
IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 4, APRIL 2006 1127

Response Clustering for Electromagnetic
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Developing models from computational data is a major focus in electromagnetic design. This paper introduces ways of creating cus-
tomized neural models based on a fuzzy clustering of responses. Fuzzy-clustered neural network (FCNN) models are explored, leading
to increases in accuracy. The information contained within FCNN models can also be applied to space mapping electromagnetic opti-
mization. This optimization approach strives to combine the accuracy of fine models (such as finite elements) with the low cost of coarse
models. These FCNN enhancements are demonstrated through a patch antenna test case.

Index Terms—Artificial neural networks (ANNs), electromagnetic modeling, electromagnetic optimization, fuzzy clustering.

I. INTRODUCTION

SELECTING the correct model for electromagnetic opti-
mization is a common task but not always straightforward.

Fine models, such as finite elements, are impressive, but pro-
hibitively expensive in many cases. Coarse models from circuit
simulators or simplified theoretical models are fast but insuffi-
cient for the final stages of design.

Empirical models, such as response surfaces (RS), have found
success in approximating the finite-element (FE) model [1]. Fur-
ther increases in efficiency can be obtained by employing design
of experiments (DOE) theory. These methods provide signifi-
cant speed advantages. However, increasingly accurate and lo-
calized RS models are sometimes required as the optimization
process approaches the final design.

While the building of an RS is a one-time cost, it can never-
theless be a substantial one. For instance, a successful RS model
of an electromagnetic shaker required 171 magnetostatic solu-
tions [1]. At 15 min per solution, the RS model would be ready
in about 40 h. An alternate approach for achieving a compro-
mise between accuracy and cost is desirable.

One such approach for combining the speed of coarse models
with the accuracy of fine models is space mapping (SM) opti-
mization [2]. This technique has been applied to a wide range of
problems in the microwave arena [2]. SM strives to find the true
fine optimal solution by optimizing in the coarse model space
(e.g., coarser FE mesh) and iteratively creating a mapping be-
tween coarse and fine parameter spaces. The coarse model is
expected to preserve the general character of the physical re-
sponse, and the dependency on fine model simulations is largely
replaced by dependency on much cheaper coarse models.

In the spirit of information reuse, the objective here is to pro-
duce coarse models that are customized to the underlying device
responses. This strategy goes beyond the standard approach of
fitting a mathematical expression to the simulation data. It is
expected that customization will allow for an increase in accu-
racy for a fixed number of data points. Furthermore, the implicit
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information within these customized models may be used to ac-
celerate the SM optimization process.

To achieve this objective of model customization, we explore
a combined fuzzy clustering and artificial neural network
(ANN) strategy: fuzzy-clustered neural network (FCNN)
models. A patch antenna test case will highlight some of the
inherent benefits and challenges of this approach.

II. ARTIFICIAL NEURAL NETWORK MODELS

The FCNN approach is based on ANNs. According to the uni-
versal approximation theorem, there always exists a three-layer
perceptron ANN that can approximate any arbitrary nonlinear
continuous multidimensional function to any desired accuracy
[3]. The three-layer perceptron, having an input layer ,
a hidden layer , and an output layer , is
used throughout this study. Each neuron (except for the input
layer neurons) forms a weighted sum of its inputs, which is then
passed through a nonlinear activation function.

In general, each neuron in layer (with ) produces an
output in two steps. The first step is to compute a weighted sum

of the outputs of the previous layer

(1)

where is the weight connecting neuron in layer to
neuron in layer . The number of neurons (outputs) in layer

is denoted by .
The second step in the computation of the overall neuron

output varies depending on the location of the neuron. The input
neurons simply relay their single input to all neurons
in the next layer. Hidden layer neurons produce an
overall output by applying to the result of (1) the sigmoid acti-
vation function

(2)

The neurons of the third layer produce the output of (1) (linear
activation function). Notice the index of summation in (1) be-
gins at zero. The neuron output is fictitious and serves
to provide a bias for the ANN computation.
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The purpose of training is to optimize the ANN weight vector
such that the ANN model best approximates the training data
and produces accurate generalizations. Data is normalized by
scaling to the range 1 to 1 and is divided into training and val-
idation sets. Training data is used for adjustment of the weight
parameters, whereas validation data is used for monitoring the
progress of training and determining stopping criteria. Training
is accomplished through the Levenberg–Marquardt method [3].
When the validation error increases for a certain number of it-
erations, the training is stopped, and the weights and biases at
the minimum of the validation error are returned. This mea-
sure is taken to prevent a loss of generalization capability of the
ANN. Other stopping criteria include a maximum 500 epochs
of training, and a mean-squared error (MSE) goal of .
Several hidden layer sizes are attempted, and the three-layer per-
ceptron with the lowest MSE is selected as the final model. The
greater the nonlinearity of the function being approximated and
the dimensionality of the input and output vectors, the greater
the number of hidden layer neurons that are required.

III. FUZZY -MEANS CLUSTERING

Clustering is the organization of items into groups whose
members are similar in some way. A multitude of techniques
have been proposed for solving this problem, including parti-
tional algorithms [4], self-organizing maps [3], and evolutionary
algorithms [4]. In traditional approaches, each data vector be-
longs to a single cluster, leading to a crisp partition. Conversely,
the fuzzy -means (FCM) algorithm associates each data vector
to each cluster through a membership value [4]. FCM iteratively
minimizes the cost function

(3)

where is the number of sample vectors, and is the number
of clusters. Data vectors and cluster centers are represented by

and , respectively. The membership value , having a
range [0, 1], represents the degree of membership of data vector

in cluster . The tuning parameter controls the level of
cluster fuzziness (chosen to be 2). When is 1, partitions be-
tween clusters are crisp, and the degrees of membership are ei-
ther 0 or 1. As increases, membership grades begin taking on
values between 0 and 1, leading to cluster fuzziness. The algo-
rithm proceeds as follows.

1) .
2) Initialize the -sized

randomly such that and
.

3)

4)

5) If or STOP,
else and go to step 3).

In step 3), the cluster centers represent the mean of all data
vectors, weighted by their degree of membership in the cluster.

The membership values in step 4) represent the inverse of a mea-
sure of the distance between data vector and cluster center .

In other words, FCM is based on minimizing the objective
function (3) that represents a sum of products of the data
vector-to-cluster center distance and the data vector’s member-
ship degree in that particular cluster. Given a desired number
of clusters, the algorithm will return the cluster centers along
with degrees of membership for each data vector. For example,
selecting three clusters will result in three cluster centers and
three degrees of membership assigned to each data vector. The
stopping criteria are set to and .

IV. FUZZY-CLUSTERED NEURAL MODELS

Two methods for clustering response data are explored. In
the multiple-cluster-single-output (MCSO) approach, a single-
output ANN is assigned to each of the clusters. The training
data for ANN corresponds to data points having a greater than
0.5 membership degree in cluster . Thus, a single data point
may be used in the training of several ANNs, leading to a smooth
and overlapped transition of training data between the ANNs.

The multiple-cluster-multiple-output (MCMO) approach
takes MCSO a step further by providing an ANN for each point
in the frequency sweep. In other words, if frequency points
characterize the response of the device being modeled and
clusters are chosen, MCMO will produce ANN models.
Within a given cluster, all ANN will be trained using the
same set of input data, with the “greater than 0.5” membership
value criterion intact. In both MCSO and MCMO, each ANN
is only responsible for accurate modeling and generalization
within a cluster of similar (homogeneous) responses, thus
reducing the number of required training vectors.

For purposes of comparison, results for the standard single-
cluster-single-output (SCSO) approach are provided. In SCSO,
a single (single-output) ANN is trained on the full set of data
and no clustering is used.

V. E-SHAPED PATCH ANTENNA

The E-shaped patch antenna [5] shown in Fig. 1 will be used
to demonstrate the application of FCNNs to modeling and opti-
mization.

Let us assume a starting design (in millimeters)

(4)

The width of the antenna controls the higher resonant fre-
quency, whereas the slots control the lower reso-
nant frequency. Let us state the design objective of minimizing
the maximum reflection coefficient at 2.21 and 2.58 GHz.
The model was solved over a uniform grid of 100 points. The
first design variable is shown as a vertical dashed line in
Fig. 1. The width is sampled at ten equally spaced points
between 36 and 62 mm (along the axis). The second design
variable is shown by the two horizontal dashed lines and denoted
by and . The parameter, whose starting design value is
46 mm, is varied through ten sample points between 43 and 69
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Fig. 1. Geometry of E-shaped patch antenna test case.

Fig. 2. Cluster centers of antenna responses.

mm (along the axis). The lower horizontal line moves op-
posite to (when moves up, moves down, and so on).

The FCM technique was used to compute three cluster cen-
ters as shown in Fig. 2. Approximately 1000 test points were se-
lected in the region of interest to test the accuracy of the FCNN
techniques. Fig. 3 shows these results relative to the reference
SCSO. Each data point in Fig. 3 is placed between two hori-
zontal axis labels and represents the number of samples having
an error within that range. MCMO (2.42% mean error) has a
clear advantage over both MCSO (14.1% mean error) and SCSO
(11.9% mean error). All three required a total ANN training
time of about 20 s. Notice that SCSO and MCSO have errors in
the 100%–1000% range, while MCMO does not. There are two
main factors at play here: the number of ANNs and the amount
of training data per ANN. The MCSO technique creates an ANN
for each cluster. An increased number of clusters reduces the
amount of training data for each ANN. While clustering pro-
vides customization to the underlying data, the reduced training
volume hampers the end result. Adjusting MCSO so that addi-
tional data points are added to low training data zones would
remedy this situation. MCMO is less susceptible to this tradeoff
because each ANN is responsible for an even more homoge-
neous response than in MCSO, thereby requiring less training
data in each cluster.

Fig. 3. Percent error of FCNN techniques for selected test points.

Fig. 4. Space mapping algorithm based on [7].

VI. SPACE MAPPING APPLICATIONS

The division of a model into several submodels can also be
applied to optimization. Most SM approaches rely on a step
called “parameter extraction” (PE). Examples include the “ag-
gressive space mapping” (ASM) [6] and the more recent “neural
inverse space mapping” (NISM) [7]. In both cases, the PE stage
is responsible for finding the coarse model parameters such that
the coarse response is as close as possible to a previously com-
puted fine response. In Fig. 4, the algorithm begins with a coarse
model optimization which is inexpensive. Within the loop, a fine
model evaluation is carried out at each iteration. For our test
case, this involves at 20 frequency points. Following PE,
a neural mapping is built between input spaces (fine parameters
and coarse parameters from PE) and progresses until the fine
optimum is found.

These SM techniques have been shown to provide extensive
time benefits in optimization when applied to coarse models
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Fig. 5. Optimization results for E-shaped patch antenna.

Fig. 6. Effect of number of clusters C on relative cost of PE in SM.

from commercial circuit simulators [2]. Situations arise where
the mapping is difficult to determine and multiple SM iterations
may be necessary. The use of FCNN under these circumstances
may be plausible. Dividing the coarse input space into sepa-
rate ranges as determined by the clusters of FCNN reduces the
search space for the PE step (e.g., genetic algorithm implemen-
tation [8]) and may speed up the overall SM process. The target
fine response of PE (obtained by using a finer mesh)
is swept through the grid of existing FCNN coarse data to find
which data vector (and in turn which cluster) it most closely re-
sembles. The PE step then focuses on this specific range, thereby
reducing the size of the search space. The results of SM for the
MCSO (14.1% mean error) coarse model over ten iterations are
shown in Table I and Fig. 5. The coarse optimum , fine op-
timum , and SM optimum are provided. MCMO yielded

TABLE I
DESIGNS FROM OPTIMIZATION TECHNIQUES

a similar SM result. Fig. 6 shows the effects of the reduced
search space on the SM process. An increased number of clus-
ters allows for a reduction in the relative cost of PE over all SM
iterations.

VII. CONCLUSION

Customizing electromagnetic models based on intrinsic in-
formation in the device response is promising for both modeling
and optimization. Accuracy enhancements are particularly at-
tractive when a limited number of data points are available. The
use of FCNN customization provides guidance for the model
building. While the number of ANN models is larger than in
standard SCSO approaches, the training data is also more ho-
mogeneous for each ANN, allowing for a reduced complexity
in the neuronal structure. It was also observed that FCNN can
be useful in optimization, where the reduced search space is
beneficial.

Selecting the best number of clusters for a given problem is
yet to be fully explored. The tradeoff between increased cus-
tomization (more clusters) and decreased training data in each
cluster could be the subject of future work.

ACKNOWLEDGMENT

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada and Le Fonds québé-
cois de la recherche sur la nature et les technologies.

REFERENCES

[1] D. N. Dyck and B. S. Murray, “Transient analysis of an electromagnetic
shaker using circuit simulation with response surface models,” IEEE
Trans. Magn., vol. 37, no. 5, pp. 3698–3701, Sep. 2001.

[2] J. W. Bandler et al., “Space mapping: The state of the art,” IEEE Trans.
Microw. Theory Tech., vol. 52, no. 1, pp. 337–361, Jan. 2004.

[3] P. Burrascano, S. Fiori, and M. Mongiardo, “Review of artificial neural
networks applications in microwave computer-aided design,” Int. J. RF
Microw. CAE, vol. 9, no. 3, pp. 158–174, 1999.

[4] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.

[5] F. Y. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band
E-shaped patch antennas for wireless communications,” IEEE Trans.
Antennas Propag., vol. 49, no. 7, pp. 1094–1100, Jul. 2001.

[6] J. W. Bandler et al., “Space mapping technique for electromagnetic
optimization,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp.
2536–2544, Dec. 1994.

[7] J. W. Bandler et al., “Neural inverse space mapping for EM-based mi-
crowave design,” Int. J. RF Microw. CAE, vol. 13, pp. 136–147, 2003.

[8] G. F. Uler, O. A. Mohammed, and C.-S. Koh, “Utilizing genetic algo-
rithms for the optimal design of electromagnetic devices,” IEEE Trans.
Magn., vol. 30, no. 6, pp. 4296–4298, Nov. 1994.

Manuscript received June 20, 2005 (e-mail: dennis.giannacopoulos
@mcgill.ca).


	toc
	Response Clustering for Electromagnetic Modeling and Optimizatio
	Mark Dorica and Dennis D. Giannacopoulos
	Department of Electrical and Computer Engineering, McGill Univer
	I. I NTRODUCTION
	II. A RTIFICIAL N EURAL N ETWORK M ODELS
	III. F UZZY $c$ -M EANS C LUSTERING
	IV. F UZZY -C LUSTERED N EURAL M ODELS
	V. E-S HAPED P ATCH A NTENNA

	Fig.€1. Geometry of E-shaped patch antenna test case.
	Fig.€2. Cluster centers of antenna responses.
	Fig.€3. Percent error of FCNN techniques for selected test point
	Fig.€4. Space mapping algorithm based on [ 7 ] .
	VI. S PACE M APPING A PPLICATIONS

	Fig.€5. Optimization results for E-shaped patch antenna.
	Fig.€6. Effect of number of clusters $C$ on relative cost of PE 
	TABLE I D ESIGNS F ROM O PTIMIZATION T ECHNIQUES
	VII. C ONCLUSION
	D. N. Dyck and B. S. Murray, Transient analysis of an electromag
	J. W. Bandler et al., Space mapping: The state of the art, IEEE 
	P. Burrascano, S. Fiori, and M. Mongiardo, Review of artificial 
	A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: A rev
	F. Y. Yang, X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, Wide-band E
	J. W. Bandler et al., Space mapping technique for electromagneti
	J. W. Bandler et al., Neural inverse space mapping for EM-based 
	G. F. Uler, O. A. Mohammed, and C.-S. Koh, Utilizing genetic alg



