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ABSTRACT

Optimized design of composite structures requires simultaneous optimization of structural performance and
manufacturing process. Such a challenge calls for a multi-objective optimization. Here, a generating multi-
objective optimization method called Normalized Normal Constraint Method [NNCM], which attains a set
of optimal solutions and allows the designer to explore design alternatives before making the final decision,
is coupled with a local-global search called Constrained Globalized Bounded Nelder-Mead [CGBNM]
method. The proposed approach is applied to the design of a Z-shaped composite bracket for optimization
of structural and manufacturing objectives. Comparison of the results with Non-dominated Sorting Genetic
Algorithm [NSGA-I1] shows that when only a small number of function evaluations are possible and a few
Pareto optima are desired, the proposed method outperforms NSGA-II in terms of convergence to the true
Pareto frontier. The results are validated by an enumeration search and by exploring the neighbourhood of
the final solutions.

Keywords: Multi-objective Optimization, Composite materials, Pareto Frontier, Global Optimization,
Simultaneous Optimization.

Nomenclature
N : Number of design variables
M : Number of objectives

R": Design space of a problem with n design variables
S : Feasible region of the design space (S = R")

Z : Criterion space (Z = f (S) = R™)

X" : A Pareto optimum solution in the design space
X" : All Pareto optimal points in the design space,
f" = f(X"): A Pareto optimum in criterion space
f : Normalized objective

#(x) : Probability of sampling a point x e S

I : Number of non-dominated solutions obtained during the optimization process;

1. Introduction
Because of their excellent mechanical properties, laminated fibrous composite materials are successfully
used in a wide range of structural applications. However, due to the large number of design variables and
objectives, the design of composite materials is more complex than the design of uniform isotropic
materials. This is not only due to the anisotropic material properties but also because of the strong
interconnection between design and manufacturing issues. Thus, a common way to simplify the composite
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design problem is to separate structural design from manufacturing design [Le Riche et al. 2003] and
performing the latter just after the former is completed. However, researches by Wang and Costin (1992),
Costin (1993), Henderson et al. (1999), Wang et al. (2002), Le Riche et al. (2003), and a series of papers by
Park et al. (2001, 2003, 2004, 2005) have shown that a better overall performance is obtainable if structural
and manufacturing objectives are simultaneously optimized. This task requires solving a Multi-Objective
Optimization [MOO] problem, which is generally more challenging than solving a single-objective
optimization problem and involves more computational effort.

This paper proposes using a method called Normalized Normal Constraint Method [NNCM] to
simultaneously optimize several objectives in a composite design problem. To obtain each of the numerous
possible solutions to this problem, NNCM performs a single-objective optimization. For the single-
objective optimization, a local-global search called Constrained Globalized Nelder-Mead [CGBNM] is
suggested. The proposed method is applied to the design of a Z-shaped composite bracket, the goal of
which is to find the fiber orientations and the geometrical parameters that maximize the strength and
minimize the weight and the spring-in after demoulding. The results are compared to the ones obtained by
one of the most successful multi-objective evolutionary optimization methods in the literature, called Non-
dominated Sorting Genetic Algorithm NSGA-II [Deb et al. 2002].

In the following sections, the main terminology and definitions used in MOOQO are provided before
reviewing the applications of these methods in design of composite materials. The proposed MOO method,
its internal single-objective method, and the two parameters used to measure the performance of a MOO
method are explained in the third section. The fourth section applies the proposed method to the design of a
Z-shaped composite bracket and compares the results with NSGA-II. Validation of the numerical results,
discussion, and concluding remarks are given at the end.

2. MOO and Design of Composite Materials
In many applications, such as design with composite materials, usually there is more than one objective
involved; this type of optimization problems is generally called Multi-Objective Optimization [MOO]
problems. This section introduces the terminology used in MOO and reviews its applications in design of
composite materials.

2.1. Multi-Objective Optimization
The process of systematically and simultaneously optimizing several objectives is called Multi-Objective
Optimization [MOQ]. A MOO problem is mathematically expressed as:

minimize f () ={f.(x):SH—R;i=L..mm>1}

9,0020; {g,(x):S>%; j=1..,3;1>0} (1)
h,(x)=0; {h,(X):S—R; k=1....K; K=0}

The feasible region, S , in (1) is defined as:

S={xeR| gj(x) >0&h, (x)=0;j=1..3;k=1...,K} (2)
The objectives in this problem are in contrast to each other, and there is no unique solution to a problem
with more than one conflicting objective. There exist a number of solutions which all are optimum. These

solutions are called Pareto optimum solutions [Pareto 1906]. The definition of Pareto optimality is based on
domination that follows.

subject to{

Definition 1 (Domination): Considering the optimization problem formulation in (1), a solution x €S

dominates a solution x, € S, if X; is smaller than X, in at least one objective and is not bigger with respect
to the other objectives.
vi:l<i<m= f,(x) < f(X,)

S @)
Jjri<jsme £(x) < f(x,)

X, dominate X, @{



Definition 2 (Pareto Optimal): Considering the problem formulation (1), a solution X" €S is Pareto
optimal if and only if it is not dominated by any other solution inS . Collection of all Pareto solutions is

called Pareto frontier, represented by X .
X e X" < B#xeS :xdominate x” (4)

There are numerous methods for multi-objective optimization, and they can be classified in many ways

according to different criteria. A comprehensive review of these methods can be found in Miettinen (1999),

Deb (2001), and Marler et al. (2004). For the purpose of this paper, we categorize these methods into two

distinct groups:

1) Non-generating methods that find only one Pareto solution for a given MOO problem. The Pareto
solution may be selected with or without considering the user’s preferences. If the user preferences are
required, they may be obtained at the onset of the optimization process (method with priori
preferences) or interactively as the optimization process goes on (methods with progressive
preferences).

2) Generating methods that generate a set of Pareto optimal solutions among which the user chooses the
final solution according to his/her preferences. These methods are also called methods with posteriori
preferences.

This section reviews the application of different MOO methods to the design of composite materials, which

is the focus of this paper.

2.2. Multi-Objective Design of Composite Materials

Current literature on MOO of composite materials reveals mainly the use of non-generating methods.
Although these are preferred for their simplicity and for being less time consuming; there are attempts of
using generating methods to design a composite part. Both methods are reviewed in this section.

Method of weighted-sum is the most common MOO method used in composite design. In this non-
generating method, the objectives are combined into a single-objective problem using user-defined
weighting factors. The resulted single-objective optimization problem may be solved by any optimization
technique. Examples of application of this method in stacking sequence design of composite materials can
be found in Adali (1983), Walker et al. (1997), Manne and Tsai (1998), Walker and Smith (2003), Deka et
al. (2005), Jyotideka et al. (2005), and Mohan Rao and Arvind (2005), and Abouhamze and Shakeri (2007).
Kere et al. (2002, 2003) also used the weighted-sum, but only to reduce their multi-objective optimization
problem to a bi-criterion problem. The most sensitive objective was used as the first criterion, while the
others were collected in a weighted sum as the second criterion. The resulted bi-criterion problem was
solved by using a layerwise approach, in which all possible permutations of adding a new layer to the
laminate were examined, and the one that made the maximum improvement in either of the two criteria was
accepted.

Another strategy, also classified among non-generating methods, is to optimize one criterion while
constraining the others to user-defined limits. These methods are generally known as ‘“g-constraint
methods” and are commonly used in composite design optimization. Wang and Costin (1992, 1993) found
the minimum weight design of a composite shell by applying constraints on manufacturing objectives.
Henderson et al (1999) integrated manufacturing considerations as constraints into the design optimization
of a blade stiffened panel. Park et al. (2001) applied constraints on processing time and panel stiffness to
minimize the weight of a plate made by RTM. Wang et al. (2002) optimized the number of ribs and spars in
an aerospace composite structure using weight as the primary design drive and the cost parameter as a
constraint. Le Riche et al. (2003) used the same method but frequently exchanged the objective and
constraints.

Reference point method is another non-generating MOO method that has been used in composite design
applications [Saravanos and Chamis 1992, Kere and Lento 2005]. This method minimizes an achievement
function based on a reference point. The reference point, defined by the designer, is a feasible or infeasible
point in the criterion space that is reasonable or desirable to the designer. The achievement function may be
the Euclidian distance to the reference point or any other user-defined measure. Appropriate selection of
the reference point has a major effect on the final solution obtained by this method.



There are some non-generating methods with no user-defined preferences; an example is the min-max
strategy, in which only the critical objective is optimized. For instance, if the goal of a problem is to
maximize the strength of several components within an assembly, only the part with the minimum strength
is considered in each step of the optimization process. The limitation is that this method requires the
objectives to have comparable values. It is particularly useful for stress or stiffness minimization [Suresh et
al. 2007].

Non-generating methods generally require an insight into the problem because the preference parameters
(e.g. weighting factors, constraint values, reference point, etc.) must be set by the designer. These methods
find only one optimal solution; however, they can also be used to generate a set of Pareto optimal solutions
by varying the user-defined preference parameters [Watkins and Morris 1987, Adali et al. 1996, Mohan
Rao et al. 2005], but the resulted solutions may not be uniformly spread along the Pareto frontier. In
contrast, generating methods have the advantage of not requiring any user-defined preferences and
generating a set of optimum solutions. The penalty, on the other hand, is that they usually need a great deal
of computation. Non-dominated Sorting Genetic Algorithm [NSGA] and particle swarm are examples of
methods falling in this group that are used for optimization of composite materials.

Non-dominated Sorting Genetic Algorithm [NSGA] was proposed by Srinivas et al. (1995) as an
evolutionary method based on genetic algorithm [GA]. NSGA differs from simple GA only in the way the
selection operator works. Before selection, individuals are ranked according to the level of non-domination.
Each solution assigned a fitness equal to its non-domination level (1% is the best level), thus minimization
of the fitness promotes non-dominated solutions and eventually reaches the Pareto frontier. The original
NSGA has no control on the spread of the obtained solutions. Deb et al. (2002) overcome this problem by
adding a crowded control parameter to NSGA. The new method, called NSGA-II, is an elitist non-
dominated sorting GA that provides a set of non-dominated solutions uniformly distributed on Pareto
frontier. Using mathematical test functions, Deb et al. (2002) reported that NSGA-II outperforms other
contemporary multi-objective evolutionary methods in terms of convergence to the true Pareto frontier and
achieving a uniform distribution of solutions. An Integer-coded version of NSGA-II was used by Pelletier
and Vel (2006) to find Pareto-optimal designs for a composite laminates.

Particle Swarm Optimization [PSO] is another population-based, stochastic optimization method used in
design of composite materials. Inspired by the flocking behaviour of the birds, each solution in this method
is called a “particle” and resembles a bird among others. Each bird adjusts its position according to its own
flying experience (best solution in its individual history) and the flying experience of the others (the best
solution among all particles). There are several methodologies using PSO to handle problems with multiple
objectives, among them Vector Evaluated PSO [VEPSQ], a multi-swarm variant of PSO, was used by
Omkar (2008) to minimize weight and cost of laminated composite components. VEPSO considers m
swarms, each consisting of N particles. Each swarm is exclusively evaluated according to one of the
objective functions. The adjustment process takes place according to the flying experience of the particle
itself, and the particles in one of the other swarms. Although its performance is reported to be
“satisfactory”; no comparison with other methods has been found by the authors.

A population-based generating MOO, such as NSGA-II or VEPSO, is computationally time consuming
because it needs numerous function evaluations. Composite design problems have the particularity of
having a time consuming function evaluation process, which usually involves performing several finite
element analysis. Therefore, in many cases, it may not be possible or desirable to perform as many function
evaluations as is required for a population-based method to converge. The other property of population-
based methods is that they usually return a set of non-dominated solutions almost as large as their
population size. To facilitate the selection of the final solution, a designer may prefer to have only a few
solutions with a low computational cost rather than a large number of alternative solutions with a high
computational cost. For these situations, this paper proposes a combination of a local single-objective
optimization technique and a MOO approach called NNCM. The next section explains the proposed
method, the single-objective optimization method and how the latter is embedded in the former.



3. Optimization Procedure

Among generating methods, a survey of which can be found in Marler (2004), Miettinen (1999), and Deb
(2001), Normalized Normal Constraint Method [NNCM] [Messac et al. 2003] is implemented in this work.
This method normalizes the design space and introduces new constraints. Considering the new constraints,
optimization of only one of the objectives returns a non-dominated solution. When several of these single-
objective optimization problems are solved, several non-dominated solutions are obtained. The difference
between this method and varying user preferences in a non-generating method is that here the set of
constraints are introduced to spread the final solutions uniformly in the criterion space. This section
explains the NNCM method, the single-objective optimization method and their integration. Finally, two
parameters are presented to measure the performance of a MOO method.

3.1. Normalized Normal Constraint Method (NNCM)

Normalized Normal Constraint Method [NNCM] is an algorithm for generating a set of evenly spaced
solutions on a Pareto frontier [Messac et al. 2003]. This method yields Pareto optimal solutions, and its
performance is independent of the scale of the objective functions. NNCM method and some related
definitions are presented in this section.

Definition 3 (Utopia Point): Considering optimization problem (1), a point f° e Z in the criterion space
is called a utopia point if and only if:
£ =min{f,(x)|xe S} i=1..m. ®)

Because of contradicting objectives, the utopia point is unattainable.

Definition 4 (Anchor Point): A non-dominated point f ™ e Z is an anchor point if and only if it is Pareto
optimal and at least for one i =1,2,....m; £ = min{f,(x)|x e S}-

The first step in NNCM is to normalize the design space. For this purpose, the utopia and the anchor points
are required. These points are found by optimizing only one of the objectives at a time. After finding these
points, the criterion space is normalized using the following transformation.

A i (6)
fimax fIO
™ = max{f, (x);x e X} (7

The normalization process locates the utopia point at the origin and the anchor points at the unit
coordinates. Figure 1-a shows the original criterion space and the Pareto frontier of a generic bi-criterion
problem. Figure 1-b represents the Pareto frontier of the same problem after normalization.

The next step is to form the utopia hyperplane, which is a hyperplane with vertices located at the anchor
points. For a bi-criterion problem, the utopia hyperplane is a line as shown in Figure 1-c. Next, a grid of
evenly distributed points on the utopia hyperplane is generated. The number of points in this grid is defined
by the user. Figure 1-c shows, for example, a grid of six points on the utopia line. If these points are
projected onto the Pareto frontier, several Pareto optimum solutions are obtained. To find the Pareto
optimum solution corresponding to each point in this grid, a single-objective optimization problem must be
solved. This problem entails minimizing one of the normalized objectives with an additional inequality
constraint. For example, the Pareto optimum solution corresponding to point “P” in Figure 1-c can be

found by minimizing f, while the feasible region is cut by the line passing through this point and
perpendicular to the utopia line. The feasible region of this single objective optimization problem is shown
in Figure 1-c. The solution of this problem, f*, is a Pareto optimum solution for the original multi-

objective problem. Other Pareto optimal points can be found by repeating the same procedure for other
points on the utopia line.

If the objective functions have many local optima or the Pareto frontier is discontinuous, it is possible to
have some dominated solutions among the final solutions. Composite stacking sequence design problem is



well known for having many local optima; therefore, dominated solutions are expected. Messac et al.
(2003) proposed a filter that removes all dominated solutions, after all the single-objective

Figure 1. (a) A typical bi-criterion space (b) normalized criterion space (c) a normal constraint introduced
by NNCM and the feasible region of the resulted single-objective problem(min f,)

optimizations are completed. This filter requires a pair wise comparison of all the solutions. Since this
algorithm aims at finding a small number of solutions on the Pareto frontier (e.g. around ten points) the
performance of the filtering algorithm is of minor concern and not discussed here.

3.2. CGBNM for Single-Objective Optimization

In order to find each Pareto optimum solution, NNCM requires solving a single-objective optimization
problem. Since this algorithm is proposed for solving a composite design problem, in which the gradients
of the objectives are not available, a direct optimization method is required. On the other hand, considering
the time consuming process of structural and manufacturing analysis of a composite part, an evolutionary
algorithm may not be a good choice due to the low rate of convergence. Therefore, a local-global search
called CGBNM [Ghiasi et al. 2008] is used for this purpose. CGBNM, which stands for Constrained
Globalized Bounded Nelder-Mead, is an improved version of the algorithm introduced by Luersen et al.
(2004). This method is using several restarts of a simplex optimization method called Nelder-Mead [N-M]
method (Nelder and Mead 1965). The restart procedure uses a probability distribution function that initiates
N-M local search from new points far from previously sampled ones. CGBNCM is capable of finding
several local optima for a multi-modal function. It has been shown that CGBNM is more efficient than an
evolutionary algorithm, when a small number of function evaluations are possible [Ghiasi et al. 2008].

The flowchart of CGBNM is shown in Figure 2. The main blocks marked by the gray pattern and the bold
border, are: “Nelder-Mead local optimizer” and “Restart procedure”. The first finds a local optimum, while
the second restarts the local search to confirm its convergence to a true optimum or to help finding another
local solution. The maximum number of iterations for each restarts and the total number of function
evaluations are defined by the user at the onset of the process.

Nelder-Mead [N-M] sequential optimization method, proposed by Nelder and Mead (1965), is among the
most popular direct methods for local optimization of unconstrained problems. N-M method compares the
objective values at a set of n+1 points called a simplex. The simplex is moved toward the optimum
solution by four operators: reflection, expansion, contraction, or shrinkage. Reflection operator mirrors the
worst point in the simplex with respect to the other points in that simplex. This is the basic step that moves
the simplex toward a better solution. If the new point is better than the old point, the move is expanded by
using the expansion operator, else it is contracted by using the contraction operator. If neither of these
operators could find a better point, the simplex is shrunk toward its best point. The process is terminated
when the simplex converges to an optimum. It has been shown that this method is effective in practice by
producing a rapid initial decrease in function values [Lagarias et al. 1998], but the local optimum found is
dependent on the initial simplex [Humphrey and Wilson 2000]. Therefore, in CGBNM a probability
function is used to restart the local search from new points far from previously inspected regions in the
design space.



The restart procedure re-initializes N-M in order to ensure that the solution found in the last try is a local
optimum (small test or large test) or to find a new local optimum (probabilistic restart). The small test and
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Figure 2. Restart and convergence tests linking in CGBNM

large test restart the N-M from the last solution obtained with a simplex of sizea, or @,, user-defined

parameters. If the new small or large simplex returns to the same solution, the result is saved as a local
optimum, and the N-M is initialized with a probabilistic restart. The probabilistic restart initiates the local
search from a simplex located in the region that has not been previously explored. This strategy eases the
finding of a new local optimum. The probabilistic restart procedure uses a one-dimensional adaptive
probability function called Variable Variance Probability [VVP]. Using VVP, probability of sampling
point X is calculated as follow:

#(X) = ﬁ (1 127 (8)
d,p, = min{d, = [ (kiR ©)
=l T XX

x, S in this equation are the points in the design space that are previously sampled. d . is the minimum

non-dimensional Euclidian distance between pointx and one of these points. The variance of the normal
probability density, o, is updated in each restart by using the following equation:

3Um
Then a selection pool is created, in which each point has a number of copies proportional to its probability
value. Therefore, points far from previously sampled points have more chance to be selected as an initial
point for the next local optimization.

(10)



N-M method in its original form is unable to deal with nonlinear constraints; however, a composite design
problem is often constrained by several nonlinear constraints, such as failure criteria, and others that may
emerge by using NNCM. Therefore, it is important that the selected optimization method be able to handle
these constraints. In CGBNM, this goal is achieved by using a repair procedure that brings the infeasible
solutions into the feasible region. This procedure consists of a backtracking scheme; when a new point
generated by reflection or expansion violates one of the nonlinear constraints, the new point is moved
toward the original feasible point such that the distance between these two points is reduced by a
factor o € (0,1) . The procedure is terminated when either a feasible point is found or a predetermined

number of trials is reached. If the procedure fails to find a new feasible point, the original point is kept, and
the simplex is shrunk towards its best vertex.

3.3. Performance Measures

Two performance metrics used by Deb et al. (2002) to measure the performance of a non-generating MOO
method are presented in this section. These two parameters are used later to compare the proposed method
with NSGA-II. The first metric, y, measures the extent of convergence to a known set of Pareto-optimal
solutions, while the second, A, measures the extent of spread achieved among obtained solutions. Both
metrics are positive numbers and are desired to be as small as possible.

Convergence of a set of solutions to a known Pareto frontier is measured by the average of the minimum
distance of all the solutions from the Pareto frontier. To find the minimum distance from the Pareto
frontier, a grid of uniformly distributed points on Pareto frontier are generated. The minimum distance of a
solution from one of the points in this grid is used as the minimum distance to Pareto frontier. The
convergence metric, y , is mathematically defined as below:

p re o x

y=13d; di:mjiani—fjH (11)
i=1

In this equation, || || shows the Euclidian distance between the two points in the criterion space. Figure 3-a

illustrates how this metric is calculated for a bi-criterion problem.
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Figure 3. (a) Convergence metric , (b) diversity metric, A [Deb et al. 2002]

The second metric, A, provides information about the extent of spread achieved among the obtained
solutions. It is desired that a set of solutions obtained by a generating MOO spans the entire Pareto-optimal
region and is uniformly distributed along the Pareto frontier. The following equation is used to calculate
this metric for a bi-criterion problem:

LT +>7, -0 (12)
ly+1,+(p-DI
=3 @9



As shown in Figure 3-b, l,and | of the above equation are the Euclidian distances between the extreme

solutions and the anchor points. |, is the Euclidian distance between two solutions. This metric is zero if the
solutions are equally spaced and includes both anchor points.

4. Composite Test Case and Numerical Results
In this section, NNCM is applied to the simultaneous structural and manufacturing optimization of a Z-
shaped composite bracket shown in Figure 4. The bracket is made of 16-ply balanced symmetric laminate
of graphite/epoxy (AS4/8552) with fiber orientation[+6, /+ 0, /+6,/+6,],. The goal is to find geometries

and lamination sequences that minimize weight and spring-in and maximize strength. The part should not
fail or delaminate anywhere and should satisfy a safety factor of 1.5 against failure and 2 against
delamination. Delamination is calculated in the curved regions where the angle shape causes high
interlaminar normal stresses. The vertical deflection of less than 1mm and the spring-in of less than 0.5° are
strictly required for an acceptable design. The semi-analytical models of first-ply-failure, delamination,
deflection, and spring-in used for the optimization process are described in Appendix 1.

4.1 Optimization Set up

The MOO method described in section three is used to solve this composite design problem. The objective
functions are divided into two groups of manufacturing objectives and structural objectives. Considering
these two group of objectives, NNCM is used to find the Pareto solutions.

The first group of objectives deals with the structural performance including the weight minimization and

strength maximization. The two objectives are grouped into one weighted-sum as:

W(gr) R (14)
5gr 15

where W is the weight, and R is the load factor. The second group of objectives deals with the

manufacturing aspect and includes only minimization of spring-in after demoulding.

min f, =|Ad) (15)

By incorporating the set of inequality constraints described in the problem definition, the optimization

problem is formulated as follow:

min {f,(x), f,(X)}; x={6,, 6,, 6,, 6,,¢, s, I}

{R(¥) 215 A D(X)22.0 A S, (x)>10mm A|5(x)[<Imm A [AO(X)|<0.5°}

0, €[-90°,90°T;i =1,...4;

Subject to4 e €[0,0.15](m);

s, €[2,5](cm);

r €[2,20](mm);

min f, =

(16)

Where D(x) in this equation is the delamination factor. 5 eand rare the geometrical parameters shown in
Figure 4. §(x)is the maximum vertical deflection, and finally A@(x)is the spring-in.
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Figure 4. Geometrical variables and
applied loads on the composite bracket




The first step of NNCM is to find the utopia and the anchor points. To this end, two single-objective
optimization problems must be solved; one optimizes only the structural objectives while the
manufacturing objective is set free to take any value. The second problem minimizes only the
manufacturing objective and the structural ones are ignored. We refer to the solution of the first problem as

structural-only solution (fs**), and the solution of the second problem as manufacturing-only solution

(f,7).

£ = (0,-0.149) = (0,0.149); 1 =479 151 4y _ (0.886,0); (17
5gr 15
The utopia point does not correspond to any physical design and is calculated as follow.
Fo o (10, £0); £0=09090 215 4037 g0 | 00048 =0.0048- (18)
5gr 1.5

Figure 5 shows the two anchor points, fs**and fm”, in the normalized criterion space. The corresponding

lamination sequences and 2D cross-section shapes are also represented beside each point. Crossed-line
diagrams in this figure and Figure 6 represent the fiber orientations in the bracket. Vertical lines represent
the fibers running along the length of the bracket, whereas horizontal ones show the fibers running along
the width of the bracket (normal to the cross-section).

Regarding the objective values at Utopia and anchor points the normalization is performed using the

following transformation.

P f,()+0.087. P f_(x)—0.005 (19)
0.923 0.144

4.2 Numerical Results

NNCM requires solving a set of single-objective minimization problems with an additional nonlinear
constraint. The additional nonlinear constraint makes the feasible region tighter, thus the solution to the
single-objective minimization problem would be different than the anchor points. Here, two different
scenarios are considered. In the first scenario, called minStr, the structural objective is minimized. In
contrast, the second scenario, called minMfg, minimizes the manufacturing objective. Each scenario uses
three values for the constraints, seeking three points on the Pareto frontier (i.e. A, B, and C in Figure 5).
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Figure 5. Utopia point, two anchor points,  Figure 6. Graphical representation of 2D cross-section and
utopia line and the