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Abstract
~
) : . |

In the present thesls, we solve the problem of computing the
reachability reglons In two convex polygons for the ‘end-polnt,s of a ladder,
which !s allowed any motlon provided that each endpolint remalns within
the bounda;rles‘% its respectlve polygon. ‘

Using existing algorithms, thls problem can be solved in O(n logn)
time, where n Is the number of lpolygon vertlces. Howgver, by taking
advantage of the convexity of the polygons, w.e can reduce thls‘ time
complexity and we propose an algorithm linear In the input slze.

The computation of these reglons, after having determﬁled thelr
existence, Is done In two main steps : first the calculatlon of t.h‘e

1

g‘ *g . " =
unreachabslity region in each polygon, If 1t exlsts, then that of the

f!a(habih’ty regsons. y
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i \ N . Résumé,

PAd

Dans la présente thése, nous calculons les réglons d’accessibilité, dans

-]
deux polygones convexes, pour les folnts extrémes d'un segment, auquel
tout mouvement est permis ‘avec cependant a contralnte que ces polnts

12 4
extrémes restent chacun a I'Intérleur de leur polygones respectifs,

Utllisant les g,lgomhmes existants, ce probldme peut é&tre résolu en
' X

temps O(nlogn), n étant le nombre de sommets dans les polygones. Or,

profitant de la” convexlté de ces polygones, nous pouvons rédulre la

~

complexité en temps et proposons un algorithme linéalre en fonction du

nombre de sommets. - C

'Le calcul de ces réglons, aprés avolr determiné leur exlistence, est falt

en deux étapes : d'abord le calcul de la région d'inaccessibilité dans chaque

polygone, 51l existe, puls celul des régions d’acpesstbilite,

==
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- “ . - CHAPTERs1
1.1 - Historical-background ~ .
1.1.1 - The KaKeya problem ~ o

One of the first ge?metrlcal problems Involving the motlon of a line éegmem,
l; the Kakeya problem, [Bes], [Cun], [Sch]. 'In 1917, the Japanese mathematiclan
S. \Kakeya posed the following problem : I.et U = AB be a unlt line segment In the
plane.‘ What 1s the least posslble area swept by U if we were to move U from a
position AB back to its original posltlon wlth 1ts endpolnts reversed so that the
final position 1s BA ? Refer to figure 1.1 . Kakeya conjectured that the three-
cusped hypocyflold H of figure 1.2 Inscribed In a circle of dilameter 3/2, with area
7t/8 is the minlmum area In which U can be turned. Ten y%rs later hbwever. A.
Beslcovitch'established that the switching of the endpolnts of the segment U= AB
can be done within an arbitrarily small area. |

.

1.1.2 - More recent motion problems

Since then, other types of problems have arlsen, all leading to a more
Interested study of the theory of m vement In general and varlous Instances of 1t
In particular. Research In areas such as robotics , computer graphics, VLSI, lrlnage
processing and artificlal Intelligence has stimulated considerable iInterest In the
theoretical aspect of the-existing problems and In p#ticular, att.ent.lén and

importance has been gjven to the computational comphlexn,y of the problems.
hine

¢ . /
/
w
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The algorithms for the motlon problems often requlre and us‘e results.from the

-

"areas of computational geometry and graph theory. Examples of classlcal

algorithms are the computation of the convex hull, trlangulation, Intersection

(% -

detectlon , Vorono! dlagrams, visibility graphs}, polixt locatlon and shortest path. .

-
W

In contrast to slatic geomelry, where the objects are Inherently fixed and

 without mobllity, there 1s also kinelic geometlry. Remalnlng lnw the context of

*

computational geometry, the word kinetic lends to different Interpretations. One
could be that thé solving of a statlc geometry problem involves an impliclt motlon..,
As an example, lmaglne Jarvis marcl} or gift-wrapping process for the
computation of the con‘vex hull of a set of potats, [Jar]. The other, more dl»‘rect,

Interpretation, 1s the attributlon of an expliclt movement to the geometrical
oblects of the problem. And a large class of problems , called motion planning -

—

problems come In the latter category. The molion planning problem has been

addressed In several disciplines and 18 known by other }‘ames In the lterature:

findpath problem, obstacle-avoldance, collislon-avoldance or movers' problem.
<+~ - Many recent papers look at ?hls problem rro'm a computatinnal geometry

vlewpolnt:

~

-

*» motlon planning 1s thus formulated purely In geometric terms, This allows a

deeper study of the inherent mathematical structure of the problems.

-

. #* ‘also varlous asympt,ot,lcalljr efliclent technlques drawn from the ady of .

algorithms and data-structures are employed. Complgxlt,y t.hgory also sheds

conslderable light on the Inherent complexity of the motion planning problem.

-~ 4
N 2

Bt

4
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For a survey of recent algorithms and complexity results for motlon planning
‘ together with an emphasls on the computational geometry Issues, refer to [Whi].
Also In [Yap1l], Chee Yap presents a study of significant iﬁggz;etlcal advances in

algorithmic motlon planning , with an emphaslis on two "unlversal” technlques, the

v

decomposition and the relractson approaches, respectively, that have been used to

solve such problems, [Yapl]. . y

Definition :

-

- The Mover’s problem, or Findpath : glven the Initlal and desired final
conflgurations of an object In 2- or 3-dimenslonal space , and glven‘a description of

the obstacles, determlne whether there exlsts a continuous motlon of the object

4

from the one conflguration to the other, and find such a\ motion if one exlsts.
Y .

€ :

Varlous more speclific forms of thls general definitlon have ahpeared In the

-

—_ llt,'erat,ure. For example, the objlects are sometimes assumed to be polygons or
- polyhedra and the motlons sought might be sequences of pure rotatlons and pure

translations. A varlety of words have beenuused to evoke an lmage of the obJeét d

belng moved. It has been called a plano, a chalr and a sofa for example. The sofa

|

problem, for example, consists In moving a planar figure, the sofa, around a right
angle bend In a corrldor ( see [Mos], [How|, [Gol] and [Seb), see also [Str] for the

problem of moving a "chalr” through a door ).

i All these ‘words suggest the assumption that the objlect Is Inflexible, but the

—

=

~ general definition just glven allows the possibllity that the objJect conslists of more

e - than one part and that these parts are attached to one another In some flexible

~

N\
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way, say by revolving or sliding jolnts. Other possibilitles are that the parts of the

3
objects are not attached and can function Independently or that they can even

-~

change shape as well as configuratlon as they move.

.

In case the moving object consists of several independent pleces, the Mover's
problem 1s generally called a_Motionn Coordination problem, see for example [Yap2)].
The problem Is that of choreographing the motlon of disjolnt bodles so that ,

starting at an Initlal configuration, they attaln a goal configuration without ever

e
colllding with themselves or with the obstacles.

- .
In case the only objects are the ones to be moved (1.e. there are no fixed

obstacles) and the final configuration s only speclfled by requiring that the ':ol’),lcct,s

A
¥

be spread out, the problem 1Is called a Separability problem. A very .nlce survey of

separabllity problems is done by Toussaint In [Toul].

For the even harder case of finding a pdbh while the obstacles are also allowed

to move, Kant and Zucker, In [KZ]; generalize the path planning problem to one of

tragectory planning , In a‘time-varylng environment.

\

For the Movcr’s problem, however, the problem of moving simpler objects
than polygons such as a disc or a llne segment, also called . a ladder, a rod or a
needle, has recelved some attentlon. We will In this sectlon present some recent
results on moving a ladder In the plane and In the next sectlon describe some

problems In the area of Separability.

o
.

Mathematlcal and algorithmic analysls of the g'eneral motlon planning
problem began In the early elghtles In a serles of papers by Schwartz and Sharlr,

[SS1], [$S2] and [SS3]. They showed the possibility of using ~analytical and

=y
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topologlcal, rather than purely geometric, r;xethods in motion planning. Using tﬁe
projectlonaapproach. the Mover's problem’ln LS_SI] 1s reduced to searching for a
path in a graph that represents the connectlvity propertles of the space \lvhlch 1s all
the }’ree legal conflgurations of the moving object, called FP for free pqgmon, that
1s, positions of the moving object where there exlsts no collislon with the obstacles.
Schwartz and Sharlr glve an O(n5) algorithm for planning the motion of a ladder
where n Is the number of line segments composing the boundarles of the obstacles,

and In [SS5], they analyse the problem of a rod moving in 3D space. Thelr work

stimulated approaches with a more topological flavor in papers such as [OSY1],
-

[0Y] and [Yap2].

For the specific case of a ladder moving past planar obstacles, [OSY1] have

Improved thé O(n®) algorithm of [SS1] to obtaln an O(n%logn) algorithm by

¥
=

applylng what they describe as a retlraction ap(proach, a notlon from topology.
'They obtaln O(nlogn) and O(n%logn) algorithms for moving .a disc and avilne
segment respectively past planar obstacles, n belng the number of sldes In the
obstacle boundarles. They do thils by using the notlon of a Voronol dlagram and Its
generallsation to 3D conﬁguratl‘on space. Then a retraction mapping 1s applled to
this dlagram and the Mover's problem Is thus reduced to a path search In the
dlagram. In fact a motlon between two positions exists In FP if and only If an
appropriately retracted motlon exists within the subspace into which FP 1Is
mapped. Chlen, Zhang, Zhang [CZ%] also analyse the planning of a colllélon—frée
path for a rod moving In the plaffeamong polygonal obstacles, using methods
from topology. The rod Is allowed translation and rotatlon. [OSYé] and [OSY3]

use generalized Voronol dlagrams for planning the movement of a ladder . General

——
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motlon planning s reduced to searching In a graph which represents a subset, the

»

skeleton, of a "Voronol- complex™. The construction of the diagram ylelds a

-

motlon planning algorithm for the ladder which runs In O(nzloén logn) time.

Leven and Sharir [LS] give an O(nglogn) motlon planning algorithm for a

ladder. Thelr algorithm uses the same general technlques used In [SS1} for the
partltlg)nlng _or the 3D manlifold of free positlons FP of the ladder Into connected
components. This technique decomposes FP into simple .connected cells, each cell
being a ”vertex In the connectivity graph CG, and establlshes\ adjacency
relationships between these cells , reducing the contlnuous motlon planning
problem t.c; a discrete graph searching problem. Thelr algorithm however contains
some Improvements, such as locally updating the connectivity graph at the critical

positions, that make 1t more efliclent than the previous algorithms . Recently,

Sifrony and Sharlr In [SIS] also exhibited an O(n®log n) algorithm for the same

problem, which runs more efliclently when the obstacles are not too cluttered

together. -

~———

Hopcroft, Joseph ré.nd Whitesldes however, conslder a different type of
problem. They deal, not with a single llne segment but with an aésemblage of
them. In [HIW1],[HJW2] they show that the problem of roldrng a carpenters rule Is

—

NP-complete although. solvable In pseudo-polynomial time by ™dynamlc

programming. They are In [HIJW3] concerned with the motion of linkages from the -

computational complexity polnt of view. A planaf linkage consists of rigld rods
that are r}ee to rotate about Jolnts at thelr endpolnts. Each Joint connects two or

more rods and some Jolnts are rast,eﬁed to the plane. An Interesting result s that a




Al

by
e

. 8-
planar linkage , that can model a robot arm for example, can be constralned to
stay In the Interlor of a bounded polygonal reglon by the additlon of a polynomlal
num)ber of new links. |

\ 4
We will now highlight some interesting results In a different Instance of the

#

movers’ problem, the separabilily of sets. .

1.2 =-Separability of polygons

1.2.1 - Previous work on the movable separability of sets

. One Important subset in ihé wlde class of problems Involving motion Is that
of the 8eparab::l:'ty of sets under different types of motlon . The movable
separabllity problems are primarily concerned with the ldea of separating one or
several geometrical objects awdy fror‘n a set ancl studying the possibllity and the
methods of dolng so. Although it Is difficult to preclsely define the class of
problems that come 1n the category of sep:;rablllty, they differ In general, from the

typlcal colllsion avoldance and path planhing problems encountered in robotics.

The goal Is to spread the objlects far apart . In thls case a precise final

] -
configuration Is not really specifled since one simply wants to detach parts of a

“puzzle” allowlng different types of motlon such as translation, routation , "

sequcnti&l, simultaneous , ( some puzzles cannot be solved by sequentlal movement

of thelr parts but by a slmultaneouus motlon , each part having its éwn direction
. 4

and veloclty), and using geometrical properties of the bodles such as convexsty,

monotonscily, star-shapedness and so on. A study In breadth of the movable

»separabllity of sets Is done by G. Toussaint and Is clearly presented in [To'%fl]. We



.= 0-
wlil here present some problems In the pline and a few well establishéd results,
some classical, others more recent, before describlng In sectlon 1.2.2 the original '
»

problem that triggered the problem which 1s the subject of study of the present

thesls. .

Conslder a set of n isothetic rectangles In the plane whose sldes are paratlel-to
the x and y axls. Conslder the problem of translating the entire collectlon by somt;
vector with the c.onstralnt,s that every rectangle 1s moved sequentially and that at
no time durlng the process“ do we allow collislons to occur. between a patr qf

objects. Gulbas and Yao have showh that given n rectangles and a dl'rectlon, I, a

'.‘ translgtlon ordering always exlsts and that 1t can be computed In O(nlogn) time.

This also holds for the more general case of convex polygons,|[GY] . Later
Ottmann and Wldmayer prbposed a simpler algorlt;m with the same corfxpiexltj
to solve the same problem, [OW]. The more\general t&pes of problems consider
other types o; pol;fgons and other t,yi)es of motion besldes slmpfe translation and
deal with the notlon of Interlocking of polygof:s. see for example Sack 7a‘nd

Toussalnt in [Tou?2] {ST] and [TS] and Chazelle & al [Chal].

Some separabllity problems can be expressed as querlesnsuch as glven a subset
P' of a set P of convex elements, compute all the directlons In which P’ can be

translated away from P , without colllding with the members of P - P’ , or glven

LI -

an ordering on the polygons , find all directions of translation that admit this
ordering. Refer to [MT]. A simple query Is, for example, glven an object in a set of
convex p_olygons , what are all the dlrectlons of translation fo} this object to

translate away from the set ? One way of solving this query lnyolves the




* logn) time.

u
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coinputatlon of an ordering for (posélbly 6verlapplng) intervals on thg perimeter of

" a clrcle. The same query for the three dimenslonal case Involves finding the unlon

of (possibly lntersectln}) polygons on the surface of a sphere. In fact, the three-

o

dimensional equivalent of & number of translatlon querles , 1nvolving visibility In
the plane, Involve solving’ prbblems'ln a non-euclidean sﬁace, riamely on the

surface of a sphere, [Man].

-

Recently, Battacharya and Toussaint proposed a llnear algorithm for

determining the translatlon separability of two slmple polygons, once a

trlangulation 1s obtalned, [BT]. Two polygons are sald to be separable under
translation If one of them can be translated an arbltrary distance in some fixed

directlon without Intersecting with the other. Thelr algorithm uses the polygon

trlangulation algorithm jor Tar)an ‘and Van Wyck [TV], which runs In O(n log ‘

©

¢

There 1s an-Interesting distinction to make between two types of motion In a
set of objects. One 18 the sequential movement ( that 1s one obJect Is moved at a
time while the others remain statlonary) and the other Is stmultaneous. From there

also ‘derlves the'ldea of interlocking. For example, the three quadrilaterals of figure

©

1.3 lht}erlock under a sequence of translations or a sequence of rotatlons, however

B »
¢

can be separated under simultaneous motion . The same observation can be made

* with any number of sucil quadrllaterals.

v . I
-

, Consider the monotonicsty propertsﬂ A polygon P Is sald to be n;zonotonc or
o ’ * v

monotonic, In a direction d, If 1t can be partitioned into two subchalns, such that

for each subchaln, the orthogonal projection onto a Itne parallel to &, perserves the

-
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ordering of the polnts. Considering monofone polygons, ElGindy and Toﬁssalnt

-
G . [TE] have proved the following theorem :

© -
. . )

theorem : given two polygons P and Q monotone ln\\the directlons d and ¢

respectively, then P and Q are separable with a single translation in at least one

E

of the two directions d + 7/2, t 4+ 7/2. And the direction of s€parabllity can be

-~
determined In O(n) time. . : N
) ‘What about three monotone polygons, and four ? Notlce that the quadrllaterauls;y of .

figure 1.3 are also monotonic. Toussalnt [Tou2] and Dawson [Dawl] have shown
independently, that three monotone polygons can°be sequentlally Interlocked, see
figure 1.4, but that they are separable under slmultaneous translations, and that

LR v}

four can Interlock even under slmultaneous motlon, [Daw1], see figure 1.5 .

( ‘ " One tlass of polygons that present interestlng propertles are star-shaped

polygotis. A polygon P 1s sald to be star-shaped If 1t contalns a convex reglon,

- ) called the kernel (possibly reduced to a slngle polnt), from which no part of P Is

hidden from a guard, If he were to stand on any point Inside the kernel. Ii Is a

@ , well known result that two star-shaped n-gons are always movably separable with

’ . a single translatlon and tsimt a dlrectlon for separating them can be determlned In

» llnear time. This Is due to the llnear time con;putatlon of the Kernel of Lee afid

, | Preparata, (LP]). The above statement su;éests that two star shaped polygons, P
s,

and Q, can be separated by translating both of them simultaneously In some palrs

of dlirection with respect to an arbltrary fixed polnt In the plane. In fact 1t Is

)
I
|

. . ¢
sufficlent to guarantee that the relative motlon between P and Q Is correct, Let' |

!

G . K(P) and K(Q) be the respectlve kernels of P and Q. Let a and b be any palr of

\
F
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-
points In the plane su&hf that the llne L(a, b) golng through a and b, Intersects

a

K(P) and K(Q). Let X be :ny reference polnt In the plarfe; and conslder the vectors
xa, Xb and ab, In figure 1.8 . We can now see that If we transjate P and Q In
directions xa and xb with velocitles proportlonal to the magnitudes of xa and xb
respectively, the correct relatlve motion betwe;en P and Q !s malntalned. Different

palrs of polnts (a, b) only change the relative velocity of separatlon.

Dawson has proved in [Daw?2] that In any finite collectlon of three or more
convex bodles In the plane, Intersecting at most In thelr_ boundarles, there exlsts at
least three elements wfllch are movable. This howe;rer does not lead to easy
generalization In spaces of arbltrary dimenslons, as the example of the twelve tlles
in fligure 1.7 demoﬂstrates it. These convex objects are Interlocked under any type
of motlon. For star-shaped polygons however, Dawson has shown that any

collection of them are always separable under slmulnaneous translation.

<
e —— e

Theorem :

Let P = { P1, P2, ..., Pn} be a set of star-shaped polygons. If there exlsts a

3

set T of translations T = { T1, T2, ..., Tn}, T1 = (D,V) (dlrectlon and veloclty),

»

such that under T every palr (P1, P}) 1,) = 1,2,...,n, of polygons Is separable, then

Pis separable under simultaneous t,ranslatlan.

It we translate each P1 by the vector T1 we easlly see that the relative motion

. N ’
between every palr of polygons Is maintalned. Refer to figure 1.8.

° —
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1.2.2 - Stating the original problem

Let there be two star shaped polygons SP and SQ with kernels K(SP) and
K(SQ)." And let there be two polnts a € Ker (SP) and b € Ker (SQ). The vector ab
determines a direclion of separation for SP and SQ but also a velocity. We are
Interested in finding all the palrs of points p € Ker(SP) and q € Ker(SQ) such that
l{ pa || = || @b ||. In other words what reglons Inslde the two kernels determine a

glven veloclty of separation of the two pojygons ?

°
7

1.3 - Problem Statement

Stated more generally and independently, the problem 1s the followlng : Glven

two convex polygons P and Q and a llne segment S = [ a, b ] of length r,

. / «
calculate the reglons inside P and Q If they exlIst , such that S can be placed In P

and Q with the constralnt that the endpolnt @ lles within the boundarles of P and
the endpolnt b within those of Q, see flgure 1.9 for an lllustratlon. What Is the

reachability region for endpolnts aland b?

{

1.4 - The approach taken and the structure of the remaining chapters
U

To solve this problem, we will first compute the unreachabllity reglon for the

-

two polygons. This.Involves computing the Intersection of clrcles of equal radlus
\

about each of the vertices of the polygons. We first present 1n chapter 2 an existing
algorithm to compute thls Intersection. Then, In chapter 3 ,we show how thls
problem can be solved by an algorithm that has the advantage of being

generallsable to computing the Intersection of circles of arbitrary radil. In chapter



-*10 -

4 ———

<

4 we compute the reachablflt.y reglon_s In the two polyéons. For this we have to ,
calculate the Intersectlon of two convex figures that may have arcs of clrcles as
part of thelr boundarles. And In chapter 5, we exhiblt the complete algorithm for
solving the problem stated In the previousg sectlon. Flnally we close with open

-y
«

problems In the last chapter.

f

T

</
by N




1y

2.1 - Brown’s algorithm

In [Brow], Kevin Brown exposes an algorithm for Intersecting n circles of arbl-

.

trary radil, which we describe very briefly, for, 1ts beauty and simplicity. The algo-
rithm runs in O(nlogn) timey
Brown uses an Involutory Inversion transform, which maps a clrcle pasSing through

the center p of the Inversion, toJ a llne that doesn't pass through p and vice-versa.

It also transforms any sphere that passes through the center of Inversion to a plane -

»

not passing through 1t. Conslider flgure 2.1, If the n circle In the plane share a com-
mon boundary polnt P, we choose P to be the center of the Inversion transform
and computing the Intersectlon of the n clrcles wlll thus be equlvalent to comput-
Ing the Intersectlon of the half-planes which can be done In O(nlogn) tlme, see

figure 2.2.

4

In the general case however, when the clrcies don't Intersect at a common
polnt we do the followlng . Let the circles lle on a plane L . Choose an arbitrary
polnt P not In L. For each circle xc;\’the)i'e 13 a unigue sphere that passes through
point P and that intersects the plané, Ll at circle ¢. We can thus represent the n

discs 1n the plane L by n balls whose splierlcval,fboundarles share a common polnt P

- v

and refer to figure 2.3. Inverslon about. pqint P transforms the n spheres-to n

4

planes. The Intersectlon of the n discs s therefore represented by the intersection

of the n half-spaces, which can be computed In time O( nlogn), using Preparata

T
“

and Muller's algorithm, [PM].

¢

,
© AN
¢
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2.2 - Melville's algorithm .. ._ ' .

2.2.1 - Problem statement . ) ' ” .

Melville, [Mel], in the context of inding the minimum spanning circle, (msc),

for a set of polnts In the plane, encounters the following problem :

'

- ,
Glven a convex polygon P = { p,, Py ..., P, } and a radlus r, what Is the

reglon formed by t.al_(lng the Intersection of n circles of radlus r, abou} each of the

n vertices of P ?° , :
It 1s certaln that ‘a non-empty intersection exists since the rad!us r 1s not glven
but determlned by the distance from the centroid of P to the runheﬁp'venex of P.

e

2.2.2 - Overview of the rolling algorithm

The rolling algorithm is an approximation algorithm which computes a convex
region which Is certaln to contaln the center of the msc. The area of thls reglon

may be made as small as desired allowing the locatlon of the center to be

approximated more and more accurately. Let ¢* and r* be the exact center and’

radlus of the msc. The Idea Is the followilng :

<

- choose an Initial center ¢, taken to be the area cenlroid of the Input polygon
The area centrold of a convex figure has the followlng physical lnterpret,atllon ¢
the flgure were to be cut out ol: sheet metal, 1t quld balance on a pin point
located under the area centrold. We can triangulate the convex polygon and take

the centrold to be the welghted sum of the centrolds of each trlangle.

R
.

. ~
- compute the maximum distance from c, to a vertex , and take this distance to
L < -
be the radlus r, of a first spanning clrcle. ey,

- then calculate the Intersectlon reglon Dr, , of clrcles of radlus r, about each of
EIY \ -
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P
the polygon vertices. We repeat thls process by chooslng ¢, to be the“area
. 5
centrold of Dr,, compute r, to be the maximum distance between ¢, and.the
q

polygon vertices and compute the next reglon Dr, which Is nested In Dr,.

The complete algorithm conslists of several lteratloné of ’t,he above procedure and
generates a decreaslng sequence of radil : .
ro>r,>r,>0. >=1r"
and a cofrespond\lpg sequence of nested convex reglons :
Dro >=Dr,; >=.:. >=Dr"'"’
"% B
The Interesting part In this algorithm 1s to show‘how to co;npute Dr; In llnear
time. We wlll In the next section describe In detall the calculation of Dr;, and
show that 1t can be obtalned In tlme llnear to the number of the input (convex) ¢

¢

polygon vertices.

2.2.3 - Computing Dr; in linear time

A ¥

. Figure 2.4 shows the Dr reglon for some 7 > r*. The ldea Is the roilowlng :
Imagine that the polygon verticgs are poles and that a metal ring of radius r
encircles the polygon. The ring 1Is free to roll around the poles. As the ring makes g
one trip around, the center of the ring will t,rz;ce out exactly the perlmeter othr.
Let r >= r* be an upper bound on the radlus of the mgc . A vertex x of the
polygon 1s a contact poini at radlus r means that there Is a radlus-r spanning circle
through x. We Wwant to ldentlfy quickly. the radlus-r contact vertices. Therefore
computing Dr will produce them In 1counterclockwlse order, as a sub—seqdence 6!
the Input sequence. We ther\erore need a sufficlent condltion fog discarding points
that do lnot. contribute to Dr l.e. those that ‘canno,t. be contact polnts. Let: p;,

~

Pi+1» Pi 42 be three consecutive vertices of the convex polygon P.

7 * < -



FIGURE 2.5

C




- 25 - 4

’

Let -ctre (r, 'p,- » Di4o) denote the radlus-r circle, through 1;,' and p; ... Notlce
that there may be two such circles. We take the one which has 1ts center on the
opposite side of the.llne through p; and p; ., 88 p; 4 Is. Then p;  , 1s not a radlus-
r contact polnt. Refer to flgure 2.5. Intultlvely, the curvature of the clrc'le Is

greater than the curvature of the polygon 'b&mdary between vertlces p; and Di 4o

. and p;,, must fall inside. Also, circ (1, p;%.pi;o) Need not be a spanning circle of

KXY
the entire polygon.

The algorithm to compute Dr Is as follows : Let ¢ be the center of a spanning

" clrcle. Find the furthest vei'tex to ¢, call it A7 and let r be thlé distance and

therefore the radius of a spanning circle C. We want to ind a palr of consecutive
contact polnts at radlus r. C goes through Al To find the next contact polr;t, A2,
ﬁnaglne C swinging about vertex A1, clockwise. The first vertex touched by C will
be A2 Let s be the center of the radius-r clrcle through A1 and Aé.‘“The wedge ,

or the angle formed by (¢, Al s) Is the smallest possible. Refer to figure 2.6.

s

Let succ (p;) be the successor of vertex p; In clockwise order. To find the next
i

contact polnt, we could repeat the procedure, using A? as a plvot and choose

. among succ(A?), succ(succ(A2)) etc. the one that touches first the swinging clrcle.

It would take O(n"’) time to find all the contact polnts, Instead, Melvllle des¢ribes

a Ilnear aléorlthm that ylelds all radlus-7". contact polnts after one clockwise trip

hi ]
-8
'
»

3 1 f
We keep track of the clockwise successor of each vertex , In an array called

around the polygon. The ideals the following.

suce. Thus succ [Pi]l s pi B the original polygon. There are also two stacks S
and DP. S contalns the polygon vertices p, such i.hat. an arc of Dr 1s on the
radlus-r circle about p;. DP contalns the vertices of Dr, that Is the cénter of the
clréle that goes t,hrou'gh two consecutive vertices of S. The stack S first contalns

the two contact&:lms A1 and A2. In a loop, the algorithm keeps adding a polnt
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P; 41 to the stack’S and the center of circ ( 1, p;_,, p;) to DP as long as p;, s

0
o Inside cire ( r, pi_1» P; ) and that there are still vertices to be visited.

"But 1if Pi41 Is outside csrc (7, p;_y P;) lt. means that p; 1s 1nslde cire (r, pi-1, —
D; +1) and that p; 1s not a contact point and therefore can be discarded, SO we pop
the stacks S and DP and update the list of successors by letting p;,, be the
successor for p;_,. We then retreat counterciokwlse, poppling phe stack, untll
succ(py ) 1s agaln Inside circ ( 1, p;_;, P; ). The retreat must terminate because at

e

; worst , we wlll back up to circ ( r, An-1, An) which Is a spanning clircle. Once

succ (p; ) comes back InSlde, we agaln start advanclng clockwlse. Of course , succ

(pe ) s not necegsarlly a contact point and we may later back up over this current

.

& suce (p; ).
¥
‘We now glve a pseudo Pascal descript¥on of the algorithm : .
' ¢
0 ) Input :
. - Vertices of a convex polygon P = { p,, pgs «.., P, } » Stored In an array.

- a radlus 6,r ( we suppose that we have already computed this radius as belng the

distance of the centrold of P to the furthest vertex of P ).

-Outplt :

Intersection reglon Dr,pof circles of radlus r , abous each of the n vertices of P.

Data structure : ) ~
- P 1s stored In a‘n' array [1.. n ] of vertlees .
- Succ 1s an array [ O - n ] of Intefer. It stores a circular linked list of indices into
P, the actlve polygon vertlces. ¢

-8 is the stack of contact polnts l.e. t.qe vertices p; such that an arc of Drisona
radlus-r circle about p;.

' ‘r‘ ‘ N ’
o % - DP Is the stack contalning the ve 'tices of Dr, that 1s the center of the clrcle ‘that

-2

£

»*
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goes through two consecutive vertices of S. ) ’

Algorithm : . .

snstsalize :
forl:=0td(n-1)dosucc|l] <— 1+1;
succ [n] <-- 1;
S <-- (AL A2 ) '{suppose we have found these first two ;
contact polnts as described earlier} :

¥

k <--- 2, Index of startlng vertex. . .

Whlle slk] < > s[1] do { when s[k] ==s[1] we have come to the first ~ }
contact polnt and we stop }

begin . .
whnebP[ succ [ s[k] ] ] Inslde csre(r, s[k-1], s[k]) ands[ k] < > s|[1 ] do
egin \
push onto DP, the center of csre( r, s[k-1], s[k} )
push onto 8, succ [s[k] ] R
. kK <—--k+1 \ .
end; -

If s[k] < > s[1] thep—-———""

begin
z <-- succ [s[k] }
while P[z] outside circ (r, s[k-1], s{k]) do

begin start backtracking }
9 succ [sk-1] | <— 2z . -
pop S
pop DP
k <--k-1 ’ " .
-end
end .. ‘
. énd. .

2.2.4 - The analysis -
. ’
The correctness 1s proved by the racf that If p; , , Is outslde the clrcle csrc (1,
P;» Pi4+1 ) then p; ., does not contribute to Dr sthee 1t will be Inside cire (rop
;%2 )- We now want to show that the algorithm requlres O(n) time to select the

radlus-r contact points frorn a convex n-gon. When advancing cloclgwlse, the

. alggrjthm always stacks & point lb has not consldered “before. Since there are at

n’ost. n vertlces, the total cost for advancing 1s O(n). Now conslder-the retreating
act.lon ,» In which the algorithm backs up past points It has already placed on the

stack. The test to determlne whether the a.lgorlthm should backup 1s O(1), since it



w

v

- 20 -

requires only checking that one polnt s Inside or \out.slde of a known circle.
Whenever the algorithm backs up, 1t elilminates a polnt as a possible contact point.

Since at most O(n) polnts may be ellmlnated, the total cost oOf retreating Is
q

)

bounded by O(n). - ,

2.2'.5 - An example

Conslder figure 2.7. Let Al be p,. TheAfirst vertex A2, In clockwise order, hit

by the swinging circle about the pivot p, wlll be p,. So p, and p, will be the first

t

two elements of S. We then advance clockwise and test whether Pa Is‘ln cire (r,

;1, py). Yes 1t 1s , so we push (p+p,) In DP, push the vertex p; In S and go to
the next vertex whichIs p,. Let ((p;,pg) be short for cire( r, P+ D) ). Isp,in
(p 2:p3) ? Yes, and we push (p,p3) In DP, push p,In S and go to see pg. At this
si;a.ge ‘t~he~stacks S and DP contaln (from bottom up): p,, Pg Pa»-P4 and (p,p,),

¥

(p 2.p5) respectively. We contlinue, 1s p; In (p;;.lg 4) ? No, so we backtrack and pop

p4 from S and (p,p,) from DP. Is ps outslde of (p,,p3) , NO SO we stop the )

backtraclflng and go forward . Is p; In (p,p3), yes so we push p; In S and
(p 2p5) 1n DP. Then, we t,e;t (18 py In (pa,p;) ? (notice that since we have popped
p 4 from S, the successor of p,Is not p, anymore but p.). Yes It1s , so we push p,
In S and (pg4p,) In DP. We test the next one : 18 p, In (pgp,), Yes, so we must
also:push (pgp,) In DP and we stop since p, Is the first elemer;t, of the stack. The

contact ‘polnts are therefore p,,p 2.05.P5 In S together with the vertices of Dr in

DP.
| . -

f 2.2.6 - Comments on Melville’s algorithm

-
+

An Important thing to notice In Melvllle's algorithm is that the radlus of the
circle 1s not given but rather 1s'a function of the Input polygon. The fact that a
spanning clrcle exists guarantees a non-empty region Dr. Therefore, his algorithm

&

&’J

o . ‘ -
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, <
_does not really answer the quety: glven a convex polygon and given a radlus r,

compute the Intersectlon of the circles about the polygon vertlces, If 1t exists, and
answer no If it doesn'tJ. Also, his glgorithm may lnvolye backtracking. Finallys an
Important restrictlon on this mei;hod Is thai It does not easlly e@gtend to the
general case of computing the Intersectlon of circles of arbltrary radll, about

polygon vertlces. -

!

[}

The algorithm wé propose In the next chapter, Is also llnear In its téme
compiexity but has the advantages of taking as Input any convex polygon and any
radlus, rep“értlng If no lnten:sect,lon exlsts and ylelding 1t, If one does. Moreover, it~
ca1; also be eas}ly modified to hahdle the general case, t.h‘at, Is when the clreles’

about the vertlces have each thelr own radlus.

Al i
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CHAPTER 3

g

3.1- Intrqduction

Glben a convex polygon P = {p,, pos ., Pp } and%%e segment A = [a,,
a2] of length r, :vlt,h the constralnt that a, be Inslide P, we woulgl like to compute
the reglon of the plane, that is not reachable by a ,, If ¢, remalns In P. Let CH be
the convex ilull of the n clrcles of radlus r about each of the n vertlces of P. The
reg;on of the plane outsilde CH Is unreachable by a, There may also be such a
region Inslde CH. If It exlsts, we prove that it 1s the Intersection ofut.he n clrcles
and glve a linear “algorlt,hm to compute 1t. Also we wlll show how our algorithm
for computing thls Intersection can be generalized to the case where each clrcle,
around a vertex, has 1ts own radlus.

»

3.2 - Intersection of circles of equal radii

- 3.2.1 - Preliminary results ‘ .

' 3:2.1.1- The.line segment case

-

Before ‘c,fémputlng the unreachablllty reglon for the polygon case, let us solve a

simpler verslon of the problem :

- W ?
Question : ) | -
. *

Conslder a static llne segment S=[s,, §,] of length | In the plane , and a line
segment A==[a,, @, of length r , such that a, Is constralned to remaln on S and
oan slide between s, and s, while ¢, Is free to rotate about a,. See figure 3.1.
‘We want to determine the unreachable’reglon U for a,, that Is the locus of polnts,
such that : for any point p of U, there I1s no polnt q on S such that d(p, q) =,

where d(p, q) denotes the euclidean distance between polnts p and q . ..
O . R R

~
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’ wlll be palnted twice. |

Ideg : ‘¢ -,

5
- g Y

»  Conslder the conveéx hull of the two circles ¢, and ¢, of radlus r and about &,
and &, respectively. It has the shape of an éclair. See figure 3.2. The reglon of the

plane “outslde” CH(c ,,c,) Is obvlously an unreachable region for a,. But tﬁgre
5
¢ fh u

L

may also be such a reglon Instde CH(c ;,¢,). S

x1f 1 >=2 * r, then the entire éclazr Is accesslble to a,. As a proof Imagine the

following: Place ¢, on §,. The accesslble polnts to a, are all the g)olnt,s on the

"perimeter of ¢ ;. Imagine ¢, to be a clrcular painting brush. Translate a, from s,

to 8 4. The accesslble polnts also translate from the boundary of ¢, to that of c,,
thus palnting the entire éclasr. Notlce that the hourglass reglon Inside the éclasir

but outslde ¢, and ¢, Wil be palnted twice.

x*1If1 < 2 % r, then there will exist an unreachable region for a, which will be the

strict Interlor of ¢, ﬂ ¢, It Is easy to see that this reglon remains unpalnted, and

—— e

the two curved trlangular regions, Inslde the éclair and outside both ¢ 1 and ¢,

%

3.2.1.2 - The polygon case

‘We wlll first state the problem, then prove a few results, before presenting, In

re—

the next sectlon, the algorithm.

Problem statement : . ¢ c

Conslder a conviex polygon P as deflned previously, and a llne segment A =
[a,, a,] of length r for which a, 1s constralned to remaln inside or on the

¥ .
boundary of P. What 1s the unreachable reglon for a, ? :

We are Interested In finding the unreachable polnts Inslde CH (c,, cg .0

¢, ). From now on we will assumf that all two ad)acent clrcl¢s°lntérsect,. The case



¢

f -35- . -
35

of two disjolnt adjacent circles will be ha.nd!ed by a simple test In the final aigo-

¥ .
3

rithm.

54

Le;mma 1:

The reglon, 1f 1t exists, that s outside ea&&tmij‘clairs of the'n edges and

v

Inslde P, 1s reachable by a ,, a, remalning inside P.

Proof :

Take any polnt p Inslde this reglon. Draw a half-line L from p such that L.'s
d‘l;'ecblon 1s perpendlcular to an edge e of P and cuts e at a polnt x.. Refer to figure
3.3. Let y be the Intersection polnt of L with t,’;le “inner" éclair boundary. Then d
(p, x) > d (v, x) = r. Therefore, by placing a, at p, we can always find a polnt a,

on the llne segment (p, X) such that the segment (a ,, a,) Is Inside P. QEI})

t

Lemma 2 : o

~-

The unreachable reglon for a ,, Inside CH(c |, €4, ..., €, ), Is the strict Interlor

of the Intersectlon of all the ¢;'s, 1 =1, 2, ..., I.

o

Proof :

1
v
1

' K {F
* Let U be the unreachable reglon tnstde CH(c ,, €, ... + ¢, ) and CH be CH(c ,,
62' LTT 'Y Cn').

(N )CU: ¢
f=1.n

. for every polnt p In ( (M) ¢;) ,» there 1s no polnt q on the boundary of P such

t=1l.n

that d(p, g)=r. So there Is no q In the Interlor of P such that d(p, q) = r, there-

fore p is 1n U,
*UC( N ¢): o

t=1n
for every polnt p In U, there Is no polnt q In P such that d(p, q)=r, %0 there 1s no
{

polnt q on the boundary of P such that d(p, q)=r. Sincesp 1s Insilde CH, and that
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it Is Instde all n lunes, therefore p 1s i1 ( N ¢ ). QED

i=1n

Definition 1 :
\

Let P= {p, po .. P, } bea convex polygon, where the p;’s are the ver-
tices speciﬁed In terms of carteslan coordlnates and given ln count,erclockwlse
order. Let ¢; be the circle about vertex p, of radlus r. See ﬂgui‘e 3.4.

* The lune of two circles ¢; and ¢;, noted lune (¢; i) s e M) ¢y

* The lune bissector 1s the llme segment bissecting the lune and Jolning the two
Intersectlon polnts that are on the circle bouridarles. P

* The lune of edge e; ==(p; ,p; +;) Is lune(c;,¢; +,)> The lune head, Ik, , of cdge e, ,
Is the endpolnt of the lune bissector which 1s to the left of (p, ,p; ,,). Recall that P
Is glvengln counterclockwlse order. The lune tail, lf,, I1s the other bissector end-

point.

‘Good and bad arcs :

We will draw two types of arcs between lune heads according to thelr relative

position. Consider figure 3.6 . By convexlity of P, p,‘-’ +2 Must be in the reglon of the

plane that 1s to the:left of (p;, p;,;) and of (p,,'p,) and to-the right of (p; 4,
pl). This reglon may be bounded or not. The angle <p, 5 Pi, p,+;>> 1sin the

range | O, 7 [ and the lune bissector of (p; ., Pi4+2) = €; 4, makes with (p,, p; 4+,)
AY

L]

== ¢;, an angle In the (ange |w/2,3*w/2].

-

We dra.w a good arcon c; ., If lh, ., 1s on the arc (lk;,¥) (golng counterclockwise).

We draw a bad arcon c¢; ., It lh; ., 1s on the arc (x, {h; ) (golng counterclockwise).
-

>

Angle between two consecutive good arcs :

a

Refer to figure 3.6 | Suppose we have two' sngacent good ares on ¢;,, and

r

¢; oo We call the angle between two good arcs a closed angle.x-A good arc Jolning
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lh; to ”ﬁ +1 Is to the right of the llne segment [th;, Ih; )
%

Angle between two consecutive bad arcs : J

-

Suppose we have two adjacent bad arcs on ¢; _,~and ¢; +2.“We call the angle
between two bad arcs an open angle. A bad arc Joining /h; to lh; ., Is to the left

of the line segment [lh;, lk; ,,].

Angle between a good and a bad arc: " ,~ ‘

We call the angle between a good and a bad arc a‘%cmi—open arig}lc. The post- .

tion of an are, relatlve to the line segment jolning 1ts two endpolnts, changes In

golng from one arc to another of a different sort.

Lernma 3 : )

The boundary of the lm;ersectbon of n clrcles, If 1t exlsts, cannol consist of any

bad arcs,

Proof : Coe T o "
The Intersection of n circles In the plane 1s a convex reglon. Having one or
v%evgjal bad arcs Involves open or seml-open angles thus vlolatlng“the notlon of con-

vexity, l.e. we could find a palr of polnts Inside the region such that the line seg-

~

¢

[
ment Jolning them is partly outside 1t. QED

¢

v
We define four types of relatlon between two adjacent lunes: disjoint lunes,

june fouchtng lune, lune instde lune and lili-pad. Refer to figure 3.7 . We define a
pattern to be the closed sequence of arcs linking adjacent lune heads.
Lemma 4 :

A pattern composed of only good arcs 1s simple.

. f
»
i ‘ .

LY
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Proof : L.

o
¢ €
No two non-adjacent arcs lntgrsect.: suppose that there are two non ad)acent

\'rl
arcs ‘that Intersect. Since the pattern Is a contlnuous path and a:closed curve by
construction, constder the'situations in figure 3.8 :

obviously, w‘ave ca;rmot, have 1 because 1t Is not one single closed curve. Also we

-

cannot have 2. because at polnts a and b there 1s a change In the curvature. W

2] ¢

direction which cannot happen with ares of the same nature. Remalns 3 : every
vertex of the patt;ern is a lune head. To every lune head corresponds a lune

blssector and an edge of the polygon . Golng counterclockwise, the.sequence of

4 .

lune heads between-a and b and that between ¢ and d correspond to two polygonal
¢hains that "cover” the same portion or cone In the planeln other words , the

polygon corrésponding to thls pattern 1s not simple, which  contradlcts our

i

hypophesls'f AR »

t, ¢
Lemma 5 : A pattern composed of only good arcs Is convexz.

-_— [
" v

o

I;roof Do

Supposé It Is not . Then we can find two polnts p and q such that the llne
segment: jolnlng them 1s partly outslc%e' the region. See figure 3.9 .. We know by ;l;e
b;'evlous lemina that the reglon Is slm‘pleﬁ" There must be a path golng

cdunterclock’wlse from a to b. Slnce we have a simple figure, 1t would imply that at

“one polnt In this' path from a to b there Is a change In the curvature direction

‘which Is 1mpossible wjth arcs of the same sort. QED

. &
Lemma 6 : )

A pattern is non convex and has at least one bad arc if and only if there exists

LN

contaln the pattern,
o N :.gs,

- 2 -
.

S

" a clrcle ¢, corresponding to an arc In the pattern, such that ¢ does not eatirély .
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Proof : ‘ , . ’

* least one bad arc. In other words a "luge inside lune” generates a bad arc.

] ‘,' 1S
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——

.

)

only f since the pattern Is not convex 1t has either.an open angle or a seml-open
angle (or both). open angle : see figure 3.6-b, there exists circle ¢; such that lune

head lh; ., 1s outslde c¢;. seml-open angle : see figure 3.8-c, there exIsts circle ¢;,,

-

such that lune head lh; , Is outside ¢; .,

#f : there exists a circle ¢ corresponding to an arc a of the pattern such that part of

the pattern Is outside c¢. Take any point p on a (except its endpoints) and any

‘point q on that reglon of the pattern which 1s outside c¢. The llne segment (py Q)

wlll‘ be partly outside ¢, therefore "outslde” the curvature of the arc a. Hence the

pattern Is not convex and contalns at least one bad are. QED

+

Corrollary 1 : A pattern 1s convex tf and onlysf the circle corresponding to any
arc of the pattern contalns thils pattern entlrely.

Remark : '

~

There IS an obvlops analogy between a convex polygon (Intersection of half-
planes) and a convex pattern ( wé prove In lemma 8 that the latter 1s the
Intersection of circles). Any edge/ e of a convex polygon P s such that P lles
entirely In a ﬁalf-plane deflned bg; e. Any arc a of aeenvex pattern 1s such that the
pattern lles entlrely Inslde the circle corresponding to a. For a capvex polygon, a
stralght hagr:llne (circle of radLllus Infinity) partitions the plane » for a convex

# .

/
pattern, a circle of "s:mall” radlus does.
ﬂ

Lemma 7 :
If there Is a good arc from lh;" to lh; ., on circle ¢; ., such that lune(e;, ¢; )
Is elther entirely contalned In lune (¢;.,, ¢;,,) OF It entlrely contalns It, then In

golng from lh; ., to lh; (In counterclockwise order) the chaln of arcs will have at

L)

AN
- ~ AR

'\ ]
e

N
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Proof :

L]

Conslder figure 3.10 . Lune head a 1s outslde ¢;,,. By lemma 6 the pattern wiil

o

have a bad arc. QED ~ .

>

‘Corrollary 2 : If a pattern has good arcs only then every palr of adjacent lunes

forms a fen .

oyt
.

Lemma 8 : N

.

There 1s a bad arc on ¢; if and only ¢f lune(c;_,c;,) Is entlirely Inside or
:
entlirely outside ¢; .

"

Proof :
Conslder figure 3.11 for an lllustration. Let p;, the center of ¢; , be on the

line bissecting the segment [ p; .4 P; 4y ].‘Tl\ust Imagine moving ¢; on this line from
M) (‘;)

-

bottom ~up. As long as ¢, entlrely Includes or excludes lune ( Ci_1r €4 41 ), the lune-
heads lh; _, and lh; are on the boundary of ¢, In clockwlse order, which gives a

bad arc. But.when ¢; Intersects lune ( ¢;_,, ¢;;,; ), then the two lune heads will

& 3

be In counterclockwlse order , which gives a good arc. °
f

‘Corrollary 3 : There Is a good arc on ¢; " #f and only If ¢; Intersects lune (c;_,,

“~

\
.
, » . - *
° : Nl

Lemma 9 : . ’ - o

¢ +1)

b}

If a pattern has Kk ares and k good arcs.only, then 1t Is the Intersection of the

R

k corresponding clircles.

Proof: o T

Are (1, 141) 1s on circle ¢ ,. See figure 3.12. Call R the reglon inside the

pattern and I the Intersection of the k plrcles. 'R Is a convéx reglon by lemma 5.

* B C I: for every point p of R, p 1s Inslde all the k lunes, by the previous ‘ -

15

o
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»

corropary and because all lunes are fan types, so p Is Inside all the c1's. Therefore

p 1s 1%, -
* I C R : for every polnt pofI,pisinall lunes, )
"=> p mus} be to the left, of arc 12 and )
} -—> p riust be to the left of arc 23 and .... ’
5. -—> p must be to the left of arc k1. )
Therefore p Isln R. QED
' . Lemma 10 : -
I ¢ Glven a pattern, removing a bad arc and updatlng the pattern cixin be carrled

‘ . out In O(1) time. )

"Proof :

After deleting a bad arc on ;. We update the pattern as follows:
¥

<

" . A
1- compute lune head (¢;_;, ¢;,,) . Suppose 1t exists.
2- draw arc on ¢;_, from lune head (c;_,, ¢;_,) to lune head (¢;_j, ¢; 41)-

3- draw arc on'c;,, from lune head (¢;_j, ¢; ;) to lune head (¢; ., ¢; +2). QED .

-

o Y,

Lemma 11 :

Dlameter (P) < 2*r if andonly i/ e

Proof : | )

palr of circles Intersect.

Let p, and p; be such that d(p;, p; ) = dlameter(P).

only +f : dlameter(P) < 2*r, s0 d(p;,.p;)< 2*r and by transitivity d(p;.p,) < 2 *
~ rfor(1,J)) < > (k, 1), therefore¢; (M ¢; < >0foralfj=12 ...,n

tf ¢ Nnei <> @, foralll,) =‘1,2...l.n. therefore d(p, , p; ). < 2*rforalll)

and In particular d(p; , p;) = dlameter(P) < 2 *r. QED

A
Ay
\

Definition 2 :Let P = (p,, Pg oo » Py ) a0d Q = (g, ¢4, --- » ¢, ) D€ tWO convex

s, -

i
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polygons. Let c,-‘° be the c.lrcle of radlus r about vertex p; and let 8 be a clrcle

of radlus r about vertex gj . Assume that k circles , 1 < k <= m, form the npn

empty Intersection of all the ¢;'s. We say that ( (M ¢;) ~ ( N «$;) If and

f=1m ‘ J=1n

only if ( () &; ) can be obtalned from ( N ¢ ) after one translatlon and
j=1n ? i=Lm '

one rotation. The symbol = Is read "Is congruent to”. )

Definition 3 : Two patterns on m and n clrcles respectively are sald to be

equivalent when one of the two following condltions holds :

- (n c,-)=(.ﬂ sj)=emptyset

i=1m J=1n

= (n cg').~ (n 8])

Lemma ( Helly, 1923) :
If F1, F2, ... , Fn are convex subsets of the plane such that every three of them

have a polnt In coninion, then they all have a polnt 1n common.

Observation :

If n circles have an empty Intersectlon then there 1s at least one triplet with
an empty Intersection, that Is there 1s at least one circle which 1s outslde at least

1

one lune ( In the case that all palrs of circles Intersect).

Remarks : . ¢

1- Suppose we have k eircles, ¢, ¢,, ..., ¢;, having a non empty Intersection I
and such that each of these k circles contributes to this Intersectlon. In other
words the corresponding pattern has k good arcs. Adding a circle ¢, such that I
Is compl;ztely contalned Inslde ¢, ., does not change the Intersectlon, that Is ¢, n
Ca~MNNS%=c¢ciNc2)=M% N ck“.‘l{:t\b“ Is called a redundant circle.

2- Let ¢, and ¢, be two circles such that ¢, 2= 0. Adding any number of

EY

|

5
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.circles to ¢,; and ¢, does not change anything and the Intersectlon In every case

. remains empty. N

It

:3- Let there be k clrcles such that all palrs of circles intersect. Suppose therels a

‘ to the preceeding one.

circle ¢, which 1s entlrely outslde the lune of two clircles ¢, and ¢ 5. Hence ( M)
i=1k

¢;) = 0, and adding any number of clrcles to ¢ 1» €9 and c¢ 3 does not change the

non existence of the Intersectlon which remalins empty. Clreles added to an int-

. tial set of circles, whose lnbef‘éectlon Is empty, are also called redundant circles.

Therefore, we obtaln equivalent patterns by adding or deleting redundant circles.

~

Lemma. 12 :

-

Glven a pattern with a bad arc on ¢; such that lune (¢;_,, ¢, ) 1S entirely

Inside ¢;, the pattern obpalne&&t‘\ber deleting ¢; and updating remalns equivalent
i

3

Proof : /

1st case :

If the Intersection of the n clrcles Is not empty , then It must be entlrely contalned
In every lune and In particular lnslde lune (¢;.;, ¢;4;) hence Inslde ¢;. So ¢; 1Is
redundant and removing 1t does not change the Intersectlon and lps existence,

2nd case :

If the intersectlon of the n circles ¢, ¢, ... ,' ¢, Is empty then we must show that
the ¢; we delete 1s a redunldanc circle. We can test In linear time whether
diameter(P) > 2 * r In which case we stop. We thus conslder the case dlameter(P)
< 2 * r, In this case no two circles are disjolnt. Also for all ¢, 's, lune (¢;_,, ¢; 4y)
eXxlsts otherwlse ¢;_, and c¢;,, are disjolnt which Is contrary to our assumption.
Suppose, by contradictlon, that ¢; Is not a redundant clrcle. Then deleting 1t
creates an lntersectloln I. So I must be Inslde lune (¢;_,, ¢; ), therefore strictly




>

~
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lnglde ¢;. Therefore a non empty Intersectlon should have existed before deleting
¢;, which contradicts the two assumptlons that there was no Intersection and that

¢; was not redundant. ( There Is another Intultive proof with the three furthest

. .circles). QED

-

1
This lemma also holds In the general case : If there Is a circle ¢; which contalns

entirely the lune of two other circles ¢; and ¢;, then ¢; s redundant and can be

deleted.

3.2.2 - The Algorithm

We now present a linear algorithm to compute the Intersectlon of n circles ¢; , for

1 =1, 2, - ,n, of radius r whose centers are the vertices of a convex polygon P=

{ppPaeupn 1 .

0

Notation : I 1s the Intersectlon of the n circles.
dlameter (P) Is reallzed by (p;, p; )
ca s the total number of arcs In the pattern

¢g 1s the number of good arcs in the pattern.
begin

Step 1 : It dlameter(P) 1s
> 2x%r1: stop, I=40.
<=2%*rT : - for all clrcles ¢; do:
If ¢; contalns entlrely lune(cg, ¢;), delete ¢;. .
If ¢; Is outslde lune(c,, ¢; ) : stop, I Is empty.

3

- Draw pattern and In the process :
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* update c¢g and ca.

3

* for each bad arc on ¢;, If lune(e;_;, ¢;44) 18

outslde ¢; :stop, I = 0. "
&

Step 2:1f ca < > cg then for every bad arc on ¢; do:

- 1~ If lune(¢;y, ¢; ) 1s Inslde ¢; then'

. m .
¢ ¥

* delete c; 4 ' . .
* update pattern and counters
else stop, | = @.

?-lfcg<2,stop,1=ﬂ. —_
Step §:If ca = cg : the pattern Is the Intersectlon I.

end.

3.2.3 - The Analysis

.. Correctness : In step 1, If dlameter(P) 1s > 2 * r then ¢; and ¢; are disjoint

and Ils empty. If 1t 1s <= _2-* r then we draw the pattern and deleting redundant
circles does not change the intersection by lemma 12. In step 2, we délete safely,
by lemma 12, redundant circles. In step 3, the pattern composed of only good arcs
ts the Intersectlon, by lemma 9. The algorithm correctly compites the

intersection.

Complexity : In step 1, the dlamoeter of a convex polygon can be computed In
llnea}' time. The complexity of drawing the pattern 1s also 1inear In the number of
vertices. For each bad arc, testing the posltion of the lune of 1ts two nelghbours
takes constant time. Instep 2 there are at most n bad arcs, and for each of them,

deleting a ¢; and updating takes constant tlme by lemma 10. In step 3, If there

PI~Y

o
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R

are only good arcs then we simply enumerate in O(n) time the already ordered list

-of lune heads and arcs of the pattern and obtain the Intersection of the n clrcles. ’

-

The algérlthm correctly computes the Intersectlon of n clrcles of equal radlus

whose centers are the vertices of a convex polygon In O(n) time.

(R Is easlly seen that 1 (n) 1s a lower bound since each of the n clrcles may

contribute to the Intersection. \

&

3.3 - Intersection of circleg of different radii

e 8

In thls sectlon, we analyse the general case of computing the lntersection reglon of

n clrclgs of arbitrary radlus , about vertices of a convex polygon.

Problem statement : Given n circies of arbitrary radlus, whose centers are the

N

vertlces of a convex polyon P, compute thelr Intersection. s !

.3.3.1 - Preliminary results

We wlll first glve a few lemnmas before exhlbiting the algorithm and 1ts analysis.

Lemma 13 :

: \

Glven two consecutlve clrcles on a convex polygon, ¢; of radlus r; and ¢, of

radlus r;,,, about vertices p; and p;,, respectively, such that ¢; () ¢;4; = ¢,

)

deleting ¢, ., does not change the Intersectlon of the set of clircles.

Proof :

- ¢
IS

case 1: the Intersection of the n circles Is not empty, then 1t must be Inside Cis
therefore strictly Inslde ¢; ., which 1s then a redundant circle.
case 2: the Intersectlon of the n circles Is empty, we show that deleting c; ,, does

not create an Intersectlon. If there Is no Intersection then there Is at least a triplet

-
3
W

et
(J
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with empty Intersectlon. Now we delete ¢;,, such that ¢; Is 'complet.ely inslde

UL }

Ciyq- If we éet an Intersection then all triplets have non empty Intersection , then

K

" all n~-1 clrcles have non empty Intersectlon, therefore this Intersectlon must be

completely inslde ¢;. And addlng ¢; ., shouldn’t change It because ¢;,; contalns
¢; therefore 1t contains the Intersection , this means that the n clrcles have a non

empty Intersection which Is contrary to our assurhpt,lon. QED

Y

13

Lemma 14 : let ¢, and ¢; be the circles with the two largest radius r, and ry. If

the dlameter of P Is strictly greater than (r, + 1) then I 1s empty.

Proof :

let p; and p, reallze the dlameter. If { ¢y, ¢, } = { ¢;, ¢; } then the claim Is

3

evident otherwlse dlam(P) =d (py , p,) > rp + 1 . Slnce ry +r, < 1y ¥ r

then d( py, p,) =14 + r, + L, rorhsomle L > 0, therefore ¢4 and ¢, do not

2

" Intersect and I 1s empty. QED 3

3.3.2 - The Algorithm

begin b

step 1 : take the two clrcles with the two largest radlus; ryeed r.
If dlameter (P) > r, + r; then stop, I = empty set. §
otherwise

- begin
* draw.the pattern and In the process- :
.testl : If two adJacent clrcles don't Intersect stop, I = empty set
test2 : for each bad arc on ¢; , If lune (¢;_1s€; 41) 180Ut Of ¢;
then stop , I = empty set ,

test3 : If two adjacent clrcles have an inclusion : delete the




“QJQ * . R .
- 56 -

' ‘ . ‘ including circle and update the pattern. .

N . A . : , .
@ * set ca to n. . : o

‘ 2 end ’

.

step 2:1f ca < > cg thea
0 for every bad arc on ¢; do:
1- if lune (¢;_y» ¢;41) Is Inside ¢;%then
* delete ¢;
* update pattern and counters
else stop, I = empty set.

, 2-1f ¢g < 2 then stop, I1s empty. /

step 8 : If ca = cg then the obtalned pattern 15 the Intersection.

3

T enda

> 3
°
@
c \
0 ®

3.3.3 - The Analysis

&7

o
Correctness : In step 1, If the dlameter test Is true , then the overall Intersection
s empty by lemma 14. Otherwise we draw the pattern and deleting redunndant;
circles gk)\es not change the lntersect.lc;n by lemma 12 and 13. In step 2, by the
same lemmae we safely delete the redundant circles. In step 3 , If the pattern
" consists of good arcs only, by lemm;a. g, Tt Is the Intersectlon of the n clrcles.

Therefore the algorithm correctly coglputes the Intersection of the n clrcles.

Complexity : Step 1 , the dlameter test can be performed in linear time. While
drawling the pattern we advance counterclocklse and every tlme we add an arc to
the pattern 1t corresponds to a clrcle that hasn't been visited yet. The psattern will

0 contaln n arcs at most. Making tests 1 , 2 and 3 Is each time O(1). If test 3 Is true
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though, we may have to update the pattern-( delete lnctudlné circles, update arcs)
which 1s O(1), and 1} a circle 1s to be deleted there Is only one test done. We delete
at most the number of arcs the pattern has so far. So the total cost of this step Is
linear. In step 2, there are at xﬁost, n bad 'ar‘cs, we have no incluslon of adjacent
7 eircles. Deleting and updating one arc Is Oﬁl})‘b& lemma 10. Fo? step 3 , If only

d good arcs°remaln, we enumerate, 1n order, the arcs and the vertices of the pattern,

which takes linear time. Therefore the algorithm correctly computes In linear time

ghe Intersection of n circles of different radll whose centers are the vertices of a

r~

convex polygon. /

s

"

k3

N

=
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. CHAPTER 4
’ . -
Given two disjolnt convex polygons P={p,, Py «., P, } 80d Q={g ¢ +.. »
dm } With n and m vertices respectlvely and glven a line segment S = [a, b] of
length :;, also called a ladder, a needle or a 'rod, we want to compute the reglons In
Q 't.hat b can reach with the constraint that ¢ lles within the boundarles of P, see
figure 4.1. Testing whether a reachabllity reglon ezists for point & In polygon Q,

wlll be a step of the final algorithm, described In the next chapter. In thils chapter

we wlll therefore assume that such a reglon exists In Q and concentrate on the

L

algorithm to compute 1t.- This ls\ done 1n ‘two maln steps. The two problems we
will solve are best visuallzed In figures 4.2-a and 4.2-b. Let CP denote the conver
hull of n clrcles of radius r, with centers the n vertlces of P respectively, and let
UP denote thelr tntersection . We wlll assume UP Is not empty. Recall from the
previous chapter that the reachable region for palnt bwilen a remalns lnslcie P ls“_
CP - UP,’:where the symbol - denotes the set difference. In other words the
unbounded reglon of the plane cutslde CP Is unreachable as, well as UP which Is
Inslde CP. Since we assumed that a reachabllity region exists then CP and Q
must have a non-empty intersection Q’. leiadlng Q' will be the first™part of thls
chapter. Also since UP exIsts, Intersecting UP with Q' and ébtalnlng Q’’ will be
the second part of this chapter. The reachable reglons for polnt b will be RQ = Q'

- Q.

“ "

4.2 - The first problem

1

4.2.1 - Problem statement

~

We want to compute the Intersectlon reglon between CP and Q, denoted by

"Q’. Let us first expose the possible_ situations according to the assumptions made
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previously., Conslder igure 4.3 . Flgure 4.3-¢ cannot occur since we assumed that

a reachabllity reglon exists In Q. Also flgure 4.3-d Is Impossible because It Implles
0 . :

that Q contains P, and we have assumed P and Q to be disjolnt » Therefore only
u ' »
the first two cases are valld under the above assumption and notice that in the

5

first situation Q 1s contalned in CP - P.

4.2.2 - General description of the algorithm

Refer to figure 4.4 for the following definltlons.

Definition 1 : old and new edges
An old edge 1s an edge of CP. A new edge !s an edge In CP’ replacing an arc of
CP, by a segment Jolnlng the two arc endpoints. If P has n vertices, then CP’ has

n old and n new edges.

Definition 2 : a dome

A

The reglon under an arc of CP but outside the corresponding edge in CP’ 1s called

a dome .CP - CP ' thus glves n domes , each corresponding to an arc,

Definition 3 : an atlic ' ‘ . .
ij }
Every arc of a new edge Is contained In the triangular reglon which 1s delimited
by:
N
- the new edge. o . )

9

- and the two llnes supporting the two 'nelghbourlng old edges.

This reglon Is always bounded and called the pediment, or the attlc .
4

Definition 4 : an arc region
It 1s an unbounded rectangular reglon dellmited by
. a new edge

‘~ dnd thé two half lines perpendicular to this new edge at its endpoints and going

* -
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outwards that Is lylng In the half plane dellmited by the new edge that does not

5
contaln the polygon.

»

The boundary of CP Is an alternating sequence of arcs and edges. Therefore a
stralghtforward application of an existing algorithm for Intersectlng two convex
polygons 1s not sufficlent. We could solve the problem of comput.lnbg the
Intersection between CPD and Q using existing tools. In O(nlog n + klogn) time,
where Kk 1s the number of Intersectlon polnts, the algorithm of Bentley and

Ottmann, [BO], based on that of Shamos and Hoey, [SH], reports all the

Intersectlon points between the set of line segments and ares. To have a llnear

running time algorithm though, we first work with two convex polygons, then we

reinsert the arcs to update the Intersection reglon.

The two posstble situations are then the following :

- Q is entirely Inslde CP.

- Q Intersects CP and some parts of Q are unreachable reglons l.e. outside of CP

We now glve a general description of the algorithm that computes CP ﬂ Q

before decriblng it In full detall 1n the next sectlons.

In a first step we replace all the arcs of CP with stralght edges and obialn CP'.
We determine whether CP’ and Q Intersect In logarithmic time using Chazelle and
Dobkin's algorithm [CD]}, [Chal]. We assume that CP' and Q are In a general

position, and that the vertices of CP’/ U Q are distinct. Let I be CP’ N

We distinguish two cases :

foyj
% Jf I1s the empty set: then Qls Intersecting one dome and only one, by elther

belng strictly Inslde it or by lntersecting its arc. In the latter case the minimum
distance between the two polygons determines the arc that Q Intersects. This can

be computed In sublinear time using Edelsbruner’s binary elimlnation technlque.

—_—
i
/

) 0
a

.5"&
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His algorithm will be brlefly described in the next chapter,

L

¥ If Ii8 not the emply set : then we compute the convex ll-or the unlon‘or
CP’ and Q using any of the algorlthfns [Toud), [Sha2], [Tou2]. If the convex hull
I8 CP' then Q Is included entlrely In CP ' - P. Otherwlise we c;a,lculat.e the
Intersectlon reglon between CP' and Q. For this, sevgeral algorithms are avallable
[0 'R2], [Sha2], [Tou3], we wlll use O'Rourke’s algollt,hm for Its simpllcity , [O

'R2], which we also descrlbe 1n the next section.

We theh ldentify the subchalns of Q that are outside CP' , by ﬁndlng\\\ the
Intersection polnts lylng on the boundary Of‘t{le polygons. Those subchalns
pbsslbly intersect arcs of CP. To find those arcs we partition the plane around CP
into reglons‘ contalning arcs (arc regions), and reglons not containlng any. Then,

for every arc reglon we test for Intersection between the outer subchaln of Q and

the arc of the region we are in.
4.2.3 - Preliminary algorithms

4.2.3.1- O’Rourke’s polygon intersection algorithm

i

a ?m this sectlon we present a short description of the algorithm to comput;e the
intersection of two convex polygons P and Q, with m and n vertlces respectively.
The general 1dea Is the followlng : two "bugs”, one on each polygon boundary, go

around P and Q, and an intersectlon polint 1s detected and calculated every tlme

\

that they cross each other. These two bugs advance according to some rules, and

' E}

the key ldea Is not to advance on the boundary (either of P or of Q) whose current

edge may contain a yet to be found intersection. We glve here an outline of the

)

'algorlthm and for a more detalled description , refer to the orlginal paper [0’R2].
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Procedure CONVEX POLYGON INTERSECTION

}

begln 1:=):=k:=1 ; {1and ) are the two "bugs™ }
Tepeat )
" begln -
If ( edges 1;,-_1 p; and g;_, ¢; Intersect ) then print the Intersection ;
J ADVANCE { elther 1 or ) Is Incremented } ;
ki=k+1;
end
untll k === 2*x(m-+n);

®

If ( no Intersectlon has been found ) then g °
begin If p; '€ QthenP C Q |
else If ¢; €EPthenQCP : ~ : ‘
elseP N Q=Q
end ~ !
end: A \

4.2.3.2- Edelsbrunner’s minimum distance algorithm

Let P and Q be two convex disjoint polygons with m and n vertices

respectively. Let d(P, Q) denote the minimum distance between P and Q.

Edelsbrunner has shown that :
Lemma :If d(P, Q) > O then there exists p € P and q € Q that realize d(P,Q)

and such that at least one of them Is a polygon vertex. .
N *

His algorithm conslsts In performing a blnary search In the list of verLlceséor_P
and Q and at every stép, ellminate half of the canﬁldateé to be consldered for the
minimum distance. This bilnary ellmination technique ylelds a sublinear algorithm.

as It Is proved by the followlng theorem :




B 7

Q ~ -e8-

The minimum distance between P and Q , two convex polygons with m and n

Theorem :

vertices respectively, along with polnts p In P and q In Q that reallse 1t , can _be
T =~
computed In O (log m + log n) time, b

- For a detalled desciption of the technlique, refer to [Ede].
4.2.4 - Preliminary results —_—

Assumptions : P and Q are disjolnt.
CP and Q have a non empty lntersectlo;l.
We wlill prove some lemmae and theorems as we glve a more detalled
description of the algorlt,hm: The context-wlll thus help a better understanding of

the results. We now start explaining the algorithm to compute CP n Q.

We first replace each arc of CP by a stralght edge Jolning the two endpolnts

%

of the arc, and obtaln CP’'. Then we detect whether CP’ and Q Intersect and

consider two cases. This Intersection I Is empty or not.

CASE1l : I=QNCP'=0Q

Then since we have assumed that Q and CP are not disjolnt It must be that
Q Intersects a deme . It may or may not Intersect the corresponding arc. The
problem now Is to find which dome . But before let us prove that Q cannot

Intersect more than one dome. In fact It intersects eractly one dome.

\ .
Lemma 1: .

IrQnN cp’ =@ then Q Intersects exactly one dome of CP.

Proof .
’ Since CP and Q are not disjoint “then Q must intersect gP. Since CP’ and Q are

disjoint then Q must Intersect at least one dome and no old edges. We must now

P



any , we ldentify them and construct the region.
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show that Q Intersects at most one dome : Suppose 1t Intersects more than one
dome. Slnce Q M CP'= @ then this Implles that Q Is not convex, which

contradicts our Inltlal assumptlon . QED

‘We now want to find which dome of CP, Q lnt.erséct.s. We calculate the

convex hull of CP’ and Q and get two brldges. It has been proved In [Tou3] that

In the case that the Intersectlon Is not an Incluslon, there are exactly two bridges.

fad

Several cases arlse.

. . >,

Let us first polnt out that we cannot have that the inner chaln of CP’ 1s one old

- 4
"edge only, In other words the two bridges of CH ( CP’ U Q ) be connected to the

two endpolnts of the same old edge. This would simply mean that Q and CP are
disjoint which contradicts our Inltlal assumption . See Flg. 4.5-a. As well as we
; "

cannot have flgure 4.5-b which 1s the more general case of Q and CP'’ belng

disjolnt . We assume that none of these two cases ¢can happen.

<

Now In some situations we can ldentify quickly which dome Q intersects-and
then take the corresponding arc to see If 1t Intersects Q . These cases are deplcted

<

In figure 4.6.
/

In case 1, the Inner part of CP’ 1s one new edge only, therefore the domq of
that new edge Is the seeked dome. We test for Intersectlon points between Q and

the arc. If there are none then Q Is completely "“under " the dome. If there are

3 ¢

~

In case 2, the Inner chaln of CP’ 1s caomposed of one new and one old edge

- (that are consecutlve ). The seeked dome Is then the only one l.e.’the one

.

2

corresponding to the new edge.

In case 8, the Inner chaln is composed of an alternating sequence of two old

and one new edges and agaln we identify quickly the intersecting dome.

»
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case 1.a:p s a point on an edge of CP'"
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1
r

In othervthan these cases , the Inner chain of CP' has more than one new
edge and hence more than one dome. are candldate for Intersecting Q. And we
must determlne which dome Intersects Q. In this general sltuation we compute the
minimum distance between Q and CP’ and this tells us which dome Q lm,ersectsu.\
If Q has n vertices and CP’ has m vertices then using Edelsbrunner's, [Ede], algo-
rithm, described earller, we can comput‘e In O (logm + logn ) tlme the mnlnlmum

©

distance between these two polygons .

" We must first sa¥,that the minilmum distance Is reallsed by elther a palr of
vertices or a vertex and a polnt on an edge. We want now to prove that the point

on CP' that realizes the minimum distance determines the dome and therefore the

arc that Intersects Q. That polnt p Is elther a vertex or a polnt lylng on an edge.

°

Lemma 2 :
A\t

Let A and B be two convex polygons. Let (s, t) of A and B repectively be the

two polnts reallzing the minimum distance between A and B. Let Ly and Lg be

the two parallel lines tangent to lune (s, t) at polnts s and ¢ respectively. A and B

are on different sides of L, and of Lg such that the reglon sandwiched between

L, and Ly 1s free of any polnts.

Proof :

This result Is also proved In [McT]. Refer to flgure 4.7, Suppose , by corlntt,rad-

letlon, that a polnt x, say x € A, Is between. L4 and Lg. /Slnce A 18’ convex the
, ‘ (
segment [, s] 1s Inside A. But since [x, s] Is not tangent talune(s, t) It Intersects 1t
' 3

, Which implles that lune(s, t) Is not empty. This contradicts the fact that s and ¢t

realize the minimum distance between A and B. QED
1%
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+

Lemma 3 :

If the polnt p of CP’/ ,reallzing the minlmum distance between CP’ and Q, Is

—
8 polnt on an edge of CP’ then it must be on a new edge,

“Proof : o

\
Suppose by contradictlon that the point realizing the mlmmum distance lies -

"on an old edge of CP'. The polnt in Q reallzlng the minimum distance must then

be a vertex q. Let d = d ( p, q) be the minlmum distance between Q and CP r,
See the constructions In figure 4.8. The lune 6f radlus d and about p and q must
be empty because p and q realize the ;mnlmu{n distance. Let L be ghe llne support;-
Ing the old edge‘on whilch p lles . Since CP Is convc;x 1t must lle entlirely bel:)w L.
Let L’ be the line parallel to L passlng_througﬁ q . L' 1s tangent to lune(p, q) at
point q. . L

Now Q cannot Intersect’any arc of CP. and CP |n general, because CP Is below L
and Q above L' ( and If 1t did it wouLd mean that -Q 1s not convex, a contradlic-

tlon). This means simply.that Q and CP are disjoint which Is a contradiction to

our Inltlal assumptlon, QED.

Therefore If the minlmum distance 1s realized by a poilnt on an edge !n CP’ this

point must ile on é. neéew edge. .

‘We now_want to show that the arc corresponding to this new edge Is the one

>
v

Intersecting Q. /

2

i

Lemma 4 : .

a . R

If the minimum dlstance between CP’ and Q Is realised by a polnt pon a new

edge of CP’, then the dome adjacent to p Intersects Q.
i '
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Proof :

We know that Q and CP’ are disjolnt but that Q and Cf’ Intersect and that
Q Intersects exactly one arc. For Q to Intersect another arc of CP, Q must céme
below llne L which Is impossible due to Q'’s convexity. Therefore Q fnt.ersect.s the
dome ( and the arc ) corresponding to t;he new edge on which p lles and q 1s under

[

the dome, QED.

case 1.b : p 1s a vertex of CP’

5 .
Now we want to examlne the case where p 1s a vertex of CP’. This vertex
wlll have on one slde of 1t a new edge and on the other an old edge. We wlll show

'
7

that 1t 1s the arc correspondfng to the 'ﬁ/ew edge that Intersects Q.

The polnt reailzing the minimum distance In Q Is elther a vertex or a polnt on

s

an edge and conslider figure 4.9.

Now, p Is between a new edge ¢, and ‘an old edge e, - Let O be the line sup-
1"portlng ¢, . By convexity CP lles at one slde of O. S;), for Q to intersect an arc of
QP, the Intersecting part of Q must be :

- at one side of O ( the same slde CP lles)
- and a;, one side of L’ ( the same stde Q lles )
This defines a reglon In the plane ( Lhe’ Intersection of two half planes ) wher;e the

Intersection of Q and CP occurs (we assume O and L' ##e not parallel for If they

were then Q and CP would be disjolnt ).
We must now show that Q must Intersect the arc corresponding to e, .

We know that Q must Intersect exactly one arc. It 1s clear that only the trlangular
reglon deflned by ¢,, O and O’ has an Intersection with the half plane ( delimited

by L') in which Q lles, and that therefore Q must Intersect the arc corresponding

to e, .




J

FIGURE 4.9 )
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The other trlangular regions do not have an Intersection with the half plane of
L’. If for example the trlangle (e, O'’, O ) did have an Intersectlon with the half
plane above L' It would imply that e, will go above L (which'ls parallel-to L')
and that lune (p, q) wlill not b; empty, which cannot gapben.

t

Therefore 1n the case I = Q (M) CP' = empty set , Q Jntersects éxact.ly one domep

of CP. We wlll now examlne the case wherg I = Q M CP’ i1s not empty. ’"

\

CASE 2: 1= Q CP' < >Q® &

0

o )

We will now conslder the case Q Intersects CP' .

In this case we calculate CH ( CP' U Q ). If it 1sequal to CP’ then I = Q

Eyd Q Is strictly In CP' - P. But If the CH 1s not CP’ the set dlﬂereqce CH (CpP!
I Q) - (CP’ U Q) forms k pockels each correqundlng to an Intersection polnt also
alled a bridge point, on the boundarles of the two poly\éons. The Ud of each

pocket Is called a bridge and to each brldge corresponds exactly one brldge point,

[Tous3]. ‘ b .

We must now conslder the subchalns of Q that are outside CP’, and for each
of them from brldge polnt to bridge polnt , we see what arcs of CP thils subchain
Intersects. How'Is thls done ? See figure 4.10 for an illustration. We proceed @bin-
terclockwise and we start at the first (In counterclockwise order) bridge point. We
Identify the flrst (counterclockwise order) arc reglon and we repeat the followlng
process for every arc reglon : L
Let L 1; and L2, be the two Infinlte half llnes delimiting the arc reglon |, In coun-
terclockwise order. Find the first edge of the Q-chaln to Intersect L 1, . We are now
In the arc reglon 1. Keep testing for Intersection for the following edges with arc 1,
The first edge cutting L2,- signifles Lhat we are out of the arc region 1. We repeat

this for the next arc reglon 1 + 1. We can keep an array or a doubly linked st
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for the half llnes."

Parenthesis :

Let a be the outslde endpolnt of a Q-edge cutting an old edge e of CP'.:
Polnt a cannot Ccross a nelghbour[né arc and Intersect the old edge e at '_t.he same
"time, see figure 4.11. So If we go counterclockwise, starting at the bridge polnt x ‘

on the edge e, to see which arcs the Q-chaln Intersects, we mustn 't worry about

'

previous arcs (-arcl ) and we can start the testing at the next arc 1.e. arc2. "Some

posslble simple cases for Q-chalns lhtef-sectlng CP are depicted In figure 4.12.

-

4.2.5 - The algorithm. -

‘Input : two convex polygons P and Q,

a laddgr S = [a, b] of length . X S

v

Output : * the Intersectlon Q' of CP and Q.

Assumption : CP and Q Intersect.

‘ begin . ] '

) @

step 1 : compute CP and replace 1ts arcs with new edges and obtaln CP’. -

4 '

. step 2 : detect whether CP’ and Q Intersect : -

step 3 :1f CP' M Q=( then ) , ] ‘
’ - compute the minimum distance-between tile two polygons

- ldentify the dome corresponding to the point in CP/ ‘that reallzes

L
the minimum dlstance with Q ; thls dome Interseéts Q

“-“ find the Intersectlon polnts between the arc of the dome and Q, If

o

there are any.
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step 4 1 CP' (|Q < > then : A

- Identify the brldge polnts on the boundary '

- for every outer subchaln of Q , 1dentlfy the Intersectlon polnts with

o i
the arc 1n each reglon.

step 5 : merge the Inner chalns of . CP and Q, determined by the s

-

intersection polnts found In steps 3 and 4. ¢
,end’ ' '
4.2.6 - The analysis , C

Data structures : : S

t ° I4 @

" We keep the edges and gar&s of each polygon In an array and for each edge we
specify If It Is a new edge or dan old one. Also , we keep an ordered array of the

half llnes delimiting the arc regl?m.

a

Correctness :

<

We have proved In lemma, 4, that In the case that Q and CP’ do not Intersect
, the minimum distance between them determines the dome of CP Intersecting Q.
We have also broved that for the more general case, for every outer portion of Q

every arc reglg)%n corresponding to 1t determines the Intersection polats.” -

Time complexity :
Comp{xtlng CP' directly from P can be done 1n llnear time. In step 2, detett-

Ing the exlstence of an Intersectlon between two convex figures can be done 1n sub-

linear time using Chazelle and Dobkin’s algorithm. In step 3, the minimum 'dls- ’

tfance between two convex polygons can be obtalned , together with the polnts

L.

reallzing 1t In logarithmlc tlme using Edefs‘brunner's blnary ellnilnatlon technlque.

4
Then once a dome s ldentified inding the Intersection points with Q , If there are

Iy

)
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-

any , is done In at most O(n) time. For the general case In step 4, since we have

o ’ the outer subchalns of Q (they are ordered but this does not really matter) and the

v

corresponding arc regions, updating the Intersection reglon iIs really a merge df two
- ! v /
. ’ sorted lists each having a llnear number of elements. Step 5 Is also a linear merge

of two sorted lists, If we leave polnters from the Intersectlon points to the inner
[+ & . J n’
and outer chalns In both directions. Therefore the total running time of the algo-

~

'rithm:1s bounded by O(n). . »
- o% -
4.3'- The second problem : . . .

13

. 4. 3 1- Troblem Statement . s

At this stage we have the reglon Q' In Q, ln which the reachablllt,y reglq\s

are contalned We now encounter_ the problem of computlng the lnt,ersectlon

3 -

- reglon betwéen Q' , obtained in the prevlous sectlon, and UP. This Intersection will’

be denoted by _IQ and the reachabllity reglon In Q will be RQ = Q' - IQ. Sée

figure 4.13 for an llustration.

e

\ 4.3.2 - General description of the algorithm S ' )

\
i ) ) »
.
' . N »
« . )
. . R

To compute UP ﬂ Q' , we first replace all the ares of UP‘ , and the posstble

arcs of Q' with edges to obtaln two convex polygons UP’ and Q'’. We. then test

-

. . for the intersectlon J between these two, using Chazelle and Dobkin's algorithm,

§
~°

7 ‘ [CD]' ' (&r\ .
E 3 ' ’ ' e P
If J Is empty then f'fwo cases arlse : elther UP and.Q’ are disjoint, which

means that all of Q' Is reachable for the endpolnt b of the ladder S = [|a, b) or UP

)

ind-Q’ intersect 1h a reglon IQ and more precisely we prove that Q' intersects one

. . dome of UP. ‘ ! ) ‘
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In the second sltuation, If J Is not empty then to find IQ (we are In fact

interested In RQ = Q' - IQ) we partitlon the plane around UP 1n arc reglons and

™

for subchalns of Q’ we test for intersectlon with arcs In these reglons, Let us first
expose the different possibllitles, by consldering flgure 4.14 . Q' contalns the
4 reachable region(s). Figure 4.14-a is not valld under the assumption that a reacha-
bility reglon exists In Q. Flgure 4.14-d Is also invalld because 1t means that Q'
Intersects P ( since UP contalns the cent,roldhor P) and that therefore Q Intersects
P. Figures 4.14-b and 4.14-c only are valld. UP conslsts of arcs only and Q' rna.y’

or may not have arcs.

.3.3 - Preliminary results

We will prove a few theorems and make observatlons as we describe more

fully the algc;rlthm. .

( *Facts :
- UP contalns the centrold of P, therefore Q ¢an only Intersect the parts of UP

*

that are outslde P.

, = Also an arc of Q' cannot intersect UP because an arc of Q’ Is an arc of CP and

because UP‘ls strictly In CP. Therefore only edges of Q' ( that are not edges of CP

-
-

) can Intersect UP.

f“ - We replace the arcs of UP and of Q' to obtaln two convex polygons UP’ and Q'’
respectively. We then test whether J = UP’ (M} Q'' Is empty or rh;;t IrJis
empty we prove , in case 1, that If an Intersectlon exists between UP and Q' then

“it, must,l be that Q' Intersects exactly one arc of UP. If J 1s not empty , we are “lﬁ“

- . the more general situation treated In case 2. .
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CASE 1:J = UP/ N Q! = empty set

>
Lemma § :

_UP’ and Q’/ are disjolnt If and only if UP’ and Q’ are disjolnt. , .

T

Proof :

only if : The arcs of Q’, If any, are the arcs of CP. UP’ and Q’’ are disjolnt. we
know that no arcs of Q; Intersects UP (therefore UP’) since UP Is strictly Inslde
CP. We now bring back the arcs of Q’ to get Q’. We know that an arc a of Q'
does not Intersect UP ’/ slnce a Is a portion of aﬁ arc of CP. S!nce Q' does not
Intersect UP’ , edge e does not Intersect UP’. So when we restore the dome of Q'
the dome Itself doesn’t cut UP' for iIf 1t did then UP’ must have Intersected e or
a, which Is contrary to our assumption . Also UP'’ cannot be s:trlct.ly Included in
the. dome . We now prove thls statement. Suppose UP '’ were strictly Inslde a
dome. UP tontalns the centrold of P and more precisely UP’ contalns 1t. Therefore
UP’ and P must have some Intersection and cannot be disjolnt, therefore part of P
must also be In the dome, and since the dome 1s part of Q ( the original Q) this
Implles that P and Q Intersect which contradlcts t,h/e' inltlal assumption of two dls-
Jolnt polygons.

if : stralghtforward, since Q’’ Is contained In Q’. QED

Cprroliary ¢ UP' and Q'’ iIntersect if and only If UP’ and Q' intersect.
4 .

We can prove using a simllar reasoning the following theorem and derlve lts corrol-

lgry :
Lemma 6 : UP and Q’’ are disjolnt if and only If UP and Q’ are disjolnt.

~

.
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Corrollary : UP and Q’’ Intersect If and only If UP and Q' lmersecq.”\‘

o

" Lemma 7 :if UP' and @' ! are dlisjolnt, and If: UP and Q' Intersect, then Q'

" Intersects exactly one arc of UP.

e

e

PSR -

Proof : Q' cannot be completely under a dome because then 1t would be unreach-
able which contradicts our Initlal hypothesls. Since Q' and UP Intersect and Lhat'
the boundary of UP Is composed of arcs, Q' must ql’ntersect, at least one arc of UP.
Suppose Q' Intersects more than one arc of UP. Let a be one such arc, and refer to
figure 4.15. Let L, be the line supporting the édge of UP-" corresponding to arc a.
All of UP'1s at one slde of L, and arc als on the other side. Q'’ does not intersect
UP'’ but intersects a . Therefore the Interior of Q’’ must be on the same slde of

L, as arc als. For Q'’ to intersect other arcs as well , Q' would have to be non

convex which Is a contradictlon. QED

We now want to find which arc of UP Intersects Q’ , If any such arc exists. In any
‘ b

/ .
cdse we also know that If there exlsts an Intersection , It cannot be with an arc of

<

.Q’ (or a new edge of Q' 1.e. an edge of CP) but with a real edge of Q’.
g &<

Al

* We calculate the minimum distance t realized by u In UP’ and v In Q’L:/
using Edelsbrunner ’s algorithm. And let L, and L, be the two parallel lines-

tangent to lune (u, v) at points u and v respectively.
case 1.a: ulsa pointon an edge of UP' -

If u is a polnt on an edge e, of UP’ , the\ymust, be a vertex of Q’’. To edge ¢,
corresponds a dome d, and an arc e, . We test whether v Is below or above the
dome. Notice that all of UP except a, Is below L. -

. : } -

N
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If v 1s above d,, that 1s outside the curvature of the arc a,, then we can-easily see :

that Q"~ and UP do not Intersect, since only a, Is above L,.If v Is belox;v the «

~ [

.dome then a, Is the arc Intersecting Q'’, and golng up from v on Its left/and 1ts

right edges, we can find the two Intersection polnts.
s - «

case 1.b: u 1s a vertez of UP' -

- .
L
[

If u is a vertex of UP’ , then v can elther be a vertex or a point on an edge.or Q'
It v 1s a vertex of Q' ( conslder figure 4.18) then let a,_ and a, be the two arcs
of UP ad)acent to i, In counterclockwlse order. If L, cutgnone of a,_; or g, then
Q'’* and UP do not Intersect, therefore Q' and UP don't Intersect. If Lv cuts any
of a,_, or a, then thls arc may cut Q’. To see If It does we simply check the edges

of Q' , starting at v, In counterclockwlse direction If the arc 1s a,_, , and In cw

direction If 1t 1s @, . The reasoning 1s simllar If v Is a polnt on an edge of Q'’,

»

CASE2: J=TUP' M Q'' < > empty set

In thils case Q' may Intersect more than onk arc In UP. We find the bridge
polnts after having CH (UP’ U Q’’). We bulld arc reglons for UP, no need to,

bulld them for Q' since no arc of Q' Intersects UP. In fact, as we look for Inter-

sectlon polnts, we cut off the reachable’ reglons of Q.

( Suppose that we have computed theﬂ bridge polnts between Q' and UP’. In a

3

first step we must relnsert the arcs of Q' . For this we look at the new edges of Q'

'..If a new edge of Q’’ does not Intersect the boundary of UP' then replacing It

with 1ts arc does not change this ( l.e. the arc will not cut UP’), In such a case this

new edge I1s outside UP/, It cannot be completely Inslde UP ' because then the
. ¢

corresponding arc of CP, will be Inside UP and Intersect UP which cannot happen

4 -
1

4
7
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17
as we mentlonned 1t before.

Lemma 8 : If 2 new edge e of Q’’ Intersects boundary (UP’), we say that 1t must
. raN -*

be cut twlce exactly.

Proof :

See flgure 4.17 for an lllustratlon. We know that when a segment Intersects a
convex polygon 1t Intersects It In at most two polnts. Let us show that e will be
cut more than once :. e 1s a new ed;e , suppose by contradiction that 1t cuts
boundary(UP’) In one polint only. Then an endpolnt of e must be Inside UP'( if
the Interseectlon polnt Is a vertex of UP’ 1t counts for two polnts) and the endpdlnt.

f a new edge Is a polnt ( possibly the endpoint) on an arc of boundary(CP). This -

1s a contradiction since boundary(UP/) 1s strictly 1nslde boundary(CP), QED.

Between the two bridge points on a new edge e, there 1s an outer subcpaln of

. R
UP'. By replac\lng e with Its corresponding arc a, all the subchain of UP' willl be
under the curvature of a. Therefore two bridge polnts pop ofl. So the two adjacent

outer subchains 6r Q'’ become 2 single outer subchaln of Q’.

Once we have replaced all the new edges of Q'’ with arcs of Q'. We test for inter-
sectlon polnts with arcs of UP by golng from bridge polnt to bridge point and from

one arc reglon to the following,

-

4.3.4 ~ The algorithm

L

input : - a convex figure UP that is the Intersection of n circles of radius

r , about vertices of a convex polygon P -
/

- a convex figure Q’ whose boundary inay contaln arcs of CP, -

obtalned from the previous algorithm in section 4.2.5. . ‘
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output : the reachabllity region for endpc')inb bof a ladder S = [q, 8] ,

CoQ-(WP Ry, i
;&lgorithm :
* begin . ' )

step 1 : replace arcs of UP and of Q' to obtaln UP’ and Q'
sicp 2 : test whether UP’ (M) Q'’ Intersect
" step 8 M UP' M) Q' =@ then f

A

- compute the minimum distance between UP’ and Q'’
--test whether the arc of UP, corresponding to a vertex of UP/
reallzing the minimum dlst.ax}ce, Intersects Q’’, If so compute the ’

Intersectlon polnts , otherwise UP and Q' are disjoint.

-

step{:1fUP' M Q"' < >®u then
- compute CH (UP’ U Q'’) o . :
- replace new edges of Q'/ with Its a;'cs =
- bulld arc regions around UP' : . &
- for ;rery outer subchaln of Q’, go from one arc region
to the next and ldentlfy the Intersection points

step 5 : merge the two lists of UP and Q’ and take only the reglons

determined by the Intersectlon points, found In steps 3 and 4, and the

outer chalns of Q.

end. | N ' - —




¥ ¢

4.3.5 - The analysis

data structure :

An array to keep track of vertices and edges ( or arcs) of the two polygons.
After having computed the bridge polnts, we can ro_r each edge keep track of these
Intersectlon polnts. An array or a doubly linked I&t to keep track of the boun-
darles of the arc reglons. .

o

correctness

We have proved that In step 3 the minlmum distance ciete%mlnes the Intersec-

tion ppln'ts for the case that UP' and Q’’ are disjolnt. If this Is not the case In
step 4, we have proved that relnserting arcs of Q' and between two bridge polnts
for an-outer subchaln of Q’, and testing each arc In consecutive arc reglons ylelds
the Intersection polnts and thus we already cut off the parts oi‘ Q'ﬂ that are not In
UP and get up to n , non convex reachabllity reglons.

3

time complexity :

‘ 3

Step 1 1s linear . Step 2 1s logarithm!lc using Chazelle and Dobkin's a}gorlthm.'

In step 3 we compute the minlmum distance in log(m + n ) time using
Edelsbrunner’s algorithm. Testing for Intersection between one arc and one convex
figure Is at most O(n). In step 4, the ‘CH can be computed uslng the rotating cal-
lipers of Toussalnt In O(m -+ n) time . Replacing arcs and bullding arc reglons 1s a
sequentlal process feasable In O(n) time. "\Ne use & llnear running time algorithm
to compute the bridge polnts In sorted order . And since for every outer subchaln
of Q' w;a know which arc reglon vs:e are in , the testing for Intersection Is merely a
merge of these two lists , and since the number of edges-and arcs In éach list Is

bounded by n, this step of ‘the algorithm Is linear. Step 5 Is also a mere traversal of

~

/
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»  twe sorted lists and Is carggied out In O(n) time. y
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5.1 - Problem statement

Gilven two convex polygons P = {p,, pg, - , p,,}‘fmd Q = {Lq,, Qay oo ", q?ﬂ}'
and a llne segment S = [a, b] of length r, we wo{ﬂd ke t,o' compute the
reachabllity reilons in P and Q for the endpolnts a and b respectlvely, u:lt,h the
constraint that a remalns within the boundarlies of P and b within those of Q.
Statlflg the problem more preclsely : Glven -2 disjoint convex polygons P and Q
find the unlon (set) of reachable reglons PR In P and QR In Q such that :

For every polnt x € PR, there exlsts a polnt y in QR such that d(x, y) = r and

1 B aend
For every polnt s € QR, there exlsts a point t 1n PR Such that d(s, t) = r.

Calculating the reachable reglon 1s the same procedure for each‘pc@ygon, in
other words the reachabllity reglon of one does not Influence the reachabllity
mélon of the other. The description of the reachabllity reglon(s) In a polygon Is
that : ' o
(1) the boundary may contaln arcs v
(2) 1t 1s not necessarlly a conver reglon
(8) 1t may be disconnected, as we will see ﬁxt.er 1t can have O(n) parts,

-~

each of which is a reachable reglon. ] .
5.2 - Pl"eliminat;y results

We will now show a few resuits before describing the algorithm In detall.

definition :

PR = {pin P | for every p In PR ,{thereexists qln Q | d(p,q) =r }

QR = { qlIn Q| for every q in QR . there exists pin P | d(a, p) =r}
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Theorem 1:

li A" H
o . " The reachabillty- reglon of one polygon does not Influence the reachabllity
. reglon in the other polygon . Let PR and QR denote these reglons,
for every polnt x In PR, there exlsts point ¥ In QR, such that d(x, y) =r and ~

for every point s In QR, there exists polnt t In PR, such that d(s, t) =r.

. Proof :

we know that : V point x € PR, there exlIsts y In Q st d(x,y) = r by defnition,
. Ed

now Ify 1s In Q - QR then there will be no point In P, and a fortiorl no point In

PR, such that thelr distance = r, QED.

Let us now show the condltlon of exlstence of a reachabllity reglon in P and In Q.
+

Such a reglon exists if and only if the length of the line segment Is greater than the

minimum distance and smaller than the max!mum distance between the two

9 polygons, and conslder figure 5.1 .

Theorem 2:
A llne segment S = [a, b] of length r can be placed such that a'c P and b € Q if

and only ¢f dmin < 1< dmax .

Proof :
“only if :a € P, b € Q, trlvial because any palr (p, q) of P and Q Is such that
dmin < d(p, q) < dmax and in partlcular (a, b).
tf : Here we use the convexity of the two polygons. Here 1s a constructlve proof:
It dmin << 1 < d (n1, m2) then place aon nl and b In (n2, m2)

If d (n1, m2) < 1 < dmax then place b on m2 and a on (ml, nl)
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o

‘
-y
PR
Ty ety e

A



- 104 -

A

In other words the palrs of polnts (X, ¥) st x belongs to (m1, nl1} and y belongs to

~ _ .
[n2, m2] define ( or cover )-all possible distances between dmin and dmax

continuously, QED.

Therefore If we already know the values of dmin and dmaic.\v;; could 1n constant
tlme answer the query : can a glven llne segment | = [a, b] be placed such that a

Isin P and b In Q.

?

To compute dmin we use Edelsbrunner’s algorithm, [Ede], which runs In subliinear
time and 1s O( log m + log n) and to compute dmax we use Battacharya and

' Toussaint's, [BT1], which Is linear In the number of vertices.
5.3 - The algorithm

We start with a few definitlons and notations.

1- CP and CQ denote respectively the convex hull of circles of a glven
radlus about each of the vertlces of P and Q.
2- UP and UQ denote respectively the unreachable reglons In P and Q.

3- RP and RQ denote the reacl;able regions In P and In Q.

3

We now state the algorithm which Is a call to different procedures defined In

7

previous chapters.

Input:
-" two convex polygons P= {p,, s+ 1 #m} » @ = {q1s qar eee + G }»

- a llne segment of lengthr ,S=[a, b].

Output :

Reachabllity reglons, RP and RQ, in P and Q for point ain P and polnt b In Q.

o o

N a— N .

-




Algorithm :

begin .

step 1 : calculate dmin (P,Q) and dmax (P,Q)
! !

step 2: If dmln < 1 £ dmax then continue to step 3

else stop.

step 8. 1f | = dmin then the reachabllity regloh Is the palr of polnts
Sl
(p, @) of P and Q that reallze dmin.

Idem If I= dmax, (we may have >1 5alr of polints)

L {—\‘_—_ N
step 4 : Compute the reachabllity reglon In Q :

1. calculate CP
( ‘ 2. Intersect CP and Q, obtaln Q'
( we know that this Intersectlon 1s ;ot empty because
dr}xlp <1< dmax)
3. calculate UB, C°
4. It UP = empty set then BQ = Q'
else
% 1. Intersect UP and Q’, obtaln Q*

2. If Q* = empty set then RQ = Q!

' elseRQ=Q'-Q* . o

]

step 5 : compute the reachabllity region In P, asin étep 4.
* end.

:
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5.4 - Thé analysis

Correctness : . . N

The correctness follows from theorems 1 and 2 and the results of the prevfous

S

- chapters.

'

Complexity :

-

In step 1 , the minimum and the maxlmum distances can be computed In
O(log m + log n) and O(n) time respectively, using Edelsbrunner and Toussalnt
.and Battacharya's algorithms. The ‘test In steps 2 and 3 takes constant time to
perform. Step 4 has an overall complexity of O(n) as proved In chapters 3 and 1.

And step 5 Is the repetition of the same* procedures for the second polygon. The

total running time of the algorithm Is thus Ilnear.

t

)
{
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‘We have solved the problem of oﬁndlng all the reachabllity reglons In two
convex polygons, for the tips of a ladder, constralned to remaln within the
bounaarles of the polygons, In.tlme linear In the number of verticés This Involved

the calculation of the Intersection of circles of equal radll about (convex) polygem

vévplées In linear time. This In. turn suggested the extenslon of the algorithm to one

for the general case of circles of different radll, also running In 1lnear time.

We presented an algorithm to c0mpq§.‘é In linear time the intersectlon reglion

o,

between two convex réglons, whose boundarléé‘*may be composed of arcs, In the

particular context of our problém. The problem, described In the Introductory

, chapter, of separating two star-shaped polygons, can be generallzed to an arbltrary

)

number of star—;;’habed polygons. » One Interesting open question 1Is how to
compute, (;mclently. the rea:chablllt,y region In n convex polygons for the vertices of
a n-gqu,rfree to move but'with the restriction that each of its n vertices remaln lp
‘a‘ pc;lygon. Another lntere"stlng problem that arlses Is the cor{lputatlon of these
regions for 9: ladderﬁln two simple polygons. The extenslon of these problems n
the three and higher dimenslonal spaces remalns open , such as moving a ladder In

two polyhedra, a trlangle }n three polyhedfa; , and a polyhedron In n polyhedra.

3

¥
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