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Abstract 

As the Internet is a best-effort delivery network, audio packets may be delayed or lost en 

route to the receiver due to network congestion. To compensate for the variation in network 

delay, audio applications buffer received packets before playing them out. Basic algorithms 
• 

adjust the packet playout time during periods of silence such that all packets within a 

talkspurt are equally delayed. Another approach is to scale individu al voice packets using 

a dynamic time-scale modification technique based on the WSOLA algorithm. 

In this work, an adaptive playout algorithm based on the normalized least mean square 

algorithm, is improved by introducing a spike-detection mode to rapidly adjust to delay 

spikes. Simulations on Internet traces show that the enhanced bi-modal playout algorithm 

improves performance by reducing both the average delay and the 10s8 rate as compared 

to the original algorithm. 
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Résumé 

Puisque l'Internet est un réseau où la qualité de service n'est pas garantie, des paquets au­

dio peuvent être retardés ou perdus en chemin vers le destinataire à cause de la congestion 

du réseau. Pour palier aux variations du délai réseau, les applications audio accumulent 

les paquets reçus avant de les jouer. Les algorithmes simples ajustent le délai de lecture 

des paquets pendant les périodes de silence de sorte que tous les paquets dans une section 

de conversation sont également retardés. Une autre approche est de redimensionner les pa­

quets individuellement avec une technique de modification temporelle basée sur l'algorithme 

WSOLA. 

Dans ce travail, un algorithme de lecture adaptatif basé sur la méthode normalisée du 

plus petit carré moyen est amélioré en ajoutant un mode détectant les pics de délai réseau 

pour rapidement ajuster la prédiction du délai durant ces pics. DfS simulations réalisées 

à partir de traces récupérées sur Internet montrent que le modèle de prédiction bi-mode 

amélioré réduit à la fois le délai moyen et le taux de perte par rapport à l'algorithme 

original. 
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Chapter 1 

Introduction 

Voice over Internet Proto col (VoIP) has quickly become one of the fastest-growing tech­

nologies in the world today. A relatively new field, VoIP is the transmission of packetized 

voice over packet-based IP networks such as the Internet. VoIP traffic grew by almost 900% 

from 1998 to 1999, and is projected to grow another 5000% between 1999 and 2004 [1]. 

Traditionally, communications networks have been split along two lines. The legacy, 

circuit-switched Public Switched Telephone Network (PSTN) was designed for real-time 

voice conversations between users. Subsequently, the PSTN has been adapted for the 

growing needs of data communications (e.g., modem technologies, ISDN) [2]. In contrast, 

packet-based networks such as the Internet, were created for the efficient transportation of 

data. Data has overtaken voice as the primary traffic on many networks built for voice [3], 

and data traffic continues to grow faster than voice traffic. More recently, voice traffic is 

also being transported over packet networks. 

The integration of voice and data networks onto a single packet-based data network 

infrastructure is driving the rapid growth in Internet telephony or VoIP. The convergence 

of voice and data onto a single network allows network resources to be used efficiently. 

The transmission of real-time voice and multimedia over data networks is supported by the 

wide-scale deployment of high-performance digital signal processors (DSPs) [4]. 

1.1 PSTN vs. VoIP 

The PSTN and the Internet carry voice caUs quite differently. The PSTN sets up an 

exclusive, dedicated connection with a fixed bandwidth from the calling party to the called 
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number. The voice signal is transmitted as a synchronous stream of binary data over the 

connection. The dedicated circuit/connection is then maintained for the duration of the 

caU. 

The Internet, on the other hand, is a connectionless packet-based network. The voice 

signal is packetized and encoded into data packets. Each packet is then routed indepen­

dently through the network. Packets can incur variable delay due to congestion at routers 

within the network, and may even be discarded by a router to alleviate excessive conges­

tion. Furthermore, packets in a voice stream may be routed over different paths in the 

network, resulting in a non-sequential arrival at the receiver [1]. 

1.2 Voice over IP Drivers 

There has been a growing interest in VoIP within the communications industry for a number 

of reasons, as described in [4]. 

1.2.1 Integration of Voice and Data 

The integration of real-time audio, video, and data will allow network operators to offer 

and support new multimedia applications as well as other unified services. 

1.2.2 Bandwidth Consolidation 

The integration of voice and data allows for bandwidth consolidation, by using the data 

network more efficiently. In a traditional PSTN telephone call, bandwidth is allocated to 

the customer for the duration of the phone cano Typically, 50% of the speech pattern in 

most voice conversations is silence. Thaditional voice networks waste precious bandwidth 

carrying the periods of silence, whereas data networks do not send the silence and instead 

the bandwidth is made available to other users who need it at that instant. As weIl by 

using analog-to-digital converters (ADe) and compression algorithms, the speech bit rate 

can be reduced from 64 kbit/s in the current PSTN network to a bit rate between 4.8 and 

8 kbit/s in a data network [4]. 
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1.2.3 Lower Tariffs 

The greatest driver of VoIP is the extremely low costs associated with placing caUs over 

the Internet. VoIP systems bypass the PSTN's toll services and use the Internet backbone 

to transmit voice caUs. The costly long distance charges found in the PSTN are avoided, 

and the lower costs of sending voice packets through the Internet are incurred instead. 

1.2.4 Universal Presence of IP 

Personal home computers and workstations in industry currently use the Internet and the 

Internet Protocol for data transfer. Thus, a convenient and extensive network infrastructure 

is already in place for voice packet transmission. 

1.2.5 Maturation of Technologies 

High-performance digital signal processors (DSPs) are used by codees (voice coders and de­

coders) and high-speed modems. The real-time processors are highly optimized to process 

digital signaIs. In VoIP systems, the analog voice signal is digitized and encoded before 

being transmitted over the network. DSPs are now mass-produced and have become rela­

tively inexpensive, allowing IP telephony to become a feasible and practical alternative to 

the PSTN. 

1.2.6 Shift to Packet-Based Networks 

Current trends show that there is a shift from circuit-switched networks to packet-based 

data networks. Data traffic currently exceeds voice traffic, and is expected to grow at a 

faster rate than voice traffic [3]. By packetizing voice and transmitting it over the Internet, 

IP telephony allows for the replacing of voice networks with data networks. With the 

convergence of voice and data networks, only the IP-based packet network needs to be 

supported. Maintenance costs are generally lower for packet-based routers or switches 

than it is for circuit-based switches [1]. 
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1.3 VoIP Challenges 

While VoIP provides substantial benefits, a number of challenges must be met before VoIP 

can be successfully deployed on a wider scale. To become a credible alternative to the PSTN, 

VoIP must offer the same reliability and voice quality. High end-to-end voice quality in 

packet transmission networks depends principally on the following factors: 

iii Signal fidelity, i.e., choiee of speech codec (coder / decoder) used 

iii End-to-end delay and variation in the delay (jitter) 

iii Packet 10ss 

1.3.1 Speech Signal Fidelity 

The analog voice signal is digitized and encoded at the transmitter. Speech codees may 

be used to eompress the digital audio signal and reduce the bit rate for transmission. The 

digitization and compression of a speech signal may pro duce a noticeable degradation in 

the voice quality, depending on the speech co ding algorithm used. The signal quality can 

deteriorate further under conditions of packet loss. However, the pereeived reduction in 

speech quality depends on the effectiveness of any associated packet loss eoncealment (PLC) 

algorithms. 

1.3.2 End-to-End Delay and Jitter 

The end-to-end delay (also called "latency") is the time between the generation of speech 

at the transmitter and its playout at the receiver. End-to-end delays beyond 400 ms are 

irritating to telephone users and impair interactivity in real-time conversations [5]. Talker 

eeho also becomes more notieeable and annoying as delay increases. 

The end-to-end delay in VoIP comprises the processing delay, the network delay, and the 

buffering delay. The processing delay consists of a) the coding delay and b) the packetization 

delay associated with the speech codec. The co ding delay is the processing time needed to 

encode and decode the signal. The packetization delay consists of the duration of signal 

contained in a voice packet, typically between 10 and 40 ms. The processing delay also 

includes delays due to other DSP features such as echo cancellation, noise reduction, and 

packet 10ss eoncea1ment. 
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The best-effort nature of packet networks results in packets experiencing variable delay 

and loss while propagating through the network. The delay incurred by voice packets while 

traversing the packet network from transmitter to receiver is called the network delay. The 

variation in network delay, referred to as jitter, must be smoothed out before packets are 

played out at the destination. A playout buffer is used by the reeeiver to store packets and 

remove the variation in delay before playing them out. The additional delay imposed by 

the playout (or jitter) buffer is the buffering delay. 

1.3.3 Packet Loss 

The unreliability of IP networks can lead to packets being lost occasionally. Network con­

gestion results in long packet queues at network routers. Routers may choose to deliberately 

drop sorne packets to reduee the congestion. Packets may also be lost at network nodes 

due to buffer overflow. 

To provide reliable transmission of data in an IP network, a retransmission scheme 

is provided by the transport layer. The scheme retransmits any packets for which an 

acknowledgement was not received from the destination. Retransmission schemes cannot 

be used for real-time voice transmission, as the end-to-end packet delays would be too large 

and inhibit conversation. 

Similarly, packets incurring high network delay may arrive after their scheduled playout 

time. Although the packets reach the destination, they arrive too late to be played out by 

the receiver and are considered to be 'lost'. The number of late packets can be reduced by 

increasing the buffering delay. However, a larger jitter buffer increases the overall end-to­

end delay. 

The lost packets create gaps in the reconstructed audio signal, which can result in 

clicks, muting or unintelligible speech. Speech codees use packet loss concealment (PLC) 

algorithms to reduce the degradation caused by packet loss. 

1.4 Playout Buffer Algorithms 

Adaptive playout buffer algorithms react to changing network conditions by dynamically 

adjusting the end-to-end delay. Sinee audio packets are generated at regular intervals, 

the received packets must be played out in a periodic manner. A typical real-time voiee 
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conversation consists of talkspurts (when the user is talking), and periods of silence (when 

the user is listening). 

Playout delay adjustments made during periods of silence are less likely to be per­

ceived by users. The playout delay is adjusted on a per-talkspurt basis by stretching or 

corn pressing the silence between talkspurts. The basic playout approach [6] is to estimate 

the end-to-end delay and use it to set the playout time of the first packet in a talkspurt. 

Subsequent packets in the talkspurt will have the same total end-to-end delay. 

In a recent approach to adaptive playout, playout delay adjustment is performed within 

talkspurts [7]. Individual voice packets are time-scaled such that they are played out 

just in time for the predicted arrivaI time of the next packet. A time-scale modification 

technique, based on the Waveform Similarity Overlap-Add (WSOLA) algorithm [8], can 

be used to time-scale voice packets within talkspurts while preserving the voice pitch. The 

degradation in perceptual quality due to time-scaling has been found to be inaudible [7]. 

Dynamically adjusting the playout delay during talkspurts, improves overall performance 

by allowing for a reduction in the end-to-end delay while maintaining low packet loss. The 

main approaches to estimation of playout delay are described in the following subsection. 

1.4.1 Approaches to Playout Delay Estimation 

There are three main types of playout delay estimation algorithms: autoregressive (AR) 

estimate-based algorithms, statistically-based algorithms, and adaptive filter-based algo­

rithms. 

The basic playout algorithm proposed in [6] uses an autoregressive (AR) estimate to 

calculate the network delay and jitter. The end-to-end delay is then computed to be the 

sum of the network delay estimate and a safety buffer term, so that only a small fraction of 

packets will arrive too late to be played out by the receiver. The safety buffer term depends 

on the jitter estimate. 

Statistically-based approaches use the statistics of past delays to compute the current 

playout delay. The network delays for past packets are retained and the playout delay is 

selected such that a chosen percentage of packets should arrive in time [7, 9]. Only the 

delays of the past talkspurt are used in [10]. Another approach assembles an previous 

delay values in a histogram and applies an aging procedure to gradually reduce the impact 

of oider packet delays [11J. 
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Instead of reacting to network fluctuations, the adaptive filter-based approach to adap­

tive playout attempts to predict the network delay [12]. Adaptive filtering algorithms aim 

to minimize the expected mean square error between the actual network delay and the 

estimate [13]. Previous delays are passed through a finite-impulse response (FIR) filter 

to compute the current estimate. The mean square error is then' used to adjust the tap 

weights of the adaptive filter. The normalized least mean square (NLMS) algorithm is used 

for the adaptive predictor in [12]. 

The playout buffer algorithms considered here are not robust enough to adapt delay 

estimates in the presence of a delay spike. A delay spike is characterized by the sudden 

onset of a large increase in network delay. Although subsequent packets usually experience 

declining network delays, the delay values are still quite large. 

A spike-detection algorithm was first developed by Ramjee et al. [6] to adapt to such 

spikes. The playout algorithm switches to an impulse or spike mode when a delay spike is 

detected. In spike mode, the delay estimate depends only on the most recent delay values. 

When the delays faH back to average values, the algorithm reverts to normal mode and the 

delay estimate is computed using the AR estimate-based approach. Other playout buffer 

algorithms also modify their delay estimates during spikes [7, 9, 10]. 

1.5 Thesis Contribution 

Playout buffer algorithms which adjust the playout delay on a per-packet basis, can be 

improved further with more accurate estimates of the network delay. The NLMS playout 

algorithm [12] adjusts the playout delay based on a prediction of the network delay. Since 

the NLMS playout algorithm does not detect delay spikes, the predicted network delays 

become very large during spikes. 

This thesis proposes an enhancement to the NLMS algorithm. A spike mode is incor­

porated to rapidly adjust to network delay spikes. As the onset of a delay spike is followed 

by declining network delays, the safety buffer term can be reduced during spikes, thereby 

reducing both the buffering delay and overall end-to-end packet delay. As well, since a 

more accurate estimate of the delay is obtained, packets received during a delay spike will 

not be stretched or compressed as much, thereby reducing any degradation associated with 

time-scaling of voice packets. 
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1.6 Thesis Organization 

The remainder of this thesis is as follows: 

Chapter 2 presents an overview on Voice over IP (VoIP). The chapter first describes the 

network proto col used in IP networks, the Internet Protocol (IP). The various components 

of a VoIP transmission systems are then presented and the major protocols used in VoIP 

are also reviewed. 

Chapter 3 presents the idea of jitter reduction through buffering received packets. The 

chapter begins with an explanation of the purpose of a playout (or jitter) buffer. The main 

types of adaptive playout buffer algorithms are then revisited. Playout delay adjustment 

is usually performed during periods of silence between talkspurts. A recent approach to 

adaptive playout algorithms, which adjusts the playout delay on a per-packet basis, is also 

described. Lastly, the drawbacks of the current NLMS playout algorithm are detailed and 

an enhanced NLMS predictor, the E-NLMS playout algorithm, is proposed. 

Chapter 4 evaluates the performance of the proposed E-NLMS playout algorithm. The 

method used to evaluate the E-NLMS algorithm is described first. Various issues regarding 

end-to-end network delay traces, as well as the pro cess used to collect them, are also de­

tailed. Finally, the simulations and experimental results evaluating the E-NLMS algorithm 

for the assorted network delay traces are presented and discussed. 

Lastly, Chapter 5 summarizes and presents the conclusions of the thesis. Suggestions 

for future research directions are also given. 
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Chapter 2 

Voice Over IP (VoIP) 

The des ire to integrate voice and data networks has fuelled interest in the area of Voice over 

IP (VoIP). Traditionally, packet-based networks such as the Internet have been designed 

for data communications and not for real-time voice transmission. However, VoIP provides 

considerable advantages over the Public Switched Telephone Network (PSTN). The mi­

gration from circuit-switched networks to packet-based Internet Protocol (IP) networks is 

expected to continue in the future. 

Chapter 2 gives a general background on Voice over IP. A brief introduction to the Inter­

net Protocol (IP) is given in Section 2.1. The essential components of a VoIP transmission 

system are described in Section 2.2. Lastly, sorne of the more popular VoIP protocols are 

reviewed in Section 2.3. 

2.1 Internet Protocol (IP) 

The TCP /IP reference model is the name given to the family of communications proto cols 

used to support applications in the Internet. The TCP /IP reference model is divided into 

layers, and each layer is responsible for a different aspect of the communication. The layers 

of the model are listed and described below [14]. 

1. The link layer (also called the network interface layer) consists of the device driver 

in the operating system as well as the network interface card on the PC. The link 

layer handles aH the hardware details of physically interfacing with the actual network 

cable. Examples of link layer proto cols are Ethernet and Token Ring. 
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2. The network layer (also called the internet layer) handles the movement of data 

packets between different hosts in the network. The Internet Proto col (IP) [15] is the 

proto col used at the network layer in the TCP /IP reference model. 

3. The transport layer manages and provides the flow of data between the two end hosts 

for the application layer. There are two transport proto cols in the TCP /IP reference 

model, the Transmission Control Proto col (TCP) and the Us.er Datagram Proto col 

(UDP). 

4. The application layer handles the high-Ievel details of particular applications. Sorne 

common TCP /IP applications provided include [14, 16]: 

• Teinet for remote login 

• The File Transfer Protocol (FTP) 

• The Simple Mail Protocoi (SMTP) for e-mail 

• The Hyper Text Transfer Protocol (HTTP) for browsing websites on the World 

Wide Web (WWW) 

2.1.1 Overview of IP 

IP is a connectionless proto col. Traffic is exchanged between two computers without any 

prior calI setup. The comput ers can share a connection at the transport layer. However, 

at the network layer where IP resides, packets are individually transmitted and routed 

through the network from sender to receiver. 

IP is a best-effort, datagram-type proto col. No quality of service is guaranteed and 

no error recovery is provided. There are no flow-control or retransmission mechanisms. 

Packets or datagrams may be lost, duplicated, or even arrive out of order due to possibly 

different paths taken through the network. For example, there is a maximum queue length 

at an IP gateway. If an IP packet arrives and the maximum queue length is surpassed, the 

buffers at the router will overflow, and IP packets will be dropped. It is the responsibility 

of the transport layer protocol to recover from such problems [4]. 

IP hides the underlying subnetwork from the user. This property is advantageous 

because different types of networks can use IP. For example, the IP protocol is supported 

over a variety of media, such as Asynchronous Transfer Mode (ATM), frame relay, dedicated 
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lines, Integrated Services Digital Network (ISDN), Ethernet, and Digital Subscriber Line 

(DSL) [14]-
The low-level characteristics of IP make it suit able for real-time voice transmission. IP 

is reasonably simple to install and because of its connectionless design, it is quite robust [4]. 

The universal presence of IP allows for widespread acceptance and use of Internet telephony. 

IP Datagram 

The structure of an IP datagram is depicted in Fig. 2.1. The IP datagram consists of a 

header and the data. The header has a 20-byte fixed part, and a variable length options 

part. The IP datagram is transmitted in big-endian order, i.e., the most significant bit 

(MSB) first. The various fields in the IP datagram header are briefiy described here. 

Version 1 Reader Length 
Type of Service 

Total Length 
Identifier 

Flags 1 Fragment Offset 
Time to Live 

Protocol 
Reader Checksum 

Source Address 
Destination Address 
Options and Padding 

Data 

Fig. 2.1 The IP datagram [4] 

Version (4 bits): This field identifies the version of the IP protocol. The majority of 

current IP-based networks use version 4 of the IP proto col. While IP version 6 has been 

developed, the protocol has not yet been deployed on a wide scale. 

Header Length (4 bits): This field is set to the length of the IP datagram header. The 

length is measured in 32-bit words. 

Type of Service (8 bits): This field is used to describe the quality of service requested 

by the sender for this IP packet or proto col data unit (PDU). The first three bits, bits 0-2 

contain a Precedence value indicating the priority of the PDU. The precedence options are 
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Routine (000), Priority (001), Immediate (010), Flash (011), Flash Override (100), Critical 

(101), Internetwork Control (110), and Network Control (111). The next three bits are 

used for other services. Bit 3 is the Delay bit (D bit); if the bit is set to 0, the PDU can be 

delayed and if it is set to 1, low delay is requested. The next bit is the Throughput bit (T 

bit). The bit is set to a for normal throughput, and high throughput within the network is 

requested by setting the bit to 1. Bit 5 is the Reliability bit (R bit). The bit is set to a for 

normal reliability and to 1 to request high reliability. The last two bits, bits 6 and 7 are 

not currently used and are reserved for future use. 

Total Length (16 bits): The length of the total IP datagram is given by the totallength 

field. The total length is measured in 8-bit octets and includes the length of the header 

and the data. The maximum possible length of an IP datagram is 65,536 (216) octets. Such 

long datagrams are impractical for most hosts and networks. However, IP does require that 

an underlying networks be able to handle IP datagrams up to 576 octets in totallength. 

The IP proto col uses three fields (Identifier, Flags, and Fragment Offset) in the header 

to manage the fragmentation and reassembly of IP datagrams. 

Identifier (16 bits): AIl fragments of an initial IP PDU have the same unique identifier. 

The identifier is used to aid in reassembling a fragmented IP PDU. 

Flags (3 bits): The flags field indicates whether the PDU can be fragmented. The first 

bit is reserved and set to O. The second bit, is the Don't Fragment bit (DF bit). If the bit is 

set to 0, the IP PDU can be segmented, and if it is set to 1, the PDU cannot be segmented. 

The third bit is the More Fragments bit (MF bit). The MF bit is set to 1 if there are more 

segments, and it is set to a if there are no more segments. If the present segment is the 

last segment or the only segment, th en the MF bit is set to O. 

Fragment Offset (13 bits) The fragment offset field specifies the relative position of 

the fragment in the original datagram. The value represents the number of 64-bit blocks 

(excluding header octets) that are contained in earlier fragments. The first fragment has 

an offset value of O. 

Time to Live (8 bits): The TTL field indicates the maximum time in seconds that the 

PDU is allowed to remain in circulation on the Internet. While the TTL is measured in 

time, it is interpreted as the maximum number of hops. Each gateway that pro cesses the 

IP PDU must decrement the value by at least one. When the value of the field reaches 

zero, the packet is assumed to be undeliverable and is discarded. 

Protocol (8 bits): This field identifies the transport layer proto col above the IP layer, 
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that is to receive the datagram at the destination. 

Header Checksum (16 bits): The header checksum is used to detect any bit errors that 

may have occurred in the header. The checksum is computed on the header only and not 

on the user data stream. The checksum field is the 16 bit one's complement of the one's 

complement sum of aH 16 bit words in the header [15]. For the purposes of computing the 

checksum, the value of the header checksum field is zer,o. 

Source Address (32 bits): The source address field contains the IP address of the sender 

of this PDU. An IP node is identified by its IP address, which consists of both a network 

address and a host address. The network address specifies the subnetwork (or subnet), 

while the host address identifies the particular node on the subnet. 

Destination Address (32 bits) The IP address of the receiver of the IP datagram is 

stored in the destination address field. 

Options (variable length): This field defines additional services. The field is optional 

and is not used in every IP datagram. Most implementations use this field for network 

management and diagnostics. 

2.1.2 Transport Layer Protocols 

As IP is an unreliable, connectionless, best-effort delivery service, it is up to the transport 

layer proto cols to ensure the reliable transport of packets between two hosts. The two main 

transport layer protocols are the Transmission Control Protocol (TCP) [17] and the User 

Datagram Protocol (UDP) [18]. 

Transmission Control Protocol (TCP) 

TCP provides full-duplex, acknowledged, and flow-controlled service to upper-layer appli­

cations. The data is moved in a continuous, unstructured byte stream, where bytes are 

identified by sequence numbers [3]. 

TCP is a connection-oriented proto col providing reliable delivery of IP packets. A con­

nection is set-up between two hosts before any data is exchanged. The destination sends an 

acknowledgement to the sender upon receiving a Tep packet. If a packet acknowledgement 

is not received by the sen der , the source retransmits the packet and the transmission rate 

is dynamically reduced. After the sender receives an acknowledgement for an outstand­

ing packet, the sender slides the packet window along the byte stream and sends another 
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packet. This flow control mechanism is known as a sliding window proto col [3]. 

Within the signalling portion of VoIP, Tep is used to ensure the reliability of the caU 

setup. However, as end-to-end delay is critical for voice transmission, the Tep protocol is 

not used for the actual transmission of voice packets in a VoIP call, 

User Datagram Protocol (UDP) 

The UDP proto col on the other hand, is a eonneetionless proto col and does not provide 

sequencing or aeknowledgements. UDP is a simpler protocol than Tep and is useful in 

situations where the full services of Tep are not needed. UDP has a sm aller header than 

Tep, resulting in minimal overhead. Since UDP has no reliability, no flow control, nor 

error-recovery, it serves principally as a multiplexerjdemultiplexer for the receiving and 

sending of IP traffie [4]. 

UDP is used in VoIP to earry the actual voice traffie. Tep is not used beeause the 

retransmission of lost voice packets would result in extra delay. If Tep were utilized for 

VoIP, the end-to-end delay ineurred while waiting for acknowledgements and retransmis­

sion, would render the voice quality unaeceptable. With VoIP and other real-time applica­

tions, reducing the latency is more important than ensuring the reliable delivery of every 

voice packet [3]. 

2.2 VoIP Transmission Systems 

The transmission of real-time voice from one point to another in a VoIP system consists 

of multiple steps [1]. At the sender, the continuous analog voice stream is digitized by 

being periodieally sampled and encoded. The digital signal is then processed to remove 

line echoes. A voice activity detector is used to identify periods of silence. During silence, 

the sender can either not transmit any packets or it can reduce the bit rate. The signal is 

framed using a speech codee (coder j de co der ). The speech codee may also compress the 

signal. The voice frame is then packetized for transport over the network. A Real-Time 

Transport Proto col (RTP) packet is created by ad ding a 12-byte header to the compressed 

voice frame. The RTP packet is then encapsulated into a UDP packet at the transport 

layer and into an IP packet at the network layer. The IP packet is then sent onto the 

Internet, where the packet is routed to its destination. 



2 Voice Over IP 15 

Sin ce packets may be lost or delayed through the network, a playout buffer is used at the 

receiver to remove network delay jitter and to store packets until their scheduled playout 

time. The receiver extracts the compressed voice frame, decompresses it and converts it 

back to analog form for playout. Packets that do not arrive at the destination or arrive 

too late to be played out in time, are assumed to be 'lost'. Concealment algorithms can be 

used to compensate for lost packets. A generic VoIP transmission system is illustrated in 

Fig. 2.2. The various components of a VoIP transmission system a;re described here. 

speech 
signal 

ND 

PCM 
signal 

acoustic 
echo 

canceller 

,--- --------- ~ ,-- --- - - -- ---~ IP 
, 1 : ' 

: sm :" RTP : packets +-: l ' 1 , generator 1 : packetizer 1 
, l , 1 

1 .f. l, + 1 
r---~ 1 ~ ~~~~ 

r-~~~ , ' , -', , ' 

VAD 

..... - .... 11-1 gain control 
speech 
encoder 

, ' 
l ' 

IPIUDP 
1 1 

l , 1 1 
~ ___________ J ~ ___________ J 

(a) A VoIP transmitter . 

.--------, r--------------, .--------, 
speech PCM , 1 1 l , , IP 
signal signal '1 speech 1 1 packet playout l " RTP , packets 

1 1 fi, ..------, ,decoder 1 bu fer scheduler l ,depacketizer 

--.J DIA H' ~ ~ t l.oIiii .......... -L ..... _____ , ' cornfort l , l , 1 
1 noise , 1 packet 10ss , , IPIUDP 1 
, 1 1 concealrnent , 1 1 
1 generator 1 1 corn ensate , 1 1 , _______ -' , ______________ J , _______ -' 

(b) A VoIP receiver. 

Fig. 2.2 A generic VoIP transmission system [19] 

2.2.1 Speech Codees 

Speech co ding is used in telecommunications to achieve efficient transmission of a speech 

signal from one host to another. Human speech contains energy up to 10 kHz in frequency, 

but high intelligibility is maintained even if components up to only 3.4 kHz are kept. In the 

traditional PSTN network, a speech signal is sampled at 8 kHz and then bandpass filtered 
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from 300-3400 Hz [20]. The signal is sampled with 12 or 13 bitsjsample using pulse code 

modulation (PCM). The log PCM technique assigns more levels to lower-amplitude signaIs 

and reduces the bit rate to 8 bitsjsample, resulting in an overall bit rate of 64 kbps. 

Speech coders can be classified into three categories. The simplest type of speech 

coders are waveform coders. Waveform coders attempt to code and reconstruct the speech 

waveform on a sample-by-sample basis (e.g., PCM, adaptive differential PCM (ADPCM)). 

Time-domain waveform coders take advantage of waveform redundancies (e.g. periodicity 

and slowly varying intensity) to allow data compression, while spectral-domain waveform 

coders exploit the nonuniform distribution of speech information across frequencies [20]. 

More complex speech coders known as source coders or parametric .. vocoders (voice coders) 

attempt to model the human speech production mechanisms rather than the actual speech 

waveforms. The vocoders aim to characterize the vocal tract shape and excitation source 

using a small set of parameters (e.g., linear predictive co ding (LPC)). Lastly, hybrid coders 

combine the features of both waveform coders and vocoders (e.g., code excited linear pre­

diction (CELP)). 

Voice Coding Standards 

The International Telecommunication Union - Telecom Standardization (ITU-T) has stan­

dardized CELP, Algebraic-Code-Excited Linear-Prediction (ACELP), Multipulse Maxi­

mum Likelihood Quantization (MP-MLQ), PCM, and ADPCM in its G-series recommenda­

tions. The most popular voice co ding standards for telephony and packet voice include [3]: 

e G.711: Describes the 64 kbps PCM co ding technique used in the PSTN. G.711 voice 

samples are aiready in the correct format for delivery within the PSTN. 

e G.726: Describes ADPCM co ding at 16, 24, 32 and 40 kbps. ADPCM packets can 

be interchanged between packet networks and the PSTN, provided that the latter 

supports ADPCM. 

e G.728: Describes a 16 kbps low-delay variation of CELP voice compression. 

e G. 729: Describes a CELP compression standard enabling voice to be coded at 8 kbps. 

e G.723.1: Describes a compression technique used to compress speech or other audio. 

The higher 6.3 kbps bit rate is based on MP-MLQ technology and provides greater 



2 Voice Over IP 17 

quality. The lower 5.3 kbps bit rate is based on ACELP and provides good quality. 

Speech codees are judged based on subjective measurements of voice quality. Standard 

objective quality measurements, such as total harmonic distortion and signal-to-noise ratios, 

do not correspond well to a human's perception of voice quality. A subjective measure 

used to evaluate the quality of speech is the mean opinion score (MOS). A number of 

users are asked to listen to a speech sample and asked to rate it on a 5-point scale from 1 

(Unsatisfactory) to 5 (Excellent). The scores are then averaged to give the mean opinion 

score [21]. Table 2.1 summarizes the popular voice co ding standards. 

Table 2.1 Commonly used speech codees [3] 

Standard Method Bit Rate (kbps) Delay (ms) Quality (MûS) 

G.711 PCM 64 0.125 4.1 
G.726 ADPCM 32 0.125 3.85 
G.728 LD-CELP 15 0.625 3.61 
G.729 CS-ACELP 8 10 3.92 
G.729A CS-ACELP 8 10 3.7 
G.723.1 MP-MLQ 6.3 30 3.9 
G.723.1 ACELP 5.3 30 3.65 

2.2.2 Voice Activity Detection 

In a typical voice conversation, each participant will speak for 50%' of the time and listen 

for 50% of the time. A voice activity detector (V AD ) is used at the sender to differentiate 

between speech and silence. As will be described in the next section, VADs are used to 

implement silence suppression / discontinuous transmission (DTX) in VoIP transmitters. 

A basic VAD functions by comparing the average signal energy to a noise threshold 

for each frame. Speech is detected if the signal energy is greater than the noise threshold. 

When the VAD detects a drop-off in signal energy, it waits a fixed amount of time before 

silence is declared. This amount of fixed time is known as hangover and is typically 200 

ms [3]. 

An inherent problem with VADs is detecting when speech restarts. The beginning 

of a sentence may be eut off or clipped when transitioning from silence to speech. This 

phenomenon is referred to as front-end clipping. In general, front-end clipping > 50 ms is 

perceivable and has a negative effect on speech quality [19]. 
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2.2.3 Silence Suppression / DTX 

A major advantage of VoIP is that bandwidth can be efficiently allocated to users. Speech 

packets only need to be sent wh en a person is speaking. During periods of silence when a 

person is listening, the bit rate can be significantly reduced. This dual-rate transmission 

technique is known as silence suppression or discontinuous transmission (DTX). 

A VAD is used at the transmitter to detect the silence periods. Silence suppression 

schemes cease to transmit speech packets during periods of silence. In DTX mode, Silence 

Insertion Descriptor (SID) packets are sent at the beginning of, and intermittently through­

out the silence period [19]. The SID frames are smaller than speech codec data frames, 

and contain parameters used to generate background noise. DTX is preferred over silence 

suppression as the parameters of the background noise are transm~tted to the receiver. As 

weIl, DTX enables the sender and receiver to maintain synchronization. 

2.2.4 Cornfort Noise Generation 

Silence suppression / DTX schemes result in the receiver having no packets for playout 

during periods of silence. If absolute silence is played out at the receivers, listeners may be 

confused into believing the connection has been lost. To overcome this problem, receivers 

employ comfort noise generation (CNG) whereby background noise is generated and played 

out at the destination during periods of silence. Receivers generate background noise based 

on parameters contained in the intermittent SID packets sent by the transmitter [22]. 

2.2.5 Echo Cancellation 

Echo is the reflection of a signal through the network, with sufficient delay to be perceived 

by the user. An echo with a delay in excess of approximately 32 ms can be annoying to 

the speaker [22]. Echo cancellers are deployed in voice networks to reduce or eliminate 

echo. The echo cancellers estimate and subtract the echo estimate from the received signal. 

There are two types of echoes in voice communications: hybrid and acoustic. 

Hybrid echo occurs in the PSTN network and is caused by a mismatch in impedance at 

the hybrid from the four-wire trunk to the two-wire localloop. The hybrid separates the 

send and receive paths in order to carry them on separate wires. As the separation of send 

and receive paths is not perfect, the receive signal is partially reflected onto the send path, 

and an echo is generated [22]. Echo cancellation is performed on the four-wire side of the 

," 
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hybrid [2]. Hybrid echo does not occur in pure VoIP caUs, but is present in PSTN-to-IP 

caUs. 

Acoustic echo normally occurs when a free-air microphone and speakers are used. The 

remote user's speech signal is played out through the speakers and is picked up by the 

microphone and transmitter back to the remote user. Adaptive filtering algorithms can be 

used for acoustic echo cancellation. 

2.2.6 Playout Scheduling 

VoIP transmitters generate packets at regular intervals and send 'them onto the network 

towards the receiver. The best-effort nature of connectionless packet-based networks such 

as the Internet results in packets incurring varying network delay due to different levels of 

congestion in the network. Typically, packets arrive at the receiver at irregular intervals. 

The variation in packet interarrival time is called jitter. Playout buffers are used at the 

destination to reduce jitter. 

Playout buffers remove jitter by buffering the received packets for a short period of 

time before playing them out at scheduled intervals. Packets arriving after their scheduled 

playout time are late and considered to be 'lost'. Thus, there is a tradeoff between the 

packet loss rate and the playout delay. Adaptive playout buffering algorithms attempt to 

adjust the playout buffering delay according to current network conditions. The main types 

of adaptive playout algorithms are reviewed in Chapter 3. The E-NLMS playout buffering 

algorithm proposed in this thesis, is also presented in Chapter 3. 

2.2.7 Packet Loss Concealment 

Packet loss occurs in VoIP systems when packets do not reach the intended destination 

or they arrive after their scheduled playout time, and are too late to be played out at the 

receiver. Packet Loss Concealment (PLC) algorithms are used at the receiver to compensate 

for late and lost packets. Simple PLC algorithms use silence or noise substitution for lost 

packets. Using subsequent packets (when available) to interpolate and reconstruct lost 

packets has also been recently proposed [23]. 

Forward error correction (FEC) schemes are introduced to speech codecs to add redun­

dancy [24, 25]. Packet loss is minimized by adjusting the bit rate as well as increasing the 

amount of redundancy during periods of high network congestion. A novel approach inte-
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grates packet FEe into adaptive playout buffer algorithms [26]. Packet 10ss due to network 

congestion can be effectively compensated by using a combination of PLC algorithms and 

FEC schemes. 

2.3 VoIP Proto cols 

While VoIP is a relatively new field, a number of application layer protocols have been 

developed for Internet telephony. The Real-Time Transport Protocol (RTP) [27] provides 

mechanisms for real-time delivery of voice, video, and data. The ITU-T H.323 [28] proto col 

suite and the Internet Engineering Task Force (IETF) Session Initiation Proto col (SIP) [29] 

standard are two of the major call signalling protocols in VoIP. The standards covering 

such topics as call-setup and tear-down procedures, socketjport numbers, and other call­

control procedures. The MEGACO jH.248 proto col [30] has been developed to control the 

gateways between circuit-switched and packet-based networks. The RTP, H.323, SIP and 

MEGACO jH.248 protocols are described in this section. 

2.3.1 Real-Time Transport Protocol (RTP) 

Media transport in IP-based telephony is generally implemented with the Real-Time Trans­

port Protocol (RTP) [27]. RTP provides end-to-end transport of real-time data, such as 

audio and video. An RTP packet consists of an RTP header and media payload. RTP 

packets are customarily transported over UDP jIP. RTP does not guarantee QoS, nor does 

it address the issue of resource reservation along the path of a connection [22]. However, 

the RTP header contains a sequence number so that receivers can detect the occurrence of 

lost packets and can present received packets in correçt or der . Additionally, RTP packets 

incIude the sender timestamp. The destination can use this timestamp to calculate network 

delay and jitter, as well as ensure synchronized playout. 

Media encoding is explicitly identified in the RTP packet payload format with RTP 

profiles. The profile defines how a class of payloads (è.g., audio and video) is carried by 

RTP. The real-time transport of audio using different speech codees is specified in the "RTP 

Profile for Audio and Video Conferences with Minimal Control" defined in RFC 1890 [31]. 
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RTP Packet Header 

The basic RTP header is small and only 12 bytes in length. Fig. 2.3 presents the basic 

RTP header. The various fields are briefiy described [22]. 

v=21 P 1 X 1 CC IMI PT 1 Sequence Number 
Timestamp 

Synchronization Source Identifier (SSRC) 

Contributing Source Identifiers (CSRC) 

Fig. 2.3 Basic RTP packet header [22] 

Version (V, 2 bits): This field identifies the version of RTP. The current version defined 

in RFC 1889 [27] is version 2. 
Padding (P, 1 bit): If the padding bit is set to 1, the actual data content in the packet 

is less than the size of the packet. The packet must always be aligned on a 32 bit boundary. 

The last byte of the padding gives the number of bytes at the end of the packet that should 

be ignored. 

Extension (X, 1 bit): The extension bit indicateswhether the fixed RTP header is 

followed by an RTP extension. The RTP extension header is four bytes long and contains 

the type of the extension (2 bytes) and the length of t~e extension (2 bytes). The RTP 

extension header must be inserted after the last valid field in the standard RTP header. 

The last valid field is either the Synchronization Source· Identifier (SSRC) field, or the last 

Contributing Source Identifier (CSRC) entry if there are any, as e~plained below. 

CSRC Count (CC, 4 bits): The CSRC count contains the number of CSRC identifiers 

that follow the fixed header. For example, RTP mixers collect multiple media packets 

from multiple sources, combine them into a single packet, and forward the packet to a 

destination. The various sources whose packets have been combined are identified with a 

Contributing Source Identifier (CSRC). The CSRC count gives the number of such sources. 

In the standard case with only one source, the source is identified by the Synchronization 

Source Identifier (SSRC) and the CSRC Count field is set to zero. 

Marker (M, 1 bit): The interpretation of the marker bit is defined by the RTP profile. 

The marker is intended to mark significant events such as frame boundaries. In the case of 

real-time audio and video, the marker bit is used to indicate the beginning of a talkspurt, or 
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the end of a video frame. Receivers can use this information to determine when to generate 

comfort noise at the receiver. 

Payload Type (PT, 7 bits): This field identifies the format of the RTP payload. The 

RTP profile maps the payload type codes to payload formats which are then appropriately 

interpreted by the application. Multiplexing of different media streams in the same packet 

is impossible as the sender can only have one payload type per packet. 

Sequence Number (16 bits): The sequence number increment~ by one for each RTP 

data packet sent. The sequence number can be used by the receiver to detect packet 10ss 

as weIl as reorder packets arriving out of order. The initial value of the sequence number 

is randomly generated. .. 

Timestamp (32 bits): The timestamp is set when the first octet in the RTP data packet 

is sampled. The timestamp must be derived from a dock that increments monotonically and 

linearly in time to allow synchronization and jitter calculation. For speech, the timestamp 

is incremented by one for each sampling period. An RTP packet containing 20 ms of speech 

sampled at 8 kHz will have its timestamp incremented by 8000 x 0.02 = 160. 

Synchronization Source Identifier (SSRC) (32 bits): The SSRC field identifies the syn­

chronization source or sen der. The value of the SSRC is chosen randomly. If two senders 

within the same RTP session have the same SSRC identifier, a simple mechanism in RTP 

is used to resolve the collision. 

Contributing Source Identifiers (CSRC) (0 to 15 items, 32 bits each): The CSRC field 

contains the synchronization source identifiers for an the contributing sources for the pay­

load contained in the packet. In general, the field is only used for packets that have been 

mixed. The number of sources is given by the CSRC count field. The CSRC identifiers 

are the original SSRCs of the packet sources, and are inserted by the RTP mixers. The 

CSRC field is used for correct source identification when payloads are played out at the 

destination endpoint. 

RTP Control Protocol (RTCP) 

The companion control proto col to RTP described in RFC 1889 [27] is the RTP Control 

Proto col (RTCP). RTCP packets are used to provide statistics about the quality of the 

session, user information, and time synchronization. R-TCP measures network performance 

by computing statistics such as packet delay, packet 10ss and jitter at the receiver. U sing 



2 Voice Over IP 23 

these statistics, endpoints can adapt to varying network conditions. Since RTCP packets 

add to network congestion, the bandwidth consumed by RTCP is set to 5% of the total 

bandwidth allocated for the session. Additionally, the mean interval between RTCP packets 

is set to be a minimum of 5 seconds [32J. 

RTP Header Compression 

The RTP /UDP /IP headers are 12, 8, and 20 bytes, respectively, adding up to a 40-byte 

header per packet. The 40-byte header is twice the size of the payload when transmitting 

two packets coded using G.729; each G.729 packet corresponds ta 10 ms of speech. The 

RTP /UDP /IP headers can be compressed using comp~essed RTP (cRTP) [33J. The cRTP 

compression scheme reduces the combined RTP /UDP /IP header ~rom 40 bytes to 2 bytes 

when UDP checksums are not used, and to 4 bytes when they are used. 

Although several header fields change between successive RTP /UDP /IP packets, the 

differences are often constant. By maintaining both the uncompressed header and the 

values of the first-order differences in the session state, cRTP needs to only send the second­

or der differences. The compressed RTP packet header is sent in place of the uncompressed 

packet header about 98% of the time. An uncompressed header must be sent periodically 

to ensure that both endpoints have the correct state. As weIl, if changes occur in a field 

that is usually constant, then the combined RTP /UDP /IP header cannot be compressed, 

and an uncompressed header is transmitted [3J. 

2.3.2 H.323 

The H.323 standard [28J is an ITU-T specification for transmitting audio, video and data 

over an IP network, indu ding the Internet. The H.323 standard covers call signalling and 

control, multimedia transport and control, and bandwidth control'for point-to-point and 

multipoint conferences [3J. The H.323 standard consists of the proto cols listed in Table 2.2. 

H. 323 Elements 

The key components in an H.323 system are terminals, gateways, gatekeepers, and multi­

point control units (MCUs). Fig. 2.4 illustrates the various elements in an H.323 system. 

The various elements are briefly described here. 
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Table 2.2 H.323 protoeol suite [3] 

Feature 

CalI Signalling 
Media Control 
Audio Codees 
Video Codees 
Data Sharing 
Media Transport 

Protoeol 

H.225 
H.245 
G.711, G.722, G.723.1, G.728, G.729 
H.261, H.263 
T.120 
RTP/RTCP 

Gateke per 

H.323 Terminal Telephone 

Fig. 2.4 H.323 network eomponents [23] 

24 



2 Voice Over IP 25 

Terminals: TerminaIs or endpoints provide point-to-point communications and multi­

point conferences with other H.323 terminaIs. The terminal must support audio commu­

nications, and can optionally support video and data sharing. 

Gateways: A gateway provides an interface between two differept networks. The H.323 

gateway connects an H.323 network and a non-H.323 network such as the PSTN. The 

gateway translates between audio, video, and data transmission formats as well as commu­

nication systems and proto cols including caU setup and release. Gateways are only needed 

for interconnection with non-H.323 networks, and therefore not required for communication 

between two H.323 terminaIs. 

Gatekeepers: Gatekeepers provide pre-caU and call-level control services to H.323 end­

points. Gatekeepers are optional. However, if a gatekeeper is present in an H.323 system, 

it must perform address translation, admissions control, bandwidth control and zone man­

agement. Optional gatekeeper functions include caU control signalling, caU authorization, 

bandwidth management, caU management, gatekeeper management information and direc­

tory services [14] 

Multipoint Control Units (MCUs): Multipoint control units are endpoints that support 

conferences between three or more endpoints. The MCU typically consists of a multipoint 

controller (MC) and one or more multipoint processors (MPs). The MC handles the control 

and signalling to support the conference while the MPs receive audio, video, and/or data 

streams, pro cess them and distributes them to the endpoints participating in the multipoint 

conference. 

H. 323 Protocol Suite 

The H.323 protocol suite consists of several protocols. The protocol suite supports caU 

admissions, setup, status, release, media streams, and messages in H.323 systems. The 

protocols are supported by both reliable and unreliable packet delivery transport mecha­

nisms over IP networks, as illustrated in Fig. 2.5. 

The H.323 protocol suite consists of three main areas of control [3]: 

® Registration, Admissions, and Status (RAS) Signalling: RAS signalling provides pre­

calI control in H.323 gatekeeper-based networks. 

® Call Control Signalling (H.225): Based on ITU-T Recommendation H.225 [34], which 

specifies the use of Q.931 signalling messages, call control procedures are used to 
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Fig. 2.5 H.323 proto col suite layers [3] 

connect, maintain, and disconnect caUs between endpoints. 

® Media Control and Transport (H.245 and RTP jRTCP): H.245 [35] governs the trans­

mission of end-to-end control messages between H.323 endpoints. The H.245 proto col 

procedures establish channels for the transmission of audio, video, data, and control 

channel information. The transport of media in H.323 is provided by RTP and RTCP. 

As described in Section 2.3.1, RTP enables real-time end-to-end delivery of interactive 

audio, video and data. 

2.3.3 Session Initiation Protocol (SIP) 

The Session Initiation Protocol (SIP) is an application-layer signalling proto col defined by 

IETF RFC 2543 [29]. SIP is a signalling protocol for creating, modifying and terminating 

sessions, such as IP voice caUs or multimedia conferences, with one or more participants in 

an IP network. The main advantages of SIP over other signalling proto cols is that SIP offers 

a great deal of flexibility. The protocol is designed to be fast and simple. SIP provides: 

easy integration with existing IETF protocols, scalability and simplicity, mobility, and easy 

feature-and-service creation. 

The SIP proto col provides the following functions [14]: 

® Name translation and user location: SIP ensures that a caU reaches the called party 

regardless of the party's location. SIP addresses are similar to e-mail addresses. Users 

are identified by a hierarchical URL based on elements such as a user's telephone 

number or host name. 

® Feature negotiation: SIP allows an parties in a caU to negotiate and agree on sup­

ported features. SIP recognizes that aIl participants in a caU may not be able to 

support aIl features. 
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@ Call participant management: During a session, a participant can bring other us ers 

into the caU as weIl as transfer, hold or cancel any connections. 

SIP Protocol Components 

SIP consists of two basic components: the user agent and the network server. The user 

agent is the call endpoint, while the network server handles the calI signalling associated 

with multiple caUs. The user agent consists of the user agent client (UAC) which initiate 

caUs, and the user agent server (UAS) which answers caUs. The architecture of SIP aUows 

peer-to-peer communication using a client/server proto col [14J. 

The network servers consist of four different types of servers: 

@ The proxy server acts as both a server and a client to make requests on behalf of 

other clients. Requests are processed by the proxy server internally, or by translating 

the request message and forwarding it to other servers. 

@ The location server is used to identify a called party's location. 

@ The redirect server accepts a SIP request, maps the address into zero or more new 

addresses, and returns these addresses to the client making the request. The redirect 

server does not initiate any requests of its own. 

@ The register server is a server that accepts SIP register requests, whereby a user 

indicates its availability at a particular address to the network. The register server is 

typically located with a proxy or redirect server. 

2.3.4 MEGACO jH.248 

While the H.323 proto col suite provides a gateway to interface with non-H.323 networks 

such as the PSTN, the proto col has been found to be not scalable within large public 

networks such as the Internet. Thus, a protocol was jointly developed by the IETF and 

ITU to address the issue of PSTN/VoIP integration. Known as MEGACO in the IETF 

and H.248 in the ITU-T, the MEGACO protocol evolved from the Media Gateway Control 

Protocol (MGCP), and is defined by RFC 3015 [30J. 

The MEGACO proto col removes the signalling control from the media gateway (MG) 

between two dissimilar networks, and places it in a media gateway controUer (MGC). The 
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intelligence (control) is separated from the media (data). The M GC handles the control for 

one or more gateways. MEGACO is a master/slave proto col where the gateways simply ex­

ecute instructions issued by the MGC. MEGACO /H.248 only speoifies the communication 

protocol between the MGC and the MGs, and does not address communication between 

endpoints. The proto col interoperates with the peer-to-peer H.323 and SIP protocols. 

MEGACO provides a robust and flexible architecture and is easily scalable. 

2.4 Chapter Summary 

This chapter provided a general background of Voice over IP (VoIP) technology. Current 

trends indicate that the migration from the circuit-switched PSTN network to packet-based 

voice transmission is expected to continue in the foreseeable future. A generic VoIP trans­

mission system was presented, from sampling the user's speech signal at one end to playing 

out the reconstructed voice stream at the other end. The main VoIP protocols reviewed 

were the TCP /UDP /IP proto cols at the transport and network layers, respectively, and 

the RTP, H.323, SIP, and MEGACO /H.248 protocols at the application layer level. 
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Chapter 3 

Delay Jitter Buffers 

As the Internet is a best-effort delivery network, audio packets may be delayed and lost 

en route from sender to receiver. At the transmitter, speech/audio packets are generated 

at constant intervals and sent through the IP network to the receiver. The network delay 

experienced may vary for each packet depending on the paths taken by different packets 

and on the level of congestion at the routers along the path. The variation in network delay 

is referred to as delay jitter. Methods to reduce jitter can be divided into three types of 

approaches [36]. 

1. Source-based approaches: The transmitter will select the mode of the codec and adjust 

the bit rate according to current network conditions. The overall end-to-end delay, 

jitter and packet loss rate measure the level of congestion in the packet network [21]. 

2. Network-based approaches: Resources are reserved at network nodes to ensure that a 

certain Quality of Service (QoS) can be provided [37]. Similarly, real-time audio and 

video packets can be identified and given priority at nodes within the network [38]. 

3. Receiver-based approaches: Packets are typically buffered for a short period of time 

before they are played out. Late packets, i.e., packets that arrive at the receiver after 

their scheduled playout time, are considered 'lost'. By increa~ing the buffer delay, the 

number of late packets can be reduced, however the overall packet end-to-end delay 

increases. Hence, there is a tradeoff between the packet 10ss rate and the average 

packet end-to-end delay. 
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Source-based approaches require changes to be made in both the encoder used at the 

transmitter and in the decoder used at the receiver. Network-based approaches are costly 

as they require changes to be made to the existing network infrastructure; aH nodes within 

the entire network will need to be updated. Receiver-based approaches are interesting, as 

they only require the addition of a playout buffer at the destination. Fig. 3.1 illustrates 

the role of the playout buffer in reducing jitter in a typical VoIP application. 

111111 
Voice Packets 

Sender (generated at regular intervals) 

1111 Il 
Voice Packets 

(received with jitter) 

111111 

Fig. 3.1 Role of playout buffer in VoIP application [10] 

Receiver 

Chapter 3 describes the challenge of jitter reduction through buffering. The role of 

playout buffer algorithms at the receiver is explained in Section 3.1. The main types of 

playout buffer aigorithms are reviewed in Sections 3.1.1-3.1.4. A recent approach to adap­

tive playout, which performs the packet delay adjustment during talkspurts, is described 

in Section 3.2. Section 3.3 presents the proposed enhancement to the existing adaptive 

fiiter-based playout buffer algorithm. 

3.1 Playout Buffer Algorithms 

Fig. 3.2 illustrates the problem of jitter and underscores the need to employ playout buffer 

algorithms at the receiver. Audio packets are generated and sent through the network 

at periodic intervais. Due to the nature of the Internet, packets experience non-uniform 

network delays, and thus may arrive at the destination after they were supposed to be 

played out. 

In the absence of a playout buffer, packets will be pIayed out at the destination as 

soon as they are received. In Fig. 3.2(a), the arrivaI of the first packet will set the playout 

time. Subsequent packets will be played out at a periodic delay relative to the first packet. 

However, packets experiencing larger network delays will arrive too late to be pIayed out. 

In this case, a large percentage of received packets may be lost and the quality of the audio 

played out at the receiver will be quite low. Buffering the packets for a short period of 
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Fig. 3.2 The playout buffering problem [12] 

time as shown in Figure 3.2(b) ensures that a greater percentage of the received packets 

will arrive in time to be played out. 

The total time between the generation and transmission of a packet at the sender 

(transmission time) and the packet being played out at the receiver (playout time) is referred 

to as the end-to-end delay. The end-to-end packet delay consists of processing delay to 

encode and packetize the audio signal, network delay incurred by th~ packet while traversing 

the network, and buffering delay experienced by the packet as it waits in the destination 

buffer before being played out. 

ldeally, the end-to-end delay should be below 150 ms as delays of 150 ms cannot be 

perceived by humans [2]. End-to-end delays beyond 400 ms are irritating to users and 

impair interactivity in conversations [5]. Network delay measurements have been collected 

between various Internet hosts. Traces of network delay measurements are characterized 

by occurrences of large delay spikes. By decreasing the buffering delay, the end-to-end 

delay can be reduced at the cost of increased 'late' packet loss. The overall end-to-end 

delay will be tolerable to us ers and real-time Internet telephony cau be achieved. Packets 

with end-to-end delays greater than the playout delay will still be 'lost', however 10ss 

rates of up to 20% may be tolerated when packet 10ss concealment (PLC) methods are 

applied [23], Adaptive playout buffer algorithms attempt to adjust the playout delay for 

changing network conditions. 

Fixed vs. Adaptive Playout Algorithms 

Fixed playout algorithms estimate the minimum end-to-end delay that can be achieved for 

a specified 10ss rate [39]. This end-to-end delay is then fixed for the entire duration of the 
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voice caU. However, network conditions fiuctuate and by maintaining the fixed end-to-end 

delay, the packet 10ss rate may not remain at the specified value. Adaptive playout buffer 

algorithms attempt to adapt to changes in network conditions by dynamically adjusting 

the end-to-end delay, and hence are able to maintain a tolerable packet loss rate. 

Playoui Delay Adjusimeni Beiween Talkspuris 

Since voice packets are generated at regular intervals, the received packets must be played 

out in a periodic manner. Playout delay adjustments made during periods of 'silence' (when 

the user is listening) between talkspurts (when the user is speaking), are less likely to be 

perceived by users. Therefore, the playout delay is adjusted on a per-talkspurt basis [39] 

by lengthening or shortening the periods of silence between talkspurts. 

The basic playout buffer algorithm proposed by Ramjee ei al. in [6] uses an autoregres­

sive estimate to determine the playout for received audio packets. For the first packet in a 

talkspurt k, the playout time pf is computed as 

(3.1) 

where pf and if are the playout time and sender timestamp, respectively, of the first packet 

in the k-th talkspurt, and nk is the end-to-end delay for packets in the k-th talkspurt. 

The end-to-end delay is fixed for subsequent packets in a talkspurt. Thus, the playout 

time for packet i in the k-th talkspurt is defined to be 

(3.2) 

where tf is the sending time of the i-th packet in the k-th talkspurt. It can also be seen 

that nk = pf - tf· Therefore, the playout time for subsequent packets in a talkspurt can 

be calculated as an offset from the playout time of the first packet in the talkspurt, 

k k (k tk) Pi = Pl + t i - l . (3.3) 

Playout Delay Adjustmeni Within Talkspurts 

In a recent approach to adaptive playout, playout delay adjustment is also performed within 

talkspurts. Individual voice packets are time-scaled such that they are played out just in 
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time for the predicted arrivaI time of the next packet. A dynamic time-scaie modification 

technique [40] can be used to modify the playout rate while preserving the voice pitch. The 

degradation in perceptua1 quality due to scaling was found to be almost inaudible, even in 

extreme cases [40]. Dynamically adjusting the playout time improves overall performance 

by reducing end-to-end delay while keeping packet 10ss tolerable. Per-packet based playout 

delay adjustment will be described in Section 3.2. The main approaches to playout delay 

estimation are described here. 

3.1.1 Autoregressive (AR) Estimate-Based Aigorithms 

The basic playout algorithm proposed as Algorithm 1 in [6] uses an autoregressive approach 

to estimate the network delay and jitter. The algorithm to estimate network delays is based 

on the method described in the specification for the transmission control proto col (TCP) 

in RFC 793 [17]. Likewise, the algorithm used to determine network jitter is based on 

Jacobson's method [41] to measure the variation in network delays. 

The estimate for the average network delay, di, is 

(3.4) 

where di is the autoregressive estimate of the packet delay, ni is the network delay incurred 

by the i-th packet, and a is a weighting factor used to control the convergence rate of the 

algorithm. 

The variation in the network delay, Vi, is similarly estimated, 

(3.5) 

The total end-to-end delay, Di is then calculated as 

(3.6) 

where f3 is a safety factor used to moderate the tradeoff between end-to-end delay and 

packet 'loss' rate due to late packets. The f3Vi term is a safety buffer term used to ensure 

that the end-to-end delay is large enough, so that only a small portion of received packets 

will arrive too late to be p1ayed out. A higher value of f3 results in a lower loss rate as more 
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packets arrive in time, however the total end-to-end delay increases. 

The values of 0: and f3 are set to 0.998002 and 4.0, respectively in Algorithm 1. While 

the AR estimates of the delay, di, and the variation, Vi, are updated for each packet, the 

total end-to-end delay, Dk , is only set to Di at the beginning of a new talkspurt. 

M adifications ta Algarithm 1 

The second algorithm proposed in [6] is a slight modification to th~ first algorithm. Based 

on a suggestion by Mills in RFC 889 [42], two different values are used for 0:, one for 

increasing network delays and the other for decreasing delays. The algorithm attempts to 

rapidly adapt to increases in network delay by using a value of 0.75 for 0: when the network 

delay, ni, is greater than the AR delay estimate, di. When the network delay is decreasing, 

i.e., ni < di, 0: is kept at 0.998002 as in Algorithm 1. The network delay estimate, delay 

variation estimate, and end-to-end delay are computed using the appropriate value for 0: 

in Eqs. (3.4), (3.5), and (3.6) from Algorithm 1. 

The third algorithm proposed in [6] simply sets the delay estimate, di, to the minimum 

of aU network delays in the previous talkspurt, 

(3.7) 

where Si is the set of an packets received in the talkspurt prior to the one initiated by 

packet i. The variation in network delay, Vi, and end-to-end delay, Di, are once again 

computed using Eqs. (3.5) and (3.6). 

o:-Adaptive Algarithm 

The choice of the value of 0: in Aigorithm 1 determines the extent of the effect of the recent 

network delay value, ni, on the AR estimate of the delay, di' Minor changes in the value 

of 0: can greatly impact the tradeoff between packet loss and total end-to-end delay. An 

improvement can be expected if the value of 0: itself is adaptively adjusted to suit the 

changing network conditions [43]. 

Algorithm 1 is modified in [44] to adaptively adjust 0: to an optimal value. The algorithm 

calculates the loss rate for previous talkspurts based on the current value of 0:. It then either 

increments or decrements the value of 0:. The playout delay is adjusted for each talkspurt. 
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The increment value is much smaller than 0: as small changes in 0: lead to large changes in 

packet loss and total end-to-end delay. The o:-adaptive playout algorithm performs better 

than both Algorithms 1 and 2, showing large reductions in end-to-end delay in regions of 

low loss [44]. 

3.1.2 Statistically-Based Aigorithms 

Statistically-based approaches use the statistics of past network delays to compute the 

current packet playout delay. Based on the distribution of past delays, the playout delay 

is selected such that a tolerable percentage of packets will arrive 'late'. 

Adaptive Gap-Based Algorithm 

The adaptive gap-based algorithm [10] stores the network delay values for a talkspurt and 

computes the optimum playout delay for the talkspurt. For each talkspurt, the optimum 

theoretical playout delay is defined to be the minimum playout buffering delay resulting 

in the specified packet loss rate for that talkspurt. This theoretical quantity cannot be 

calculated until the talkspurt is finished. The playout delay for the next talkspurt is then 

increased or decreased to the minimum playout buffering delay that was calculated for the 

previous talkspurt. 

Histogram Approach 

Algorithm 3 from [9] logs the delay of each packet and updates a histogram of packet delays 

after every packet arrivaI. The algorithm computes the playout delay, D k , for the new 

talkspurt by fin ding the delay curr _delay for a given percentile point q in the distribution 

function [9]. The distribution function uses the packet delays for the last w packets to form 

a histogram. The pseudo code is shown here. 

Il Algorithm 3 from [9] 

IF (delays [curLpos] ::; curr_delay) 

count -= 1; 

distr_fcn[delays[curr_pos]] -= 1; 

delays [curr _pos] = ni; 

curLpos = (curLpos+l) % w; 
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distLfcn[ni] +=1; 

IF (delays [curLpos] < curLdelay) 

count += 1; 

WHILE (count < w x q) 

curr_delay += unit; 

count += distLfcn [curLpos] ; 

WHILE (count > w x q) 

curr_delay -= unit; 

count -= distr..fcn[curLpos]; 

D k = curr _delay; 

36 

The number of packet delays, w, stored in the histogram determines how sensitive the 

algorithm is in adapting to changing network conditions. If w is too small, the algorithm . 
will have a myopic view of the past, and willlikely pro duce a poor estimate of the playout 

delay [9]. On the other hand, if w is too large, the algorithm will keep track of a large 

amount of history, and will not be able to react quickly to changes. It was found that for 

w < 10,000, the performance degraded as the number of packets stored in the histogram 

decreased. For values above 10,000 packets, any performance enhancement was marginal, 

thus in [9], w was set to 10,000 packets. 

Probable Packet Delay Distribution 

Another statistically-based method constructs a packet delay distribution (PDD) curve. 

The PDD is an estimate of the probable delays suffered by packets in the network over a time 

window. It may draw on existing traffic conditions, history information, or any negotiated 

service characterÏstics to derive initial estimates for delay bounds and distributions [11]. 

The PDD constructed from this information is approximate, but over time it is updated 

dynamically so that it closely tracks network performance. For a given PDD, packets with 

network delays less than the playout delay will be played out, and those with network 

delays greater than the playout delay will be declared late. 

To approximate the PDD curve, the approach advocated in [11] is to store and track 

network delay trends using a measured histogram. Since network characteristics change 

over time, statistical trends vary and current information is necessary for the prediction to 
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be accurate. Bence, each bin in the histogram needs to be aged or updated to diminish the 

effect of older samples. 

Aging Past Packet Delays 

There are two basic approaches to aging [11]. 

e Full Aggregation method: Data is accumulated into a probability distribution curve 

throughout the lifetime of the transmission. Both recent and old information are 

weighted equally. 

e Flush and Refresh method: Data is stored for a period of time, and then periodically 

flushed and refreshed. The flush results in a complete loss of historic information. 

The aging function used in [l1J gradually ages older samples. Instead of discarding oider 

information, the information is gradually retired. 

The aging approach used gradually diminishes the effect of oider samples on the distri­

bution by periodically scaling down the existing distribution by an aging factor [11]. Three 

variations are presented in [45]. In Algorithm 1, each bin count is multiplied by a constant 

aging factor and the bin containing the delay of the current packet is then incremented by 

one. As the number of data samples increase, the corresponding bin counts increase, thus 

newly arrived packets contribute less to the histogram in comparison to older data. For 

example, suppose the total value of an bin counts in a histogram is 10, it is scaied down 

by 0.9 after aging. The new packet delay then contributes 1 to the histogram, thus the 

ratio of oid data to the new packet delay is 9: 1. Bowever, after sorne time, the value of an 

bins in the histogram may be 10,000. After aging by 0.9, the ratio of old data to new is 

now 9,000:1, thus reducing the impact of the new packet delay. In Aigorithm 2, the ratio 

of oid aged data to the newly arrived packet delay is kept constant through the lifetime of 

the stream. Thus, the aging factor is a function of the total histogram count. Aigorithm 

3 extends this further by considering the frequency at which aging is performed. Even 

if the aging frequency is changed dynamically, the ratios are kept constant between each 

occurrence of aging. 
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Cumulative Distribution Function 

An adaptive packet-based adjustment scheme is proposed in [7]. When packet i arrives, 

its network delay, di, is used together with past delays to estimate the delay of the next 

packet, dH1 . The current packet i is then time-scaled so that it finishes playing out just as 

packet (i + 1) is expected to arrive. The time-scale modification technique is described in 

Section 3.2.2. To estimate the current packet delay, the statistics of past delays are used. 

Using a sliding window of the past w packets, the past delays aJe collected and sorted 

in ascending order from dl to dw , so that a cumulative distribution function (cdf) can be 

constructed. Estimates of the lowest possible packet delay do and the maximum delay dw+l 

are also computed using: 

do = max(dl - 2Sdw' 0), 

dw+l = dw + 2Sdw' 

(3.8) 

where Sd
w 

is the standard deviation of the past w packet delays. Due to the heavy-tailed 

nature of network delay, the maximum delay value cannot be determined from a limited 

sample space. Rence, the statistics obtained from the last w samples are often too op­

timistic. By ad ding an estimate of the maximum delay, dW+l, the sample becomes more 

conservative. The estimate of the next packet delay can then be obtained from the cdf for 

the desired loss rate. 

Modelling Packet Delay Distribution with a Pareto Distribution 

Another statistically-based approach [46] analyzes the tail part (95-99.9% region) of a 

packet delay distribution and finds that it is best modelled by a Pareto distribution. The 

Pareto distribution is given by 

(3.9) 

where cv and k are distribution parameters [46]. 

On each packet arrivaI, the parameters of the Pareto cumulative density function, F(x), 

are updated. The playout delay, di, is then estimated from the equation F(di ) = X, where 

X is the target point in the distribution [47]. The proposed algorithm gives the playout 
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delay, di, to be 

(3.10) 

By utilizing the me an opinion score (MûS) fun ct ion , a subjective evaluation of au­

dio quality, the Pareto distribution-based playout algorithm [47] is enhanced in [48] by 

considering the user's perceived quality for real-time VoIP applications. Rather than mini­

mizing the playout delay for a desired 10ss rate, the algorithm selects the playout delay and 

corresponding late packet p ercent age , which maximize the user-perceived quality or MûS 

value. 

3.1.3 Adaptive Filter-Based Algorithms 

A novel approach to adaptive playout buffer algorithms is proposed in [12]. Instead of 

reacting to network fluctuations, the approach is to predict the network delay. The playout 

delay is then determined from the predicted network delay and variation. An accurate 

prediction of the network delay can rapidly track network changes and thus adjust the 

delay more effectively. 

Adaptive filtering algorithms have traditionally been used for equalization and echo 

cancellation. The basic adaptive filtering algorithm aims to minimize the expected mean 

square error between the actual data and the estimate [13]. Previous data are passed 

through a finite-impulse response (FIR) filter to compute the current estimate. The mean 

square error is then used to adjust the tap weights of the adaptive filter. The block diagram 

of an adaptive filter is illustrated in Figure 3.3. 

d(k) 

+ 
x(k) 

Adaptive lMS FIR Filter 
y(k) e(k) 

Update tap weight vector w 

Fig. 3.3 Block diagram of adaptive LMS filter 
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NLMS Algorithm 

The normalized least mean square (NLMS) algorithm is used for the adaptive predictor in 

[12]. The estimate for the network delay, di, is computed to be 

(3.11) 

where di is the predicted network delay value for the i-th packet, Wi is the N x 1 vector of 

adaptive filter coefficients, ()T is the vector transpose, and ni is the N xl vector containing 

the past N network delays (up to and including the delay for packet (i - 1)). 

The filter tap weights, Wi, are then updated after each packet using the NLMS algo­

rithm [13]. 
f-l 

WH1 = Wi + T niei, 
nini+ a 

(3.12) 

where f-l is the step size, a is a small constant to prevent division by zero, and ei is the 

estimation error. 

The estimation error, ei, is given by 

(3.13) 

where ni is the actual network delay, and di is the predicted delay for packet i. Table 3.1 

lists the values of the parameters used in [12]. 

Table 3.1 NLMS algorithm parameter values used in [12] 

Pammeter Value 

Wo [10 ... OlT 
N 18 
J-t 0.01 

The network delay variation, Vi, and total end-to-end delay, Di, are calculated using 

Eqs. (3.5) and (3.6) from the basic autoregressive algorithm [6]. 

A set of packet traces was collected and analyzed using both the reactive algorithm 

proposed in [6] and the NLMS algorithm. The traces did not distinguish between talkspurts 

and silence periods. For both the reactive and the NLMS algorithms, the total end-to­

end delay, Di is computed on a per-packet basis. The results indicate that the NLMS 
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predictor [12] reduces the total end-to-end delay for the sample traces while maintaining 

very low packet loss rates. 

Addition of Decorrelation Filter to NLMS Algorithm 

An enhancement to the NLMS algorithm is proposed in [44]. The performance of the NLMS 

filter can be improved if the data passed though it is decorrelated, resulting in lower errors 

and faster convergence of the NLMS algorithm. The Discrete Wavelet Transform (DWT) 

is suggested for decorrelation. The Beylkin, Daubechies and Haar wavelets were aH exp er­

imented with, and as the choice of wavelet do es not significantly affect the decorrelation, 

the simple Haar wavelet transform is used. The order of the decorrelating filter depends 

on how far into the past the correlation extends. The correlation rN(k) can be estimated 

from the covariance lags, as follows. 

1 N-k-l 

rN(k) = N L nj+knj, k = 0,1, ... ,N/2, 
j=O 

(3.14) 

where ni is the network delay for packet i, and N is the number of delay samples used. 

The NLMS algorithm is implemented in [44] on traces from [6] on a per-talkspurt basis 

rather than on a per-packet basis. Simulations show that the parameter values for J1 and N 

used in [12] did not necessarily work well on traces obtained elsewhere. The values of the 

parameters were adjusted, and it was found that the performance of the NLMS predictor is 

no better than that of the autoregressive-based algorithm for talkspurt-based adjustment. 

The addition of the decorrelation filter improved the performance of NLMS. As the entire 

trace is not available in practice, it is suggested to estimate the statistics of the network 

delay trace from the first few packets and to use these to set the values of various NLMS 

algorithm parameters [44]. 

3.1.4 Delay Spikes 

Various traces of network delays and 10ss have been collected while developing playout 

buffer algorithms. Sorne of the traces are characterized with occurrences of network delay 

spikes. The frequent occurrences of spikes have been reported by [42, 49]. A spike begins 

with the sudden onset of a large increase in network delay. Although subsequent packets 

usually experience declining network delays, their delay values are still quite large. The 
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spike ends when network delays return to a steady-state value. Delay spikes can be caused 

by heavy congestion resulting in long queues at routers within the network. Typical delay 

spikes are depicted in Fig. 3.4. 
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Fig. 3.4 Typical network delay spike 
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The first three AR-based playout algorithms described in [6] are unable to adapt rapidly 

to delay spikes. The autoregressive estimate-based approaches do not increase their delay 

estimates quiekly enough in the presence of spikes, and take too long to reduee their delay 

estimates after the complet ion of a spike. A fourth algorithm was thus developed in [6] to 

adapt to sueh spikes and is deseribed here. 

Algorithm 4 is the first method to introduce the notion of a spike or impulse mode [6]. 

Upon deteeting a delay spike, the playout algorithm switehes to an impulse or spike mode. 

Within the spike, the delay estimate is only dependent on the most reeent network delay 

values. When the spike is eompleted, the algorithm reverts to normal mode and the delay 

estimate is eomputed using the autoregressive estimate-based approaeh from Algorithm 1. 

A delay spike is eharaeterized by a sudden large inerease in delay. Therefore, a delay 

spike ean be deteeted when the difference in delay values for the two most recently received 
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packets is greater than a certain threshold. It is a bit more difficult to determine the end 

of a spike. In [6], the sIope of the delay spike is monitored. As the spike completes and the 

delays fiatten out, the siope will reduce and fan below a threshold. The playout aigorithm 

then reverts back to normal mode. The pseudocode of Algorithm 4 is given here. 

Il Algorithm 4 from [6] 

1. ni =Receiver_timestamp - Sender_timestamp; 

2. if (mode ==NORMAL) { 

if(lni - ni-II> 21vI + 100) { 

} 

var=O; 1* Detected beginning of spike *1 

mode =IMPULSE ; 

else { 

} 

var = var/2 + 12ni - ni-l - ni-21/8; 

if (var <= 8) { 

mode =NORMAL; 1* End of spike *1 

return; 

} 

3. if (mode ==NORMAL) 

di = 0.125ni + 0.875di_1 ; 

else 

di = di - 1 + (ni - ni-d; 

Vi = 0.1251ni - dil + 0.875vi_l; 

return; 
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Adaptive Playout with Spike Detection 

Many of the playout buffer algorithms described in the previous sections have also incor­

porated spike detection and compute their delay estimates differently during spikes. The 

adaptive gap-based algorithm [10] simply incorporates the spike detection mode from [6]. 

Algorithm 3 from [9] also works in two modes. In normal mode of operation, the distribu­

tion of packet delays is updated and the algorithm computes the delay estimate using the 

histogram-based approach. However, if a packet arrives with a delay that is larger than 

sorne multiple of the current playout delay, the algorithm switches to spike mode. Within 

the spike, packet delays are no longer collected and the algorithm conservatively sets the 

playout delay to the first packet delay recorded in the spike. The end of the spike is de­

tected when the delay of a newly arrived packet is less than sorne multiple of the playout 

delay before the current spike. The mode is then set back to normal. 

The per-packet adjustment playout algorithm also implements a spike or mpid adapta­

tion mode [7]. The playout algorithm switches to rapid adaptation mode when the present 

delay exceeds the previous one by more than a threshold value. In rapid adaptation mode, 

the first packet of the spike has to be discarded. The delay estimates for subsequent packets 

in the spike are set to the high delay value of the first packet in the spike. The delay statis­

tics are not updated within the spike. The algorithm returns to normal mode of operation 

when packet delays faH back to the level before spike adaptation mode, and the previously 

stored delay statistics are reused. 

3.2 Playout Delay Adjustment Within Talkspurts 

Since voice packets are generated at periodic intervals at the transmitter, the receiver must 

play the packets out continuously at the same rate. The received packets are buffered and 

scheduled for playout at regular intervals in the future. Conventional adaptive playout 

algorithms adjust the playout delay by lengthening or shortening the periods of silence 

between talkspurts. Playout delay adjustments made during periods of silence are unlikely 

to be perceived by users. 

In contrast to previous work, a new playout scheduling algorithm [40] adjusts the playout 

delay not just between talkspurts, but also within talkspurts. The proper reconstruction 

of continuous speech is achieved by scaling individual voice packets using a time-scale 
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modification technique based on the WSOLA algorithm [8], which adjusts packet size while 

preserving voice pitch. Subjective listening tests have shown that the dynamic time-scale 

modification of voice packets does not impair audio quality [40]. 

Section 3.2.1 describes the Waveform Similarity Overlap-Add (WSOLA) algorithm and 

Section 3.2.2 describes the modifications made in [7,40] to the WSOLA algorithm to make 

it suit able for scaling audio packets. The modified algorithm is referred to as the packet­

based WSOLA algorithm. 

3.2.1 WSOLA Algorithm 

The \Vaveform Similarity Overlap-Add (WSOLA) algorithm proposed in [8] is a robust 

and computationally efficient algorithm used for high quality time-scale modification of 

speech. Time-scale modification techniques aim to change only the apparent speaking 

rate, while preserving other perceived aspects of speech such as timbre, voice quality, and 

pitch. The basic ide a of WSOLA is to decompose the input into overlapping segments of 

equal length, which are then realigned and superimposed with fixed overlap to form the 

output. The realignment leads to an increase or decrease in the output length. Specifically, 

WSOLA pro duces a synthetic waveform, y( n), that maintains maximal local similarity to 

the original waveform, x( m), in the neighbourhoods of aH sample indices given by the 

mapping, n = r(m), where r(m) is the transformation function defined as r(t) = at, a 

being the time-scaling factor. If a > 1, the output speech is stretched, and if a < 1, the 

output speech is compressed. 

The WSOLA algorithm operates entirely in the time domain. The algorithm works by 

segmenting the input audio waveform into blocks of equallength. Audio blocks in the input 

waveform are selected and overlap-added to pro duce the output audio. If the source blocks 

were taken at regular intervals in the original waveform, the output file would be of poor 

quality as the pitch pulses are not equally spaced. Thus, the selection of similar source 

blocks in the input to use for overlap-add, is critical to achieving high output quality. 

Fig. 3.5 illustrates the basic operation of the WSOLA algorithm. The algorithm it­

eratively constructs the output waveform, block by block. In Fig. 3.5, source block A is 

copied to the destination block A. Template block B is the block following source block 

A with 50% overlap. WSOLA now needs to find a block to copy to destination block B 

to overlap-add with destination block A. Therefore, source block B is desired to closely 
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resemble template block B. The reverse transformation, r- 1(t) = ~t, gives the centre of 
a 

the search region in which to look for source block B. A measure of waveform similarity 

is computed between template block Band blocks in the search region. The source block 

with the greatest similarity is then co pied to destination block B. The template block for 

the next iteration will be the block right after source block B with 50% overlap. For a 

given iteration, the source block follows the template block in WSOLA compression, and 

it precedes the template block in WSOLA expansion, as shown in Figs. 3.5(a) and 3.5(b), 

respectively. 

Once the positions of the template block and the search region are known, a series of 

correlations is computed between the template block and blocks in the search region. Each 

source block in the search region is shifted by 8, where -L/2 ::;; 8 ::;; L/2 - 1, and L is the 

length of the search region. 

The similarity measure used in this work is the cross-correlation coefficient, 

N 

p(c5) = LTemplateBlock(k) x SourceBlock(k+ 8), (3.15) 
k=O 

where N is the length of a block. The weighting window used in this work for the overlap­

add operation is the full raised-cosine window, h(n) = 0.5-0.5COs(2~n), with 50% overlap. 

The window size is set to be the length of a block, N. 

The speech quality and algorithm computation time are affected by the block size and 

the length of the se arch region for the source block. Larger blocks contain more pitch 

periods so the correlations will give a better measure of the waveform similarity between 

template and source blocks. However, if the block size is too large, artifacts such as echoes 

and tinny sounds will be introduced into the output. A larger search region results in more 

correlations being computed, thus it is computationally more expensive. Nevertheless, a 

better match with higher correlation between template and source block may be found 

within a larger search region. 

3.2.2 Packet-Based WSOLA 

The WSOLA algorithm was tailored by Liang in [7, 40] to work on a single packet. The 

main modifications made by the packet-based WSOLA algorithm are reducing the block 

length for correlation calculations and including the previous packet in the search region 
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of the source block to be overlap-added with the first template segment of the packet. 

The search for a source block is constrained when working on a single packet as the 

realignment of segments must be done in units of pitch periods. As there are few pitch 

periods in a short packet, it becomes difficult to find a similar waveform segment in the 

input using correlation calculations. Thus, the length of the correlation calculations was 

reduced to use only half the block length instead of the whole block length. 

In the packet-based WSOLA algorithm, the first template segment is positioned at 

the beginning of the input packet. In order to have a larger range to search for similar 

waveforms in packet expansion, the search region for the first source block is chosen inside 

the previous packet. Although the previous packet has already been played out at the time 

of scaling, similar waveforms can still be found within the packet, and they can be used 

to construct the current packet output. If the packet is to be compressed, the first source 

block is searched inside the packet. Figs. 3.6(a) and 3.6(b) illustrate packet-based WSOLA 

compression and expansion, respectively. 

Previous packet Current packet 

Source blocks: 

Destination blocks: 

2 

Output packet 

1 2 

(a) Packet-based WSOLA compression 

Previous packet Current packet 

Source blocks: 

Output packet 

Destination blocks: 1 2 3 4 5 

(b) Packet-based WSOLA expansion 

Fig. 3.6 Packet-based WSOLA algorithm 
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To ensure continuity at packet edges, the last samples in an output packet are kept the 

same as those in the input. As shown in Fig. 3.6, audio samples after the last source block 

in the input are copied directly to the output packet. A scaled packet can thus be played 

out at the receiver without needing to smooth the transition to the next packet. 

The packet-based WSOLA time-scale modification technique is implemented in this 

work. Informallistening tests conclude that users cannot dis cern any difference in audio 

quality. Subjective results presented in [40] also show that the degradation in audio quality 

was found to be almost inaudible, even in cases with excessive time-scaling of packets. 

The packet-based WSOLA algorithm is thus well-suited for playout delay adjustment on 

a per-packet basis. The dynamic time-scaie modification of individual voice packets al­

lows adaptive playout algorithms to rapidly adjust the playout delay to changing network 

conditions. 

3.3 Adaptive NLMS Playout Aigorithm with Delay Spike 

Detection 

The autoregressive estimate-based algorithms measure the network delay and variation and 

react to changes in network conditions. Similarly, statistically-based algorithms adjust the 

playout delay based on past network packet delays. The newer packet-based playout delay 

adjustment schemes allow increased flexibility in playout scheduling algorithms. Playout 

buffer algorithms which attempt to predict the network delay and variation can take ad­

vantage of this flexibility. These algorithms can time-scale individuai voice packets such 

that the i-th packet finishes playing out just as the (i + l)-th packet arrives. An accurate 

prediction of the network delay will allow the playout delay to be adjusted effectively by 

closely tracking fluctuations in network delay and thus reducing the 'loss' due to late packet 

arrivaIs. 

The adaptive filter-based NLMS algorithm aims to make an accurate prediction of the 

network delay, and is thus well-suited for newer playout algorithms where playout delay 

is adjusted per individu al packet. The adaptive playout algorithm proposed in this work 

is based on the NLMS predictor described previously in Section 3.1.3. The basic NLMS 

predictor is improved here by introducing a spike-detection mode to rapidly adjust to delay 

spikes. 
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3.3.1 Existing NLMS Predictor 

The NLMS adaptive filtering algorithm [12] provides a good prediction of the network delay 

and closely tracks any fluctuations in network delay. However, a drawback of the NLMS 

predictor is that it does not explicitly detect delay spikes and therefore does not alter its 

behaviour during a spike. 
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Fig. 3.1 NLMS playout algorithm 

Fig. 3.7 illustrates the behaviour of the NLMS algorithm in the presence of a delay 

spike. The end-to-end delay, Di, is the predicted network delay, di, plus the safety buffer 

term (3vi, as given by Eq. 3.6. It is difficult to predict when a delay spike will occur [42]. 

The first packet in a delay spike will arrive sometime after it has been scheduled to be 

played out, and thus will be considered late or 'lost'. The NLMS predictor will react to 

the large increase in network delay, and subsequent delay predictions will overestimate the 

ensuing packet delays. The overshoot in the end-to-end delay can be reduced by decreasing 

the value ofthe safety factor, (3, thereby reducing both the safety buffer term, (3Vi, and the 
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end-to-end delay, Di' 

3.3.2 Enhanced NLMS (E-NLMS) Algorithm 

An improved NLMS algorithm called the enhanced NLMS or E-NLMS algorithm is pro­

posed in this work [50]. The E-NLMS algorithm improves the basic NLMS predictor by 

adding a spike-detection mode to the algorithm. 
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Fig. 3.8 NLMS and E-NLMS playout algorithms 

During normal mode of operation, the E-NLMS algorithm works exactly like the basic 

NLMS predictor [12]. A delay spike is detected when either the previous packet was late 

(it arrived after it was supposed to be played out) or the actual network delay exceeds the 

predicted delay value by a threshold. Upon switching to spike mode, the playout delay is 

still based on the NLMS delay prediction. However, as the NLMS algorithm overestimates 

the network delay for packets following the beginning of a delay spike, the value of the 

safety factor, (3, in Eq. (3.6) can be decreased, thereby reducing both the safety buffer 
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term, {3vi, and the end-to-end delay, Di, during the spike. The end of the spike is detected 

and the mode of operation switches back to normal mode when the NLMS delay prediction, 

di, no longer exceeds the actual network delay, ni. 

Fig. 3.8 illustrates the behaviour of the enhanced bi-modal NLMS algorithm. As a spike 

is characterized by a sudden, large increase in network delay followed by declining network 

delays, the bi-modal algorithm takes advantage of this trait by reducing the safety buffer 

term, and thus tracks the network delay more accurately. To avoid having the playout 

delay faH too low, the end-to-end delay, Di, is not allowed to faIl below the delay estimate 

computed using Eqs. (3.4), (3.5) and (3.6) from the basic autoregressive algorithm [6]. The 

pseudo code of the algorithm is given here. 

Il Enhanced NLMS (E-NLMS) algorithm 

Il Estimate DeLay using NLMS FiLter 

di = wtni; 

ARdelaYi = aARdelaYi_l + (1- a)ni-l; 

Vi = aVi-l + (1 - a)ld~_l - ni-li; 

if ( mode == SPIKE ) 

var factori = {314 Vi; 

Di = di + varfactori; 

if (Di < ARdelaYi + (3vi) 

Di = ARdelaYi + {3vi; 

end 

else Il NormaL mode 

var factori = {3vi; 

Di = di + var factori; 

end 

Il if end-to-end deLay < network deLay 

if (Di < ni) 

packeti=LOST; 

else 
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packeti=IN3IME; 

end 

if (ni> di) 

mode = NORMAL; 

end 

if ( (ni> di + 5Vi) OR (packeti == LOS't) ) 

mode = SPIKE; 

end 

Il Update Adaptive NLMS Filter Tap Weights 

ei=di-ni 

wHl = Wi + f.LI(nT ni + a)niei; 

3.4 Chapter Summary 

53 

This chapter introduced the various approaches to reducing jitter or variation in network 

delay. The role of the playout buffer in receiver-based approaches was discussed and the 

main types of playout buffer algorithms were reviewed. The main playout buffer algorithms 

are not robust enough to adapt their network delay estimates in the presence of delay spikes, 

thus spike detection has been incorporated in sorne playout buffer algorithms. 

Traditionally, playout buffer algorithms have adjusted the playout delay during periods 

of silence by expanding or compressing the length of silence between talkspurts. Newer 

playout algorithms adjust the playout delay on an individu al packet basis by dynamically 

time-scaling individual voice packets. Packet-based adjustment algorithms are more flexible 

as they can take advantage of accurate network delay estimates. 

The adaptive NLMS predictor uses an accurate prediction of the network delay to closely 

track network fluctuations. The proposed algorithm, the enhanced NLMS (E-NLMS) algo­

rit hm improves the basic NLMS predictor by introducing a spike detection mode to rapidly 

adjust the playout delay during delay spikes. In Chapter 4, the E-NLMS algorithm is 

evaluated in comparison to the NLMS predictor. 
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Chapter 4 

Evaluation and Results 

In this chapter, the proposed E-NLMS playout buffer algorithm is evaluated in comparison 

to the basic NLMS playout algorithm. Both playout buffer algorithms are simulated for 

sever al network delay traces. Packets are stretched and compressed using the single packet 

WSOLA-based time-scale modification algorithm. Performance metrics used to evaluate 

the algorithms are the packet loss rate due to late arrivaIs, the average end-to-end delay, 

and the percentage of packets that are scaled using the packet-based WSOLA time-scale 

modification technique. 

Chapter 4 is structured as follows. The method of evaluation for the proposed playout 

buffer algorithm is described in Section 4.1. Section 4.2 details the various issues involved 

with end-to-end network delay traces. Accurate measurement of one-way network delays is 

affected by clock synchronization issues which are detailed in Section 4.2.1. Section 4.2.2 

describes the pro cess used to gather the network delay traces. The measured traces are then 

analyzed in Section 4.2.3. Simulations and experimental results evaluating the E-NLMS 

algorithm for the various network delay traces are presented and discussed in Section 4.3. 

4.1 Method of Evaluation 

The proposed E-NLMS algorithm is evaluated by comparing its performance to the original 

NLMS playout buffer algorithm. A framework is constructed to simulate the different 

playout buffer algorithms using a set of network delay traces. The playout algorithms are 

evaluated using the following criteria: 
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1. Average Playout Delay: The end-to-end playout delay is calculated for each packet 

and then averaged over the duration of the calI. 

2. Packet Loss Rate (PLR): The packet loss rate due to late arrivaIs at the destination 

is computed. A packet is considered to be 'lost' if it never arrives, or if it arrives after 

it was scheduled to be played out at the receiver. 

3. Percent age of Packets Scaled: The percentage of packets that are time-scaled (stretched 

or compressed) by the receiver, is computed. The current packet is stretched by the 

receiver if it is scheduled to finish playing out before the predicted arrivaI of the next 

packet. Similarly, packets may be compressed if the playout buffer has become too 

large and future packets have already arrived. 

To evaluate the playout buffer algorithms, end-to-end network delay measurements are 

collected. The behaviour of the playout delay adjustment algorithms is simulated with the 

network delay traces. Each algorithm estimates the playout delay, Di, of the i-th packet. 

The estimated playout delay is then compared to the actual network delay found in the 

trace. If the actual delay is larger than the estimated playout delay, the packet will arrive 

too late to be played out by the playout scheduling algorithm and will be considered 'lost'. 

At the end of the trace, the average playout delay and the packet loss rate are calculated. 

The playout buffer algorithms are also evaluated in conjunction with the single packet 

WSOLA-based time-scale modification algorithm. The audio packets are stretched or com­

pressed using dynamic time-scale modification, such that the i-th packet finishes playing 

out just as packet (i + 1) is expected to begin playout at the destination. The performance 

metrics in this case are the average playout end-to-end delay, the packet loss rate, and the 

percentage of packets that are scaled. 

4.2 Network Delay Traces 

In or der to compare and evaluate the performance of the playout delay adjustment algo­

rithms, network delay traces are needed to simulate the behaviour of the algorithms under 

identical network conditions. Ideally, one-way network delay traces should be used. How­

ever, it is difficult to accurately determine the one-way end-to-end network delay between 

two nodes due to dock synchronization issues. Therefore, a set of round-trip network delay 
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traces is collected instead and used in the evaluation of the proposed E-NLMS playout 

buffer algorithm. 

4.2.1 Clock Synchronization 

The measurement of one-way delays between two nodes are affected by the following clock 

synchronization problems [51J. 

.. Clock Offset: The offset is the difference between the clock at the sen der and the 

clock at the receiver at a particular time. 

.. Clock Skew: Sender and receiver docks may not be running at the same frequency. 

The skew is the difference between the two dock frequencies. 

The synchronization between the two clocks impacts the accuracy of the measurement. 

In the case of a unidirectional delay, the sender timestamps the audio packet when it 

leaves the sender, and the receiver notes the time the packet arrives at the receiver. If 

the two hosts are perfectly synchronized, the difference between the two timestamps is the 

end-to-end network delay experienced by the packet. If the docks have a non-zero offset, 

the difference in timestamps indudes not only the end-to-end packet delay, but also the 

dock offset. Given a one-way delay measurement, the dock offset cannot be distinguished 

from the actual end-to-end network delay, unless the actual network delay is known [52]. 

However, the actual end-to-end network delay is what one is attempting to measure in the 

first place. If the docks have relative skew, not only is the end-to-end delay measurement 

inaccurate due to the offset, but the offset also gradually increases or decreases over time 

depending on whether the transmitter clock runs slower or faster than the receiver dock [52]. 

Network Time Protocol (NTP) 

The Network Time Protocoi (NTP) has been developed to synchronize docks and coor­

dinate time distribution within the Internet. NTP is used by Internet time severs and 

their clients to synchronize docks, as weIl as automatically organize and maintain the time 

synchronization subnet itself [53]. The current formaI proto col specification is described 

in RFC 1305 [54], and a detailed description of the architecture, proto col and algorithms 

used in NTP is found in [55]. 
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The NTP system consists of a network of primary and secondary time servers, clients, 

and interconnecting transmission paths. A primary time server is directly synchronized 

to a primary reference source, usually a timecode receiver or calibrated atomic clock [55]. 

Secondary time servers synchronize themselves to the primary servers. Timestamps are 

exchanged between NTP servers and clients to determine individual round-trip delays and 

clock offsets, as weIl as provide reliable error estimates. 

Fig. 4.1 shows how the timestamps are numbered and exchanged between server A 

and peer B [55]. A packet with timestamp Tl is sent from server A to peer B where the 

received timestamp is noted to be T2 . Peer B immediately pro cesses the packet and adds 

the timestamp T3 before sending it back to server A where it is received at timestamp T4 . 

Let a = T2 - Tl and b = T3 - T4 . Assume that the network is free of congestion, and the 

network delays, a and b, correspond to the minimum propagation delays between server A 

and peer B. Then the round-trip delay, 6, and dock offset, e, of B relative to A at time 

T4 are given by 

6=a-b and 

PeerB 

Server A 

e = a+b 
2 . 

Fig. 4.1 Network Time Protocol [55J 

( 4.1) 

In practice, the network delays will vary due to varying levels of congestion in the 

Internet. The true offset of B relative to A is called eo in Fig. 4.1. Let x denote the 

actual delay between the departure of a message from A and its arrivaI at B. Then, 

x + eo = T2 - Tl = a. Since x must be positive, x = a - eo ~ 0 which requires that eo :::; a. 

Similarly, it can be seen that b :::; eo, thus b :::; eo :::; a. The inequality can be expanded 
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further and expressed as 

(4.2) 

which is equivalent to 
J J 

(J - - < (Jo < (J + -. 2 - - 2 (4.3) 

Therefore, the true dock offset lies in the interval of size equal to the measured delay and 

centred about the measured offset [55]. 

The NTP algorithm must pro duce an accurate estimate of the round trip delay J and 

the dock offset iJ from a set of samples (Ji, (Ji) collected for the path under normal traffic 

conditions. A minimum filter is designed which selects from the n most recent samples 

(Ji, (Jd, the sample with the lowest round-trip delay, Jj ) and then uses (Jj , (Jj) as the estimate 

of the minimum round-trip propagation delay, Jo and true dock offset, (Jo, respectively [55J. 

NTP continuously corrects the time and frequency of the local dock to agree with the 

time at the synchronization sources. The local dock and its adjustment mechanism are 

modelled as a disciplined oscillator [53J. The time and frequency of the local dock are 

adjusted via a feedback phase-Iock loop (PLL) in order to reduce the dock offset (Jo. 

While NTP provides an effective dock synchronization system within the Internet, its 

performance do es not meet the accuracy required of one-way network delay measurements. 

NTP's accuracy depends in part on the delays of the Internet paths used by NTP peers, 

and this is precisely what is being measured. NTP works weIl if paths between nodes 

are symmetric, however it has been shown that network delays within the Internet are 

asymmetric [56]. NTP foeuses on time aeeuraey over long time seales (hours to days) , 

which may eome at the expense of short-term doek skew and drift [51]. NTP provides 

accuraey in the order of ten milliseeonds [57]; however it does not assure synehronization 

on the small time seales of individu al network delays [58]. 

Global Positioning System (GPS) 

The Global Positioning System (GPS) is primarily used as a navigation system and is a 

reliable source of positioning for both the military and civilian communities [59]. However, 

GPS is also globally used to distribute time to a large amount of users and synehronize 

docks over large distances with a high degree of precision and accuraey. Time synehroniza-
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tion in the Internet can be assured by having local docks directly derive their time from a 

GPS receiver [51]. GPS achieves dock synchronization to less than 100 /-ts [60]. 

The GPS satellite constellation indudes at least 24 satellites orbiting the earth at a 

height of 20,200 km. GPS satellites broadcast on two carrier frequencies, LI and L2. Each 

satellite broadcasts a spread-spectrum waveform, called a pseudo-random noise (PRN) code 

on LI and L2. GPS receivers then use the coarse acquisition (CI A) code broadcast on the 

LI frequency as their time and frequency reference [61]. The output time from the GPS 

receiver is thus synchronized to within 100 ns of Coordinated Universal Time (UTC) [62]. 

Unidirectional network delays within the Internet can be measured accurately by equip­

ping both endpoints with a GPS satellite transceiver. GPS receivers need a direct line-of­

sight to the GPS satellite in order to receive the signal, which may not necessarily be 

possible indoors. The GPS solution also does not scale easily. Network delay traces are 

desired for additional hosts, and the additional hosts would also need to be equipped with 

GPS receivers. 

Clock Skew Estimation 

Clock skew occurs when sender and receiver docks run at different frequencies, resulting 

in the docks to be offset from each other. If the receiver dock runs faster than the sender 

dock, the dock offset between them will grow and the one-way delay measurements will 

gradually appear to increase. The measurements may lead one to infer that the network 

delays are increasing due to greater network congestion and queue~ng delay, when in fact 

the increase is due to the difference in sender and receiver dock frequencies. 

Clock skew estimation algorithms have been developed to estimate and remove the 

skew from actual one-way Internet delay traces [58,63]. While the algorithms are robust at 

detecting and removing linear skew, they do not necessarily work for non-linear skew [52], 

nor do they remove any dock offsets that may remain [64]. 

Round Trip Delays 

Measuring round-trip network delays and dividing the results by two to determine the one­

way delays avoids the dock synchronization issues discussed ab ove. This method implicitly 

assumes that Internet paths between two nodes are symmetric, however it has been shown 

that in most cases, paths between two nodes are in fact asymmetric [65]. 
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Given that the techniques to measure unidirectional network delays are either unreliable 

or difficult to scale, traces of round-trip delays are collected instead. Since only one dock is 

used to timestamp packets, round-trip delay measurements avoid any problems associated 

with dock synchronization. While the round-trip measurements cannot be used directly 

to determine the one-way delay [56], they give a good ide a of the magnitude of the actual 

one-way network delay and can be used to approximate trends in Internet packet delay. 

4.2.2 Collection of Traces 

The Internet ping service is commonly used to measure round-trip delays. The basic 

ping program timestamps an ICMP echo packet [66] with the local system time before 

sending it out onto the Internet. The receiver echoes a reply back to the sender where it 

is timestamped again. The round-trip delay is the difference between the two local system 

timestamps. The system time is the time elapsed since the operating system has started, 

and is not an indication of the actual current time. 

Normally, ping waits for the return of each ICMP packet before sending out the next 

one. The basic ping program is modified here to continuously send a 45 byte ICMP packet 

every 10 ms. The inter-departure time can be adjusted as desired. 

A set of 18 network delay traces was collected between nodes in Canada. Each trace 

lasts for 2 hours and 47 minutes, and during this time, 1,000,000 packets are transmitted 

towards the destination. The traces were collected both during the day and at night. 

Table 4.1 Network delay traces: Round-trip packets sent from a PC at 
McGill University 

Trace Date Start Time End Time Sender Receiver 

UBCday 2002-03-28 10:25 13:12 McGill British Columbia 
UBCnight 2002-03-27 22:02 00:49 McGill British Columbia 
UT2day 2002-03-28 13:47 16:34 Mc Gill Toronto 

UT2night 2002-03-28 01:31 04:18 McGill Toronto 
UTday 2002-04-04 12:14 15:02 Mc Gill Toronto 

UTnight 2002-03-27 00:31 03:18 McGill Toronto 
YorkDay 2002-04-09 12:22 15:09 Mc Gill York 

YorkNight 2002-04-09 03:15 06:02 McGill York 

The traces can be divided into two categories. Table 4.1 lists the traces that were 

gathered from the Telecommunications & Signal Processing Laboratory at McGill Univer-



4 Evaluation and Results 61 

sity. In this case, the receivers were selected to be at different universities across Canada. 

Traditionally, network traces have always been gathered between universities and/or other 

research institutes. The Internet started as a network linking different universities and aca­

demic institutions. The universities are directly connected to the backbone of the Internet 

and therefore, significant bandwidth is available to them. As the ultimate goal of VoIP 

is to be used in the home environment, network delay traces were also collected between 

individual homes with high-speed cable access to the Internet. Table 4.2 lists the delay 

traces that were gathered from a home PC in Montreal. The de!3tination nodes in the 

different cities were also connected via cable modem to the Internet. 

Table 4.2 Network delay traces: Round-trip packets sent from a home PC 
in Montreal connected to the Internet by cable modem 

Trace Date Start Time End Time Sender Receiver 

Mt12Night 2002-04-11 02:45 05:31 Montreal Montreal 
MtlNight 2002-04-09 02:56 05:42 Montreal Montreal 
Ott2Day 2002-04-12 11:21 14:08 Montreal Ottawa 

Ott2Night 2002-04-12 02:41 05:27 Montreal Ottawa 
OttDay 2002-03-27 10:50 13:37 Montreal Ottawa 

OttNight 2002-03-27 02:02 04:49 Montreal Ottawa 
T02day 2002-03-28 10:34 13:21 Montreal Toronto 

T02night 2002-03-28 02:41 05:27 Montreal Toronto 
TOday 2002-03-22 10:33 13:20 Montreal Toronto 

TOnight 2002-03-22 03:09 05:56 Montreal Toronto 

N etwork Delay Traces Obtained From Other Sources 

In addition to generating network delay traces, the traffic traces used in [12] were acquired. 

Table 4.3 lists the 12 one-way network delay traces obtained. The 12 one-way delay traces 

were recorded for streams traversing the Internet to AT&T in New Jersey from four differ­

ent hosts, three in the US (Carnegie-Mellon University, Rutgers University, and Stanford 

University), and one host in the UK (Cambridge University). Each trace lasted 10 minutes 

and the traces are captured at different times of the day. 

UDP packets [18] are generated by the sender and transmitted to the receiver. Each 

UDP packet carried 20 ms of audio and contained a sequence number and sender times­

tamp [12]. At the receiver, the arrivaI time was recorded and the difference in timestamps 
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Table 4.3 Network delay traces obtained from other sources and used in [12J: 
One-way packets received at AT&T (NJ) 

Trace Date Start Time End Time Sender Receiver 

cl 1995-08-02 10:00 10:10 Cambridge AT&T (NJ) 
c3 1995-08-01 16:00 16:10 Cambridge AT&T (NJ) 
c5 1995-08-01 20:00 20:10 Cambridge AT&T (NJ) 
ml 1995-07-27 09:00 09:10 Carnegie-Mellon AT&T (NJ) 
m3 1995-07-31 15:00 15:10 Carnegie-Mellon AT&T (NJ) 
m5 1995-07-26 21:00 21:10 Carnegie-Mellon AT&T (NJ) 
r1 1995-07-27 08:00 08:10 Rutgers AT&T (NJ) 
r3 1995-07-31 16:00 16:10 Rutgers AT&T (NJ) 
r5 1995-07-26 20:00 20:10 Rutgers AT&T (NJ) 
sI 1995-07-27 10:00 10:10 Stanford AT&T (NJ) 
s3 1995-08-01 14:00 14:10 Stanford AT&T (NJ) 
s5 1995-07-26 22:00 22:10 Stanford AT&T (NJ) 

gives an estimate of the network delay variation. As the sender and receiver docks were 

not synchronized, the difference in timestamps indudes the dock offset. The network delay 

was thus defined to be the quantity in excess of the minimum observed delay from sender 

to receiver for a given stream [12]. The network delay values are therefore computed by 

finding the packet with the smallest difference between sender and receiver timestamps, and 

subtracting that minimum delay value from each network delay. Clock drift is assumed to 

be negligible over the la minute lifetime of each trace. 

4.2.3 Analysis of Measured Traces 

The collected round-trip delay traces are graphed and analyzed. Figs. 4.2, 4.3, 4.4, and 

4.5 display trace segments representative of the collected network delay traces. For each 

trace, the round-trip delay in milliseconds is plotted as a function of the packet number. 

A round-trip delay value of a ms indicates that the packet never returned and is lost. 

Figs. 4.2 and 4.3 display round-trip traces taken from McGill University to other univer­

sities within Canada. Both the sender and receiver are directly connected to the Internet. 

Fig. 4.2 plots a trace collected during the day between Mc Gill University and the University 

of British Columbia, while a trace collected at night between McGill and York Universities, 

is shown in Fig. 4.3. 

Traces were also taken between individual homes with high-speèd access to the Internet. 
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Figs. 4.4 and 4.5 display round-trip traces taken between a computer in a Montreal home 

and comput ers at homes in Toronto and Ottawa, respectively. The home comput ers are 

connected to the Internet via cable modem. Fig. 4.4 displays a trace collected during the 

day between homes in Montreal and Toronto, and a trace collected at night between homes 

in Montreal and Ottawa is graphed in Fig. 4.5. 

While each individu al delay trace is unique and c~nnot be scrutinized on its own, the 

round-trip delay traces are representative of delays in the' Internet, and can be analyzed for 

common trends. The measured network traces are found to contain frequent occurrences 

of network delay spikes and there is great variation in the packet round-trip delay values. 

From the different traces plotted in Figs. 4.2-4.5, it can be seen that the round-trip times 

vary considerably over both small and large time scales. For each trace, the minimum, 

median, mean, and maximum network delays are determined. The network delay values 

that are greater than 90% and 99% of the delays in the trace, are also calculated. As 

weIl, the standard deviation of the network delays and the packet 10ss rate (PLR) are also 

computed. Tables 4.4 and 4.5 summarize the statistics for the two categories of network 

delay traces collected. 

Table 4.4 Statistics for round-trip delay traces from Mc Gill University 

Trace PLR Min. Median 90% 99% Max. Mean Std. Dev. 
(%) (ms) (ms) (ms) (ms) (ms) (ms) (ms) 

UBCday 0.04 67 70 75 92 569 72.2 20.4 
UBCnight 0.06 67 74 84 137 727 78.5 33.7 
UT2day 0.34 10 11 20 286 1035 21.9 52.9 

UT2night 0.32 9 10 13 68 556 12.4 15.0 
UTday 0.05 9 12 46 334 2110 27.6 59.4 

UTnight 0.04 9 10 13 184 662 16.3 32.7 
YorkDay 0.15 10 22 104 152 2161 40.9 41.8 

YorkNight 0.01 10 12 17 28 991 13.0 6.4 

4.3 Simulations and Experimental Results 

The behaviour of both the NLMS and E-NLMS algorithms are simulated with the gathered 

network delay traces. In the first experiment, the NLMS and E-NLMS algorithms compute 

and estimate the end-to-end playout delay, Di, of packet i. If the estimated playout delay 
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Table 4.5 Statistics for round-trip delay traces from a home computer in 
Montreal 

Trace PLR Min. Median 90% 99% Max. Mean Std. Dev. 
(%) (ms) (ms) (ms) (ms) (ms) (ms) (ms) 

Mtl2Night 0.06 12 17 37 258 585 22.0 17.8 
MtlNight 0.04 12 18 35 60 473 27.4 38.3 
Ott2Day 0.02 27 35 57 77 206 40.0 11.4 

Ott2Night 0.01 26 32 47 67 196 35.0 8.3 
OttDay 0.08 40 48 68 88 1648 53.1 23.3 

OttNight 0.01 40 46 61 82 236 49.4 8.5 
T02day 0.01 20 28 47 67 285 32.1 10.1 

T02night 0.02 20 26 44 63 1387 31.1 15.0 
TOday 0.03 21 28 48 68 526 33.0 11.6 

TOnight 0.01 20 27 44 63 1505 31.1 18.1 

is larger than the actual network delay found in the delay trace, the packet is assumed to 

arrive in time to be played out. In the opposite case, if the estimate of the end-to-end delay 

is lower than the actual delay value, the packet will arrive too late to be played out and 

will be counted as 'Iost'. At the end of the experiment, the average end-to-end delay and 

the packet loss rate are computed. 

The second experiment requires the implementation of the single packet WSOLA-based 

time-scale modification aigorithm. As in the first experiment, the NLMS and E-NLMS 

aigorithms are used to estimate the end-to-end delay of the next packet. The current packet 

i is then stretched or compressed if necessary, so that the current packet just finish es playing 

out as packet (i + 1) is scheduled to begin playout. For this experiment, the performance 

metrics used to evaluate the playout aigorithms are the average end-to-end playout delay, 

the loss rate due to late packet arrivaIs, and the percentage of packets that are time-scaled 

(stretched or compressed). 

4.3.1 Playout Delay Estimation 

The NLMS and E-NLMS algorithms are simulated omine for the collected network delay 

traces. Both algorithms use the past network delay values to predict the current packet's 

network delay, di, and compute its end-to-end delay, Di' The end-to-end delay value, Di, 

is then compared to the actual network delay value, ni, recorded in the trace to determine 

if the packet arrived in time to be played out. The average end-to-end delay of an packets 
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and the packet loss rate due to late packet arrivaIs are computed at the end of the trace. 

Table 4.6 NLMS and E-NLMS algorithm parameter values 

Pammeter Value 

Wo [10 ... pJT 
N 20 
IL 0.001 

Table 4.6 lists the empirical values used for the parameters of the NLMS and E-NLMS 

algorithms. For the two experiments in [12], the value of the safety factor, (3, was set to 4.0 

and 6.0, respectively. The value of (3 is varied from 4.0 to 6.0 in this simulation, in order to 

illustrate the tradeoff between average end-to-end delay and late packet 'loss'. The results 

are plotted in Figs. 4.6-4.8 for three of the traces. 
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Fig. 4.6 Tradeoff between 'late' packet 108s and average end-to-end packet 
delay for trace 'T02day' 

Figs. 4.6-4.8 show that both the average end-to-end delay and 'late' packet loss are 

reduced for the E-NLMS algorithm as compared to the original NLMS predictor. An 

improvement in overall performance is achieved by incorporating a spike mode into the 

basic NLMS algorithm and reducing the delay overestimation during spikes. 
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Table 4.7 Experiment 1: Comparison of NLMS and E-NLMS algorithms. 
Note that the variation in network delay, VN, computed at the end of the 
trace, as calculated by Eq. (3.5) is also given. The E-NLMS algorithm outper­
forms the NLMS predictor when variation in network delay is higher. The top 
group of traces is collected between universities; the middle group of traces is 
collected between home PC's connected via cable to the Internet; the bottom 
group of traces is obtained from other sources and was used in [12]. 

Trace VN Better Algorithm 

UBCday 2.6 NLMS 
UBCnight 3.2 NLMS 
UT2day 3.4 NLMS 

UT2night 1.3 NLMS 
UTday 3.4 NLMS 

UTnight 3.7 NLMS 
YorkDay 3.7 NLMS 

YorkNight 1.9 NLMS 
------------------------

Mtl2Night 4.1 E-NLMS 
MtlNight 4.8 E-NLMS 
Ott2Day 4.1 E-NLMS 

Ott2Night 3.8 E-NLMS 
OttDay 4.0 E-NLMS 

OttNight 3.7 E-NLMS 
T02day 4.2 E-NLMS 

T02night 2.5 E-NLMS 
TOday 4.3 E-NLMS 

TOnight 4.0 E-NLMS 
._----------------------

cl 9.3 E-NLMS 
c3 9.9 E-NLlViS 
c5 9.0 E-NLMS 
ml 10.3 E-NLMS 
m3 12.1 E-NLMS 
m5 10.2 E-NLMS 
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The NLMS and E-NLMS algorithms are simulated and tested for aU of the traces. 

The value of f3 is varied between 4.0 and 6.0 in each case, and the packet loss rate is 

plotted versus the average end-to-end delay for each trace. In general, it was found that 

the E-NLMS algorithm outperforms the NLMS predktor, by reducing both the average 

end-to-end delay and the packet 10ss rate for a given trace. The qualitative results for aU 

the traces are summarized in Table 4.7. 

As seen in Table 4.7, the E-NLMS algorithm outperforms the original NLMS predictor 

for a majority of the 24 traces tested. The variation in network delay is found to be 

lower for the traces where the E-NLMS algorithm did not outperform the NLMS predictor. 

The E-NLMS algorithm detects a spike when either the previous packet was lost, or the 

network delay estimate, di, exceeds the actual network.delay, ni, by a threshold. In this 

case, the threshold is set to 5Vi. When the variation in network delay, Vi, is low, the E­

NLMS algorithm will consider a smaU increase in network delay to be a delay spike and 

thus switch to spike mode. While in spike mode, the safety buffer term, f3Vi, is reduced by 

a factor of 4. Thus, the E-NLMS algorithm will closely track the network delay and will 

miss any subsequent packets that have a smaU increase in network delay. The E-NLMS 

predictor can be further improved by enhancing the spike detection algorithm. 

Table 4.7 also shows that the E-NLMS algorithm .outperforms the NLMS predictor 

for aU traces collected between individu al homes with high-speed access to the Internet. 

Network delays between individual homes with cable access are generally higher and incur 

greater variation from packet to packet. To enable VoIP to be used by individuals at home, 

the average end-to-end delay and packet 10ss must be reduced. The E-NLMS playout buffer 

algorithm achieves an overall improvement in performance by reducing both the average 

end-to-end delay and packet 10ss for the traces collected between homes with high-speed 

access to the Internet. 

4.3.2 Playout Scheduling With Dynarnic Tirne-Scale Modification 

The single packet WSOLA-based time-scale modification algorithm is implemented for the 

second experiment. As in the first experiment, the NLMS and E-NLMS algorithms are 

both used to predict the next packet's network delay, di+! , and compute its end-to-end 

playout delay, Di+!, The current audio packet i is then scaled using the dynamic time­

scale modification algorithm such that the current packet finishes playing out just as the 
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next packet (i + 1) is scheduled to begin playout. 
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The NLMS and E-NLMS algorithm parameter vah,ws are set to the same values used 

in Experiment 1 and shown in Table 4.6. The value of the safety factor, {3, is set to 4. The 

NLMS and E-NLMS algorithms are simulated by mapping a 40 minute speech file to the 

various network delay traces. The algorithms estimate and compute the end-to-end delay 

for each audio packet. If the current packet i is expected to finish playing out before the 

predicted arrivaI time of packet (i + 1), the current speech packet is stretched so that it 

finishes playing out just as the next one is expected to arrive. However, in order to avoid 

constant scaling, the playout buffer is allowed to build up, and audio packets are only 

compressed when the next packet (i + 1), is predicted ~o arrive before the current packet 

i, will begin playing out. 

Figs. 4.9 and 4.10 display the actual network delay incurred by packets, the end-to-end 

packet delay computed by the playout buffering algorithm, and the actual audio playout de­

lay, after single packet WSOLA-based time scale modification is used to stretch or compress 

the audio packets, for both the NLMS and E-NLMS algorithms, respectively. 

Both the NLMS and E-NLMS playout scheduling algorithms achieve low packet 10ss and 
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10w end-to-end de1ay as seen in Figs. 4.9 and 4.10. The basic NLMS algorithm reacts very 

rapid1y to spikes and this resu1ts in greater time-scaling of packets. The E-NLMS a1gorithm, 

on the other hand, computes a lower end-to-end delay than the NLMS predictor during 

spikes, and thus does not stretch or compress packets a~ often as the NLMS a1gorithm. 

Fig. 4.11 plots the actual audio playout delay obtained after dynamic time-scale modi­

fication using both the NLMS and E-NLMS playout a1gorithms. For a given value of ;3, the 

E-NLMS p1ayout buffer a1gorithm generally achieves lower p1ayout delay while maintaining 

almost the same packet 10ss rate. More importantly, the E-NLMS algorithm results in 

considerab1y 1ess time-scaling of packets as compared ta NLMS, as shown in Fig. 4.1l. 

The average playout delay, the packet 10ss rate (PLR), and the percentage of packets 

stretched and compressed using packet-based WSOLA time-scale modification, are com­

puted using both the NLMS and E-NLMS algorithms. Tables 4.8 and 4.9 summarize the 

results for aU traces. The one-way traces used in [12]last for only 10 minutes and are too 

short to be used in this experiment. 

Table 4.8 Experiment 2: Comparison of NLMS and E-NLMS a1gorithms 
with dynamic time-sca1e modification for traces between universities. A ver­
age p1ayout delay (Avg. delay), packet 10ss rate (PLR), percentage of packets 
stretched (% str.), and percentage of packets compressed (% comp.) are com­
puted. 

NLMS E-NLMS 
Avg. 

PLR % % 
Avg. 

PLR % % Trace delay de1ay 
(ms) (%) str. comp. (ms) (%) str. comp. 

UBCday 96.0 0.14 0.62 1.14 95.7 0.16 0.38 0.67 
UBCnight 118.0 0.11 2.73 5.27 117.9 0.14 2.56 4.90 
UT2day 53.0 0.74 1.37 8.43 52.5 0.93 1.09 7.65 

UT2night 35.7 0.43 0.55 2.94 35.7 0.49 0.44 2.70 
UTday 71.9 0.95 2.89 14.55 71.0 1.16 2.62 12.93 

UTnight 47.3 0.63 1.08 6.65 46.7 0.75 1.03 6.29 
YorkDay 88.8 0.15 7.98 16.10 88.6 0.20 7.74 16.07 

YorkNight 37.9 0.03 0.33 0.58 37.8 0.05 0.,15 0.32 

The E-NLMS algorithm reduces the playout delay while maintaining the same packet 

'loss' rate for aU the traces in Tables 4.8 and 4.9. As weIl, using the E-NLMS playout 

scheduling algorithm results in substantially fewer packets being time-scaled (stretched or 

compressed). The packet-based WSOLA time-scale modification algorithm is implemented 
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Table 4.9 Experiment 2: Comparison of NLMS and E-NLMS algorithms 
with dynamic time-scale modification for traces between home PCs. Average 
playout delay (Avg. delay), packet loss rate (PLR), percentage of packets 
stretched (% str.), and percentage of packets compressed (% comp.) are com­
puted. 

NLMS E-NLMS 
Avg. 

PLR % % 
Avg. 

PLR % % Trace delay delay 
(ms) (%) str. comp. (ms) (%) str. comp. 

Mt12Night 56.1 0.83 4.88 11.95 54.3 0.92 2.85 5.63 
MtlNight 57.9 0.84 5.44 13.42 56.0 0.92 3.70 6.93 
Ott2Day 71.8 1.44 5.02 14.36 69.4 1.39 3.12 6.65 

Ott2Night 65.2 1.27 3.80 10.37 63.6 1.25 1.96 4.52 
OttDay 82.4 1.18 4.57 12.01 80.3 1.18 2.35 4.92 

OttNight 83.2 1.25 4.66 12.39 80.9 1.27 2.51 5.30 
T02day 61.9 1.27 4.04 10.83 6Ô.l 1.26 2.31 5.04 

T02night 54.2 1.06 2.28 5.84 53.4 1.09 1.38 3.17 
TOday 63.9 1.19 4.64 11.92 61.8 1.24 2.53 5.11 

TOnight 62.2 1.25 4.03 10.90 60.4 1.26 2.30 4.96 

in this work, and listeners are un able to discern any difference in audio quality. The results 

of the informallistening tests agree with the conclusions presented in [40]. However, it is 

still preferable to reduce the percentage of packets that are stretched or compressed. As 

shown in Table 4.9, E-NLMS achieves a more significant improvement in performance for 

traces between individual homes with high-speed access to the Internet. There is greater 

fluctuation in network delay for traces between individu al homes than for traces between 

nodes at universities. An increased number of delay spikes leads ta a larger variation in 

network delay, Vi, resulting in the bi-modal E-NLMS algorithm switching modes, and thus 

outperforming the NLMS predictor. 

4.4 Chapter Summary 

In this chapter, the proposed E-NLMS playout buffer algorithm was evaluated in compari­

son to the basic NLMS predictor, for a set of network delay traces. The performance metrics 

used to evaluate and compare the two playout scheduling algorithms were the packet 10ss 

rate due to late packet arrivaIs, the average end-to-end packet delay, and the percentage of 

audio packets that were time-scaled. 



4 Evaluation and Results 75 

To simulate the playout scheduling algorithms, a set of network delay traces was re­

quired. Ideally, one-way network delay traces are preferred. However, the measurement of 

one-way delays is difficult over the Internet due to dock synchronization problems. Thus, 

round-trip delay measurements were collected instead and dock synchronization issues were 

avoided. While round-trip measurements cannot directly give the one-way network delay, 

they can be used to determine trends in Internet packet delay. A set of 18 round-trip 

network delay traces, each lasting for 1,000,000 packets, was collected between nodes in 

Canada. Additionally, the one-way delay traces used in [12] were also obtained. 

Two experiments were conducted to evaluate the NLMS and E-NLMS playout buffer 

algorithms. In the first experiment, each algorithm was simulated with network delay values 

from each trace. The algorithms predicted the network delay and computed the end-to-end 

playout delay for the current packet. The end-to-end packet delay was then compared to 

the actual network delay value found in the trace to determine if the packet would have 

arrived in time. At the end of the trace, the packet loss rate due to late arrivaIs and the 

average end-to-end packet delay were calculated. The E-NLMS algorithm outperformed 

the NLMS predictor by reducing both packet loss as well as average end-to-end delay in 

most cases. In particular, the E-NLMS algorithm provided better performance when the 

variation in network delay was higher. 

For the second experiment, the single packet WSOLA-based time-scale modification 

algorithm was implemented. The NLMS and E-NLMS playout algorithms were used again 

to predict the network delay and compute the end-to-end playout delay. The playout delay 

was then adjusted on a per-packet basis using the packet-based WSOLA time-scale modifi­

cation technique. The simulations showed that the E-NLMS playout scheduling algorithm 

reduces the average end-to-end audio playout delay while maintaining approximately the 

same packet 'loss' rate. More importantly, since the E-NLMS algorithm reduces the safety 

buffer term as weIl as the end-to-end delay during spikes, a significantly lower percentage 

of packets are time-scaled (stretched or compressed) when E-NLMS is used as compared to 

NLMS. Once again, the E-NLMS algorithm provides a greater improvement in performance 

for traces where the variation in network delay was higher. 
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Chapter 5 

Conclusion 

This thesis has focussed on the design, implementation, and evaluation of an adaptive 

playout algorithm with delay spike detection for use in real-time Voice over IP (VoIP). An 

existing playout algorithm, based on the normalized least mean square (NLMS) algorithm, 

is improved by introducing a spike-detection mode. The proposed algorithm is denoted 

as the enhanced NLMS (E-NLMS) algorithm. The E-NLMS algorithm computes a more 

accurate prediction of the network delay during delay spikes and rapidly adjusts the playout 

delay during such spikes. The E-NLMS algorithm improves overall performance by reducing 

both the average end-to-end packet delay as well as the packet loss rate, in comparison to 

the original NLMS predictor. 

This chapter summarizes the thesis work. Potential directions for future research are 

also provided. 

5.1 Thesis Summary 

The thesis begins by outlining the rapid growth of Internet telephony or VoIP. The circuit­

switched Public Switched Telephone Network (PSTN) was designed for real-time voice caUs, 

while the Internet and other packet-based networks were originally created for the efficient 

transportation of data. Section 1.1 describes how voice' caUs are carried in the two different 

networks. The growth in VoIP is being driven by a number of factors including the need 

to integrate voice and data, bandwidth consolidation, and lower tariffs for voice caUs. To 

succeed in the marketplace, VoIP must offer the same reliability and voice quality as the 

PSTN. Specifically, high speech signal fidelity, low end-to-end packet delay, low variation 
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in delay (jitter), and low packet loss are desired for high voice quality in VoIP. 

A general background of VoIP is given in Chapter 2. The Internet Proto col (IP) is the 

packet forwarding protocol used in IP-based packet networks such as the Internet. IP is an 

unreliable, best-effort, connectionless protocol and do es not guarantee a quality of service. 

Transport layer proto cols such as TCP and UDP are used by applications to manage the 

flow of data between two end hosts. A number of application layer protocols have been 

developed for Internet telephony. The RTP protocol provides a mechanism for real-time 

delivery of voice, video, and data. The ITU H.323 and IETF SIP proto cols are two of the 

main proto cols used for calI signalling in VoIP. The MEGACO jH.248 standard has been 

developed so that VoIP can interoperate with the PSTN. 

The transmission of real-time voice from one endpoint to another in a VoIP system 

consists of sever al steps. The analog voice signal is sampled periodically and encoded into 

a digital stream at the transmitter. Line echoes are removed from the digital signal. A voice 

activity detector (V AD ) is used to detect periods of silence when the user is listening and not 

talking. The speech signal is divided into frames and then coded using a speech coder. The 

speech coder may compress the signal in order to reduce the bit rate. Silence suppression 

or discontinuous transmission (DTX) schemes may also be used to conserve bandwidth. 

The speech frame is then packetized: first into an RTP packet at the application layer, 

then into a UDP packet at the transport layer, and finally into an IP packet at the network . 
layer. The IP packet is sent onto the Internet, where it is routed to the destination. Packets 

may be lost or delayed due to congestion in the network. A playout buffer is used at the 

receiver to buffer packets and remove jitter. The receiver extracts the speech frame from the 

received packet. The speech frame is decoded with the speech decoder and converted back 

to analog form to be played out. Packets that do not arrive or arrive after the scheduled 

playout time, are considered to be 'lost'. Packet loss concealment (PLC) techniques are 

used to compensate for missing packets. 

Chapter 3 introduced the various approaches to reducing jitter or variation in network 

delay. The role of the playout buffer in receiver-based approaches was discussed and the 

main types of playout buffer algorithms were reviewed. The three main types of play­

out buffer algorithms are autoregressive (AR) estimate-based algorithms, statistically-based 

algorithms, and adaptive filter-based algorithms. 

Autoregressive estimate-based algorithms use autoregressive estimates of network delay 

and jitter to compute the playout delay. Statistically-based approaches determine the 
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playout de1ay based on a statistical representation of past delays. Adaptive filter-based 

approaches aim to predict the network delay by minimizing the mean square error between 

the actua1 delay and the estimate. An accurate prediction of the network delay can be used 

to adjust the p1ayout delay more effectively. The main playout buffer algorithms are not 

robust enough to adapt their packet delay estimates in the presence of delay spikes, thus 

spike detection has been incorporated in some playout buffer algorithms. 

Playout buffer algorithms have traditionally adjusted their delay estimates during pe­

riods of silence by lengthening or shortening the silence between talkspurts. In a more 

recent approach, the playout delay is adjusted on a per-packet basis by dynamically time­

scaling individual voice packets. Packet-based adjustment provides increased flexibility as 

the playout scheduling algorithm can take advantage of accurate network delay estimates. 

The adaptive NLMS predictor uses an accurate prediction of the network delay to closely 

track network fluctuations. A drawback of the NLMS playout algorithm is that it does not 

detect delay spikes. Delay spikes are characterized by a large increase in delay followed by a 

series of declining network delays. Thus, the NLMS prediction is quite large for subsequent 

network delays during a spike. The proposed playout algorithm, the enhanced NLMS (E­

NLMS) algorithm improves the basic NLMS predictor by introducing a spike detection 

mode to rapidly adjust the playout delay during delay spikes. The safety buffer term can 

be reduced during spike mode, thereby reducing the overall end-to-end packet delay. 

Network delay traces were gathered to simulate and evaluate the E-NLMS playout al­

gorithm. A set of 18 round-trip network delay traces, each lasting for 1,000,000 packets, 

was collected between hosts in Canada. One-way delay traces used in [12] were also ob­

tained. Two experiments were conducted to evaluate the NLMS and E-NLMS playout 

buffer algorithms. 

In the first experiment, the algorithms predicted the network delay for the current 

packet and computed its playout delay. The computed packet delay was then compared to 

the actual network delay value found in the trace to determine whether the packet would 

have arrived in time. At the end of the trace, the packet 10ss rate due to late arrivaIs and 

the average end-to-end packet delay were calculated. The E-NLMS algorithm outperformed 

the basic NLMS predictor by reducing both packet 10ss and average end-to-end delay for 

most traces. In particular, the E-NLMS algorithm provided better performance when the 

variation in network delay was higher. 

For the second experiment, the single packet WSOLA-based time-scale modification 
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algorithm was implemented. The NLMS and E-NLMS playout algorithms were used to 

predict the network delay and compute the end-to-end playout delay. Playout delay ad­

justment was then performed on a per-packet basis by dynamically time-scaling individu al 

speech packets. In general, the E-NLMS playout scheduling algorithm reduced the average 

end-to-end audio playout delay while maintaining approximately the same packet '10ss' 

rate. More importantly, since the E-NLMS algorithm reduces the safety buffer term during 

spikes, a significantly lower percentage of packets are time-scaled (stretched or compressed) 

when the E-NLMS algorithm is used as compared to NLMS. Informallistening tests con­

cluded that the degradation due to infrequent time-scal~ng was inaudible. Once again, the 

E-NLMS algorithm obtained a greater improvement in performance for traces where the 

variation in network delay was higher. 

5.2 Future Research Work 

This section will provide directions for future work on the enhanced NLMS (E-NLMS) 

algorithm. The main feature of the E~NLMS playout algorithm was to incorporate a spike­

detection mode into the basic NLMS predictor. Improving the spike-detection algorithm is 

a key area for future research. The E-NLMS algorithm uses the past delay values to predict 

the current network delay. However, if the packet is never received, the E-NLMS algorithm 

will not be able to update the vector of past delays with a delay value for the current 

packet. An additional area for further research is how the E-NLMS playout algorithm 

should update tap weights in the case of a packet that never arrives. 

The proposed E-NLMS algorithm provides considerable improvement for delay traces 

where the variation in delay is high. However, in cases where the variation in delay is 

low, the E-NLMS algorithm may not necessarily provide any improvement and may in fact 

perform worse than the existing NLMS predictor. 

The current E-NLMS algorithm detects a spike when either the previous packet was 

'lost' (arrived too late to be played out) or the delay estimate was greater than the actual 

delay value by more than a threshold. The threshold is currently set at 5 x Vi, where Vi 

is the estimate of the variation in network delay. For traces with low variation in network 

delay, the threshold will be quite low and the E-NLMS algorithm will consider a small 

increase in the network delay to be a spike and will switch to spike mode. In spike mode, 

the safety buffer term, f3Vi, is significantly reduced; thus the end-to-end delay closely tracks 
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the actual network delay. Thus, even a slight increase in network delay may result in 

packets arriving late and hence being 'lost' as the delay estimate will be too low. The 

spike-detection algorithm needs to be improved to only detect legitimate delay spikes. 

The E-NLMS algorithm predicts the network delay by passing a'vector of past delays 

through an FIR filter and minimizing the mean square error between the actual delay 

and the estimate. The algorithm assumes that every packet is received at the destination 

and has a corresponding network delay value. AIl playout buffer algorithms make this 

assumption. There is no mechanism to account for packets that ne~er reach their intended 

destination, and how the adaptive playout algorithm should react in such a situation. 

Currently, playout algorithms are evaluated omine with network delay traces. The traces 

contain only the network delays for packets that arrived at the destination and omit any 

missing packets. Research needs to be conducted into how adaptive playout algorithms 

should estimate and compute the playout delay of the current packet, if the previous packet 

was never received. 
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