lengthy derivations the reader is referred to the previous works for 

flexoelectric membrane in an inviscid and viscous cases respectively [16,18].  The physical set-

up and geometry of the flexoelectric membrane tethered to a capillary tube containing two 

viscoelastic fluids is defined in Figure 17. A capillary tube of radius a contains an edge-fixed 

flexoelectric membrane located at z = 0 . Above and below the membrane there are two 

viscoelastic fluids with column heights z = L , viscosities { }b tη ,η  and relaxation times { }b tλ ,λ

respectively. The pressure at the top of the upper layer and at the bottom of the lower layers 

are equal to a constant 0P , by imposing a fluctuating E field the membrane oscillates and 
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displaces the upper and lower incompressible viscoelastic fluids ; we emphasize that the 

Poiseuille flow is only generated by the flexoelectric effect of the membrane caused by the 

imposed ( )tE  field.. The membrane deformation is described by a spherical dome of height h 

and radius R .  

 
Figure 17 –  Schematic of the geometry and operation of flexoelectric mechanics, defined in Figure 2, in 
a capillary geometry of radius a . he input E  field distorts the initially flat circular membrane into a 
spherical cap of radius R  and height h . The flexoelectric actuation creates a capillary viscoelastic flow 
in the contacting top (t) and bottom (b) fluids of viscosity { }t b,η η  and retardation time { }t b,λ λ .   
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The shape equation that describes the average curvature H(t)  dynamics of the membrane is 

found by formulating the normal stress balance equation across the oscillating flexoelectric 

membrane [16,18]: 

( )( )f b o c c

input  flexoelectric bulk  viscoelastic restoring  membrane elastic  forcedriving  force fluids '  stress  jump

c (t) : (t)      2γ 2k +k H(t)ℑ = ∆ + + ℑE kk T






   (9) 

where the geometric factor 21/ a / 8ℑ =  indicates the characteristic deformation area  

associated with the spherical cup shown in Figure 3.  The shape equation (9) is a balance 

between membrane flexoelectric force, bulk viscoelastic liquid stress jump across the 

membrane and restoring membrane elastic force.  The oscillating flexoelectric force E (t)F  

( ) ( )f
E 2

8c t
t

a
=

E
F         (10) 

is proportional to the externally imposed ( )tE  field and the flexoelectric  coefficient fc  

indicates the converse effect, through which a  ( )tE   field creates the membrane vertical 

displacement.  As the membrane fluctuates, the contacting viscoelastic fluids dissipate and 

store energy through the oscillating upward and downward capillary flow.  The net vertical bulk 

force at the membrane ( )b: t∆kk T  contains both viscous and elastic contributions and is 

computed from the oscillatory viscoelastic capillary flow over a tube of total length z = 2L   (see 

eqn.(B-14) in Appendix B) : 

( ) b b t t

t ξ t ξt t-
λ λ λ λ

b b t
0 0

dH(ξ) dH(ξ): t  = 4L G e dξ e +G e dξ e
dξ dξ

−     ∆             
∫ ∫kk T   (11) 
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where i i iG =η /λ ;i=t,b  are respectively the elastic modulus, viscosity and retardation time of 

the top (t)  and bottom (b)  viscoelastic liquids.   The stress jump is linear with L . The integrand 

contains the curvature speed dH(ξ)/dξ  which is proportional to the volumetric flow rate ( )Q t  

by (see Appendix B) : 

( ) ( )
4

dH ξ 2Q ξ
dξ πa

= −         (12) 

and as ( )H t  oscillates so does ( )Q t . The membrane elasticity gives rise to a restoring force 

proportional to the membrane average curvature ( ) ( )-1H t =-R t :  

( ) ( )menbrane o c c(t) 2 γ 2k +k H t
2
ℑ = + 

 
F      (13) 

where  ( )o c cγ 2k +k / 2+ ℑ  is the effective membrane tension that includes the membrane 

tension oγ , bending ck  and torsion ck  [16,18]  from edge effects.  Assuming a small amplitude 

harmonic field ( )tE , capillary Poiseuille flow in the contacting viscoelastic fluids, and spherical 

membrane distortions, the following second order linear curvature dynamics is obtained (see 

Appendix B) : 

( ) ( ) ( ) ( )2 1 0 2 1 0

Elastic-MembraneInertia Viscous-Bulk Flexoelectric Force

b Η t b Η t b H(t) a t a t a E(t)+ + = Ε + Ε +
   



  

   (14) 

The right hand side is the flexoelectric input which is of the same order as the curvature 

output.  The curvature response is a balance between bulk inertial ( )2b Η t


 , bulk viscous 
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( )1b Η t


, and membrane elastic forces ( )0b Η t .  The above equation satisfies the two initial 

conditions for the curvature and the time derivative of the curvature: 

( ) 00Η = Η ; ( ) 10Η = Η


       (15) 

The coefficients and material functions in equation (14) are given by: 

( )

( )

( )

f
o

1 o t b

2 o t b

c co
0

1 G G b t

2 G G b t b t t b

ca
4L

input :  a a , λ λ

a a , λ λ

k +k / 2γ1b M
2 L L

output : b M ,

b M M , G G , λ λ

λ λ

λ λ

λ λ λ

ηλ λ λ ηλ

ℑ =


 = Σ Σ = +


 = Π Π =

  ℑ
  = + ≡

   

 = Σ + Σ Σ = η + η


 = Χ + Π = ∑ + Π ∑ = + Χ = η + η

  (16a-f) 

The membranodynamic model given by equations (14-16a-f) contains seven primitive 

materials properties: (i) viscoelastic properties { }b b t tη ,λ ,η ,λ ; (ii) membrane elasticity 

properties: { }o c cγ , k ,k ; (iii) geometry of the pipe and the membrane { }a,L;ℑ ; and (iv) 

flexoelectric force: { }f 0c ,Ε .   The elastic moduli of the viscoelastic fluids are: i i iG = η /λ ; i = t,b . 

The two products   properties a  ηλΧ  and λΠ  . The membrane stiffness M appears in { }0 1b , b  
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and 2b . All these parameters can be estimated from rheological and membrane experiments in 

steady and unsteady state [46-52]. Equations (14-16a-f) describe an electro-viscoelastic system 

with three phases, two viscoelastic liquids and one elastic membrane.   The case of purely 

viscous bulk phases was treated in [16].  We note that the mechanical stress/strain analogue of 

our viscoelastic/flexoelectric membrane under capillary confinement is the four element 

Burger’s constitutive equation for viscoelastic solids [53-62].  Below, we use 0b M≡  without 

ambiguity  to either emphasize the dynamical system ( )0b or the material aspects ( )M .  

3.1.1 Three Dimensional Material Phase Space 

Figure 18 shows the 3D material parametric space of the bulk viscoelastic/flexoelectric 

membrane system defined by the vector S : 

( ) ( ) ( )( ) ( )1 2 η λ ηλ λM = M, b M , b M M,Σ +MΣ ,Χ +MΠ=S                (17) 

The coordinates indicate the strength of the three mechanisms: inertia, viscosity, and 

elasticity defined in eqns.(16e-f).   

The projections of  S onto the three planes define three important operating lines, shown in 

Figure 19.  (a)  Viscous/elastic plane:  in the elasto-viscous plane the operating line ( )1b M  is: 

( )1 η λb M Σ +Σ M=                                                               (18) 

This equation represents a line with a positive slope: λΣ  (retardation) and abscise: ηΣ

(viscosity) .  The viscous coefficient ( )1b M  can be increased by both the bulk viscosity ηΣ  and 

the elasticity λΣ M .  (b) Elasto/inertial plane: the operating line ( )2b M  is: 
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( )2 ηλ λb M Χ +Π M=         (19) 

with slope λΠ  and abscise ηλΧ .  The inertia coefficient can be increased by both viscoelastic 

coupling b t t bλ ληλΧ = η + η  and  elastic coupling λ t bΠ M λ λ M= .  (c) Visco/inertial plane:  The 

operating line in the M=0 plane is the relation between inertial b2 and viscous b1 coefficients: 

( ) ( )2 1b M b Mλ ηλ= Σ − Χ        (20) 

More retardation λΣ enhances inertia the coefficient b2 for a given viscous coefficient b1.   

 

Figure 18. The flexoelectric membrane-viscoelastic fluid actuation system is defined by S (dashed line) 

whose coordinates ( )1 2 3S ,S ,S=S are membrane elasticity 0b = M , the viscosity function of the bulk 

viscoelastic fluids ( )1b M , and the inertia function of the bulk viscoelastic fluids ( )2b M respectively. 

( )1b viscous

( )0b elastic

( ) 2    b inertia

λΣ

λΠ
S1S

2S

3Sλ λΠ / Σ
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Figure 19.  (Left) Schematic of material properties in the viscous/elastic plane (see eqn.(18)).  (Right) 
Schematic of material properties in the elasto/inertial plane (see eqn.(19)). Operating line in the M=0 
plane is the relation between inertial b2 and viscous b1 coefficients: 2 1b bηλ λ= −Χ + Σ  (see eqn. (20)).      

3.2 Dimensionless Model, Numbers and Material Functions 

Using routine non-dimensionalization, (see Appendix C) we obtain the dimensionless 

curvature dynamic equation – with initial conditions ( ) 0Η 0 Η= ;  ( ) 1Η 0 Η=


: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t b t b2 1 2ηb k, λ λ Η t b k, Η t t kb k, λ λ t t t∗ ∗ ∗+ + Η = Ε + Ε + ΕΣ
   

 (21) 

The differential equation given in (21a) contains three dimensionless groups 

{ }t b , , kλ λ ηΣ , which are associated to different mechanisms in the system.  

a) Asymmetric phase number  

The first number ( )t bλ λ  is associated to the product of the viscoelastic dimensionless times tλ  

and bλ ,  linked by the following restriction: t b 1λ + λ = .  This numbers is related with the 

asymmetric phases in the system. An small value of  t bλ λ  means that one of the viscoelastic 

liquid phase has a small dimensional Maxwell time and can be considered as a weak viscoelastic 

fluid. In contrast the other phase (second liquid) has a large Maxwell time and can be 
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considered as a viscoelastic fluid. In contrast, when the two liquid phases are viscoelastic with 

the same numerical value of the Maxwell relation times, the value of the dimensionless number  

t bλ λ  is fixed and is equal to  t b 0.25λ λ = .  

b) Bulk-Viscous number 

The bulk viscous mechanism ηΣ , which is related with the total viscosity in the system (sum of 

the bottom and the top viscosities).  The numerical value of this number is controlled by the 

product between the two dimensionless Maxwell time numbers t bλ λ , i.e., the value of the 

memory controls the value of the total bulk viscosity ( )t b= λ λη ηΣ Σ .  

c) Elastic ratio  

Finally, Mk
M 1

=
+

   is related to the elasticity in the membrane (solid) and the viscoelastic 

phases (liquid). This dimensionless number characterizes the state of the flexoelectric 

membrane. An small value of k  means that the flexoelectric membrane is soft, whereas a value 

of k close to one, means that the flexoelectric membrane is a stiffness membrane respectively.  

d) Materials functions  

The dimensionless ordinary differential equation (21a) contains two dimensionless parametric 

material functions: ( ) ( ){ }t b2 1 ηb k, λ λ ,b k,∗ ∗ Σ  which are related to the asymmetric of the phases, 

bulk-viscous and elastic mechanisms through the characteristic dimensionless groups 

{ }t b η, , kλ λ Σ  discussed earlier. These dimensional parametric functions describe a 

dimensionless material space *S  and are given by the following mathematical expressions: 

(i) Dimensionless inertial function for the output  ( )tΗ  
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( ) ( )t b
t b t b t b2 2

1b k, b M, = 1+
k M

∗ ∗λ λ  λ λ = ⇔ λ λ λ λ 
 

     (22)  

(ii) Dimensionless viscous  function for the output  ( )tΗ  

( ) ( ) η* *
1 1η η η

Σ1-kb k,Σ =1+ Σ b M,Σ =1+ 
k M

  ⇔ 
 

                     (23) 

In equations (22-23),we introduced the elasticity ratio 0< k<1: 

1 kk = M
1 k1 1/ M

⇔ =
−+

                               (24) 

Notice that the dimensionless functions ( ) ( ){ }t b2 1 ηb k, λ λ ,b k,∗ ∗ Σ  obey the following  inequality: 

( ) ( )t b t b2 2 1 η
Memory Inertia Bulk Viscous

kb λ λ < b k,λ λ < b k,∗ ∗ ∗

−

= Σ





    (25) 

It is important to note that these dimensionless numbers are bounded and satisfy the inequality 

given by equation 25.  

• The bounded asymmetric dimensionless number t bλ λ , i.e. [ ]t bλ λ 0,1/ 4∈  (Appendix C).  

• The maxima and minima values of the total dimensionless bulk- viscosity number ηΣ  are 

bounded by the values of the Maxwell relation times in the bottom and the top, and in 

general satisfy the following inequality:  

{ } { }t b t b
η min η η max

( ) ( ) ( ) ( )( ) ( ) ( )min λ ,λ max λ ,λ
± ± ± ±± ± ±= Σ ≤ Σ ≤ Σ = . 

Where the positive and negative sign comes from of a quadratic algebraic equation for 

the Maxwell relation times (Appendix C).   
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• The dimensionless elastic ratio number is independent of the asymmetric number t bλ λ  

and the bulk-viscous mechanism ηΣ  and its value is bounded by: 

min max mink k k =1; k 1≤ ≤ <<  (See Appendix C). 

In order to simplify the notation, in the rest of the paper the dependency of the 

dimensionless numbers in the materials parametric functions has been omitted, i.e.,  

( )t b2 2b b k,λ λ∗ ∗= ; ( )*
1 1 ηb = b k,Σ∗ .  

3.3 Mechanical Response and Energy 

3.3.1 Curvature Moduli 

In this section we study the membrane shape response  to a small amplitude oscillation  of the 

electrical [t; w]E  field [16,18]: 

( )[t; w] cos wtΕ =         (26) 

( ) ( ) ( ) ( ) ( ) ( )2

2 1 2b Η t b Η t t 1 kb w cos wt wsin wt∗ ∗ ∗+ + Η = − −
 

  (27) 

The oscillator has two inputs: ( ) ( )2

21 kb w cos wt∗−  and ( )wsin wt− . The response of the 

membrane average dimensionless curvature ( )H t;w  to the oscillating electric field can be 

separated in two moduli  ( )ioH w  and  ( )oiH w  respectively: 

( ) ( ) ( ) ( ) ( )io oiH t;w H w cos wt H w sin wt= +     (28) 

Due to two inputs ( ) ( ){ }sin wt ,cos wt  in the system, the following subscript notation for the 

moduli is adopted: 
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(i) In-out (io) to mean in phase with cosine and out of phase with sine 

(ii) Out-in (oi) to mean out of phase with cosine and in phase with sine. 

Substitution of equation (28) into equation (27)   we find: 

( )( ) ( )
( )( )

2 2
io oi2 2

2
io oi1 2

1 b w H wH cos wt 1 kb w cos wt

b wH 1 b w H sin wt w sin wt

∗ ∗

∗ ∗

 − + = − 
 
 − + − = −
 

   (29) 

Equating coefficients in the sine and cosine function, equation (29) can be expressed in a matrix 

form: 

2 2
io2 1 2

2
oi

1 2

1 b w wb H 1 kb w
H wwb 1 b w

∗ ∗ ∗

∗ ∗

    − −   =      −− −     
     (30) 

Solving the matrix given in (30) for ioH  and oiH , the following expressions for the in-out  of 

phase and out-in phase curvature moduli are obtained: 

( )( )
( ) ( )

2 42
1 2 2

io 1 2 2 22

2 1

1 b 1+k b w kb w
H w;b ,b ,k

1 b w b w

∗ ∗ ∗
∗ ∗

∗ ∗

+ − +
  = 

− +
    (31) 

( ) ( )
( ) ( )

3

1 1 2
oi 1 2 2 22

2 1

b 1 w 1 kb b w
H w;b ,b ,k

1 b w b w

∗ ∗ ∗
∗ ∗

∗ ∗

− + −
  = 

− +
    (32) 

We note the fourth (third) order frequency dependency in io 1 2H w;b ,b ,k∗ ∗    and 

oi 1 2H w;b ,b ,k∗ ∗    characteristic of the second order differential eqn. (27) and the usual 
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resonance term ( )2

21 b w∗− . The numerator coefficients in eqns. (31, 32) are positive 

( ( )1 2b k 1 b 0∗ ∗− + ≥ ; 11 kb 0∗− ≥ ) showing that the moduli increase with frequency. The shape 

dynamics is characterized the complex curvature 1 2H w;b ,b ,k
∗ ∗ ∗    [25,26]: 

2 2
io oi1 2 1 2 1 2H w;b ,b ,k H w;b ,b ,k H w;b ,b ,k

∗ ∗ ∗ ∗ ∗ ∗ ∗     = +          (33) 

3.3.2 Fluid Power and Membrane Elastic Energy 

3.3.2.1 Dissipation 

The  average power delivered to the viscoelastic fluids P   is defined by the time average over a 

period of viscous contribution of the input electrical field  ( )E t  multiplied  by the  volumetric 

flow, which is given by the time derivative of the curvature, i.e., ( ) ( )Q t t= Η


, where the  

dimensionless volumetric flow rate is given by 3Q= Q/πa . 

( ) ( ) ( ) ( ) ( )*
1 2P w;b ,b ,k =  E t Q t  E t t∗ ⋅ = ⋅Η



                   (34) 

The average dimensionless power P , computed in Appendix D , is given by 

( ) ( ) ( )
( ) ( )

2 4* * *
1 1 2* * * *

oi1 2 1 2 2 22* *
2 1

b -1 w + 1-kb b w1 1P w;b ,b ,k = wH w;b ,b ,k =
2 2 1-b w + b w

            (35) 

Eqn. (35) satisfies the following asymptotic limits for low and high dimensionless frequency 

respectively: 
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( ) ( ) 2*
1* *

1 2w 0

b -1 w
Lim P w;b ,b ,k =

2→
, ( )

*
* * 1
1 2 *w

2

1 kbLim P w;b ,b ,k
b→∞

−
=            (36a,b) 

For low values of frequency, the power contribution presents a quadratic dependence, to 

follow a monotonically increasing behavior for moderate frequencies, and finally a non-

bounded behavior for high dimensionless frequencies. 

3.3.2.2 Storage  

The second quantity of the interest is the elastic membrane energy, which is defined by the 

average product between the square of the membrane and is given by the following expression 

( ) ( ) ( ) ( )( )2
*
1 2Em w;b ,b ,k = t; w t; w  t; w∗ Η ⋅Η = Η    (37) 

In expression (37) the dimensionless elastic membrane energy is 2
GEm = Em/2πa LΣ . The 

average value ( )*
1 2Em w;b ,b ,k∗ , computed in Appendix D, is given by  

( ) ( )( ) ( )( ) ( )( )22 2 ** * * *
io oi1 2 1 2 1 2 1 2

1 1Em w;b ,b ,k H w;b ,b ,k H w;b ,b ,k H w;b ,b ,k
2 2

∗ ∗ ∗ ∗ = + = 
 

   

        (38) 

The elastic membrane energy is proportional to the square of the dimensionless frequency 

and the sum of quadrative dependence of the curvatures moduli and the inertial mechanism 

through characteristic dimensionless numbers. The asymptotic limits of equation (55) are: 

( )*
1 2w 0lim Em w;b ,b ,k 1∗

→
= ;   ( )* 2

1 2wlim H w;b ,b ,k k
∗ ∗

→∞
=    (39a,b) 
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3.3.2.3 Q-factor 

The Q -factor is the ratio between elastic membrane energy Em and the power P :  

( ) ( )
( )

* * *2
1 2* *

1 2 * *
oi1 2

Em w;b ,b ,k HQ w;b , b , k =
wHP w;b ,b ,k

=      (40) 

The ( )* *
1 2Q w;b ,b ,k  factor is a measure of the relative importance of dissipative and storage 

processes. It is important to note that the ( )* *
1 2Q w;b ,b ,k  factor depend on the bulk, inertial 

and elastic ratio mechanisms{ }* *
1 2b , b , though dimensionless numbers{ }t b η, , kλ λ Σ . When the 

Q factor is greater than one, i.e., ( )* *
1 2Q w;b , b , k 1>>  the elastic mechanism dominates over 

dissipative processes ( ) ( )* * * *
res res1 2 1 2Em w ;b ,b ,k >>P w ;b ,b ,k . The second case is when 

( )* *
1 2Q w;b ,b , k 1<< , in this case, the dissipative process are dominated by the elastic 

mechanism, i.e., ( ) ( )* * * *
1 2 1 2P w;b ,b ,k <<Em w;b ,b ,k  . The last case is when the 

( )* *
1 2Q w;b ,b ,k 1=   factor is equal to the unity and the dissipative and elastic mechanism are 

equal, i.e., ( ) ( )* * * *
res res1 2 1 2Em w ;b ,b ,k P w ;b ,b ,k= .  For simplicity in what follow we use for the 

power and elastic membrane energy : ( ) ( )*
1 2P w P w;b , b , k∗≡ ; ( ) ( )*

1 2Em w Em w;b ,b ,k∗≡ ; 

( ) ( )* *
1 2Q w Q w;b ,b ,k≡   (41) 

3.3.3 Asymptotic Regimes and Resonance 

The curvature dynamics’ terminal and high frequency regimes are found from eqn. (27) to be: 

( ) ( ) ( ) ( )w 0 : t t ,    w : Η t k t→ Η = Ε → ∞ = Ε
 

    (42a,b) 
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such that at low frequency only the membrane elasticity determines the purely  in-phase 

response while at high frequency the  purely in-phase curvature is a function of the elasticity 

ratio k   (see eqn.(27)) . Next we give parametric details on ( )io oiH ,H , power and membrane 

elastic energy contributions and finally a  resonance analysis of the mechanical system. 

3.3.3.1 Resonance frequency  

The resonance frequency resw , read from  denominator of equation eqns. (30-31), is given by 

the following expression  

res
t b2

1 kw
b∗

= =
λ λ

        (43) 

The resonance frequency resw  decreases with the inertia mechanism inertia through 

dimensionless parametric function 2b∗  which depends on the memory of the system t bλ λ  and 

the elastic ratio k . 

3.3.3.2 In-out phase curvature ioH  

Using eqn. (31) the terminal and high frequency regimes give  

io iores io*w 0 w
1

1lim H [w]=1;  H = ;  lim H [w]= k<<1
b→ →∞    (44a-c) 

In equation (43-b)  the resonance curvature moduli is given by iores io resH H w =   . 

It is important to note, that the purely elastic terminal regime the membrane curvature is in-

phase with the field.  
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3.3.3.3 Out-in phase curvature oiH  

Using eqn. (32) the terminal and high frequency regimes give 

( ) ( )
*
2*

oi oires oi1 *w 0 w
1

b
lim H w = b -1 w;  H = 1-k ;  lim H w =0

b→ →∞
          (45a,b) 

In the terminal regime oiH  scales like w  with a slope ( )1b 1 0∗ − >  given by the viscosity 

coefficient.  At large frequency the curvature is in-phase and hence the out-in phase curvature 

decreases monotonically until to zero, i.e., oiH w 0  =  .  

3.3.3.4 Complex curvature 
∗

Η   

Using eqns. (27-29) the corresponding asymptotic values for 
∗

Η  are 

( ) ( )2* 2 * *2* *-1 *
res1 1 2w 0 wlim H = 1+ b -1 w ; H = b 1+ 1-k b ; lim H = k

→ →∞    (46a-c) 

which shows that increasing the viscous coefficient 1b∗  increase the ( )H w 0
∗

→ ,  

and decreases resH
∗

,  increasing the inertia coefficient 2b∗  increase the resonant peak amplitude 

resH
∗

, and increasing the elasticity ratio k increase ( )H w
∗

→ ∞  but decreases resH
∗

, as expected.  

3.3.3.5 Energy considerations 

a) Power 

The resonance power can be computed from equation (39) and equations (44a, b) for the 

average curvature: 
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( )res oiresres *
1

1 1P w H 1-k
2 2b

= =        (47) 

Using the definition for *
1b , the following expression for the resonance power in terms of the 

primitive dimensionless parameters is obtained: 

( ) ( )res t b
1 kP k, , 1-k
2 k 1 kη

η

 Σ λ λ =  + − Σ
     (48) 

In the same form, the elastic membrane energy can be computed from equation (41) and (44a, 

b) 

b) Elastic membrane energy 

( )( ) ( )( )2 2 2
mres res 22

1

1E H w 1 1 k b
2b

∗
∗= = + −     (49) 

In terms of the dimensionless numbers, the elastic membrane energy is given by: 

( )( )
( )( )2

t b t bmres 2
1 kE k, , k 1 k
2 k 1 k

η

η

 Σ λ λ = + − λ λ 
+ − Σ

   (50) 

It is important to note that the both expressions, power and membrane elastic energy 

depend on the dimensionless numbers thorough characteristic primitive variables. 

3.3.3.6 Resonance Q factor  

In other hand, one important quantity is the resonant energy ratio r and is given by:  
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( ) ( )
( )

2 2res 2 2
res 1 2

res 11

Em k,b 1 1 k b
Q b ,b ,k

b 1-kP k,b

∗ ∗
∗ ∗

∗∗

  + − = =
  

    (51) 

In terms of terms of the dimensionless numbers, the Q factor takes the following form: 

( ) ( )
( ) ( )( )

2
res t b t b

t bres
res

Em k, k 1 k
Q k; ,

P k, 1-k k 1 kη

η η

 λ λ + − λ λ Σ λ λ = =
 Σ + − Σ 

   (52) 

Three important regimens are visualized: 

(i) Inviscid fluid: 

 ( ) ( ) ( )
t b

t bres, 0,0

1Lim Q k; ,
1 kη

ηλ λ Σ →
Σ λ λ →

−
     (53) 

(ii) Viscous Fluid:    

( ) ( ) ( )
t b

t bres, 0,1

kLim Q k; ,
1 kη

ηλ λ Σ →
Σ λ λ →

−
     (54) 

(iii)  Symmetric case: Viscoelastic/Membrane /Viscoelastic 

( ) ( ) ( )
t b

t bres, 0.25,0.5

1 1 kLim Q k; ,
2 1-kη

ηλ λ Σ →

+
Σ λ λ =     (55)

  

(iv)  Stiffness membrane 

( )t bk 1 resLim Q k; ,→ η
Σ λ λ → ∞       (56) 

It is important to note that equations (53-56) show particular cases of the parametric space 

governed by equation (52).  When the total viscosity of the system is less than one, the energy 
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ratio is completely determined by equation (51) which describes a linear plot with slope  t bλ λ .  

In the case of a viscous fluid, energy ratio is given by inverse of the product between the 

viscoelastic dimensionless Maxwell relaxation time.  The third case (equation 54) corresponds 

to the symmetric case t b 1/ 2λ = λ = , when the system present similar viscoelastic  phases.  

Finally, It is important to note, that equation (56) is not bounded for the maxima value of the 

elastic ratio k=1 .  

In the following section, the main results of the present work using the equations obtained 

for the curvature moduli, power and elastic membrane energy and resonance are presented.   

3.4 Results 

In this section the mechanical response (curvature moduli) and energetic considerations 

(dissipative viscous mechanism and elastic storage processes) as a function of the 

dimensionless frequency are presented. The former corresponds to a generic point in the 

material phase space 3∈S R   (Fig. (4)) where the membrane elasticity  ( )0b , the viscosity 

coefficient  ( )1b  and the inertial coefficient  ( )2b  have significant contributions. The latter 

corresponds to a point  S  in Fig.(5) close to the viscous/membrane elasticity material plane in 

which inertial coefficient is relatively negligible.  The results are computed using eqns (31, 32) 

for the in-out phase and out-in phase moduli and eqns. (35, 38) for the resonance power and 

elastic energy membrane. The resonance properties: (i) frequency, (ii) power, (iii) elastic-

membrane energy, and (iv) resonance ratio  were computed using eqns. (43, 46-49). The value 

of the dimensionless numbers and parametric functions (22-24) were chosen in order to satisfy 

the mathematical and physical requirements given by eqn.  (25) and appendix C.  Finally, in this 
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section the principal analysis is centered in the study of three different mechanism: (i) elastic 

ratio, (ii) bulk-viscous mechanism and (iii) memory asymmetry in the bulk phases. 

3.4.1 Frequency Response 

Figure 22 shows the dimensionless curvature moduli  { }io oiH ,H , power P and elastic 

membrane energy mE  as a function of   dimensionless frequency w .  The curvature frequency 

response is that of a second order oscillator, with ioH  displaying a low and high frequency 

plateaus (in-phase regime, eqns. (35a,b)) and an intermediate  power law region 
n

ioH w∝ , 

where n 1.41≈ .  The out-in phase curvature oiH  displays a single pulse 

oires resH [w 0.73] 0.44= ≅  (eqn. (38)) centered at the resonant frequency resw 0.73=  

(eqns.(36a)), where io oiH H 0.5= ≅  at  resw 0.73= . The membrane elastic energy ( mE  in 

Figure 22) shows   ( w 0.5= ) a  low frequency plateau followed by a power law decreasing 

behavior 
n

mE w
−

∝ , where n 2≈ , and it reaches a zero value for frequencies greater than one.   

Physically, this parameter is associated with the energy stored by the membrane, so in the 

low frequency region the membrane behaves as a perfect solid with no energy dissipation. The 

power   ( P  in Figure 20)  shows a monotonically increasing behavior with an inflection point at 

a frequency of approximately w 1≅ , followed by an asymptotic plateau. This parameter is   

associated with the energy per unit of time delivered to the fluid by the oscillating the 

membrane. A crossover point is observed at a frequency  crossw 2.1≅ , where mP E 0.23= ≅ .  At 

frequencies below w 2<  the membrane exhibits a predominantly elastic behavior (the energy 
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storage mechanism dominates over the dissipation one), whereas the viscous behavior 

dominates at frequencies above w 2> .  This could be used to predict the optimum membrane 

performance which for this case is located in the region of moderate frequencies, i.e., 

( )0w 0.1,10∈ . The inset in Figure 20 shows a zoom of the power mechanism for the minimum 

viscosity value  min 0.101
η

Σ = .  Figure 20  shows that the power  P   does not present a 

resonance behavior as in others second order mechanical systems. This effect is due to the  

selected parameters. As will be seen below, the power resonance behavior is reached in the 

particular case when one the bulk phases is an inelastic liquid or inviscid liquid. 

 

Figure 20 – Mechanical response of the curvature moduli, power and elastic energy as a function of the 

dimensionless frequency. The parametric values are: (i) t b 0.01λ λ = ,  (ii) 0.01
η

Σ = , (iii) k 0.0054= , 

and the corresponding   dimensionless functions are: (iv) 1b 2.84∗ =  and 2b 1.85∗ = . 
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3.4.1.1 Membrane effect  (k) 

Here we explore the role of increasing k, retaining t b 0.01λ λ =  , 0.01
η

Σ = .  Figure 23 shows 

the dimensionless curvature moduli { }io oiH ,H , power and elastic-membrane energy { }mP,E  

as a function of the dimensionless frequency w . The overall frequency response and trends of  

ioH ,  oiH ,  P  and mE   are similar to those of in Figure 21, the only important effect is a shift of 

all the curves to the right; for example the resonance frequency is reached at 

res 2w 1/ b 3.16∗= = , and the corresponding resonance value of the oiH  module is given by:

oires resH [w 3.16] 0.9174= = .  It is important to note that the maxima value does not coincide 

with the resonance value of the curvature moduli oiH ,   so the maxima value of the out-in 

phase curvature module is given by:  oimax maxH w 9.91 0.4547 = =  . On the other hand, the 

corresponding crossover point ( )Em P=  is reached to a non-dimensional frequency 

cross 1w 1/ b 0.96∗= = , and the initial plateau region of ioH and the membrane elastic energy are 

extended now up to a frequency close to one, i.e., cross 1w 1/ b 0.96∗= = .  It is important to note 

that, the changes in the resonance frequency and energy cross over point are given by:   

( ) ( )res res resw w k 0.1 w k 0.0054 2.43∆ = = − = ≅  and  

( ) ( )cross cross crossw w k 0.1 w k 0.0054 0.36∆ = = − = ≅ ,respectively.  

Another important effect is that ioH  reaches an asymptotic behavior given by eqn. (49b), 

which only is determined by the elastic ratio k 0.1=  at high frequencies. The decreasing 
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power law region for 
n

ioH w∝ and for 
n

Em w∝    lies the 1-10 frequency range, where 

n 1.40≈ and n 2≈    respectively.  Comparing Figures 20 and 21, it is seen that the net effect 

of increasing k (increasing the membrane elasticity) is to shift the crossover frequency and the 

maximum in the out-of-phase membrane curvature to the right which is rather logical when 

having a stiffer elastic membrane. The effect of increasing k on the power delivered is dramatic 

showing here a four-fold increase at a dimensionless frequency of 100. However, the 

membrane elasticity is not the only important factor in increasing the power delivered, as it 

will be showed in the following figure.  

 

Figure 21 – Shows the mechanical response of the curvature moduli, power and elastic energy as a 
function of the dimensionless frequency. The dimensionless numbers used in the simulations are: (i) 

t b 0.01λ λ = ,  (ii) 0.01
η

Σ = , (iii) k 0.1= , and the corresponding values of the dimensionless functions 

are: (iv) 1b 5.5∗ =  and 2b 0.1∗ =  
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3.4.1.2 Bulk viscous effect ( )η
Σ  

Here we explore the effect of increasing viscosity to 0.5
η

Σ = ,  retaining t b 0.01λ λ = , k 0.1= .  

Figure 22 shows the dimensionless curvature moduli { }io oiH ,H , power and elastic-membrane 

energy { }mP,E
 
as a function of the dimensionless frequency w .  When the bulk-viscous 

effects increase in the system, the low frequency plateaus for the  out-in phase and in-out of 

phase curvature moduli and elastic membrane energy disappears. 

 

Figure 22 – Mechanical response of the curvature moduli, power and elastic energy as a function of the 
dimensionless frequency. The dimensionless numbers used in the simulations are: (i) t b 0.01λ λ = ,  (ii) 

0.5
η

Σ = , (iii) k 0.1= , and the corresponding values of the dimensionless functions are: (iv) 1b 5.5∗ =  

and 2b 5.0∗ = . 
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Regarding the power contribution contributions (dissipative process), the maxima value 

show in Figure 22 disappears. The effects of the increase in the bulk viscous mechanism in the 

system can be explained   as the curves being shifted to lower frequencies. So, in this 

frequency range we observe only the power law behavior of Em  and ioH . The maximum in 

Hoi is now at very low frequencies, i.e., ( )0w 0,0.1 R∈ ⊂ . So, increasing the bulk viscous 

mechanism value has a negative effect in the power delivered, as the power has decreased 

from 100 (Figure 21) to about 21 (Figure 22) for the same dimensionless frequency (100). 

Physically, this means that the viscosity has a negative effect in the power conversion 

efficiency which is again logical having a more viscous media representing a barrier for 

mechanical propagation. 

3.4.1.3 Memory effect ( )t bλ λ  

Figure 23  shows the dimensionless in-out of phase ioH ,  out-in phase  oiH    curvature moduli, 

power energy am membrane elastic energy as a function of the dimensionless frequency w  for  

2b 49.75∗ = , 2
1b 10∗ = , 3k 5 10−= × .  The overall behavior of the Figure 20 is practically the same 

to the Figure 17, the effects of the maximum value of the memory do not affect the general 

behavior of the system.  



52 
 

 

 

Figure 23 – Shows the mechanical response of the curvature moduli, power and elastic energy as a 
function of the dimensionless frequency. The dimensionless numbers used in the simulations are: (i) 

t b 0.25λ λ = ,  (ii) 0.5
η

Σ = , (iii) k 0.1= , and the corresponding values of the dimensionless functions 

are: (iv) 1b 5.5∗ =  and 2b 2.0∗ = , with 1 2b b∗ ∗> . 

3.4.1.4 Q factor 

Figure 24 shows the Q  factor versus dimensionless frequency for different values of memory 

and bulk-viscous mechanism for k = 0.0054 ,  and (i) t b ηλ λ = 0.01 and Σ :0.0101,  0.5,  0.9898 , 

(ii) t b ηλ λ = 0.25; Σ = 0.5  respectively.  

The figure shows a monotonically linear decreasing behavior for small values of the 

dimensionless frequency to follow of an asymptotic region when the system the Q   factor is 

independent of the dimensionless frequency. 
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Figure 24 – Q   factor as a function of the dimensionless frequency for different value of the 

dimensionless parametric dimensionless function 1b∗ . The numerical values employed in the simulation 

are: a) t bλ λ 0.01= , η 0.0101Σ = ; b) t bλ λ 0.01= , η 0.9898Σ = ; c) t bλ λ 0.25= , η 0.5Σ = . 

The minima value of the all plateaus is reached when the system presents low values of the 

memory (asymmetric case) and the total-bulk viscosity. When the viscosity increases, the value 

of the plateau is shifted to high values of the Q  factor. A similar case occurs for the symmetric 

case in the memory and intermediate value of the bulk-viscous number.  It is important to 

mention that at low values of the dimensionless frequency,   Q  in all cases is dominated by the 

elastic energy and for a critical value of the dimensionless frequency the power dissipation 

dominates over the elastic storage energy and the Q   factor is independent of the 

dimensionless frequency.   
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3.4.2 Resonant Effects  

3.4.2.1 Resonance power resP  as a function of  resonance frequency resw  

Figure 25 shows the resonance power resP  as a function of the dimensionless resonance 

frequency resw  (see eqns.(43, 48)).  In the four cases of this simulation, the mathematical 

behavior is the same. The power exhibits a pulse profile.  The peak value of the resonance 

power is determined by a coupling between the memory and bulk-viscous mechanism effects. 

Finally, for value close to the maxima stiffness, i.e., k 1≈ , the power goes to zero sharply when 

w 10≈ . Notice that, we have two important effects in the resonance  power due to the bulk-

viscous and elastic mechanism. Increasing the bulk-viscous mechanism ηΣ    reduces the value 

of the peak resonance., whereas the increase of the memory t bλ λ   shifts  the pulse to lower 

frequencies. 

3.4.2.2 Resonance elastic membrane energy mresE  as a function of resonance  frequency resw   

Figure 26 shows the resonance membrane energy mresE  as a function of the resonance 

frequency resw .  The dimensionless numbers used in the simulation are the same as Figure 27. 
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Figure 25 – Resonance power versus dimensionless frequency for different values of the dimensionless 
memory. The numerical values of the dimensionless numbers are: 210 k 1− ≤ ≤ , a) t bλ λ 0.1= , 

η 0.0101Σ = ; b) t bλ λ 0.1= , η 0.9898Σ = ; c) t bλ λ 0.1= , η 0.5Σ = ; d) t bλ λ 0.25= , η 0.5Σ = . 

In the case of low memory and bulk viscous mechanism, the resonance membrane energy 

presents a decreasing behavior until a minima value to follow an increasing behavior (low value 

of the frequency) and a asymptotic behavior in the resonance membrane energy. In contrast, 

when the system shows a low memory and increase of the bulk-viscous mechanisms the elastic 

energy is zero for low values of the frequency, and for a critical value of the frequency, the 

elastic resonance energy increases to a resonance value close to resEm 0.5= . The same 

behavior is observed in the case of symmetric viscoelastic system and intermediate values of 

the bulk viscosity. 
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Figure 26 – Shows the resonance membrane energy versus dimensionless resonance frequency. The 
numerical values of the dimensionless numbers are: 210 k 1− ≤ ≤ ; a) t bλ λ 0.1= , η 0.0101Σ = ; b) 

t bλ λ 0.1= , η 0.9898Σ = ; c) t bλ λ 0.1= , η 0.5Σ = ; d) t bλ λ 0.25= , η 0.5Σ = . 

3.4.2.3 Resonance power resP  as a function of  elastic ratio k 

Figure  27 shows the resonance power as a function of the elastic ratio for different values of 

the memory and bulk-viscous mechanisms .   In all cases, the power shows a broad asymmetric  

downward parabolic profile.   The critical elastic ratio value is shifted to the right as the total 

viscosity  increases and also as the system symmetry (difference between the rheological 

characteristic of the fluids in contact with the membrane) is increased. The maximum value of 

resP   increases with high asymmetry ( )t bλ λ 1<<  and low total  viscosity ηΣ .  
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Figure 27 – Resonance power resP  as a function of the elastic ratio k for different values of the memory 

t bλ λ . The numerical values of the dimensionless numbers are: a) t bλ λ 0.01= , η 0.0101Σ = ; b) 

t bλ λ 0.01= , η 0.9898Σ = ; c) t bλ λ 0.25= , η 0.5Σ = . 

3.4.2.4 Resonance membrane energy mresE  as a function  elastic ratio k 

Figure  28 shows  the resonance elastic membrane energy mresE  as a function of the elastic ratio 

k  for different values of total viscosity ηΣ  and memory t bλ λ .  The values of the dimensionless 

numbers used in simulation are the same as in Figure 26.  In contrast to power resonance, the 

elastic membrane energy is monotonically decreasing until a pronounced minimum value is 

reached (concave down). This curve is only observed when memory and bulk-viscous values are 

low.  As total bulk viscosity increases we see the curve is monotonically increasing.  There is an 

in-between behavior of the curve i.e. an initial plateau zone with a minimum value followed by 

monotonically increased behavior as the system approaches the symmetric case. 
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Figure 28 – Resonance energy mresE  as a function of the elastic ratio k as a function for different values 

of the memory of the system  t bλ λ . The numerical values of the dimensionless numbers are: a) 

t bλ λ 0.1= , η 0.0101Σ = ; b) t bλ λ 0.1= , η 0.9898Σ = ; c) t bλ λ 0.1= , η 0.5Σ = ; d) t bλ λ 0.25= , 

η 0.5Σ = . 

3.4.2.5 Resonance resQ   factor  as a function of k 

Figure  29 shows the resonance resQ    factor as a function of the elastic ratio k for different 

values of the memory and total bulk-viscosity.  When the total bulk-viscosity has a low value, 

i.e., ηΣ =0.0101, the resQ  presents an almost constant behavior and its value is independent of 

the elastic ratio up to values of the elastic ratio close to 0.5. When the elastic ratio goes to the 

unit (k=1) , the resonance Q  factor  diverges. The second case is when the system shows a 

symmetric viscoelastic phases and the general behavior is similar to the low viscosity fluid, the 

only difference is in the value of the plateau, which is lower in this case.  
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Figure 29 – Resonance resQ  factor as a function of the elastic ratio k for different values of the memory. 

The values used in the numerical predictions are: (i) t b 0.01; 0.01
η

λ λ = Σ = ; (ii) 

t b 0.01; 0.9898
η

λ λ = Σ = ; (iii) t b 0.01; 0.5
η

λ λ = Σ = ; (iv) t b 0.25; 0.5
η

λ λ = Σ =  

3.4.2.6 Viscoelastic/Membrane/Gas system  

One important particular case of the power dissipation is when the bulk-viscous mechanism is 

equal to the inverse of the elastic ratio, i.e.,
 

*
1b 1/ k≅ . This implies that the bulk viscosity  

approaches to the maximum possible value, i.e. 1
η

Σ → . In this case, the power dissipation has 

the following form: 

 
( )

( ) ( )

2

t b1 2 22
t b

1 k w1P w;b , , k k
k k w w

∗ − = λ λ ≅   − λ λ +
    (56) 
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At low dimensionless frequencies, the power contribution describes resonance behavior 

where the value of the peak is determined by the elastic ratio peakP 1 k= − . For high values of 

dimensionless frequency the power shows a decreasing monotonic  behavior according to the 

following asymptotic equation: ( ) ( )( )2 2
t bP k 1-k / w

−
≅ λ λ .  Physically the resonance effect is 

observed when one of the phases is an inelastic low viscous phase. In this case, the system has 

a material operation line (Figure 32), which is described by a hyperbolic function and, for any 

value of the curve 1/k the system presents a resonance behavior according to the equation (56).  

Figure 30 shows the dimensionless number *
1b 1/k=  as a function of the elastic ratio k;  the 

inset in Figure 30 shows several power curves .  Notice that, the maximum of the resonance 

curve (inset) is reached for some critical k value (0.50 in this case). There is a certain symmetry 

regarding the maximum in the power curve. Take for instance, d (k=0.25) and e (b=0.75) cases 

where the maximum value of the resonance curve is the same. However, there is a difference in 

the “width” of the curve, with wider curves for lower k values. The power maximum   is related 

to the phases asymmetry (a very viscous liquid and a strongly viscoelastic liquid). 
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Figure 30 – Dimensionless bulk-viscous number as a function of the elastic ratio. In the inset the power 
dissipation as a function of the dimensionless frequency. The values used in the numerical predictions 
are: 4

t b 10 ; 0.9999−
η

λ λ = Σ = ; (i) k 0.50= ;  (ii) k 0.75= ; (iii) k 0.90= ; (iv) k 0.99= .  

 

 
Figure 31 – Dimensionless P    as a function frequency. The values used in the numerical predictions are: 

4
t b 10 ; 0.99999−

η
λ λ = Σ = ; (i) k 0.50= ;  (ii) k 0.75= ; (iii) k 0.90= ; (iv) k 0.99= .  
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Figure  31 shows  the power  dissipation P  as a function of  dimensionless frequency, for 

increasing fluid symmetry t bλ λ  . It is clear that the power dissipation plateau is the same in all 

the cases. In this case, the effect of the increasing memory is to narrow the band width  and to 

shift  the curve to the left.   

 

Figure 32 – Elastic membrane energy as a function of the dimensionless frequencies for different values 
of the elastic ratio. In the Inset, the power dissipation vs dimensionless frequency is showed.  The 
parameters used in the simulation are the same of Figure 29. 

Figure 32 shows the elastic membrane elastic energy and  as a function of frequency. At low 

dimensionless frequencies, the elastic energy is independent of the frequency, for a critical 

value in the domain of the frequencies; the elastic energy shows a monotonically decreasing 

behavior (power law region) followed by a plateau at high frequencies. In contrast to the 

storage energy, the power dissipation shows a intermediate plateau region, where the power is 
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independent of the dimensionless frequency, at low frequencies there is an increasing power 

law region and at high frequencies there is a decreasing power law region. For the cases b and 

B, the dissipation and the storage energies are equal (Q=1). For all other cases Q ≠ 1, with the 

a,A case Q>1 and for the c,C and d, D cases Q<1. It is important to note, that the biological 

relevant case (sound amplification) is reached when Q<1 (maximum power), see Figure 33. 

 

Figure 33 – Q factor as a function of dimensionless frequency. The material properties used in the 
simulations are the same as Figure 30-32. 

Combining the results from Figure 30-33, we can arrive at a qualitative pictures of power 

delivery P   and Q factor as a function of the elastic ratio (Figure 34).  These qualitative figures 

show that the asymmetry of the phases  , total bulk-viscosity   and elastic ratio k play an 

important role in the system response.   
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a) 

 

b) 

Figure 34 – Schematic representation of the power P  and Q factor as a function of the elastic ratio k. 
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3.5 Key Observations and Analysis 

Key observations based on Figure 34  regarding performance are: 

3.5.1 Power and Elastic Membrane Energy  

a) Small elastic ratio: k <0.5 

(i) Low memory product  (asymmetric case , t b 1λ λ <<  ) and  high viscosity ( 1
η

Σ ≈ ) 

lead to  low power, high frequency width. 

(ii) Power  dominates over   elastic storage 

(iii) Biological relevant region (Q<1) occurs for a specific interval of  ( )0k , k  

(iv) For k< 0k  , we have a non-operable membrane (Soft membrane) 

b) Intermediate elastic ratio k =0.5 

(v) Low memory (asymmetric case , t b 1λ λ <<  ) and high viscosity ( 1
η

Σ ≈ ) lead to a 

power plateau, large frequency width in comparison to a small elastic ratio. 

(vi) Power (dissipation) and  elastic membrane energy ( storage) values are equal . 

c) High  elastic ratio k->1 

(vii) Low memory product (asymmetric case , t b 1λ λ <<  ) high viscosity( 1
η

Σ ≈ ) lead to 

small frequency width, low power 

(viii) Elastic energy dominates over the power dissipation 

(ix) Symmetry of the power exists for certain values of the elastic ratio,  

( ) ( )0 0P k P 1 k= − . 
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3.5.2 Q-Factor  

d) Small elastic ratio: k <<1 

(x) Low memory (asymmetric case) and  high viscosity lead to low value of the Q factor. 

(xi) Biological zone where Q<<1 for a specific interval of ( )0k , k  

(xii) For k lower than 0k , the Q factor is less than one, but the system does not present an 

operating biological zone ( too soft membrane).  

(xiii) Biological region of the system occurs for a specific interval of  ( )0k , k  

(xiv) For less value of 0k  , we have an inoperable membrane (too soft membrane) 

e) Intermediate  elastic ratio k =0.5 

(xv) Low memory product (asymmetric case , t b 1λ λ <<  ) high viscosity( 1
η

Σ ≈ ) lead to  

power plateau, large frequency width in comparison  to small elastic ratio k. 

(xvi) Power   and  elastic membrane energy ( storage) values are equal  

(xvii) Q factor is equal to one  

f) High  elastic ratio k->1 

(xviii) Low memory product (asymmetric case , t b 1λ λ <<  ) high viscosity( 1
η

Σ ≈ )  lead to 

small frequency width, low power 

(xix) Elastic energy dominates over the power dissipation 

(xx) Q factor is greater than one.  
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3.6 Materials and Biological Applications 

3.6.1 Outer Hair Cells: Biology and Physiology 

As reviewed by Sachs, Brownell, and Petrov [6],  the OHC of the ear uses electromotility to 

overcome viscosity and thus sharpen the resonance effect to increase the required frequency 

resolution. Receptor potential generates active oscillations of the cell body in OHC [6]. The 

mechanical response to the electric input drives the oscillations in the cell’s length which occur 

at the frequency of the incoming sound, providing mechanical amplification [6].  Rabbitt et al. 

[7] formulated a mathematical model for the OHC based in first principles and they analyzed 

the power conversion of the dissipation energy in the frequency space domain. Their model 

includes a mixture-composite constitutive model of the active lateral wall and spatially 

distributed electromechanical fields. Their research predicted the following:  

a) The peak power efficiency is likely to be tuned to a specific frequency, dependent 

upon OHC length, and this tuning may contribute to the place principle and 

frequency selectivity in the cochlea. 

b) OHC power output can be detuned/attenuated by increasing the basal conductance 

of the cell, a parameter likely controlled by the brain via the efferent system. 

c) Power output efficiency is limited by mechanical properties of the load, suggesting 

impedance of the organ of Corti may be matched regionally to the OHC.  

d) The high power efficiency, tuning, and efferent control of outer hair cells are the 

direct result of biophysical properties of the cells, thus providing the physical basis 

for the remarkable sensitivity and selectivity of hearing. 
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Figure 35 compares the dimensional  power  conversion efficiency, dimensionless power, 

elastic energy and Q factor as a function of the dimensional frequency and dimensionless 

frequency for Rabbit’s model  and the present models.  The value of the maxima and minima 

power efficiency is due to a coupling between the OHC stiffness, fluid viscosity, entrained mass 

and OHC intracellular axial electrical resistance of the cell. All their results were done under 

control conditions of the impedance (low and high values). In this paper, the low values of the 

impedance are associated with the action of efferent neurotransmitter on the base of the OHC. 

The most efficient frequency depends upon cell length. Shorter cells show peak efficiencies at 

higher frequencies, while longer cell show peaks efficiencies at lower frequencies. 

3.6.2 Present Model 

In our flexoelectric model, the resonance power (dissipation), obeys a triple coupling effect: (i) 

asymmetric of the phases t b 1λ λ << , (ii) bulk-viscous mechanism ( 1
η

Σ ≈ ) and (iii) elastic ratio k. 

The width of the resonance power depends on the elastic ratio k  and t bλ λ . The elastic 

membrane energy presents two plateaus and an intermediate power law zone. The second 

plateau in the elastic energy is determined by  the elastic ratio k. The power law zone and 

plateau of the elastic membrane energy and power dissipation are the most significant aspects 

from a biological and physiological standpoint in the OHC cells. Here, the value of the Q factor is 

less than one, which means the power dissipation dominates over the elastic energy and the 

system can behave as an amplifier.  In our model, the biological zone (Q <<1) is a consequence 

of the minimum and maximum elastic and power energy, which is regulated by the electro 

mechanical and physiological system through brain and efferent systems of the OHC.   
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a) Rabbit’s model  

 

b) Present model  
 

Figure 35 – Rabbitt’s [7] model (a) and present model (b). 
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In Table 1 a summary comparing Rabbit`s and present models is shown. 

Table 1:  

Comparison between Rabbitt´s and Present model 

 Rabbitt’s model Present Model 

 

System  

 

OHC cells  

Flexoelectric membrane 
embedded in two 

Viscoelastic phases  

 

Mathematical model 

 

Electromechanical 

 

Flexoelectric  

And 

 Rheological  

 

Differential/Integral  Differential  Differential 

Constitutive equation  Newtonian  Viscoelastic   

Flow Couette Poiseuille flow 

Power 

Elastic energy 

Q factor  

Analytical expression 

NA 

NA 

Analytical expression 

   Analytical expression 

Analytical expression 

 

Peak Power 

Specific Frequency 

OHC Length  

Principle selective in OHC  

Asymmetric Phases 

 Bulk-viscous 

Elastic Ratio 

 

Minimum Power  

Specific Frequency 

OHC Length  

Principle selective in OHC 

 

NA 
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(Continued) Table 1: 

Comparison between Rabbitt´s [7] and Present model 

 

Minimum Power  

Specific Frequency 

OHC Length  

Principle selective in OHC 

 

NA 

 

Peak-Power 

 physiology  

Brain 

Efferent System  

 Biological properties of the 
cell 

Brain 

Efferent System 

Blood  

 

Resonance 

frequency 

OHC Length  

Principle selective in OHC 

Asymmetric viscoelastic 
phases  

Elastic ratio  

 

Width power 

 

OHC Length  

 

Asymmetric viscoelastic 
phases 

Elastic ratio  

 

Elastic energy 

 

NA 

Asymmetric viscoelastic 
phases 

Bulk-viscous 

Elastic ratio 

 

Biological region 

Specific Frequency 

OHC Length  

Principle selective in OHC 

Asymmetric viscoelastic 
phases 

Bulk viscousity 

Elastic ratio 
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3.6.3 Dimensional Model 

a) Power  

The present   model, indeed inspired by the OHC, shares similar properties as a physical 

membrane embedded in viscoelastic surroundings that also functions as a mechanical amplifier 

at characteristic (resonant) frequencies [40,63-69]. In this context, the dimensional power 

dissipation is given by the following expression: 

( )( ) ( )
2 4

G t b2
G 2 22 2

G t b

w X w
a L M

M M w M w
η λ

λ η

Σ + λ λ
Ρ = π Σ

− + Σ λ λ + Σ + Σ
   (57) 

Equation (57) depends on the geometrical, elastic membrane and viscoelastic parameters, and 

for resonance frequency: ( )res G t bw M / M= + Σ λ λ ,  and high frequencies the following 

important results for the dissipation are obtained: 

( ) ( ) ( )

2
Gres G G

2 22
G

M X M
a L M M M

η λ

λ η λ η

Σ ΣΡ Σ
= +

π Σ + Σ Σ + Σ + Σ
; 

( )
G G

22
t bG

Σ M X
a L M

λ∞Ρ
=

π λ λ+ Σ
   (58a,b) 

Neglecting elastic membrane contributions, we have: 

2 G
res

Ma L
η

Σ
Ρ = π

Σ
; 2 G

t b G

MXa L λ
∞Ρ = π

λ λ Σ
     (59a,b) 

Both equations show that the value of the resonance and terminal power are completely 

determined by a coupling between the geometrical, elastic-membrane and viscoelastic material 

properties.  
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b) Viscous/Solid/Viscoelastic phase 

When one of the two liquid phases has a small viscoelastic Maxwell number and small elasticity, 

equation (57) has the asymptotic form: 

( )( ) ( )

2
2 t

G 2 22 2
G t b t t

wa L M
M M w M w

η
Ρ ≈ π Σ

− + Σ λ λ + λ + η
   (60) 

In particular, when the elastic membrane is equal to the total bulk viscosity, the above equation 

takes the following form: 

( )( )
2 2

res o c c
a L M a 1 γ k +k / 2
2 4

π π
Ρ ≅ = + ℑ

λ λ
     (61) 

This result means that the resonance power increases with the geometrical parameters of 

the capillary and elastic membrane whereas it decreases with the viscoelastic relaxation 

Maxwell time (memory).   Equation (61) represents the resonance power contribution for two 

identical viscoelastic fluid systems. One important application of this equation is the direct 

characterization of the elasticity of the membrane. Once the power resonance is tuned, the 

biological membrane elasticity is computed directly from the above expression, and the rest of 

the material and geometrical parameters are easily obtained from rheometric experiments 

(Oscillatory measurements using cone and plate geometries for the Maxwell relaxation time) 

and the radius and capillary length from metrology experiments.  
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3.6.4  Material Properties  

The material properties play an important role in the power dissipation, storage elastic energy 

and Q factor.  In this work we focus only when  Q factor is less that the unite, i..e.,  Q << 1. The 

following important issues are summarized: 

a) Q<<1 is reached for low value of the elastic ratio, i.e., k <0.5 (Soft Membrane); small 

memory number (viscous/ solid/viscoelastic phases) and higher value of the total 

bulk viscosity in the system. It clear that all these coupled mechanisms are 

responsible to get the condition Q <<1. 

b) This parameter describes a material point in the 3D material phase diagram. This 

material point lives in the planes Inertia Membrane and  Bulk-Viscous–Membrane. 

The Inertia Bulk-Viscous plane is not possible in our system since our primary 

hypothesis is that the membrane elasticity is different from zero. 

3.6.5 Optimization of Material Properties 

The material properties that leads to the optimal   power generation are : 

a) Small elastic ratio k <<1, meaning that the membrane elasticity is much smaller than the 

fluid elasticity. Experimentally, the soft membrane must be in contact with at least a 

high molecular weight viscoelastic solution.   

b) Small memory number. It is important to note that the memory number is related to the 

asymmetric viscoelastic characteristic of the contacting phases. The optimal material 
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state  is: viscous fluid/soft membrane/ viscoelastic fluid. The corresponding optimal bulk 

fluids can be obtained by contacting a viscous liquid and a viscoelastic polymer solution. 

c) Total bulk viscosity needs to be sufficiently high,  for example by  using viscosity 

modifiers. 

d) There is an inherent symmetry in terms of k: if k =1-A, with A <<1 , the for  k = 1-A is  the 

same as for k = A. The key point is that even if power is almost equal, the elastic 

membrane energy is not. Hence, Q optimal follows one k and not the other, this means 

that k and 1-k give the same power dissipation but not the same elastic membrane 

energy.  To minimize E and minimize Q , we use 1-k. 

e) Biologically the dimensionless elastic ratio k cannot be zero, since we do have a soft 

membrane. There is a minima k below which functioning is not possible due to a weak 

membrane would not be able to maintain the fluid interface. Hence k is bounded from 

below due to requirements of the membrane integrity. 

f) The membrane tension can be modified adding different bio-molecules  (proteins, 

carbohydrates). 
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3.7 Summary and Discussion 

Summary 

The present viscoelastic model developed in the present work explains the amplitude, the peak 

frequency, the width of power plateau, elastic energy and Q factor profile. The material 

parameters of importance are: (i) elastic membrane, (ii) Bulk-elasticity of the two viscoelastic 

phases, and (iii) Maxwell relaxation times.  

• The specific ways to adapt these parameters are by changing the concentration and 

the molecular   weight distribution.  

• To increase power amplitude, one of the liquid phases must be weakly elastic and 

the other one completely viscoelastic (phase asymmetry).  

• To shift the location of the power plateau and width of the power plateau, the 

elasticity of the membrane with respect to the bulk (viscoelastic phases) must be 

tuned. 

• To widen the power plateau, the Maxwell relaxation times, elasticity of the 

membrane and viscoelastic phases must be modified. 

 

Finally, with all these effects, it is clear that the optimum membrane performance can be 

shifted accordingly to operate at a desired frequency with only tuning the parameters analyzed 

which in practice could represent a real challenge for experimentalists. Additionally, we are 

exploring higher order models to characterize the high impedance (active mechanism) behavior 

of the OHC (solid line above-right).  A ‘double peak’ similar to that seen in the high Zb case is 

observed when we introduce a third-order ‘retardation effect’ into our model. 
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Discussion 

Membrane flexoelectricity is a novel electromechanical coupling effect that occurs in 

polarizable media under geometric curvature.  The sensor effect is performed by bending 

induced electric polarization, whereas the converse actuation effect is performed by the 

membrane curvature induced by an imposed electric field. Membrane flexoelectricity is 

relevant to the functioning of the Outer Hair Cells (OHC) which act as amplifiers to counteract 

viscous dissipation through mechanic transduction and thus allowing hearing.  The key 

challenge is to understand the coupling of oscillatory flexoelectric actuation and the viscoelastic 

phenomena of the fluids that are in contact with the oscillating membrane. An efficient method 

to describe membrane flexoelectricity is to use the liquid crystal analogy that follows by 

identifying the director field of a nematic with the unit normal to the membrane.  A key 

parameter is the flexoelectric coefficient, oo the order 3-20 pC/m for biological membranes. 

In this chapter we deal with the dynamics of the actuation flexoelectric mode. An integrated 

dynamical model for the average curvature of flexoelectric membranes oscillating in 

viscoelastic fluid media under capillary confinement was formulated using a previously 

presented shape equation based on the liquid crystal approach [14,16,18].  The membrane 

curvature dynamics is given by a balance between the viscoelastic stress jump from the 

contacting bulk liquids, the restoring membrane effective tension, and the driving flexoelectric 

force.   Using the flexoelectric shape equation in conjunction with a viscoelastic capillary flow 

model for the contacting phases we obtained a new average curvature dynamic equation. 

Perhaps surprisingly, the equation is shown to map into the classical solids Burger model, 

where the stress σ  and strain ε  become the electrical field E and curvature of the membrane 
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H  respectively [50-57].   The second order model for the electric field input and curvature 

output is given by a balance of inertial, viscous, and elastic effects, originating from the 

flexoelectric membrane and the viscoelastic fluids.  A material phase diagram that defines the 

nature of the material coefficients and the two possible regimes under small oscillatory electric 

fields is developed. Using dimensionless variables, the physics of the system can be described 

with three dimensionless numbers which are associated to the asymmetric of the phases, total 

bull-viscous and elastic ratio mechanism. 

 It is found that the dimensionless number associated to the asymmetry of the viscoelastic 

phases (memory) controls the maxima and minima values of the bulk-viscous mechanisms. For 

a simple harmonic function (sinusoidal form) of the input electrical field, the average curvature 

can be separated into out-in phase and in-out of phase curvature moduli contributions. 

Analytical expressions for the power dissipation, elastic storage moduli and Q factor were 

obtained (elastic membrane energy / power dissipation) from the curvature moduli.  

The frequency response of membrane average curvature and output power is characterized 

by the presence and absence of inertia (inelastic fluids).  The frequency response is 

characteristic of a second order dynamical system with second order input and displays a single 

resonant peak in the in-out of phase curvature moduli and presents two plateaus at high and 

low frequencies and an intermediate power law behavior for the out-in phase curvature moduli 

respectively { }io oiH ,H  . The value of the resonance frequency depends on the asymmetry of 

the phase through the product between the Maxwell relaxation times (bulk fluid memory).   

The elastic membrane energy Em  presents two plateaus a low and high value of the 

resonance frequencies with an intermediate power law behavior. In contrast, the power 
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dissipation P  displays a linear behavior for small frequencies, and a monotonically increasing 

behavior for moderate and high dimensionless frequencies.  

The effect of increasing the total viscosity in the system shifts the curves of the elastic-

energy and power to higher values of the dimensionless frequency.  The resonance effect is 

entirely dominated by the value of the dimensionless product between the viscoelastic times. 

The elastic resonance ratio is a measure of the bulk-viscous and inertial mechanism in the 

system and represents a phase diagram for: (i) bulk-viscous, (ii) inviscid fluid, (iii) symmetric 

viscoelastic fluids and (iv) Asymmetric fluids respectively. For values of the elastic ratio close to 

one, the elastic energy is independent of the frequency and the power displays a linear 

behaviour with the frequency.  

When the viscous  parametric function *
1b 1/k=   a resonance power curve is obtained. The 

maximum value of the power plateau is reached for k = 0.5. When the elastic ratio k  is less than 

0.5 and close to 1, the power plateau decreases drastically and the width of the curve also 

decreases for k< 0.5 and increases for k->1. In addition, when the asymmetric of the phases 

decreases, the width of the power curve narrows.  

 Regarding the Q factor, we found three important limits: (i) Q>1, (ii) Q=1, (iii) Q<1 

( biological relevant state) .  It was found that for a small elastic ratio, high asymmetry of the 

phases and a high value of the bulk-viscosity, the power dissipation dominates over the elastic 

energy (Q<<1).  It is important to note that the material properties of the biological viscoelastic 

liquids can be modified by addition of  polymers the concentration of and molecular weight of 

added polymers ,  and solution pH.   
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The power dissipation and elastic membrane storage energy are relevant to the functioning 

of outer hair cells and they are dependent on the inertia emerging from the contacting 

viscoelastic phases together with the bulk-viscous and elastic ratio mechanisms.  The predicted 

results shown in Figure 35 are consistent with   biological performance. 

One important future application of the present work could be the inverse problem, i.e. 

instead of giving the theoretical predictions we could start by obtaining material experimental 

parameter and adjust the power accordingly; this quantitative study will be pursued in the 

future (Equation 57).  

Finally, viscoelastic flexoelectricity is a novel coupling mechanism that incorporates non-

Newtonian flow, membrane mechanics, and electric polarization to transform electric power 

into mechanical power, of great current interest to human hearing and actuation research. 
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Chapter 4 

Conclusion 

Membrane flexolectricity is a curvature-driven actuation mechanism of significant relevance in 

the human hearing processes, through the coupling between electric polarization created by 

sound waves, membrane elasticity driven by curvature oscillations, and viscoelastic flow in the 

surrounding contacting media. A fundamental understanding of the functioning of the Outer 

Hair Cells requires the integration of physiology, engineering, and material science. In this 

thesis , theory and simulation based on biological engineering and material science principles 

was formulated, developed, analyzed, characterized, and partially validated. 

In our second order electromechanical model an electric field is related to the curvature of a 

flexoelectric membrane. This model is given by a balance between inertial, viscous, and elastic 

components. Since the objective of our investigation is to understand flexoelectric phenomena 

such as Outer Hair Cell electromotility, the novelty of the approach was to couple flexoelectric 

actuation with viscoelastic fluids in contact with an oscillating membrane. Equations and 

parameters are all analytical and numbers and values empirically based. Resonant and profile 

power dissipation, elastic storage and Q factor were investigated and results showed 

encouraging agreement with the literature. 

One of our most important results is that the frequency response of curvature and power in 

our system is governed by inertia. The value of the resonance frequency depends on the 

asymmetry of surrounding fluid elasticity. This suggests that a bending LC membrane can 
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achieve resonance only in certain material “beds”. By optimizing the properties of the 

embedding material, membrane performance can be tuned to operate in particular ways at 

desired frequencies. 

Material properties of biological tissues and liquids are not always constant – such as 

membrane stiffness. An accomplishment of our research is that the flexibility of our model aids 

in understanding system behaviour and expanding the limits of our current knowledge. In 

ongoing work, higher order models are being explored to fully characterize the OHC. 

In sensor mode, a bending membrane would generate electric potentials. Our research thus 

far has focused on studying the actuating potential of flexoelectric membranes. Another 

important element for future research is to study this inverse phenomenon. Not only can we 

reverse the phenomenon of study but we can also reverse the approach to our research, as 

mentioned in Section 3.7, by finding experimental material parameters and calibrating our 

model accordingly. For this reason, a complete quantitative study is required for full validation. 

In summary, membrane flexoelectricity is a versatile material property of quasi two-

dimensional materials, that has , as shown in this thesis, significant potential to explain 

physiological sensor/actuator mechanisms in hearing , as well as in future biomimetic 

applications including energy harvesting, artificial muscle, mechanical valves and more. 
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Appendices 
 

Appendix A: Preliminary Differential Geometry 

This Appendix summarizes the differential geometry used in the paper (1, 6, 25).   Consider an interface 

whose points are locate in 3D space by a position vector R , given parametrically by: 

( )αu ,α=1,2=R R         (A-1) 

The surface coordinates induce two tangential base vectors αa  defined by: 

α α ,α = 1,2
u

∂
=

∂
Ra         (A-2) 

The surface metric tensor αβa is defined by: 

αβ α β ; α,β =1,2= ⋅a a a         (A-3) 

whose determinant is  

αβa det 0= >a         (A-4) 

The corresponding reciprocal base vectors  and  metric tensor are: 

α
α αβ α βu , ; α,β =1,2∂

= = ⋅
∂

a a a a
R

      (A-5,6) 

The base and reciprocal base vectors define the surface unit tensor β
αδ , and the dyadic surface idem 

factor sΙ :  

β β α β β α α β αβ
α α s β α β αβ α βδ ,     δ δ a = aα⋅ = = = =a a I a a a a a a a a    (A-7,8) 

αa
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where αβ α
βγ γa a δ= . The counterclockwise rotation of a vector around the unit normal k  is given by the 

dyadic surface unit alternator Sε : 

α β αβ
S S S αβ α βε = × = × = × = × = ε = ε− − − −k I I k k I I k a a a a             (A-9,10)

 
 

where αβ
γδ αγ βδε =a a ε  .

  
The surface unit normal k is given by: 

( )αβ
s α β 1 2 2 1

1 1 1:
2 2 2 a

= = × = × − ×k ε ε ε a a a a a a            (A-11,12)
 

where ε is the triadic spatial unit alternator.  Other useful relations involving the surface unit normal k 

are: 

β αβ
α β αβ α α βα s s α β s sε ,  = ε , ε  +× = × = − × × = = − +a a k a k k a a I I a ka ε ε k kε  

      (A-13-15)   

The symmetric curvature dyadic b  is a measure of the change of k  with changes of R: 

( ) ( ) ( ) ( )
s s s α, 

uα

∗ ∗
∗ ∗

∂ ∂∂
= − = −∇ ∇ = ⋅∇ = =

∂ ∂ ∂
kb k I a
R R                               

(A-16,17) 

where ( )s
∗∇  is the surface gradient. The components of b obey 

γδ δβ γ γ γα
β β αβb =a b , b =a b    

              
(A-19) 

The average curvature H  and the Gaussian or total curvature K  are : 

( )s s 1 22H= : b c +c
u

α α
αα

∂
= −∇ ⋅ = − ⋅ = =

∂
kI b k a

           
 (A-20) 
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( ) ( )αβ γδ
s s s αγ βδ 1 2

1 1K= : ε ε b b c c
2 2

− ⋅ ⋅ = =ε b ε ε
   

 (A-21) 

where c1 and c2 are the radius of curvature.  The relation between K  and H is: 

2 1K=2H :
2

− b b         (A-22) 

The curvature tensor b can be decomposed into a trace ( )sHI and a deviatoric curvature ( Dq  ):  

s s s s=H D ,   : : 2,    : 0+ = = =b I q I I q q I q                   (A-25) 

where D is the deviatoric curvature is:  

( ) 2 2 2
1 2

1 1D = c c ,  D  = H K= : H
2 2

− − −b b
            

(A-26,27) 

and where in the principal coordinates q reads:  

 
1 0
0 1

 
=  − 

q                                     (A-28) 
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Appendix B: Membratodynamic-Viscoelastic Rey Model (MDRM) 

Using cylindrical coordinates (r,φ,z), the velocity field V in the viscoelastic fluid phase is:

( )( )z0,0,V r, t=V , where ( )zV r, t / z 0∂ ∂ = . 

(i) Stress and kinematic tensors 

The stress t, velocity gradient and the rate of deformation tensors are given by: 

rr rz

θθ

zr zz

σ 0 σ
 = 0 σ 0

σ 0 σ

 
 
 
 
 

σ ; rz

0 0 1
= γ 0 0 0

0 0 0

 
 ∇  
 
 

V


; rz

0 0 1
2  = γ 0 0 0

1 0 0

 
 
 
 
 

D


  (B-1) 

(ii) Constitutive equation    

Upper-convective Maxwell equation (UCME) is given by the following partial differential equation: 

( )iρ +  = - P t + +ρ
t

∂ ⋅∇ ∇ ∇ ⋅ ∂ 
V V σ g ;  { }i i +λ  2η ; i = t,b

∇

=σ σ D   (B-2,3) 

And the upper-convected time derivative is given by: 

{ }T +  + 
t

∇ ∂
= ⋅∇ − ∇ ⋅ ⋅∇

∂
σ σ V σ V σ σ V       (B-4) 

In equation (B-2) ρ  is the density of the system, { }i iλ ,η  are the material properties of the two 

viscoelastic liquid (bottom and top) and g  is the acceleration of the gravitational forces. 

(iii) Shear stress, axial velocity and volumetric flow 

Neglecting inertial mechanism and using the rz component of the UCME into the momentum equation, 

the following expression for the shear stress and the axial velocity is found: 
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( ) ( )
22

i i
rz z i

i

P (t) P (t)r a rσ r,t = V r,t 1 1 λ
2 z 4η a t z

 ∂ ∂∂     ⇒ = − − +       ∂ ∂ ∂      
  (B-5,6) 

In equations (B-5, 6) the fact that the shear stress must be finite and the non-slip condition are 

considered. Finally, after a double integration of the velocity and after a time integration of the axial 

pressure, the following expressions are obtained: 

( ) ( ) ( )i i

t ξt
i λ λi i i

i4 4
i i i 0

8η Q t P (z,t) dP (z,t) 8η1 = + e Q ξ e dξ+C z
πa λ λ t z dz πa λ

−    ∂∂  − ⇒ =   ∂ ∂    
∫    

                 (B-7,8) 

In equation (B-8) ( )iC z  is a constant that depend of the axial coordinate. 

(iv) Membrane pressure top and the bottom  

Integrating (B-8) with respect to the axial coordinate and using the boundary conditions for the top and 

the bottom t 0P (z = 2L,t) = P  and b 0P (z = 0,t) = P . The pressure at the top and the bottom are given 

by: 

( )t t

t ξt-
λ λt

t o4
t 0

8ηP (z,t)= e Q ξ e dξ (z-2L)+P
πa λ

 
  
 

∫      (B-9) 

( )b b

t ξt
λ λb

b 04
b 0

8ηP (z,t) e Q ξ e dξ z+P
πa λ

− 
=   

 
∫      (B-10) 

The pressure difference ( ) t bP z,t  = P (z,t)-P (z,t)∆  is given by the difference between equations (B-9, 

B-10): 
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( ) ( ) ( ) ( )t t b b

t ξ t ξt t-
λ λ λ λt b

4
t b0 0

η η8P z,t  = e Q ξ e dξ z-2L - e Q ξ e dξ z
πa λ λ

−     ∆             
∫ ∫  (B-11) 

Evaluating the pressure jump ( )P z,t∆  at z = L and using the equation that relates the volumetric in 

terms of the membrane curvature.  

( ) ( ) ( ) ( )4

4

dH t 2Q t dH tπaQ t = -
2 dt πa dt

⇒ − =      (B-12) 

the membrane pressure is obtained;  ( ) ( )bP L,t = : t∆ ∆kk T  

( ) b b t t

t ξ t ξt t-
λ λ λ λ

b b t
0 0

dH(ξ) dH(ξ): t = 4L G e dξ e +G e dξ e
dξ dξ

−     ∆             
∫ ∫kk T   (B-13) 

In equation (B-13), the elastic moduli are defined by: { }i i iG =η /λ ; i= t,b . Upon substitution of 

equation (B-13) into equation (9), the following equation is obtained: 

b b t t

t ξ t ξt t-
λ λ λ λ

b t
0 0

E dH(ξ) dH(ξ)G e dξ e +G e dξ e MH(t)
4L dξ dξ

−   ℑ
= +      

   
∫ ∫



  (B-14) 

where M  is defined in eqn. 16-d. Applying the Leibnitz rule twice, it is had the following linear 

differential equation that describes the evolution of the curvature in the system as a function of the 

applied electric field and the material properties. Multiplying equation (B-14) by the positive exponential 

b

t
λe

 
 
   

b b t bb t

t t t tξ ξt t-
λ λ λ λλ λ

b t
0 0

dH(ξ) dH(ξ)e E G dξ e +G e dξ e Me H(t)
4L dξ dξ

     
     
     

  ℑ  = +       
∫ ∫



 (B-15) 
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Taking the time derivative in both side of equation (B-15) and after that multiplying by the negative 

exponential b t

t t-
λ λe

 
− 

  , the following equation is obtained 

( ){ }
t t

t t

t

t t
t ξtλ λ

λ λ
b t t

b b t 0

t
λ

b

1 e e 1 1 dH(ξ)E E G G M e H G - dξ e
λ 4L 4L λ λ dξ

1 Me H
λ

   
   
   

 
 
 

  ℑ ℑ
+ = + + + +     

 
 
 

∫
 

 

    (B-16) 

Taking the time derivative both sides in the above equation: 

( ) ( )

( )

t
t t

t t t

t
t tλ

λ λb t
b t

t b b t t b

t t t
λ λ λ

t b b t

G G1 1 1 eE E E G G e H e H
λ λ λ λ 4L λ λ

1 1 1M e H Me H Me H
λ λ λ λ

 
 
     ℑ

+ + + = + + + +         

   
+ + +   

   



   

 

                 (B-17) 

Changing b by t and t by b 
 

( ) ( )

( )

b
b b

b b b

t
t tλ

λ λb t
b t

t b t b t b

t t t
λ λ λ

t b b t

G G1 1 1 eE E E G G e H e H
λ λ λ λ 4L λ λ

1 1 1M e H Me H Me H
λ λ λ λ

 
 
     ℑ

+ + + = + + + +         

   
+ + +   

   



   

 

               

(B-18) 

Adding both equations (summarizing the model to eliminate any bias) and deleting t b

t t
λ λe e

 
+  

 
 and 

rewriting terms: 

( ) ( )( ) ( )

( )( )
b t t b t b b t b t

t b t b

λ λ Mλ λ H M λ λ H M H

E λ λ E λ λ E
4L

η + η + + η + η + + +

ℑ
= + + +

 



 

                    (B-19) 

 

Finally, equation (B-19) is the base of Rey´s model given by equations (14, 15, 16a-f). 
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Appendix C: Non-Dimensionalization  

(i) Variables 

To solve the LDE given in (2-4a,f) the following dimensionless variables are proposed for the 

electrical field, curvature, time, frequency, viscoelastic properties and power.  

b t
b t

0 G G

2b t G
b t

G

G GE tE= ;      = a ;    t  = ;   w = w;  G ; G
E

M= ;  = ;  = / 2 a L ; M

λ
λ

λ λ λ

Η Η Σ = =
Σ Σ Σ

 λ λ Σ
λ λ Ρ Ρ π = Σ Σ Σ Σ 

        (C- 1-9) 

Notice that, for equation (C-19), the following restrictions are satisfied: 

b tb t G +G =1;  λ +λ =1           (C-10,11) 

In equations (C-1-9), the characteristic macroscopic force, length, time, elastic force power 

and membrane elasticity  are: (i) Amplitude of the external electrical field, (ii) radius of the  pipe, 

(iii) sum of the viscoelastic times in the bottom and the top of the applied electrical field, (iv) 

sum of the elastic moduli in the bottom and the top, respectively. The energy (power) is scaled 

by the ratio between the sum of the elastic moduli and the viscoelastic time multiplied by a 

characteristic axial and radial length scales (radius of the pipe and axial length).  In our system 

the characteristic time is the sum of the viscoelastic times.  This definition allows comparison 

with the other internal (inertial, viscoelastic times)  and external characteristic times (frequency). 

(ii) Dimensionless ordinary differential equation   

Multiplying the differential equation for the evolution of the curvature by 1
0b−   and using the 

dimensionless variables defined in eqns. (C-1-11) and the following dimensionless time 

operators for the curvature and the input applied electrical field:  

( ) ( )

n n n n
10

0n n n nn n
1 0 1 0

Ed H 1/a d H d E d E; ; H a H; E E E
dt dta /a a /adt dt

−→ → → → ;  n = 1,2  
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           (C-12) 

the dimensionless ordinary differential equation for the curvature  takes the following form: 

 
( )

( )
( )

( )
2 2

2 0 1 0 2 0 1 0
0 0 02 2 2 2 2

1 0 1 01 0 1 0

b /b b /b a /b a /b1 d d d d1 H t E +a /b E t
a a /a a /adta /a a /adt dt dt

   
+ + = +   

   
   

 

          (C-13) 

multiplying (C-13) for the pipe radius a  and factorizing ( ) ( )0 0 0a /b / 1/aE , it is obtained the 

dimensionless linear differential equations that describes the evolution of the curvature in terms 

of the applied input electrical field is obtained: 

( ) ( )
2 2

* * * *
2 1 0 22 2

d d d db b 1 H t a a +1 E t
dt dtdt dt

   
+ + = +   

   
    (C-14) 

In (C-14), the following identifications were done: 

( ) ( )
* * * *0 0 2 0 2 0 1 0
0 2 2 12 2

0 1 01 0 1 0

a /b a /a b /b b /ba = ; a = ;  b = ;b =
1/ aE a /aa /a a /a

          (C-15-18) 

The dimensionless combination of these parameters { }* * * *
2 1 2 0b ; b ; a ; a  describes the principal 

mechanisms of the system corresponding to: (i) inertia curvature, (ii) bulk-viscous curvature, (iii) 

inertia in the input electrical field and (iv) flexoelectric, respectively. 

(iii)  Dimensionless numbers 

a) Flexoelectric   

The first number  0a∗ ,  is related to the amplitude of the perturbation of the macroscopic 

flexoelectric force and the  elasticity of the membrane. According to data extracted from 

literature [17]: (i) -4a=5×10 m ,  (ii) -18
fc = 20×10 C , cck = k 0= , (iv) -4

0γ 5×10 N/m= ; (v) 

0Ε =25mV/nm and taking the shape factor as 28a−ℑ = , the dimensionless number 0a∗  is: 
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( ) ( )
2

o 0 0 f 0 f 0 f
0 2

0 oo c c o c c

a / b aE c aE c (8 / a ) E ca 4 0.82 1
1/ aE γ a2γ 2k +k 2γ 2k +k (8 / a )

∗ ℑ
= = = = = ≈

+ ℑ +
. 

This dimensional number 0a∗  is close to the unit, so for clarity and readability, this 

dimensionless number is considered equal to the unit, i.e., 0a 1∗ ≅  in this paper. 

b) Memory 

The second dimensionless number is associated to the inertia in the input electrical filed and is 

given by: ( )t b t t2a λ λ λ 1 λ∗ = = − .  In the above equation, the relation t bλ λ 1+ =  was used. The 

dimensional number *
2a  describes a  parabolic function whose roots are found in zero and the 

unit. Taking the  derivative of  *
2a  with respect to  tλ  and equaling to zero, the following critical 

point and the maximum are obtained:  

( )* * *
t t t2 2max 2da / dλ 0 λ 1/ 2 a a λ 1/ 2 1/4 = ⇒ = ⇒ = = =  

The last expression means that the value of the inertial effects in the input dimensionless 

electrical field is bounded from: * *
2 2max0 a a 1/ 4≤ ≤ = . 

c) Bulk-Viscous Mechanism  

The second dimensionless number is the total bulk-viscosity and is given by: 

t t b bG G
η

Σ = λ + λ  

The values of the maximum and minimum in the total bulk viscosity are completely 

determined by the value of the memory of the liquid. As an example of this, suppose that 

t bλ λ = ε  and using the relation, t b 1λ + λ = ; we found a quadrative expression for the Maxwell 

relaxation time, i.e., 

( ) 2 2
t t t t t t1 0λ − λ = ε ⇒ λ − λ = ε ⇒ λ − λ + ε =  
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The roots of the above quadratic expression is given by: 

2(+)
t

1+ 1-4ε 1 1 2ε O(ε )λ = 1
2 2

+ − +
= ≅ − ε ;

( )( )2
(-)

t

1 1 2 O1- 1-4ε λ =
2 2

− − ε + ε
= ≅ ε  

Substitution of roots into t b 1λ + λ = ; the solutions for the quadratic expression are obtained: 

( )( )

( )

2
(+) (+)

b t

2
(-) (-)

b t

1 1 2ε O ε1 1-4ελ =1-λ
2 2

1 1 2ε O ε1 1-4ελ 1 λ = 1
2 2

− − +− = = ≈ ε



+ − + +
= − = ≈ − ε

 

Finally the solutions that satisfy the coupled equations: { }t b t bλ λ =ε; λ +λ =1  are given by: 

( ) ( ){ }( ) ( ) ( ) ( )
t b t bλ = 1- ε, λ = ε , λ = ε, λ = 1-ε
+ + − − .  

(i) Positive roots: ( )( ) ( )
t bλ = 1- ε, λ = ε
+ +  

These roots are substituted into the equation for total bulk viscosity and the result is given by:  

( ) ( ) ( )( )
t b t t tG 1 G G 1 1 G ; G [0,1] R

η

+Σ = − ε + ε = − ε + − ε ∈ ⊂  

In the above equation, the relation t bG G 1+ =
 
was used.  It is clear that the linear equation 

( )
η

+Σ , satisfies the following points: (i)  { }( )
tG 0,

η

+= Σ = ε
 
and (ii) { }( )

tG 1, 1
η

+= Σ = − ε   

respectively, which describe a linear function with a positive slope.  This means that the bulk-

viscous dimensionless number for the positive roots is bounded by the following inequality: 

{ } { }t b t b
min max

( ) ( ) ( ) ( )( ) ( ) ( )min , max , 1
η η η

+ + + ++ + +ε = λ λ = Σ ≤ Σ ≤ Σ = λ λ = − ε  

(ii) Negative roots: ( )t b

( ) ( )
λ =1- ε, λ = ε

− −  

The mathematical treatment of the second root, is similar to the first root; thus, the equation for 

the total viscosity is given by 
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( ) ( )( )
t b t t tG G 1 G 1 G 1 ; G [0,1] R

η

−Σ = ε + − ε = ε + − − ε ∈ ⊂  

Applying the same reasoning, the above equation describes a linear function with negative slope 

and satisfies the following points: : (i)  { }( )
tG 0, 1

η

−= Σ = − ε
 
and (ii) { }( )

tG 1,
η

−= Σ = ε .The 

maximum and minimum values satisfy the following inequality:   

{ } { }t b t b
min max

( ) ( ) ( ) ( )( ) ( ) ( )min , max , 1
η η η

− − − −− − −ε = λ λ = Σ ≤ Σ ≤ Σ = λ λ = − ε . 

Lastly, the maximum and minimum values of the bulk viscous mechanism depend on the value 

of the maximum value of the product between dimensionless viscoelastic relaxation times at the 

top and the bottom of the system (memory). 

d) Elastic ratio 

Finally the last dimensional number is the elastic ratio which compare to elastic forces, one 

of them associated to the flexoelectric membrane and the other one to the bulk elasticity of the 

system (two viscoelastic fluids in the bottom and the top). Two regimes are possible for the 

elastic ratio k : (i) M 1<< ; (ii) M 1>> .   

 

( ) ( )( )1 2Mk = M 1 M M 1 M O M M
1 M

−
= + = − + ≈

+
;  

M

MLim k = 1
1 M→∞

→
+

 

In the first case the elasticity of the membrane is neglected with respect to the elasticity of the 

bulk. In contrast when M 1>> , the elastic approaches to the unit., so, the dimensionless elastic 

ratio is bounded by the following values: min max0 k k k 1< ≤ < = . In this case, the soft membrane 

elasticity is higher as compared to the bulk mechanism, and the membrane behaves as an elastic 

solid.   

 



101 
 

 

e) Dimensionless functions 

In general, the two  dimensionless parametric functions ( ) ( ){ }t b2 1b k, ,b k,∗ ∗
η

λ λ Σ  satisfy the 

following inequality: ( ) ( )t b2 1b k, < b k,∗ ∗
η

λ λ Σ  As a numerical example of the magnitude of 

these numbers, the next typical parameters for biological fluids (Outer Hair Cell) are used in the 

regime of linear viscoelasticity for the top and the bottom [34]: (i) b tG =G =22 Pa ; (ii) 

5
b t= = 5 10  s−λ λ × ; b t b b t tη = η = G λ = G λ = 0.0014 Pa s  and for the elastic solid membrane 

1
0γ = 0.005 Nm− ;  L= 0.1m ; c ck k = 0.001Pa= , the magnitude order of the dimensionless 

numbers are: 4
1b 8.8 10∗ = × ; 4

2b 4.4 10∗ = × ; 2a 0.25∗ =  and 6k 5.7 10−= ×    these values are in 

concordance with the inequality given in (C-18). 
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Appendix D: Dimensionless Energy Requirements 

a) Power  

The power can be calculated as the average of the product between the square of the product 

between the curvature and the dimensionless frequency, i.e., ( ) ( ) ( )dH t
P w E t

dt
= ⋅ , where the brackets 

represents an integral average and is given by 
Τ

0

1 2π= dt ; Τ=
Τ w

⋅ ∫ . The definition of the curvature is given by 

the following expression: 

( ) ( ) ( ) ( ) ( )io oi

In out phase Out in phase

H t;w H w cos wt H w sin wt
− − − −

= +
 

 

The time derivative of the curvature is given by: 

( ) ( ) ( ) ( ) ( )io oiH t;w wH w sin wt wH w cos wt= − +


 

Upon substitution of the above expression into the definition of the power, the following expression is 

obtained: 

( ) ( ) ( ) ( ) ( ){ }
2 /w

io oi

0

wP cos wt wH w sin wt wH w cos wt dt
2

π 
= − + π 

∫  

By the odd properties of the integrals, and using the following variable changes and the integral 

trigonometry identity: z wt= ; ( ) ( )( )2 1cos wt 1 cos 2wt
2

= +  the following sum of integrals are 

obtained: 

( ) ( ) ( )

1 2

2 2
2

io oi

0 0

I I

1P wH sin z cos z dz wH cos z dz
2

π π
 
   = − +  π   
  

∫ ∫
 
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Where the integrals jI : j=1,2  can be solved by standard methods to obtain:  

( ) ( ) ( )
2π 2π

2
1 2

0 0

Ι = sin z cos z dz = 0;  Ι = cos z dz = π∫ ∫  

Collecting all the terms, the power contribution is given by: 

( ) ( )* * * *
oi1 2 1 2

1P w;b ,b ,k wH w;b ,b ,k
2

=  

The average power, can be expressed as the product between dimensionless frequency w  and 

dimensionless curvature out-in phase curvature module oiH .  

b) Membrane-Elastic Energy  

Applying the same procedure as with the power and repeating all the calculations, the membrane 

elastic energy can be calculated as the average of the square of the product between the curvature and 

the dimensionless frequency, i.e., 2
Em H (t)= , where the brackets represents an integral average.  

Following the same mathematical development as the power, the following expression is obtained: 

( ) { }2 2 2 2
io oi

1 1Em H t H H H
2 2

∗
= = + =  

Finally, the elastic membrane energy can be expressed as function of the dimensionless parametric 

function and the elastic ratio. 

( ) ( )2* * * *
1 2 1 2

1Em w;b ,b ,k H w;b ,b ,k
2

∗
=  
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