THE IMPACT OF ENVIRONMENTAL EVOLUTION ON
REQUIREMENTS CHANGES

by
Vivek Nunda

Schoo! of Computer Science

McGill University. Montréal. CANADA
October 1996

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

Copyright © 1996 by Vivek Nanda

Natonal Library
of Canada

¢
[}]

Acquisiions and

Bibliotheque nationale
du Canada

Direction des acquisitions €l

Bibliographic Services Branch des services bibliographiques

335 Weilington Street
Otaws. Ontano
K1A DING K1A ON&

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellingtcn
Onawa (Ontano)

Your hiw Volre rplérence

Our hir Note rtérrnce

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a Ila Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a Ila disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des exiraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-19839-1

Canada

Abstract

An evolving environment can have such an impact on the requirements of an existing software
system that it can render the syswem obsolete, We have experienced precisely such a loss inour
rescarch environment. The Congruence Evaluation System was an imnovative proof of coneept
(CES POC) system. developed over two vears with three person-vears of eftori. It was part of an
cnvironment which was constantly evolving. and this change in the environment dictated the fit-
ness of the CES POC system in the environment. The system served excellently tor the busic
rescarch goal of discovery and proof, but failed seriously in the long term goal of evolvability of
the entire suite of tools being built concurrently by severul researchers in the team. In this thesis,
we describe a case study of requirements changes in an evolving environment involved in the
developmicnt of unprecedented systems. In particular. we identify requirements-oriented factors
that caused the demise of an innovative system in such an cavironment, The thesis also describes

some lessons learnt from this experience.

Résumé

Un environnement en évolution peut avoir un tel imipact sur les spéeifications d un systéme
existant que cela peut rendre le svsteme désuet. Nous avons subi une telie perte dans notre envi-
ronnement de recherche: le systeme d*évaluation de fa congruité ¢tait un systéme expérimental
tnnovateur qui fut développé sur une période de deux ans par un effort de trois années-personncs.
Il faisait partic d’un environnement qui évoluait constamment. ¢t cette évolution a affecté la con-
gruité du systéme par rapport a son environnement. Il a trés bien servi les objectifs de découverte
ef de preuve. mais ne s'est pas prété 4 une évolution compatible avee les différents outils cons-
truits par plusicurs chercheurs de "équipe. Dans cette these. nous décrivons ['étude d'un cas de
changements de spécifications dans un environnement ¢n évolution ol "on développe des sys-
wemes inédits. En particulier. nous identifions des facteurs associés aux spécifications qui ont
causé la perte d'un systéme innovateur dans un tel environnement. La these décrit aussi les legons

qui ont ¢té tirdes de cette expérience.

ii

Acknowledgements

1 would like to thank Prof. Nazim H. Madhavii, my supervisor, for his support. encouragement
and advice during my rescarch. @regard my learning experience under his guidance as immensely
helptul, especially what T learnt from his atiention for detail in research and mastery ol the

nuances of the English language (when reviewing my writings!.

[have enjoved being pat of the software engineering group. { would like to thank: Imran for his
help whenever I was stuck during my rescarch (which wins quite often!) and for our frequent trips
to Bombay Maharajah and Busha: Dirk for his prompt attention when [had problems with my

system account and Won for atlowing mie to reuse his user-interfuce ltbrary!

Special thanks to the administrative statts Lorraine, Franca, Josie, Lise and others lor dealing with

all my inquiries in an efficient way.

I would also like to thank my friends: Simran for making me teel at home away from home: Pierre

and Pung for translating my abstract to French: and all my other friends in Montréal,

Last. but not least. I would like to thank my parents for their constant encouragement and morale

boosting advice and to them I dedicate my thesis.

Table of Contents

Abstract i
Résumé i
Acknowledgements il
List of Figures vii
List of Tables viii
1 Introduction 1
1.1 Production and Rescarch ERvironmznis.. e iiineiennessnianessssnss 3
1.2 Rescarch Context and Problem Definition. ... cvceecnnniseeceseesssvasseecenanans 5
1.3 Rescarch ContribUIONS. .ooverereesscaertenaecssrtninesrcassnsesssssrneesearsassas somssssnsasasasanesn 3
1.4 Organization of the thCSIS. .t nssssaes S
2 Background on Requirements Changes 9
2.1 SOfWARE EVOIULION. ..ottt ccernrcrts e aeesaessatesssnnsassnessmasesaessnsessanesesesensnssesannas - 10
2.2 Environment ChiraClerisliCs . uneirereerrasssaeessserersssssssassansstssnssssssasssnsessaressassases 15
2.3 Summary.....eeeceosieeei. eretesteerestiastessatesasasomessneateaeraaeamasasassaannesanaate 20

v

3 The CES Proof of Concept System A

S8 Congruence Evaluation and Design Assistance. e 22

3.2 Teol Usage and Examiplos . e 2
3200 Example Tz Evaluation and Improvement of o Process Moded 26

3.2.2 Example 2: Selection of a Process NModel ol 2T

325 Example 31 Process ROUSC e 2N

3.3 Design Strategy tor the CES POC System and its Rationale. ., 24
3.5.1 Design Strategy {or the CES POC SYNICIL oot e cvveeeierenneseesenns 29

3.3.2 Rationale 1or the Design SIMUCEN et e s sa e 3

D UMM it r et et et e s snsae e eeeeeaas s s e e n e sa e et e s e ae e eaen s abesre et etnasaene 32

4 Analysis of the CES POC system 33
4.1 Analysis of the CES POC SYSICNI.iiiieeeiieiiereeeersserscestsesresesessssssessasanins 33

4 1T ANAIYSIS METROU oottt st ea e 34

4. 1.2 Analysis RESUIS ..ot et aiees D0
4.1.2.1 Type 1: Purposes served by the CES POC systieM......ennivnnes 37

4.1.2.2 Tyvpe 2: Deficiencics of the CES POC system upon completion........... 40

42 SUMIMAIY .. coeccecemrerrieserert st ssss s b st sesas e e sas s sama b s s sa b s e s b e asnssab e b s srvabbs 43

5 The Impact of Environmental Evolution 44
5.1 Environmental EVOIUHON ... icvese sttt sisss bt ensr s 44
. 5.1.1 The Global PiCtUIC....cccccriririirenismenisismssssseresssiesssesssnssssnessssnssmsssasssnnnantons 46

<02 Bavironmenial Bvolunon from Sept. 02 e Sept S 7
S22 Amadvsis Method 47

S 2 Ay I RUSUIIN e 48

5.2 Requirements Changes due to the Evolving Environmento. . 33

Bl SUITMIEITY ettt s e b s e e e e e 56

6 System Re-Implementation 61
6.1 Design Strategy and its Rattonale for the Customizer .o cnvneneccrenen. 0]

6.2 Environmental Evolution [rom Sept."94 1o March™96. e 03

6.3 New Requirements due to the Eavironmental Evolution...cinnnenen. 67

O SUMIMUIY et ee e esse s reessae s e s e ae s et s s n s s b e n s en s s s e s aneesas 69

7 Lessons Learnt 70
8 Conclusions and Future Work 72

Appendix A 74
Appendix B 76
Appendix C 78

References 94

i

List of Figures

1J

.

(7]

L]
*ad

4.1

~h

w
-2

The relationship between requirements changes and software evolution and

requirements changes and environment ChariCIeTISHCS e u
Congruence Evaluation Svstem - Evaluation function.. e, 24
Congruence Evaluation System - Design=Assistant method..cnnnne.. 23

Output generated by the evaluation algorithm when input was process moded |

AN COMIENL Lt ee e e e as e e ee e e b e s e e e e s e me s s e e b e e sre e s anaabaeans 27
CES POC Svstem: Strengths and Weaknesses e, v 36
The Global PICtUrC.....coiiiieeerceenrineee e e 45
Environment Evowation Snup-shots: Scpt.’92 and Sept."94.....en. R vrveaas 49
Environment Evolution Snap-shots: Sept.’92. Sept.'94 and March™96........o....e. .. 64

Vit

List of Tables

12

1
12

Software muintenance problems. e teeertiiaeaes it e sabas RN 12

Charucteristics of research and production environments and impact on

requirements Changes. ... vneenens rrerereterenas Ceeeeeenene s R eeenriensenianes 1D
Overull congruence indices for different models in the same ConteXt.....onicnens 28
Overall congruence indices of the same process model in ditferent contexts......... 29
The requirement set *R1° for the CES POC sySteMu..iccniinnscsriiiccssiicsnseees 39
The new requirement SR it sesessisssssssssrasssasesses o
The new requirement Set R3™ et esesenes 99
Requirements changes tor the CES POC SYSIEML.ecoininrineenssnsesnnsscsenssisesesssnes 97

The new requirement set "R e . veese. 68

viii

Chapter 1

Introduction

Historically. the process of software development has plaved an unportant role in the ficld of sott-
ware engineering. The software development process comprises softwire engineering activitics,
including technical and managerial enes, that are carried out in the production of software. The
scope of these activities includes determination and specification of svstem software require-
ments: analyvsis and management of risk: software prototyping: design: implementation: verifica-
tion and validation: sottware quality control and assurance: integration of compoenents:
documentation: management of software configurations and versions: management of data and

evolution of software [17].

Many current software development methods are still closely related to the well-known classical
Software Development Life Cycle (SDL.C). also widely known as the warerfall model [31]. While
much work in recent vears has focused on improving these softwire development processes (e.g..
the spiral model {4]) and thus also software quality, a critical issue. that software must be adapti-
ble to changes in user requirements or environmental changes is still considered problematic. This

problem domain is better known as the software maintenance problem.

i

Software systems used in the ucademia or the industry are continually moditied to adapt to chang-
ing user needs. The inevitability of software evolution and the intrinsic nature of its causes has
been recognised for many years [40. 41] Even if a system is totally reliable. completely meets
user requirements at a given time. and is well structured. it might still be required to update the
system due to environmental problems. v.iz.. environment change, new hardware, difficulty in
integrating new tools with existing suite of tools [23]. Software maintenance dominates the soft-
ware life-cycle. In many organizations, software maintenance activities consume three-fourths of

the total life-cycle expenditures and over onc-half of the data processing personnel resources [19].

Taking into account the marked difference between the production (industry) environment and the
rescarch environment, it is important to discriminate requirements changes between these two dif-
ferent environments. By discriminating in this way. we are able to have a deeper understanding
of: the role of software systems in the two environments: the processes that should (or should not)
be used in cach case; the methods tools and techniques that are suited to the two environments:

and other related matter.

Prior to such discrimination. we define some key terms so that these can be referred to subse-
quently:

1. Software maintenance may be defined as the rnodiﬁgation of a software product after delivery,
to correct faults, improve performance or otlller attributes, or to adapt the product to 2 changed
environment [2).

2. Sofnware evolution consists of the activities required to keep a software system operational and

(T8

responsive after it is accepted and placed into production. It means a continuous change from a
lesser, simpler. or worse state 10 2 higher or better state [14].

3. Software maimainability is detined as the case with which @ software system can be corrected
when errors or deficiencies occur, and can be expanded or contriacted to satisfy new requirements
[19].

4. Software engineering environment means a collection of tools, practices, and working condi-
tions supporting software engincering efforts [6].

5. Funcrional requirements define the actual “functions” which must be implemented in the sys-
tem [21].

6. Non-functional requirements define all other kinds of requircments the system should satisfy,
such as performance specifications. memory requirements, development platforms, uscr friendli-

ness. changeability etc. [21].

1.1 Production and Research Environments

It is well known that in a production environment, & software system once built gencrally nceds to
be evolved for longevity. A system may evolve due to new functional and non-l‘un.ctional require-
ments. For instance, a planned new version of the current system may require new features to bc
added to the current version and these added functionalities /new functional rcquirerﬁents) wéuld
require changes be to be made in the current‘-'system. Similarly. if the performance of the é%‘tisting
system has degraded due to changes in hardware or systTem software support (i.c., ghzm ges ;n non-
functional requirements) then appropriate changes could be required in ti1e existing system to
make it effective. Lehman and Belady cite an operating system which increased from %.682 mod-

~—

ules to 4,800 modules over four major release c{?ﬁlcs! [32, 33, 34]. Other possible cauécs forthe -

~oftware maintenance problem can be changes in the svstem context, i.e. the overall environment
in which the system is to fit. changes in the objectbases accessed by the svstem. changes in pro-
aramming language requirements, ete. There are various reasons why these new functional and
non-functional requirements crop up: some of these are. increased competition and market pres-
sures which goads the organizations to further improve their product. new business opportunities
which can be exploited by modifying/improving the product. customer satisfaction issues. organi-

sation mergers which put immense pressure to harmonise existing systems. etc.

In contrast to this, in certain research environments, ¢volution of a software system may not
always follow a planned path seen in many production ecnvironments. Typically. such a system is
a “high-end’ research system which is considerably innovative and risky to build. Such a research
project has little theory and practice backing the research. The purpose of building such a system
is to test the theory, and nor to build a production version system for use in any application
domain. Because of the high content of originality in such work. the researcher does not have
exemplary systems which could be relied upon to build new concepts. That is. not assuming the
magnitude and impact of such a revolution, the research progress is revolutionary rather than evo-
lutionary. Consequently. the researchers do not know much about the domain in which the system
would be used. For example, the idea of syntax directed programming environments as first pro-
posed by Hansen [60] in 1971 was a highly innovative idea at that time since there was no prece-
dent to such work. This idea. after almost a decade formed the basis of the development of the
Corncli Program Synthesizer [61] ;vhjch has had considerable impact on integrated tools for soft-
ware dc;g"opment. Another example is Osterweil’s proposal [62] that software processes be

described by programming them much the same way as computer applications are programmed.

Since its proposal. this 1dea has taken different paths of research amongst many rescarchers and

practitioners (such as development of enactment engines and process modelling),

Generally. a system being built in a rescarch setting is on a path leading o 2 short term goal of
proof of concept (POC) system and not to a long-lived system. Thus, designing for future evolu-
tionary changes is not generally of prime concern. Often the development technigues used include
hurd-coding the decisions iteratively and subsequently testing the validity of the POC. Also. the
learning curve is minimised. if not eliminated totally. on such aspects as the programming lan-
guage and the software and hardware platforms used. Once the POC system is operationat. fre-
quent changes might be needed to the system for various reasons, For instance. to deal with new
core features. new computational algorithms may have to be implemented: system changes may
be necessitated by an improved understanding of the system domain concepts. ctc. Also, in such a
research environment. the original researcher or student (hereafter called “champion®) who built
the POC system would in many cases not be present to help make these changes. Reesons include
transfer to industrial jobs, or other opportunities once their goal of building a POC system has
been achieved. As u result, the POC system in such a research environment. once built, is often
scrapped and subsequently re-engineered from scratch to meet the long term goal of on-going

evolvability.

1.2 Research Context and Problem Definition

In our research environment, at the Software Engineering Lab at McGill. we have experienced
precisely such a loss. The Congruence Evaluation System (CES) [9, 10] was one such POC sys-

tem championed by a research student. It served excellently for the basic research goal of discov-

ery and prool. but failed seriously in the fong term goal of evolvability of the suite of research
tools being built concurrently by the entire rescarch team at MeGill. The key decisions in the CES
POC system were hard-coded and the development platform (FoxPro on MS-DOS) was tncom-
patible with that used for the rest of the suite of tools (UNIX). There secemed no other aliernative
at that time but 1o tollow this design strategy. tuking into account the work skills of the champion
of the CES POC system, the time available to complete the POC system. and the resources avail-
able to support the project. The CES POC system took two vears to build. with three person-years
of effort. from concept understanding to system validation. A considerable amount of empirical
rescarch had been carried out [3] which lead to the basic h}-‘pothcsis and to the idea of building the

CES POC system: it was not a pre-planncd goal. from the outset, to build the POC system.

Once we scrapped the CES POC system. we decided to rebuild the system from scratch (in C++).
rcusing concepts and algorithms as appropriate from the CES POC system. No longer were the
basic functional requircments of the CES POC system the onlfy key requirements. Suddenly. the
environmental requirements. at the time when the future of the CES POC system was being
decided. had a severe grip on the fate of the system. It just had to be decommissioned. A new one
had to be built with the long term evolvability of the overall suite of tools (four systems being
built in the suite) as a primary goal. The new CES system took approximately one year with one
person year of cffort to build. It provides all the services provided by the POC system. but is
designed to be highly user-programmable. user-friendly and 1s fully compatible with the suite of
tools in the environment. Based on this new version. there are evolutionary plans to enhance the

system in conjunction with those of the sister systems in the environment.

From this experience. however, emerges the following Key question which needs answering:

& “"How does the environmental evolution affect the survivability of i given soltware svstem?”™

This is an important question because it deals with a difficult issue of software development that
is often overlooked at the outset. An adequate answer would help in increasing our
collective experience which can perhaps be used to better plan rescarch svstems. The aim of this

thesis, then. is to address the question described above.

While there is a healthy body of litcrature on software evolution, ¢.g. planning for software evolu-
tion [6. 18. 38]. risk in evolving software systems [8.13, 29]. software maintenance activities and
management [14, 19]. current software maintenance practices {5, 16, 23] and other related mat-

ters reviewed in the next chapter. there is not much information contributing towards the answers

to the described questions.

Because of limited previous work on this topic. these contributions attain added significance. It is
important to note the types of issucs that arc not the focus of attention in this thesis. We are not

discussing related and perhaps equally important issues of software mainteniance process models
[1. 15.23]. different types of software maintenance [20. 21, 37], metrics for software maintenance
[35. 36]. how to perform design maintenance [6. 8], how to specity software requirements [7, 22],
and similar issues. There has been rclatively more work carried out in this arena, We are attempt-
ing to shed light on certain equally critical maintenance issues on which significant work has not
been carried out in the past and work in this sphere is still in its infancy [39]. Our concern is high
risk. highly innovative research environments. We in\;csligatc why serious changes occur in sys-

tems: the type of requirement changes which affect system survival and utility; and, the type of

requirements that are imposed by environmental changes. Thus. our focus is nor on the detailed
development of the svstem {i.c., design. coding. inspections, testing. etc.) as much as itis on the
requirements tor the system. Thus, one cun narrow down the scope of our work to reguirements

change.

1.3 Research Contributions

The key contributions of this thesis are:
[. an insight into how environmental cvolution affects the survivability of a software system. and
2. some lessons learnt which can be considered in the development of POC systems in a class of

research environments.

1.4 Organization of the thesis

The next chapter describes the background material. Chapter three describes the CES POC sys-
tem and analyses its revolutionary properties. Chapter four analyses the benefits of the POC sys-
tem and the problems that beset it. Chapter five describes the impact of environmental changes on
the CES POC system requirements. Chapter six describes the impact of environmental changes
onlthc requirements for the re-implemented system. Chapter seven lists the lessons learnt from

this exercise. Finally, Chapter cight concludes the thesis and describes the future work.

Chapter 2

Background on Requirements Changes

Requirements changes can be regarded. in part. as drivers of software evolution. As discussed in
chapter one (and later claborated in chapter four), majority of the problems in the CES POC sys-
tem cropped up duc to changes in the environment, resulting in changes in sysiem reguirements. It
is therefore imperative that along with analysing these requirements changes, one must ilso study
the environment characteristics which influenced these requirements changes.

These relationships are depicted in Figure 2.1.

drive » Software Evolution

Requirements Changes —

are inflnenced by

= Environment Characteristics

Figure 2.1: The relationship between requirements changes and
software evolution and requirements changes and
environment characteristics

[n this chapter. we review the literature related to requirements changes and it is divided into three

sections. The first section reviews the literature on software evolution and how requirements

change Jeive such evolution. The sceond section deseribes the characteristics of research and pro-
duction environmenis. The final section summartses the kev-points from both the preceeding sec-

Hons.,

2.1 Software Evolution

Arthur | 14] categorizes software evolution activities into: correcting defects (maintenance).
enhuncing software functionality (evolution) and improving the quality of existing software
(maintenance). Also. the maintenance activities have truditionally been categorized as: corrective
maintenance. adaptive maintenance and perfective maintenance {6. 19. 20, 21]. Corrcctive main-
tenance focusces on fixing defects. Detects refer to the system not performing as originally
intended, or as specified in the requirements. Perfective maintenance includes all efforts to
improve the quality of the software. These activities include restructuring code. creating and
updating documentation. improving reliability or efficiency or any other quality factors. Adaptive
maintenance includes all work related to changing how the software functions. It includes system
changes. additions, inscrtions. deletions. modifications. extensions. and enhancements to meet the
evolving neceds of the user and the environment in which the system must operate. Lamb [6] elab-
orates that adaptive maintenance includes changing the system to match changes in the environ-

ment. such as moving it to a new hardware or a new operating system.

The maintenance process for all the above three mentioned maintenance activities begins with a
change request. A change request is a vehicle for recording information about a system defect.
requested enhancement. or quality improvement. It should be noted that the change request for

each of the three different types of maintenance activities are different. Change requests essen-

tially tall into two categories: prodfent repores and enftancement regues:s. Problem reports
deseribe defects and system actions (in the present systemy that are out of line with the syaten’s
requirements and. thus, they drive corrective maintenanee activities. On the other hand. enhance-
ment requests describe a change i system requirements (lunctionad or non-functional) and qual-
ity requirements and thus they drive adaptive maintenance and perfective maintenance activities,
Specitically. changes in svstem requirements drive adaptive maintenance activities while chunges
in quality requirements drive perfective maintenance activities. The process of uniquely wdentity-

ing. describing and tracking the status of cach change request is known as clange management.

Lehman and Belady pioncered the study of the evolution of software [34.67]. They studied a vart-
¢ty of svstems over i period of time and observed several patterns and trends from which they
developed the Laws of Program Evolution {41]:

o Law: All useful programs undergo continuing change. They state that programs undergo a con-
tinual change in response to changing system requirements. For example, Basili and Turner [66]
studied the SIMP-T compiler which evolved from 3.404 statements and 4 modules to 6,350 state-
ments and 37 modules over five major release cycles!

w Law: Over time, programs exhibit increasing entropy. That is. as a program cvolves, its struc-
ture degrades and its size increases. resulting in increased complexity. For example, 2 commercial
software metric analyzer, PC-METRIC. increased from 995 executable statements. 22 proce-
dures. and a cyclomatic complexity of 118 to 229! executable statements, 43 procedures. and a
cyclomatic complexity of 298, over u period of release cycles siretching from 1987 through 1989
[68].

= Law: Program evolution exhibits statistically smooth growth. The system and its metasystem,

the project organisation developing it constitute an organism constrained by conservation laws,
These miay be Tocaliv overcome. but they direct. construin and conirol the long-term growth and
developmeni patterns and rates. Soime of the constraints identitied by Lehman and Parr tfrom the
analysis of the evolution of the O8/360 system were: reduction in level of demand for enhance-

ments and reduction in resources atlocated for system development [39],

Oshorne | 23] divides software maintenance problems into five distinct categories: (1) software
quality, (i) environment. (iii) management. (ivi users and (v) personnel. as shown in Table 2
The maintenance problems highlighted in Table 2.1 are those which were encountered in the CES
POC system. He lists three major causes {or these software maintenance problems as inudequate
attention to: (1) requirements specitications, (i) quality assurance and (ili)configuration manage-

ment.

Software Maintenance Problems

Software Quality
Progrum Quality
- T 41y TR ‘5.- .{aqmg\d‘m-_ner»,—q.hq

“Pro

e et e A a‘\..‘

Lack of common data definitions

PR o{:&

o m‘&':ﬁ:{"& r‘«v-u. \c‘im M& a0
3 M‘g’?’“ SRS LR R

T A

o ey 0 M

increasing inventory

eXCessive resource requxrement.s

Environment

O TP I Y
nl-.urllnun nb

Table 2.1 Software Maintenance Problems

Software Maintenance Problems
Management
growth
change control/contiguraiion management
matntenance technigues/procedures
maintenance ool usage
standards enforcement
Users
demanding more capabilities
Personnel
lack of experience
image/morale problems
view of maintenance: unchallenging, unrewarding

Table 2.1 Software Maintenance Problems

Osborne states that we ¢an reduce the chance of incorrectly or inadeyuately specifving require-
ments or requirement changes by protorvping. Prototyping is usually employed to shorten the
time required to code and test an application or to understand and demonstrate development capa-
bility. Pressman [20] defines prototyping as “a process that enables the developer to create a
model of the software that must be built™. The focus is on the work product rather than the devel-
opment process. Prototyping enables experimentation with the construction of the desired system
from which lessons can be learnt for revising requirements [23]. Protoyping. thus. helps in
improving requirements change specifications.

Brooks [42] states that:

In most projects, the first system built is bareiy usable. It may be too slow, too big, awkward to use

or all three. There is no alternative but to start again and build a redesigned version in which

these problems are solved. When ¢ new systent concepi or teclmology is used. one has 1o biild o
s en to Hireny awvay, for even die best planning i noi So omniscient as 1o get i1 righ the first
time, The manazement question, therefore, is not wheiher o build a pilot systent and theose it
away. You will do that. The ondy question is whether to plan in advance to build a throwaway, or

ter promise to deliver the throwasvay to cusiomers.

Schneidewind [16] explains that even if the code is inelegant and possibly not reusable. a study of
the specitications and identitication of the most frequently used components could reveal a set of
scneric classes of algorithms and tunctions which could be usable in future svstems. Beludy [24]
believes that we cannot and should not declare ofd software obsolete or not worth studyving.
Harrison and Cook [68] state that managers are trequently beset by the maintenance problem:
whether to make an isolated change in an existing module, or to totally redesign and rewrite the
module from scratch, Arthur [14] advocates rewriting the system from scratch and treating the
existing system as a prototype to build a new system in any of the three scenarios: the system is

¢xpensive to run. out-of-date technically. or expensive to maintain.

Lientz and Swanson [25] state that the approach which is in vogue of getting the requirements
right before starting the design may be based on the fallacious assumption that requirements are
fixed. The reality is that requirements change continually. often in response to organizational
change. These changes are more likely to emanate from experience in the use of the system than
from an abstract specification in the early design of the system. We can draw an analogy between
“organizational change” in production environments and “environmental evolution® in research

environments. It is interesting to note that because requirement changes are likely to result from.

tbe intinenced byy changes i the enviromuent. s imperative to stedy the covironment charae
teristios as well, Studyving the environment charactenistios enables us todennty the tvpe and may
nitude of requirement changes as an tmpact of an evolung environment and thus helps

chalking out strategies to cope with an evolving environment,

2.2 Environment Characteristics

Examining the two distinet types of software development environments reveals different charae-
teristics which torm the underlying reasons why o svatem follows ditferent evolutionary paths in
the two environments. Table 2.2 charactertses these two environments and analyses the tmpact on

requircments changes of individual environment characteristics.

: _‘HighlyInnovanve.Rsmrch.En' vE ‘__'"‘ pik

-, n"'-;

H 1A g T g™ 1 gt T W T 0P A T 9
EBm&ucuom) ¢h
_ ST N i I wr, :

dt
Rk
i"’-. = T M(\"M\vt

m?

*ReﬁﬁiréhlentstChanoes.

" wm'“;-gn\« AL

1. Motivation | Characteristic: The need to learn. dis- | Characteristic: Monctury 2ain by

cover and prove concepts is the pri- | marketing a product based on vali-
mary objective dated concepts or demonstrated tech-

nology is the primary objective
Impact: Requirements are likely to Impact; Requirements are less likely
change frequently due to the “experi- | to change frequently due to stability’
LT mental’ nature of the work in the nature of work

Table 2.2 Characteristics of research and production environments and impact on reguirements
changes

15

Factor

Highly Innovative Researck Environ-
-} ment Characteristics and Impact on
- {-Requirements Changes '

"Production Enwronmenr. Characteris-

tics and Impact on Requuemcnls

| Changes

2. Goals

Characteristic: The chumpion of the
system has a short term goal of
obtaining his/her degree or result
within a cenain period: whereas the
supervisor has 4 long term goal of
developing u sct of solutions and the
POC only forms a part of his/her rep-
ertoire

Impact: Requirement changes are less
likely to be carried out by the original
champions of the system

Chd!‘llCILI‘I\UC Thu pro_u.ct remains
an “on-going’ ¢ffort and the initial
champions or teams of the system are
generaily available for a compara-
tivelv longer time frame

Impact: Requirement changes are
more likely to be cammied out by the
original champions or tcams

3. Target
sysiem

Characteristic: Due to high uncer-
tainty in the achievement of the goals
and due to the usual academic con-
straints, the POC is the target

Impact: Because the POC is prima-
rily to validate key concepts, and the
goals are uncertain. requirements
changes even after successful com-
pletion of the POC can be severe

Characteristic: Due to low uncer-
tainty in achieving the project goals
and organisational survivability
goals, future releases of the system is
the target

Impact: Because the focus here is on
*future releases’ of the system.
requirernents changes are likely to be
less severe “evolutionary” changes

4. Theory and
concepts

Characteristic: Weak or non-existent
Impact: Better understanding of the
underlying concepts usually results in
evolution of system requircments

Characteristic: Considerably stable
Impact: Evolution of system require-
ments is less often because of relative
stability

S R.isk'type

RN

Characteristic: Projects are highly
innovative and thus risks involved

{ are discovery or innovarion risks: can

a product be built at all?

Impact: The requirements changes

are controlled. often by further basic
research, to reduce discovery risks.

Characteristic: Projects are relatively
banal and thus risks involved are
delivery risks: can the product be
developed of the right quality, on
time, and within budget?

Impact: The requirements changes
are controlled, often by the use of
appropriate methods and tools, to
reduce the delivery risks.

Table 2.2 Characteristics of research and production environments and impact on requirements

changes

16

Factor -

‘Highly Innovative Research Environ-

ment Characteristics and Impact on

) Requirements Changes

‘Production Environment Characteris-

tics and Impact on Requirements
Changes

6. Severity of
risk

Characteristic: Due 10 high degree of
innovation und thus uncertanty in
achievement of goals. risks are very
high

Impact: High risks often affect the
requirements in quite unpredictable
wuys

Characteristic: Severity of the risks
involved. even-though of & different
type. are often dependent on the
maturity of the developing organisu-
tion

Impact: Changes to the requirements
ar¢ often controtlable through the use
of appropriate technologices (¢.g..
configuration management systems)
uand methods (e.g.. user participation)

7. Evolvability

Characteristic: The goal of long term
evolvability is often not even thought
of. prior to the realization of a POC,
and it often emerges as 2 primary
goal once there is an evidence that
the POC system is successful
Impact: Since the focus is on the
validity of the POC rather than its
evolvability. functional requircments
take precedence over non-functional
requirements. These ‘ignored” non-
functional requirements then form a
significant part of the requirements
change effort

Characteristie: The goal of long term
cvolvability is often (ideally. should
be) thought of from the very begin-
ning of the project

Impact: Since the stress here is on
both functional and non-functional
requirements, requirements changes
may result from changes in func-
tional or non-functional require-
ments or both

8. Develop-
ment process

Characteristic: Ad-hoc development
processes arc followed

Impact: The requirements change
pattern is not regular in any way

Characteristic: Generally, some soft-
warce development process model is
followed, v.i.z.. watertall model, spi-
ral model, evolutionary model, cte.
Impact: The requirements changes
pattern is often dictated by the proc-
ess model used (e.g.. large volume of
changes in the waterfall model, incre-
mental changes in the cvolutionary
model, etc.)

Table 2.2 Characteristics of research and production environments and impuct on requirements

changes

17

.‘;Producnon Environment Cbaractcns- ,
':ncs and Impact onRequzremcnts o

9 Tcam size

Ch.xr':cu,nsnc There is usually one

Charactensuc Thcrc is not onec

ment .

is likely to be out of the environment
as soon as a significant milestone
(e.g.. a degree) is reached (short term

| commitment)
- | Impact: The knowledge on require-

ments changes is often not docu-
mented for future needs, perhaps

) because of immature processes, lack
-| of resources, time, etc.

champion who has a deep insight into | “champion” per se but a “team’ of
the theory. concepts. implementa- champions amongst whom the sys-
tion, and operation of the system tem basics and implementation
details arc distributed
Impact: The requirements changes Impact: The requirements changes
cycle is usually short when simple cycle is generally regularised by a
and extremely long when complex. change management process. based
based on the understandability of the | on business goals.
problem and solution spaces
10.Pride and Characteristic: The champion has a | Charactenistic: This sense of owner-
ownership strong sense of ownership of the sys- | ship is distributed across the develop-
tem (high pride) ers involved
Impact: There is usually a strong per- | Impact: There is usually a loyalty or
sonal motivation and commitment to } business motivation and commit-
requirements changes ment to requirements changes
I1. Commit- Characteristic: The champion is on Characteristic: The champions of the
the “learning track’, implying he/she | system are generally salaried employ-

ees and are not usually bound by any
milestones to resign from the job
(long term commitment)

Impact: The knowledge on require-
ments changes is often documented
(in mature organizations) for future
needs because of system and organi-
zational survivability

1 Characteristic: Budget for system

development is generally low

| Impact: There is usually not budget
| set aside explicitly to manage

requirements changes

Characteristic: Budget for system
development is relatively higher
Impact: A portion of the budget is
usually set aside to manage require-
ments changes

Table 2.2 Characteristics of research and production environments and impact on requirements

changes

18

N ;I-Iigmy Innovative Research: Envxron~
. “F'ment Characteristics and: Impact on.

Reqmrements Chanoes

-Jics: and.Impact on Reqmrcmen!s
. ?-Chang&s e

Producuon Env:ronmcnt Chamcmns--

13. Compara-
bles

Characteristic: No comp.mlblu for
the system being built

Impact: Because systems in such
environments are unprecedented.
changes in requirements can be sud-
den. severe and totally unexpected

Ch.lr.lur.,n\llc Su eral gomp.lmblu
for the svystem being built

Impact: because several comparables
for systems in such environments
exist. requirement changes are gener-
ally gradual, less severe and less
uncxpected

14. Customer
type

Characteristic: Rescarch and scien-
tific community

Impact: The requirements changes
affect the pool of scientific knowl-
edge on the subject

Characteristic: Individuals.
tions and governments
Impact: The requirements changes
affect the service provided to the cus-
tomer

organiza-

15. Documen-
tation

Characteristic: Poor or no documen-
tation exists

Impact: Poor documentation acts as a
major impediment in tracking origi-
nal system requirements and clearly
specifying their change or evolution

Characternistie: Substantial documen-
tation usually exists

Impact: Because original system
requircments are usually explicitly
identified. specifying their change or
evolution is much casier

Table 2.2 Characteristics of research and production environments and impact on requircments

changes

The described differences in environment characteristics have a profound effect on requircment

changes in the two types of environments. In the production environment, generally the develop-

ment processes used are the waterfall [31] or spiral [4] processes alone with commercially availa-

ble methods, techniques and tools.The development effort is focused on customer satisfaction and

the causal factors (e.g.. adequacy of the system features, quality of service from the system,

development costs, definite delivery dates, short delivery cycles for future enhancements, user-

friendliness of the product, etc.). This primarily stems from the organizational need to survive ina

competitive market. Thus, customer satisfaction issues play a significant part in dictating the,

requirements changes in such environments. On the other hand, in a research environment, often

19

the development processes foliowed are ud-hoc using primitive development methods. techniques
and tools. This primartly stems from the fact that the champion’s focus is geared towards demon-
strating the POC within a certain time-period. which is usually bounded by the availability of
project funds. Thus. in such environments. environmental issues play a major part in changing

syslem requirements,

2.3 Summary

Requirements changes drive software evolution activities and are infiuenced by the environment
characteristics. The environmental characteristics have a bearing on both the type and magnitude
of requirement changes. Attempting to build a research system using a production process {in
order to escape from severe. frequent and unexpected requirements changes in research environ-
ments) could lead to severe problems in achieving the primary goals. If the rigorous production
cnvironment development processes. methods. technigues and tools were to be employed in a
research environment. the project is likely to run into difficulties. For example. the POC is
unlikely to materialize in the *shortest-possible” time span; it would be beset with problems of
decreasing project funds: research time over-runs for the champions would increase: and
resources would be wasted in a stringent development process when the project is a highly inno-
vative, uncertain and risky exercise. Similarly, if in a production environment, the ‘ad-hoc” work
processes followed in the research environment were to be employed, there would be: a debilitat-
ing effect on the product quality: cost and schedule over-runs; lowered customer satisfaction and
other unpleasant circumstances. The software engineering community is learning that advances in
productivity and quality do not materialize only because of the use of advanced software tools,

and that the quality of the software product is governed significantly by the quality of the proc-

esses used to create and evolve it [3. [1. 12]. Humphrey et al. [11] state that an etfective process
must consider relationships amongst the required tasks, tools and methods. and amongst the
skills. training. and motivation of the people involved. In a mature software process. elements
such as people. methods. techniques and technology are effectively integrated to develop quality

software consistently within the constraints of cost and schedule requirements.

21

Chapter 3

The CES Proof of Concept System

As mentioned in Chapter One. o key issue in this research is identifying the causes for the demise
of the CES POC system and the lessons that have been learnt from this expericnce that can be uti-
lized in the development of such POC systems in rescarch environments. In order to better under-
stand the causes. one should study the design strategy adopted for developing the CES POC
system and the rationale behind it. In this chapter. we first give a brief description of the concept
of process model congruence' and describe the salient features of the CES POC system with the
aid of examples. We then discuss the design strategy for the design of the CES POC system and

its rationale.

3.1 Congruence Evaluation and Design Assistance

The CES POC system is 2 tool that assists in the evaluation of process model congruence and
process model customization [10]. Congruence is a measure of how fit a process model is in the

given development environment in which it is used. The development environment is referred to

1. the words *fitness” and “congruence’ are used interchangeably in this thesis

as the process conrexr, which is defined by the set of Key characteristios of the totl environment
housing a process [43, 44]. These include the corporate culture of the orgunizition, the size and
complexity of the software system to be developed. the experience of the practitioners, the toois
they are using. the team structure and size in the project. budget. delivery eyvele time, cte. The
CES POC system is based on the premise that an increased congruence measure for o given proc-
ess model will result in an increased process elfectiveness. An extensive body of literature sug-
gests that an organization's ability to achicve its goals is 2 function of the congruence between
various organizational components. Incongruence between the methodology and the style and
culture of the organization is one of the possible causes of tailure to implement a methodology
[58]. If the components fir well, then the organization functions cftectivelys it they fir poorly, it
will not [45]. The strategic management, organization theory, and organization behavior litera-
tures are replete with statements that suggest that a particular structure should be matchied [46,
47]. that technology dicrates structure [48. 49]. that the environment and stratcgy should be
aligned [50, 51, 52]. that administrative systems should fir strategy [53] and that reward systems

should be congruent with strategy [54. 55. 56].

The CES POC system is based on a method for the evaluation of process model congruence
which was developed at McGill [10]. This method was developed after analysing the data gath-
ered during a field study to determine the relationship between process model and process context
characteristics with respect to process performance. This evaluation method resulted in a congru-
ence measure that was validated to ensure that the congruence measure had empirical signifi-
cance. A process model measures high on the congruence scale if it is fit in its environment (i.c.,

if its properties are suited to those of its context).

The evaluation method tukes as input the vilues for a set of process context attributes for one
project, and the values tor a set of process model attributes representing the model under study. It
provides as output i value (i.c.. congruence indeX) indicating the model's congruence with the
process context, i list of congruence rrouble-spots found in the model, and the congruence value

for cach process mode! and context attribute (Figure 3.1).

Context characteristics

Plrn('c.\'.\' model characteristics

—Relationshi

Congruence * _ Congruence of model attributes
In d(_‘(;f (Cl) Trouble-spot list ~ and context attributes

Figure 3.1: Congruence Evaluation System - Evaluation function

The congruence index is meant to be used as an overall index which may be used to make congru-
ence comparisons among different process models and a given context. or amongst different proc-
¢ss conteXts and a given model. The congruence value of model attributes provides a good
indication of which values of model attributes have low congruence with regards to the context.
The trouble-spot list displays those model and context attributes which have low congruence with
respect to each other. The relevant process model attributes may then be subject to change. Using
the trouble-spot list. one can therefore analyse the cause of congruence problems and take correc-

tive action. Thus, the trouble-spot list aids the user in performing process improvement.

An important purpose of evaluating the congruence of process models is to use the evaluation
results to improve the fitness of the process model (Le.. in the process adupration processy, The
congruence of context attributes provides an indication of which values of the context attributes
have low congruence with regards 1o the process model. The relevant context attributes may then
be subject to change. Although this is not always possible, at times the context can be wduapted to
improve its congruence with the process. Thus, the tool can could tind practical application in
implementing erganizational change. Also, the method helps in process reuse by enabling the

user to evaluate the fitness of the same process model in different contexis.

The CES POC system also helps in the design of congruent process models by using a method
quite similar to the congruence evaluation method: the design assistant method. The design assist-
ant method takes as input the values for a set of process context attributes only. It provides as out-
put the congruence of the ditferent possible values of cach process model attribute. This output
can then be used to decide the process model attribute values which are the most appropriate tor

the context (Figure 3.2).

Context characteristics
Process model characteristics

r—=rr—-— == _—— ="
l
I
1
1
! Context
: LT S T
__+ Congruence of +
Congruence Trouble-spot model and context Process model
Index (CI) list attributes design assistance

Figure 3.2: Congruence Evaluation System: Design-Assistant method

In the next section, we illustrate the use of the CES POC system with the aid of three example
applications, The data that is used for the examples has been obtained from actual projects and

processes in the field study.

3.2 Tool Usage and Examples

Example | illustrates the evaluation of congruence measures for a process model. and the inter-
pretation of the results for improving the process model. Example 2 demonstrites how the system
can be utilized for choosing the most appropriate process modet in a given context. Example 3

shows an application of the tool for process model reuse.

3.2.1 Example 1: Evaluation and Improvement of a Process Model

The first two steps of the evaluation method consist of characterizing the process model and the
context under study [10] (see Appendix A). Once the process model and characteristics have been
input, the evaluation algorithm is performed and the output is displayed. as shown in Figure 3.3.
The screen dump shows only part of the information, but it is possible to scroll through the whole

list of attributes-congruence and the trouble-spot list.

In this example. the evaluation yields an overall congruence index of 0.71. In order to analyse
possible improvement of congruence. the “trouble spot list” should be consulted to determine
process model and context attributes with a low congruence value. The process mode! and context
attributes ‘which have a low mutual fitness. are listed in *pairs’ as process attribute and related
attribute. We can alter the values of the attributes with low congruence and again recompute the

congruence for the process model and the context. It should be noted that, an alteration in the val-

26

nrs02/%4 HeGil1l - CONGRUENCE EVALUATION SYSTEH 9:02:38 am |
|
PRUCESS HODEL COMGRUENCE
PROCESS MODEL ATTRIBUTES - CUNGRUENCE
Process Attribotes VYaloe Congruence
CONRGRUENCE
INDEX: 8.7 Exit criteris Lower than| 0.00
— Outpnt/Delly divisionalization|Tes 1.00
Integration mechanisme- Low a.00
Daviceor for underst/walid func|Prototypes|=1.00
Coordination wechanism Stand. of 1.00
Formeliz. of change managenent]low 1.00
Remources PN control & plann. jHigh .00
Amount of Project Henag. deliv|High 1.00
Emphaeiz on control and plann. {High 1.00

PRUCESS HODEL - TROUBLE SPOTS

Rq!'?rncesa Attribute |V|1uo laollttd Attribute]Vlluc 'Typol
- Inteé;ntion anchan isnn Low Project wize ' Lacge }C
= |Deviren for undernt/wvalid|Prototy

Application uncertainty |[Low
Prototyping tool wupport |Not Ave

c
Cc

Davices for uynderst/valid|Prototy

Figure 3.3: Output generated by the evaluation algorithm when input was process
St model 1 and context 1 o .

ues of the attributes may not necessarily result in an impmved (higher) congruence index. This is
due to the fact that certain model and context attribute values may be ‘negatively’ related. The
model thus reaches an oprimum congruence value when changing the values of attributes listed in

the trouble spot list does not result in any change in the overall congruence index.

3.2.2 Example 2: Selectioﬁ of a Process Model

Often a project manager has a library of process models from which an appropriate one aeeds to
be selected for a specific project. In this section, we demonstrate that the CES POC system cap aid
in such 2 decision making process.

Assume that the project under study can be chitracterized by process context | (see Appendix A),
and that the project manager has to choose between process models 1 and 2 (see Appendix A and
B). Then, he/she has 1o evaluate both the process models with context [and compare the results.
The one with the higher overali congruence index would generally be the more appropriate for the
context. The results of performing congruence evaluations of the two different process models |

and 2. with the same context | yield the results shown below:

 ProcessModel. |

ey

Model |
Model 2 0.10

Table 3.1: Overall congrucnce indices for different models in same context

The comparison shows that the likelihood of process success is greater using process model |

than using process model 2.

2.3 Example 3: Process Reuse

Modelling a software process can be a costly exercise in terms of effort and money invested.
Moreover, there is a risk of developing a new model of low quality which does not measure up to
¢xpectations. Thus, it is beneficial to reuse a familiar and sound process modetl in a new project.
Prior to such a reuse, however, it is advisable to assess the congruence of the old mode! in the new

environment,

For example. if we desire to reuse process model 1 in process context 2 (see Appendix A & B).

after having used process model 1 process context 1, then we need to evaluae the conzruence
between process model Fand context | and between process model 1 and context 2. The result of

these evaluations are given below:

Process
"
Model Context 1 Context 2
Model 1 0.71 0.60

Table 3.2: Overall congruence indices of sume process model in different contexts

The difference in the congruence indices indicates the appropriateness of using process model 1
in context 2. perhaps even as a starting point for minor moditications, The process model may

then be “tailored” specifically to tit context 2.

3.3 Design Strategy for the CES POC System and its Rationale

In order to understund the causes for the demise of the CES POC system one should analyse the
design strategy used in the development of the system. This will also provide us with an insight

t

into the question (Chapter 1) which we seek to address in this thesis.

Also. along with analysing the design strategy adopted tfor the design of the CES POC system, it
is imperative that we also study the rationale behina this strategy. This will enable us to under-

stand the factors behind the adoption of the design approach.

3.3.1 Design Strategy for the CES POC system

When the CES POC system was implemented. the prime focus of the design strategy was on dem-

onstrating. within the shortest time possible and within the limited budget. the concept of congru-
ence and the validity of the congruence method. This is in direct contrast to the approach in the re-
implementation, where the prime concern was one of evolvability of the svstem while retaining

its validity.

The design strategy for the CES POC sysiem was thus to employ the programming language and
the development platform most familiar to the developer. It was essentially a prororvping
approach to understand (empirically) the underlying theory of congruence and process fitness. It
may also be viewed as exploratory programming which is used in circumstances where fixed sys-
tem specifications are generally not available, and where a determination of feasibility is more
important than abstract correctness [37]. It should be noted that because it was the first implemen-
tation of such a system. the requirements were not clearly specified and thus the developer was
expected to follow an exploratory approach. This implied that the work process followed was “ad-

hoc”.

Also, the usual software development concerns for user customizability, user friendliness, future
evolvability, and integration into existing suite of tools did not form part of the design strategy.

With hind-sight, one could agree that these are critical issues. However, at the time of the CES

POC system development, all these issues were superseded by the prime focus of demonstrating
the proof of concept as fast as possible and within the limited research budget. Also, the srate of
the environment of the system (i.¢.. other related tools being developed at McGill) was not clear.
Tt too was evolving without a strict overall focus. Thus, the described concerns for the CES POC

system only emerged as prime concems once the CES POC system was found to be significant

30

from the rescarch point of view.

3.3.2 Rationale for the Design Strategy

The urgency in time for the completion of the CES POC system stemmed from two major factors:
The first factor. competitive rescarch. is invartably found in the tield where competing rescarch
teams are engaged in high-énd rescarch. The drive to produce novel results is dircetly related o
the evaluation by thesis committees and conference and journal refrees. The second tactor. time
limitation. was duc to the fact that the developer of the system had already invested a significant
amoun., of time in experimental work on gathering data from a field study and in developing a
method for evaluating congruence. and was thus left with extremely limited time to actually

develop a software tool which demonstrated and validated the concept of congruence.

Another important factor was the limited budget available to support the project until a specific
deadline set by the research supervisor, This factor. coupled with the fact that research results
were uncertain. meant that the CES POC system had to be completed within the shortest time
span in order to minimize possible loss. Unlike in the production environments, wherein much
stress is laid on exciting requirements in addition to normal and expected requirements, the stress
in the case of the CES POC system was basically on the normal requirements [59]. That is, the
normal requirements were the exciting requirements. Thus. the issues of user customizability, user
friendliness. evolvability and system integration did not make the development agenda. This was
not so much a conscious decision as much as it was the pressing constraints that réndcrcd a tunnel
vision. Moreover, the software development exercise was similar to a ‘technology demonstration’

and was not intended to be marketed. Understanding the underlying congruence theory with the

31

aid of the system was the reason why a “prototyping” approach was adopted for system implemen-

tation.

Yet another factor that drove the design and implementation strategy was the development skill of
the particular rescarcher. The decision was to use the programming language FoxPro in order to
ensure minimum learning time and rapid development. The development platform. MS-DOS.
which allowed the software to be loaded on a lap-top and thus was handy for presenting at meet-

ings and prescntations.

3.4 Summary

There were some critical factors that drove the design strategy: competitive rescarch, severe time
limitation, scvere budget constraints and development sKills. In an unconstrained environment,
these factors would not have been significant and thus an alternate design and implementation
strategy would have been more appropriate (e.g.. evolutionary approach tied in with leaming of
appropriate development skills). Arguably. the use of the alternate strategy in the described con-

strained environment could have meant total failure of the development project.

Chapter 4

Analysis of the CES POC system

In the first section of this chapter, we analyse the CES POC system in order to determine the
requirements satisfied by the system and to identify the deficiencies in the system which contrib-
uted to its demise. We first describe the analysis method and then the analysis results. In the sec-

ond section, we summarise the key-points of this chapter.

4.1 Analysis of the CES POC System

In this section, after describing the analysis method and results. we list the requirements satisfied
by the system. (old requirements) and the requirements which were nor satisficd by the system
and thus led 10 new requirements. It should be noted that because the CES POC system was
implemented using the typical “ad-hoc’ development method adopted in research environments,
the system requirements were not explicitly documented in a software requirements specification
document, aithough there were some functional and non-functional requirements listed in [10]
which the system was supposed to satisfy. We, therefore, assessed the system more from the
*quality” perspective and as per the quality criteria listed by Boehm et al. [64] which we further

augmented by including certain criteria which we deemed necessary.

33

4.1.1 Analysis Method

The quality criteria which were used to assess the CES POC system cun be categorized into two
aroups: system-specific criteria and environment-specific criteria. All these criteria were included
in an "Instrument to assess system deficiencics and change in requirements” (see Section A of
Appendix C). The instrument developed consisted of 15 criteria to assess a system from a quality
standpoint. Of these. 12 criteria were the quality criteria for system assessment [64] which were
predominantly *system-specific’. The other 3 criteria were predominantly “environment-specific’
and these were determined during the course of interviews conducted by the author with other
members of the rescarch team. The several rounds of interviews focused on answering the ques-
tion: “What criteria can be usecd to assess the deficiencies of the CES POC system?”. Determining
the deficiencies of the system at the time of completion wouid help us list the *new’ system
rcquirements which could be considered during the re-implementation of the system. so as to
eliminate the identified deficiencies. Considerable time was spent in follow-up interviews on
modifying. refining and rewording ail the criteria listed so as to make them lucid and unambigu-

ous.

Bascd on these criteria to assess the CES POC system deficiencies. we conducted a survey and
distributed the instrument to the research team members (number of respondents: 8. 100%
response rate). For this instrument, a semantic differential scale was utilized [65,-63). This scale
consists of a concept and a bi-polar (opposite-in-meaning) adjective pair at the extremes of a 7
point scale. The instrument was also construct validated [57] by the research team members so as
to ensure that the scales chosen did describe the true construct, the construct here was system

assessment. The instrument also required the respondent to include his or her *confidence level” in

giving the response and also the rationale for the response. Subsequently. during the data analysis
phase. responses with a confidence level of less than 6 (*Quite High™ contidence) were eliminated
from data analysis. while the mean of all responses with a contidence level of 6 or higher was

considered for system asscssment purposes.

4.1.2 Analysis Results

The analysis results of the data gathered during this survey are shown in Figure 4.1, 1t is sug-
gested that Figure 4.1 be studied in tandem with the questionnaire (Section A of Appendix C) so
as to better understand the data analysis results. Basically. the survey fell under two types ol ques-
tions:

(2) Type 1: Whar was good about the CES POC system? that is. what were the purposes served by
the CES POC system?

This helped us to identify the system requirements (hereafter. the old requirement set: *R1*) that
were satisfied by the system. It is important to note that, the set R1 (R1.1 to R1.13) also includes
functional and non-functional requirements for the system which are listed in Table 4.1 and are
not being discussed here because they did not form part of the questionnaire which was an assess-

ment from a quality perspective.

(b) Type 2: Whar were the deficiencies of the CES POC system as at the time of completion of the
svstent in Sept."94?

This enabled us to identify the system requirements that were not satisfied by the system, and
which matured into new requirements for the system re-implementation (hereafter, the new

requirement set: ‘R2’). The requirement set ‘R_’ (R2.1 1o R2.9) is shown ia Table 4.2.

35

1t amSry

[+,
¢

E -
L]

9t

JUSUWSSISSE WASAS DOJ-STD

Ratings on a 7 point bi-polar scale
[+]

CES-POC System Assessment

Urderstan Complet Concisen Secuity: Consisle Mainlaln Velidity: Usabfldy Reliabild Structure Elficienc Cuslomiz Portabiit Infegrabili Survivabsd
dabilty: eness: ess: A ncy: ability : A7 A8 y :A9 dnass : y: ability : y:A13 Iy: ity :
At A2 Al AS AS A0 Afl A2 Ald AlS

Il Rating

4.1.2.1 Type 1: Purposes served by the CES POC system

Figure 4.1 shows that the CES POC system was assessed as "Quite High' for the criterial of svs-
tem ‘conciseness’, ‘consistency”. “validity” and “reliability’. As stated in chapter 3, when the CES
POC system was built. the prime concerns were understanding (empirically) the underlyving the-
ory of congruence (with the aid of the system) and validating the system with respect to the con-
cept of congruence. Thus, the key requirements for the CES POC system were to have an easily
understandable system which was reliable. valid and concise. Figure 4.1 shows that the system
satisfied these key requirements of “conciseness™. *validity”, *reliability” and “understandability”.
The system was also regarded by the respondents as highly “consistent’ in its operation. The high
consistency of the system was due to the l‘:ict that the requirement that the system exhibit consist-
ent terminology. symbols. notations and concepts in its operation were closely tied to the require-
ment of ‘understandablity’. Poor consistency would have inevitably contributed to & poor
understanding of the working of the system by the users. Clearly. the system was driven by certain
key requirements which /1ad to be met. The system performance based on these key issucs was

thus highly satisfactory.

When the CES POC system was implemented. there were certain other Key requirements which
though equally important were not as critical as the ones listed above. These may thus be regarded
as expected requirements as opposed to the normal requirements described above [59]. These
expected requirements were that the system be reasonably ‘complete’ in providing all the key fea-

tures in the domain of process fitness and the system also be ‘efficient’. Figure 4.1 shows that the

1. for a dewiled explanation of the various «riteria please refer to Section A of Appendix C

37

system ranked as only Slightly High™ for both these requirements. This is primarily because. the
respondents belicved that due to the vasiness of the domain of process fitness. it could not be con-
tidently claimed that the system provided all the key features in the domuin, However. the
respondents were of the opinion that to the best of their knowledge. key features pertaining to
process model congruence were present in the system though certain other features, e.g.. impuact
of change on process fitness due to a change in the value of the process model/context attribute
(see Chapier 7). needed to be added to the system. Also. the system efficiency was *Slightly High®
as was apparent from the use of the system but there was no formal documentation of the system
to judge if the design implementation was also efficient. i.c.. dutabase accesses did not require
cxcess CPU time or cause undue strain on memory requirements. Design documentation would
be imperative to perform such an analysis so as to determine if there were more efficient design

implementations possible (than the ones adopted) so as to optimize system performance.

As described carlicr. all these requirements desceribed above (which were to be satisfied by the
CES POC system when it was built) can be regarded as belonging to the requirement set: “R1°.
Thus the requirements included in the set *R1° formed the old requirements for the system (as at

the start of system implementation). .

The requirement set ‘R1" is as follows:

38

Requirement Type

CES POC Requirements in Sept."92 (R1]

Functional requirements

R1.1: The system should factlitate the evaluation process
model fitness based upon the model/context atributes and
their relationships.

R1.2: The system must display the “Trouble Spot List® for
the process model and context attributes which exhibit
poor titness.

R1.3: The system should assist in designing process mod-
els, te.. given process context characteristics, it should
identify the fitness of the different values of cach process
model attribute.

Non-functional requirements

R1.4: The system must employ the congruence evaluation
and design assistance algorithms as developed during the
congruence evaluation method study.

R1.5: The system must be programmed on the MS-DOS
operating system.

R1.6: The system must be programmed in FoxPro pro-
gramming language.

Quality Requirements

R1.7: The system must be easily understandable in its
operation.

R1.8: The system must be reliable in its operation (must
repeatedly produce correct results).

R1.9: The system must be concise in information dis-
played in screens without sacrificing understandability.

R1.10: The system must exhibit consistent terminology,
symbols, concepts and notations in its operation.

R1.11: The system must provide all the key features in the
domain of process fitness (to the best of knowledge of the
researchers).

R1.12: The system must be cfficient in its operation with-
out a waste of resources (e.g.. CPU time, memory require-
ments, elc.).

R1.13: The system must be validated to ensure that the
congruence mecasures produced by the tool indeed charac-
terize congruence.

Table 4.1: The requirement set ‘R1° for the CES POC system

39

4.1.2.2 Type 2: Deficiencies of the CES POC system upon completion

We now discuss the requirements in R2 which specifically arose due to deficiencies identified in
the CEs POC system. These requirements can be discussed in two distinet categories: system-spe-

cific requirements and enviromment-specific requirements.

Figure 4.1 shows that the system-specific requirement which was *Moderately' met by the system
was that of system “customizability’ (Question A12), 1.¢.. the requirement that the process model/
context data stored in the databuase be changeable by the user. The system was very limited in cus-
tomization because it only allowed for the change of “selection” of a model/context attribute value
instead of allowing the user to actually chunge the data stored. The system was regarded as
‘Slightly Low™ in ‘maintainability” (Question A6). i.e.. documentation support for future mainte-
nance activities (corrective, adaptive or perfective). This was because there was no formal docu-
mentation of the system development barring the thesis of the researcher. Also, the system was
regarded as *Quite Low” in “user-friendliness” (Question AS) due to the lack of on—he.lp in both

understanding and using the system.

The system was evaluated as “Extremely Low’ in satisfying the system-specific requirements
related to “security” (Question A4) and ‘structuredness’ (Question A10), and the environn:ent-
specific requirements of system “portability". *integrability” and survivability* (Questions A13.
Al4 and A1S respectively). The requirement of system security required that the system be safe-
guarded against possible damage to the internal system consistency due to change of the data by
the user. For instance. if a process model attribute were to be deleted by the user. then. if some

relations were dependent on the presence of this process model attribute. the system should warn

40

and prevent the user from making the deletion by displayving the relations dependent on the “to be”
deleted attribute. In such a seenario. the user would thus be required to ensure that no dependen-
cies exist in the system on the attribute to be deleted. so as to ensure internal system consistency is
maintained after deletion. The CES POC system didd nor have any svstem seeurity features when it
wus implemented. As stated in chapter 1, the svstem lacked “structuredness® since there wis no

modularization of the code.

Since the system was built using FoxPro on the MS-DOS platform. it was not “portible” (Ques-
tion A13) to an operating system like UNIX. Also. the system was completely stand-alone and did
not form part of the process cycle tool-kil. Therefore. the “integrability” (Question Atd) of the
system was low. The system was also not ‘robust” cnough to survive changes in the environment
which was evident from the fact that the system had to be decommissioned soon after its comple-
tion because it failed to work in the new environment which had resulted from contiuous environ-

mental evolution during the course of the development of the system (Question AiS).

Thus. the new requirements (present in the set R2) for the re-implementation that emerged after

this “post-mortem’ analysis of the CES POC system were: the system’s database should be easily
‘customizable’, the system should be well documented so as to assist in system “maintenance’, the
system should be ‘user-friendly” and there shouid be *help menus'® throughout the system screens,
the system should be programmed in a “structured’ language so as to aid in ‘intrinsic’ understand-
ability of the system and system maintenance, the system should be ‘integrable” with the rest of

the suite of tools; this required that the system be implemented on the same OS (here, Sun OS) as

the other tools. Finally. the system should be able to *survivable’ (atleast for a reasonable dura-

41

tion) bevand system completion. It was decided not to tmpose the requirement of svstem “seeu-

rity” for the re-implementation because it would require rescarch into the dependencies within the

system and could be dealt with in the future work dealing with the “impact of change’.

The requirement set *R27 is as follows:

Requirement Type

New requirements due to CES POC system
deficiencies [R2]

Non-{unctional requirements

R2.1: The system must be programmed on the Sun OS
operating system.

R2.2: The system must be programmed in C4++/MOTIF
programming languuge.

Quality Requirements

R2.3: The system must be user-programmable. i.e.. it
must allow the user to change the data stored in the data-
base.

R2.4: The system must be well documented to assist in
future maintenance.

R2.5: The system should be user-friendly and there
should be “help menus’ throughout the system screens.

R2.6: The system should be programmed in a structured
language so as to aid in "intrinsic” understandability of the
system and system maintenance.

R2.7: The system should be portable to different or com-
patible families of UNIX with minor changes. e.g..
LINUX

R2.8: The system must be integrable with the process
cycle tool-kit.

h—

R2.9: The system must be survivable (for a reasonable
duration) in environment changes.

- Table 4.2: The New Requirement set "R2°

4.2 Summary

The Type 1 question helped in identifving the requirement set R1L which basically retlected the
functional strength of the CES POC system. The Tvpe 2 question helped in identitving the
requirement set R2. which basically reflected the weakness of the CES POC svatem. Here, it 1s
interesting to note that the new environment-specitic requirenents ¢ “portability™, “integrabiliny”
and “survivability” in Figure 4.1) were more devastating to the CES POC system than the new
system-specific requirements (all “other” requirements in Figure 4.1). That is, while some of the
new svstem-spectfic requirements could have been satistied te some extent with some eftort, aff

the new environment-specific requirements required that the svstent be re-implemented.

For example. the system design and code could have been documented atter implementation so as
to improve the maintainability of the system. Stmilarly, the system code could have been
improved to provide tor “help menus® throughout the system and this would have led to an
improved usability. As opposed to these system-specitic requirements which could have been sat-
isfied after system completion. the same approach would not have worked for the emvironment-
specific requirements. For instance, the fact that the system had been programmied in FoxPro ren-
dered it unportable to the Sun OS environment in which the other prototype systems were being
developed. Portability required that the system be implemented in a UNIX compatible program-
ming language. e.g., C, C++. Pascal, etc. The issue of “integrability” was also closely tied to the
issue of ‘portability”. Since the CES POC system was not portable to the environment of the other
prototype systems. it was essentially isolated and could not be integrated into the suite of tools
being built by the entire research team. Clearly. the severe impact of the environment-specific

requirements on the system led to its demise.

43

Chapter 5

The Impact of Environmental Evolution

Having analysed the CES POC system as at the time of system completion in Chapter 4. in this
chupter we first study the evolution of the development environment during the course of system
implementation. This is essential because, as will be demonstrated in Section 5.2, the changes in
the development environment have a profound cffect on the requirements of the systems housed
in that environment. Therefore. the requirements for a system. change not only due to the new
requirement set R2, but afse due to new requirements which are introduced as a result of the envi-

ronmentil evolution (the requirement set: “R3°).

5.1 Environmental Evolution

Before we study the environment during the course of the development of the CES POC system

(Section 5.1.2). we cxamine the environment (at 2 macroscopic' leve!) from Jan."91 onwards
when the process cycle [17] first started influencing the software development activities of our
cntire research team (sce Figure 5.1). We then discuss the CES POC development effort and the

related empirical research within this environment.

1. For a microscopic discussion on the environment. please refer 1o Section 5.1.2 and Section 6.2.

Sy

IdId [eqO[D ML :1°S amSng

ratsy

1
ELIGIT M?THOD & TOOL

ENVIRONMENT TOOLS
|

] P e S i F AR U LR R 5 B S SO g Timic
| : f : ﬁﬁ’é”:&iﬁdﬂ\ﬂ&iﬁﬂ%fmﬁ pErTrEy PR NN e T E
' 1
| ; N R SRR I | bW }""' SR o . Ti
| 1 : ‘t-’ﬂzzf&' B SRS 1 g ...lmlc
I |
I I . l - -l"
1 - me
| [I L3yt 1 >
| | : |
I I I
| | I | A
| : |
I ! I I
| I | I
| I
| ' |
[f | imteraction
Processdudy | EMPJRICAL - RESEARCH |
(Contingendy modeI/I/W - | = l } o l1MC
devel (: 3 -
evelopment) I Jan'9s ¢ Jan’906 Jan '97
|) I Mar '95
I I interaction I
I I [Y
: SII CES POC DEVELOPMFNT CES REIMPLEMENTATION Ti
CES'system . . - | ! | ime
| devdlopment|[— . i I — \\\ : | >
I | method / design / implcmenlﬂtiopl vatidaiion Sep'94 | Jan '96 Jan '97
| I I I i
I I I Formulationlof CES !
| | reimplemenlalion requirements I .
; : ! ! P I 9) ¢ : Milestone
Jan'91 Jan’'92 Secp'92 Jan '94 Jan '95 March '96
Requirement Set: R Reimp: RI#R24RI-Ryteed Rpour_rcimpt RIPRZHRI4RA-Ryciereq

5.1.1 The Global Picture

Fig-urc 5.1 depicts pictorially the “time traces” of the development of the various prototype sys-
lems in our software engincering lab from Jan'91 onwards. All the prototype systems. v.i.z.. the
Elicit 100l. Generaliser, V-Elicit 100l and the CES POC system have their roots in the concept of
the process cycle, developed at McGill, which is a logical model for process definition. adapta-
tion, cnactment, measurement and improvement, based on formal process models [17]. The proc-
ess cycle had little impact at the start. if any, on the sofrware development activities in the lab. The
key impact of the process cycle was initially in the process studies that were being carried out in
collaboration with several organizations such as IBM Canada and DMR Group Inc. But from
carly 1994 (Question B 14, Figure 5.2). there has been a growing realization of the actual impact
of the process cycle on the software tools being built in the lab. Initially. all the prototype systems
were being developed in isolation with a weak common vision (guided by the process cycle) for

the entire team (Question B13, Figure 5.2).

The empirical research for developing the contingency model (on which the congruence method
for the CES POC system was based) started in Jan"92 and the development of the congruence
method commenced in Sep’92. Much of the time (approx. 1.5 years) in the development of the
system was spent in developing the congruence method in close association with the on-going
research in contingency models, with the rest of the time being spent on designing, implementing
and validating the system. Since the congruency method was fundamentally based on the continu-
ally evolving (and refining!) contingency model, consequently there was a close ‘interaction’
between the empirical m@ch and the CES POC development (see Figure 5.1 left hand side).

These two lines of research were therefore closely tied together and were isolated from the envi-

ronment which was increasingly binding the other prototype svstemis (Elicit. Generaliser and V-

Elicit).

Once the system was completed (in Sept."94) and demonstrated to be valid with respect to the
underlying concept of congruence. the focus in the re-implementation effort shifted to the evelva-
biliry of the system in conjunction with the suite of tools in the environment. Therefore. the envi-
ronmental requirements were closely tied to the system in the re-implementation effort (sce
Figure 5.1 right hand side). Now. the process cycle also started exerting a strong influence on the
re-implementation of the CES. The system was required to fit into the overall framework of the
process cycle by enabling the adaptation of the improved generic process models. Therefore, the
system was required to be invocable from the process cycle tool-kit. Thus, there was an increased

interaction between the system re-implementation effort and the environment.

5.1.2 Environmental Evolution from Sept.’92 to Sept.’94

Having studied the overall picture of the development environment for all the prototype systems,
in this section we focus specifically on the environmental changes during the course of the CES
POC system development (Sept.’92 to Sept.’94). This will help us determine the consequent

change in system requirements which was the primary couse for the re-implementation.

5.1.2.1 Analysis Method

The analysis method for determining the environmental changes was similar to the one adopted

for determining the system deficiencies (Section 4.1.1). The criteria which were used to assess the

47"

environmental evolution cun be categorized into three clusters': questions pertaining to environ-
ment goaly, questions pertaining to the predictors of environmental change and other miscellane-
ous questions, The questions were derived from the interviews conducted by the author with other
research team members and from the literature [28. 30, 41]. All these criteria were included in an
‘Instrument to assess Environmental Evolution” (see Scetion B of Appendix C). The instrument
developed consisted of 17 criteria to assess environmental evolution. Of these, 9 criteria were per-
taining to environmental change. 3 criteria were related to predictors of environmental change

while the remaining four were miscellancous criteria.

5.1.2.2 Analysis Results

The analysis results of the data gathered during this survey are shown in Figure 5.2. It is sug-
gested that Figure 5.2 be studied along with the questionnaire (Section B of Appendix C) so as to

better understand the data analysis results.

In this section, we first analyse the environment at the start of the CES POC system development
in Sept.’92. We then analyse the environment at the time of system completion in Sept.”94.
Figure 5.2 graphically illustrates the environment as it existed in Sept.’92. Clearly. while there
was a low realization (almost negligible!) of the environment goals (Questions B1-9, Figure 5.2),
realization of the predictors of environment change (Questions B10-12, Figure 5.2) and other
environment related issues (Questions B13-17. Figure 5.2) was basically non-existent. Interest-
ingly. this low realization of the predictors of environmental change explains why the environ-

mental changes had such a devastating effect on the CES POC system., since the environmental

1. The idea of clustering criteria in an instrument is borrowed from (65, 27]

48

6t
$6.1d95 pue 76,71daS -s1oys-deus uonnjoAT [LIUSWUONAUT T°G NS
Ratings on a 7 point bi-polar scale

Environmental Evolution From Sept. '92 to Sept. ‘94 "

" |

Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques.
B1 B2 B3 B4 85 B6 B7 B8 B9 B10 Bit B12 B13 B14 B15 B16 B17

Bl scpt.'o2 B Sept.'94

changes were totully unexpected. When the CES POC system was implemented. there was a cer-
tain degree of ignorance of the evolution of the environment and thus the survivability of the sys-
tem. The ignorance of the rescarchers (in Sept.'92) about the environmental evolution and its
likely impact on the existing prototype systems was also revealed by the extremely poor response
to question B 17 of the questionnaire (sce Figure 5.2). The original developer of the CES POC sys-
tem also believed that it would be possible to enhance the system in some way and blend it with

the other tools.

That the process cycle had a weak impact on the development activities (in Sept.’92) is evident
from the fact that there was a low realization of the existence of a common vision (Question B13.
Figure 5.2) for the entirc research team (guided by the process cycle). It may also be noted that
while most of the respondents to the survey did not know (in Sept.’92) of the existence of this
‘common vision’. only the research team leader (hereafter. RTL). who was also the proposer of
the concept of process cycle [17]. had begun to realize how the process cycle could drive the

research activities of the entire group.

At the time of system completion in Sept."94, the environment had changed dramatically with an
increased realization (generally. “Slightly Low’) about all the criteria mentioned in the question-
naire (see Figure 5.2). This growing realization was observed in the responses both from all the
rescarchers and the RTL as well. Infact, the trend of increased awareness of the RTL of environ-
ment refated issues was even more pronounced at this time (the RTL's responses on average
recorded an increase in realization by four scale points from Sept."92 tc Sept."94!). Now, the

highest awareness was of the fact that there were flaws in the existing environment that could

50

cause it to evolve in the tuture (Question BI1, Figure 3.2). However, this data should be inter-
preted with caution because all the other respondents barring the RTL responded with o *Don’t
Know™ response to the question. Evidently. answering the question required a greater insight into
the prevailing environment. There was more unanimity in the response to the specitic question of
the realization of the goal of integrating the CES POC system in the process eyele ol-kit (Ques-
tion B6. Figure 5.2). The respondents believed there was a “Slightly High® realization about this
goal. However. it should be noted that the system implementation had just been completed and a
detailed “post-development” analysis had just begun (Sept.™94 to Jan. 93, Figure 5.1) to analyse
the system, its future and system enhancements. Only now was it being debated within the

research team: Where and how should the CES POC system fit in the process evele?

In Sept."94. there was a *moderate’ realization of: the goal of having a process-cycle tool-kit com-
prising of a/l the prototype systems being developed: the goal of evolving the CES POC system in
the environment; the change of focus from *software process concepts and methods™ to “software
process concepts methods and 1ools™; and. a likely serious impact of ecnvironmental changes on

the prototype systems housed in the environment (See Questions B1.B7, B9 and B17 respectively
in Figure 5.2). The realization of the goal of having a process-cycle tool-kit was much higher in

the RTL when compared to that in the other individual researchers. who were aware more of their

specific research and less of the global strategy for the entire research team.

The realization of the goal of evolving the CES POC system in the environment first evolved dur-

ing this period (Sept.”94). The realization matured more in the post-development analysis of the

system, when the analysis of the deficiencies of the system favoured a design approach for re-

51

implementation which would allow for a continual evolution of the systeny in the future instead of
repeated decommissionings of future implementations and thus a loss of development effort. The
shifl of focus to tools was also higher for the RTL for the reasons explained earlier while the indi-
vidual researchers, who were in somewhat mutual isolation (due to the independence of work and
no framework to bind all work together). were moderately aware of the shift to “1ool focus® for the
entire team, The research team was now beginning to realise for the first time the impact the envi-
ronmental changes were having on the prototype systems. for instance, deficiencics (due to envi-
ronment-specific causes) were being realized in the CES POC system cven before the formal

completion! Therefore. there was a moderate realization in response o question B17.

The responses to the rest of the questions broadly fell in two distinct categot.cs: *Slightly Low” or
*Quite Low’ realization of environmental issues, and. ‘Extremely Low” realization of environ-
mental issucs. Again, the RTL exhibited a higher rcalization in each of these responses when
compared to the other research team members. The realization of the goal of data. control and
platform integration varied from *Slightly Low" to *Quite Low". These were specifically the dif-
ferent type of tool integration [30]. and since the realization of the more general goal of integrat-
ing all the prototype systems in a process cycle tool-kit was itself low, the awareness of the details

of tool integration was bound to be lower.

Now. due to the frequent interactions with software organizations, there was an increasing aware-
ness of the benefits of tool-integration {Question B10). The organizations evinced more interest in
a comprehensive tool-Kit than in isolated tools. Also. now there was a moderate realization of a

common Vvision for the team (Question B13). Since this question is closely tied to the goal of hav-

ing a process cvele wol-kit (Question B, the reasonings tor the response to that uestion apply
here as well. The other questions (Questions B12, B14. BI5 and B16) deult with more subtle
issues relating to the “analysis” of the soltware systems housed in the environment, The *Slightly
Low" realization of these environmental issues (In Sept."94) clearly showed a growing! aware-

ness (since Sept.”92) of the impact of the environment on the sottware systems housed in it,

The lowest realization at this time (Scpt."94) was regarding the issues of control integration for all
the prototype systems and also a distributed. clicnt-server architecture (Questions B4 and BS).
These were questions which required a good understanding and realization of data, user-interface
and platform integration us a prerequisite. However, the realization for these prerequisites was
itself poor. thus contributing to an “extremely low” reulization in responses 1o Questions B4 and

BS.

Having studied the environment at two distinct time-shots, in Sept.’92 and Sept.”94, one can
observe the steady increase of awareness in the entire research team of the environmental changes
and related issues. This understanding of these environmental issues is important because it helps
us understand how “new’ requirements (the requirement set: *R3") emerge due to an evolving

environment.

5.2 Requirements Changes due to the Evolving Environment

In this section, we study the impact of the described environmental changes on the change in sys-

tem requirements. Specifically, we identify the new requirements (R3.1 to R3.3, see Table 5.1)

1. All these questions recorded an “extremely low” realization in Sept."92

53

that emerged for the re-implementation effort due to these stated environment changes.

It should be noted that the growing realization of all the criteria listed in the questionnaire (Sec-
tion B of Appendix C} did not necessarily contribute to requirements in R3. This is because.
although there was an tnereased awareness of certain Key environmental issues, it was still not
concrele enough to be moulded into formal requirements, This only happened in March'96 when

there was an even more improved understanding of the environment,

The realization of the goal of having i process cyele tool-kit (Question B1) implied that no system
should be stand-alone. i.c.. which could not be exccuted as part of the process cycle tool-kit. This
question was thus closely tied to Question B6 and. in part. to Question B10, B13 and B14.
Although, there was a low realization regarding platform-integration (Question BS) at the time of
system completion. however the new requirement that the CES POC system be integrated into the
process cycle (Question B6) required that it be re-implemented on the sume operating system

(Sun OS). Both of these new requirements were thus closely associated.

The increased awareness of the goal of evolving the CES POC system in the environment (Ques-
tion B7) led to the new requirement that the re-<implementation should support evolvability. As
stated in chapter L. ¢volvability was now a prime concern in system re-implementation. Infact, the
growing awareness in response to Questions BI11. B12, B16 and B17 (See Figure 5.2) also con-
tributed to the decision that the system be re-implemented in a *flexible® way. This new require-
ment was also closely tied to Question B135. which addressed the specific issue of how the system

could be designed in such a way that the system be easily evolvable. Although the realization of

separating “software tunctionality” from “integration mechanisms” was quite low in the entire
research team as a whole, there were independent design decisions of some researchers based

more on foresight, that they decided to make this separation in their design’

It is casy to sce why the CES POC svstem “died” in these circumstanees. These new environmen-
tal requirements questioned the very design and implementation of the CES POC system. The
CES POC systenm was out-of-date technically because it was developed on it ditferent OS which
was incompatible with that used for the rest of the suite of tools. and because integrating it into
the existing suite of tools was tmpossible. Arthur’s views | 1-4] reported tn chapter 2 are thus rele-
vant here: that, the existing svstem should be treated as a protorype and a new one built from

scratch.

The new requirement set “R3° is as follows:

New Requirements due to Environmental ¢volution

Requirement Type from Sept.’92 to Sept.’94 [R3]

Quuality Requirements R3.1: The system must be so programmed that the *soft-
ware functionality” is separated from ‘integration mecha-
nisms’ so as to enable easicr “Lool integration”.

R3.2: The system must be integrable with the process cycle
tool-Kit.

R3.3: The systcm must be survivable (for a reasonable
duration) in environment changcs.

Table 5.1: The new requirement set *R3’

. 1. Only the Generaliser and the CES POC system were designed in this way. However, there was no formal
group policy to follow this approach.

55

5.3 Summary

The preceeding sections explained how the system requirements change conttnually for o system
due o an evolving environment. Both the graphs (Figures 4.1 and 3.2) form a strong rationale for
the requirements that are generated at a given point of time. Looking at the environment at the
two time-shots of Sept.’92 and Sept.”94, we can observe how the requirements have changed

from the original set R1.

Thus, the requirement set. R jp- for the re-implemented system (in Sep.’94 to March™96} is
detined as:
Recimp = RI+R2+R3 - Ryopered

where,
RI: the old requirement set for the CES POC system (R1.1 to R1.13)
R2: the new requirement set for the system due to CES POC deficiencies (R2.1 to R2.9)
R3: the new requirement sct for the system due to environmental changes from Sept.”92 to

Scpt.’94 (R3.1 to R3.3)

Ryeteed: the requirements for the CES POC system which were not to be satisfied in the system

re-implementation

We now formally tabulate the old requirements for the CES POC system and the new require-

ments that emerged as at the time of system re-implementation.

Table 5.2 shows the change in system requirements from Sept.”92 to Sept.’94. The requirements

are categorized into functional. non-functional and quality requirements. A requirement

56

belonging. say. to the set R s identitied as RIx where x ts aninteger >= 1.

CES POC system requirements

bascd upon the model/context
attributes and their relationships.

i t "ES POC system Requirements s oy
Reqsm-emen CE O_L ysten ’R(.q re € in Sept."94 [R1 + R2 + R3 -
Iype in Sept.”92 [R1] R
clcll:h:tll
Functional R1.1: The system should facilitate R1.1: The svstem should facilitte
requirements the evaluation process model titness { the evaluation process mode] titness

based upon the model/context
attributes and their relattonships,

R1.2: The system must display the
“Trouble Spot List” for the process
model and context attributes which
exhibit poor fitness.

R1.2: The svstem must display the
“Trouble Spot List™ for the process
model and context attributes which
¢xhibit poor fitness.

R1.3: The system should assist in
designing process modcels, i.c..
given process context characteris-
tics, it should identify the fitness of
the different values of cach process
model attribute.

R1.3: The system should assist in
designing process models, i.e..
given process context charucteris-
tics, it should identify the fitness of
the difterent values of cach process
modcl attribute,

Non-functional
requirements

R1.4: The system must employ the
congrucnce cvaluation and design
assistance algorithms as developed
during the congruence evaluation
method study.

R1.4: The system must employ the
congruence evaluation and design
assistance algorithms as developed
durtng the congruence evaluation
method study.

R1.5: The system must be pro-

language.

grammed on the MS-DOS operating R1.5 DELETED
system.

R1.6: The system must be pro-

grammed in FoxPro programming R1.6 DELETED

R2.1: The system must be pro-
grammed on the Sun OS operating
system.

R2.2: The system must be pro-
grammed in C++/MOTIF program-
ming language.,

Table 5.2: Requirements changes for the CES POC system

57

Requirement
Type

CES POC system Requirements
in Sept.’92 [R1]

CES POC system requirements
in Sept."94 [R1+ R2+ R3 -
Rycleted]

Non-functional
requircments

R3.!: The system must be so pro-
grammed that the *software func-
tionality” is separated from
‘Integration mechanisms” so as to
cnable casier “tool integration”.

Quality
requirements

R1.7: The system must be easily
understandable in its operation.

R1.7: The system must be easily
understandable in its operation.

R1.8: The system must be reliable in
its operation (must repeatedly pro-
duce correct results).

R1.8: The system must be reliable in
its operation (must repeatedly pro-
duce correct results).

R1.9: The system must be concise in
information displayad in screens
without sacrificing understandabii-

ity.

R1.9: The system must be concise in
information displayed in screens
without sacrificing understandabil-

ity.

R1.10: The system must exhibit
consistent terminology. symbols,
concepts and notations in its opera-
tion.

R1.10: The systern must exhibit
consistent terminology. symbols,
concepts and notations in its opera-
tion.

R1.11: The system must provide all
the key features in the domain of
process fitness (to the best of knowl-
edge of the researchers).

'R1.11: The system must provide all

the key features in the domain of
process fitness (to the best of knowl-
edge of the researchers).

R1.12: The system must be efficient
in its operation without 2 waste of
resources {(e.g., CPU time, memory

R1.12: The system must be efficient
in its operation without a waste of
resources (e.g.. CPU time. memory

measures produced by the tool
indeed characterize congruence.

requirements, etc.). ‘ requirements, etc.).
R1.13: The system must be vali- o : ' -
dated to ensure that the congruence R1.13 DELETED

R2 3: The system must be user-pro-
grammabie. i.e.. it must allow the
user to change the data stored in the
database.

Table 5.2: Requirements changes for the CES POC system

58

Requirement
Type

Quality
requirements

All requirements

CES POC system Requirements
in Sept.”92 [R1]

CES POC system requirements
in Sept.’94 [RI + R2 + R3 .-
Rdclctcd]

R2.4: The system must be well doc-
umenied to assist in future mainte-
nance.

R2.5: The system should be user-
friendly and there should be “help
menus” throughout the system
SCTELnS.

R2.6: The system should be
programmed in a structured lan-
guage so as to aid in “intrinsic’
undersiandability of the system and
system maintenance.

R2.7: The system should be postable
to diffcrent or compatible familics
of UNIX with minor changes. e.g..
LINUX

R2.8. R3.2: The system must be
integrable with the process cycle
tool-kit.

R2.9. R3.3: The system must be sur-
vivable (for a reascaable duration)
in environment-changes.

Rdclclcd: R1.5.R1.6,RI1.13

Table 5.2; Requirements changes for the CES POC system

Table 5.2 shows how the requirements for the CES POC system changed from Sept.’92 to

Sept."94. This was primarily due to the fact that when the system was first implemented. the con-

cept of process model congruence was highly original. It was not possible to decide all the tool

features and the application domain was also unclear. Lientz and Swanson’s views 25] reported

in chapter 2 are thus relevant in this situation: that, requirements change continually, often from

59

experience gained from use of the system and in response to organizational change (which can

here be likened to environmental change!). The requirement set in Sept.’94 then formed the start-

ing point for the re-implementation of the system,

60

Chapter 6

System Re-Implementation

Based on the requirements identified in Chapters 4 and 5 (both duc to the cnvironment changes

and due 1o the deficiencies of the CES POC system). in this chapter. we describe the design strat-
egy adopted for the re-implementation of the system (during Scpt.'94 to March*96). We also dis-
cuss how the environment evolved during the course of system re-implementation and what new

requirements arose due to these changes. We do not make a formal assessment of the re-imple-
mented CES system' because our focus in this thesis is on the new requirements which emerge

due to environmental changes. However. the importance of making a formal assessment of the

system before any future enhancemecnts still remains.

6.1 Design Strategy and its Rationale for the Customizer

In this section, we discuss the design strategy for the Customizer and present the rationale behind
it. We observed that all the explicitly documented requirements for the Customizer were the driv-
ers of this design strategy and that the rationale was closely ticd to the satisfaction of these

requirements. Also, unlike in Chapter 3, where we discussed separately the design strategy and its

1. The re-impiemented CES POC system is hercafter referred to as *Customizer”. -

61

rationale, here we discuss them in tundem because the requirements {or the Customizer were
explicitly documented and thus each design strategy component and its rationale were closely

coupled with a particular requirernent. It therefore scems suitable to discuss both together.

As stated in Chapter 3. when the Customizer was implemented. the focus of the design strategy
was on ‘evolvability' of the system while retaining its validity. i.c.. the system was expected to
survive (for o reasonable duration) future environment changes {*new” requirements R2.9. R3.3).
The design strategy for the Customizer was thus to employ a structured programming language.
which would simplify understandability of the system and ease cvolvability (‘new’” requirements
R2.2. R2.6). We decided to use the C++ p;‘ogramming language because other prototype systems
in the lab were already being programmed in this language and the developer (the author) was
also familiar with it. The operating system for the implementation was required 1o be compatible
with other UNIX families and was to aiso allow for easy integrability of the system with the proc-
ess cycle tool-kit (‘new’” requirements R2.1. R2.7. R2.8 and R3.2). We used the Sun OS because

all the other prototype systems. which formed part of the process cycle tool-kit, were being devel-

oped on it.

When the Customizer was implemented. the requirements were clearly specified (see Table 5.2,
Chapter 5). therefore a formal scftware development process (here. the iterative model) was fol-
lowed. This was unlike the *ad-hoc™ approach followed in the implemzntation of the CES-POC

system due to poorly specified requircments.

In order to assist in future maintenance activities. the system was to be well documented (‘new’

requirement R2.4) with a formal seltware requirements specification (SRS) document, design and
code documentation, The database for the Customizer was to be such so as to allow for the cus-
tomizability of the data stored in the system (*new” requirement R2.3). The system was to support
“help” menus throughout its screens (*rew’ requirement R2.5) to simiplity understandability of the
system operation. In order to ussist in future evolvability. we decided to separate the code pertain-
ing to ‘functionality” of the system (¢.g.. implementation algorithm) from that dealing with inte-

gration mechanisms (‘new’ requirement R3.1).

In the next section. we examine the environment changes during the course of development of the
Customizer. We had noted in Chapter 3. that about certain issues, ¢.g.. "control integration”, there
was a growing realization but that this realization did not necessarily translate into new require-
ments for the Customizer because the awareness was not mature or detailed enough lead to new
rcquirements. However. it was observed that the situation from Scpt.’94 to March’96 changed
dramatically with the continued evolution of the environment. Realization of the environmental
factors was much more prorounced in March™96 than in Sept.'92 and this thus resulted in a new

set of requirements as described in Section 6.3.

6.2 Environmental Evolution from Sept.’94 to March’96

The analysis methed for determining the environmental changes between Sept.”94 and Murch’96
was exactly the same as the one adopted for determining the change in the cnvironment between
Sept."92 and Sept.’94 (Section 5.1.2.1). The analysis results of the data gathered during this sur-
vey are shown in Figure 6.1. It is suggested that Figure 6.1 be studied along-with the question-

naire (Section B of Appendix C) so as to better understand the data analysis results.

63

Environment Evolution Snap-shots: Sept.’92, Sept.’94 and March’96

e e R e A R I,

Tt oen L P b Lt it S eat oottt S e S et oo L SO

b2 trt, Sy T AT O i e | e T e
e vt Ty T Ak W T s, e fo e iy T

N T T e

LT o
TR el

e e A LI
[it T |

waTdAT L T L AT LT

s s

NS ——-—

_
® - o
apess 1ejod-1q jutod £ B uo sbuney

Ques.
B17

Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques. Ques, Ques. Ques.
B3 B4 B5 B6 B7 B8 B9 B10 B4 B12 Bi3 B14 Bis Bi16

Ques.
B2

Queas.
B1

B sept.'s2 MM sept.’94 B March'g6

Figure 6.1: Environmental Evolution Snap-shots: Sept.’92, Sept.’94 and March*96

64

Figure 6.1 shows that there was a marked change in the environiment from Sept. 94 to March™v6,
[t was observed that on average. realization of the various environmental issues increused by

approximately 3 scale peints. which on a 7 point scale is signiticant! Having already analysed the
environment in Sept.”94 in Section 5.1.2.2, in this scetton, we discuss the environment at the time

of completion of the Customizer in March™96.

Figure 6.1 shows that 13 out of the [7 criteria recorded a response of “Quite High' to “Extrenely
High' realization in March*96. However. even at the time of completion of the Customizer,
awareness of certain environmental 1ssues was only “Moderate’. These were the issucs pertaining
to whether the researchers realized that the existing prototypes were “throw-away® or *evolution-
ary” prototypes (Question B12), awareness of the “robustness™ of the prototype systems to survive
changes in the environment (Question B16), rcalization that environmental changes could seri-
ously affect the prototype systems housed in it (Question B17) and the _r_calizzuion of flaws in the
existing environment which could ciuse it to evolve in the future (Question B11). Interestingly.
all these questions had the same underlying reasoning to explain the response: the rescarchers
believe that they are developing reasonably ‘robust’ systems which can survive changes in the
environment in the near future. however, they could not claim with conviction that they had thor-
oughly understood the environmental changes in the present or in the future. Therefore, the
responses depicted a ‘cautious optimism’ about the survivability of the prototype systems in the
future. Also, the realization in response to Question B11 fell from a high of ‘Extremely High’ (in
Sept.'94) to *Slightly Low" (in March’96). This was the only environmental issue which recorded
a fail in realization from the response in Sept.’94. Again. it only reconfirmed the fact that a1l the

researchers, 0 the best of their knowledge. could not foresee any major changes in the environ-

65

ment in ihe future and thus all their present development activities were driven by this observa-

tion,

Questions B1, B6, B7. B9 and B3 recorded an average increase (compared to that in Sept.”94) in
awareness ol 3 scale points. All these questions were bound by one common factor and cach of
them merely addressed specific issucs related to the same basis: the realization of the goal to inte-
grate all the prototype systems in a process cycle tool-Kit. As stated carlier. this was the driving
force behind all the major environmental changes in our Jab, and the awareness of the researchers
on this issue has steadily increased from Sept.”92 onwards (there was already a “Moderate™ aware-

ness in Sept."94).

Questions B2, B3, B10. B14 and B135 recorded an average increase (compared to that in Sept.”94)
in awarcness of 4 scale points. Interestingly. these were the issues which addressed specific details
related to the concept of process cycle tool-kit. e.g.. data integration (Question B2), user-interface
integration (Question B3). and other such issues. Since the awareness of such issues varied from

*Slightly Low" to "Quite Low" in Sept."94. the increase in awareness was more pronounced.

Finally, Questions B4, BS and BS recorded the highest increase in realization, up by on an aver-
age 5 scale points when compared to the data for Sept."94! They shared a similarity to the ques-
tions which recorded 2 4 scale points increase in realization from Sept."94: these questions also
addressed specific issues related to the actual accomplishment of the procéss cycle tool-kit. Also,

all these issues were relatively “new” and their realization in Sept."94 was ‘Extremely Low".

66

To summarise. it was observed that there was a dramatic increase from Sept. 94 to March™06
about specitic issues related to the formation of & process eyvele tool-kit, Other questions which
retated to an “on-going” understanding of more subtle issues related to environmental change

exhibited a more lincar growth.

In the next section. we study the impact of these environmental changes on system requirements.
Specifically. we identify the new requirements (set *R47) due to these stated environment changes.
It should be noted that, some of these issues had already yielded new system requirements in

Sept."94 which remained true even in March™96. Other environmental issues. of which realization

was much less in Sept.”94 had matured now to yicld concrete requirements,

6.3 New Requirements due to the Environmental Evolution

Four new requirements arose in March96 duc to the environmental evolution from Sept.'94 and
all these were specific 1o the details of establishing a process cycle tool-kit. The realization of the
goal pertaining to “data integration” (Question B2) led to the new requirement that all the proto-
Lype systems access a common data repository. The realization of the goal of *user-interface” inte-
gration (Question B3) led to the new requirement that there be 2 common user-interface to load
process models and to start applications, i.e. clients modules. Realization of the goal of ‘control
integration’ (Question B4) led to the new requircment that a prototype system (in addition to
‘direct’ invocation) may be invocuble from another prototype system too. Finally. realization of
the goal of having a *client-server architecture’ (Question B8) led to the new requirement thut
each client will be able to connect to the same server through InterNet sockets. Thus, the compo-

nents of the process cycle environment may run on separate machines.

67

The new requirement set "R4° at the time of completion of the Customizer is:

Requirement

Typ Customizer Requirements in March'96 [R4]
¢

Non-functional requirements R4.1: The system should be *data integrated” with the other
protolype syslems.

R4.2: The system should be (if deemed necessary) *control
integrated” with the other prototype systems.

R4.3: The system shouid run as a client in a distributed cli-
ent-server architecture.

R4.4: The system shouid be “user-interface integrated” witn
the other prototype systems.

Table 6.1: The new requirement set "R4° for the Customizer

This set of requirements has been validated and would thus form a driver for system ¢volution in

the future.

Thus, the requirement set, Rpgg_re-imp- 2fter completion of re-implemented system (March™96) is
defined as:
Roost_re-imp = Rre-imp + R4
where,
Reeimp: R1 +R2 +R3 - Ryeiered
R4: the new requirement set for the system due to environmental changes from Sept.’94 to
March'96 (R4.1 to R4.4)
Noie: The re-implemented system has not as yet been assessed and thus we expect some addi-

tional requirements due to system deficiencies for future release of the system.

68

6.4 Summary

As was observed in the development of the CES POC systent. the requiremenis of the system
change continually in response to environmental changes, No system can be “immune” to such
changes in requirements. The challenge is thus to implement the system in such a way that it

atfords future evolutionary changes.

All the new requirements discussed in this chapter form part of the new requirements to be con-
sidered in the enhancement of the Customizer. The existing Customizer would require minor to
moderate changes to satisfv these new requirements, For example. user-interfuce integration as
straightforward to achieve because the system functionality has been separated from integration
mechanisms., though dependencies would need to be tuken care of. The new requirement of a dis-
tributed client-server architecture would require server calls to be incorporated in the existing
code. Similarly. to accomplish control integration. a *call” to the other client system. at the appro-
priate point, would be required to be included in the Customizer code. All these changes, how-
ever. are anticipated and evolurionary. unlike the unanticipated dramatic changes that rendered

the CES POC system detunct.

69

Chapter 7

Lessons Learnt

We now reflect on the case study and draw out three lessons that were learnt. These are:

@ Requirements for a svstem stem not only from system-specific deficiencies and functional
enthanicements but also from changes in the environment, which are not abwvays predictable.
(Scctions 5.2 und 6.3)

The tmportance of the new requirement scts due to environmental evolution. the sets R3 and R4,
cannot be under-estimated. We observed that as many as 9 of the 16 new requirements (specifi-
cally. requircments R2.8, R2.9, R3.1 10 R3.3. R4.1 to R4.4) were introduced due to environmental
changes or environment related issues! Clearly. environmental changes have a major impact in

determining system requircments.

@ Requirements emerging due 1o environmental changes can have such a devastating impact on a
svstem thar they can render the system obsolete unless the svstenm was so developed to survive
these changes.

{Scction 4.2)

70

As stated carlier. the CES POC system suftered o faral atack due to the requirement set "RY
while the impact of the requirement set "R4™ was evelusionary, This was because the Customizer

was xo developed. so as to survive environmental changes in the near tuture.

O Although the environment mayx keep on evolving all the time. these changes mav nor necessarily
transiate into new system requirements unless the changes are “mamre” enought.

(Section 5.2)

We observed that environmental changes are sometimes subtle and that the environment ¢volves

gradually. Therefore. such environmental changes only transform into actual requirements after a

certain degree of “maturity” in the understanding of the changes has been attained.
From our expericnce. the described lessons should be considered in the development of unprece-

dented POC systems by research teams so as to possibly avoid the fatal impact of environmental

changes.

71

Chapter 8

Conclusions and Future Work

In this thesis. we have described a case swudy of requirements changes in an cvolving environment
involved in the development of unprecedented systems. Specificaily. we have analysed how this

environmental evolution had affected the requirements for. and thus the survivability of. the soft-
ware system. Also, we have listed some lessons learnt from this experience which can be consid-

ered in the development of the proof of concept systems in research environments.

All these lessons suggest a circumspective analysis of the kind of criteria identified in Section B
of Appendix C. at various points in time and as a system grows. Only through in-depth analysis.
both qualitative and quantitative, would we be able to reason about individual and collective

requirements, the source of the rest of the software development activities.

Based on tﬁc re-implemented system. we identify one requirement for future work in the short
term - analysis and visualisation of the impact of change to a given process or context variable.
For example. what is the impact of changing one tvol for a;oﬁér on software productivity? One
desired feature of the future system would be to identify tl'?.‘ process or context variables (such as

budget. skill level required. etc.) that would be affected " the tool change and to display contin-

o3

gency variables (such as process and project size) and relationships that act as constraints on the
tool-productivity relationship. A related feature would enable one to experiment with diflerent
variable values and visualise the impact of change. With such system teatures, key decisions can

be made on specific tssues in a given project.

Another research thrust for the future would be to monitor turther evolution of lhé process cvele
environment and its impact on requirements changes for the re-implemented system. By obtain-
ing several cycles of evolutionary data. a pattern could emerge on how requirements emanate

from environmental changes over a period of time. Such a pattern would be an important contri-

bution to our knowledge on requirements evolution.

73

Appendix A

Project Characterization - I

This appendix presents the process model and context attributes (along with possible values) of

onc of the projects studied as part of the empirical study described in Chapter 3.

74

APPENDIX A. PROJECT CHARACTERIZATION - I

Process Model attributes Value Process Mode! atiributes Valye
Exit criteria Lower than Stand. { Existence of temipiates Few
Output/Ddiv. divisionalization Yes Existence of cxampics Many
Intcgration mechanisms Low Effort exsmining corrent systet High
Devices for underst/valid. finction. Prototypes Age of method Old
Coonlination mechanism Stand. of deliv. Type of modelingin PA Functional
Formaliz. of change management Low COTS aricatation COTS is part
Resources for PM. control & plann. High Workflow depictioninmothod ~ Not Obvious
Amount of Project Manag. docum. Large Role specialization in moded High
Emphasis on control and planning High Relstive diffrenceof modd ™ - Diffcrent
User's view formalism Simple Incremental implementstion Ye
{Size of user’s vicw of modet Large .
Characterization of Process model 1
Context attribute Vaiue Contaxt attribute Value
Accuracy of estimates raquired High Package modificationneeded No
User experience with method Low . Use of consultants (process) Extonive
Delegation of author. to users SC vaiidates | Availsbiity of users Availgble
Manag. method for personnel selec. By capabliiity. | Userwants a package Yes
Ability to change High Paciage siready purch fselectsd No
IS spending High Technology strategy Proc, improv.
Management expectation Patient Highly interactive system No
Project size Large Tume of packege decision Esrty
Application uncerizinty Low Exiztenca of ajegacy system
Application complexity Low User wants something new No
Number of user departments involved Few Style of project manager . Strict control
Budgetary constraints No Centraiiz. of decision making Centralized
. Userintertace Not critical Schedule constreints ‘No
Prototyping toel support Not Available | Mshsgement Method . ' Dellv. orlented
Main user anphasis Funcionslity | Use of consuttants (stry cons, Extensive
User's IS experience High informaiion system size Lerge
User's communication skills Rowsrd syctem Long term
Customiz. of business process " Low PM tachnical involvemnent Low
Scope of system Narow Extent of tech. driven culhee Low
Process experience of practitioners Lorge Stand-sione packege Yes
Organization has own standards No User involvermnent Low

1. Characterization of Context 1

75

Appendix B

Project Characterization - 11

This appendix presents the process model and context attributes (along with possible values) of

onc of the projects studied as part of the empirical study described in Chapter 3.

76

APPENDIX B. PROJECT CHARACTERIZATION - I

Process Modef atiribute Vaiue Procass Moda! attributs Value
Exit eritaria Lower than Stand. | Existence of tampiatss Many
Qutput/Deliv.divisionalization No Existsnce of cxamplos " Fow
integration mechanisms High Effort examining carent systs ¢ Low
Devicas for understivaiid. function. Prototypes Age of method oW
Coordination mectanism Stand, of activ. Type of modsiing in PA " Justconceptual
Formaliz. of change management Low COTS orientxtion COTS Is part
Resources for PM. control & plann. Low Workflow depiction in method ~ Not Obvicus
Amournt of Project Manag. docum. Smadl Role spectaltzation in modsl High
Emphasis on control and planning High Relative differsnce of mode Similar
User's view formalism Simple Inxamental implementation Yes
Size of user's view of model| Small
. Characterization of Process model 2
Context attribute Value Context attribute Value
Accuracy of estmates raquired Low Package modificeion needed No '
Userr:geﬁm with mathod Low Use of consultants (process) Not Extensive
Delegation of author. to users Delegation Avsiabiiily of users Avsilgble
Manag. method for personned selec. By capgbilily| Usecwants a packege No
Ability to change High Package siready purchJsalected No
IS spending High Technology strategy Second to markst
Management expectation Patient Highly interactive system Yes
Project size ' Large Time of package dacision
Application uncertainty High Existence of alegacy system = No
Application complexity High User wants something new Yes
Number of user departments involved Few Style of project menager Strict control
Budgetary constraints No Centrafir, of decision making Decentralized
User interface Schedule constraints No
Prototyping tuo! support Available Managemernt Method Deliv. oﬂen.tnd
Main user emphasis Functionafity| Use of consultants (snycons) Not Extensive
User's IS experience Low wotmdw :;-mqm size
User’s communication skills Expressive
Customiz. of business process Low PM technical involvement High
Scope of systam Namrow Extant of tech. driven culture Low
Process experience of practitioners Large Stand-sione pacikage No
Organization has own standards No User invivement High

Appendix C

An Instrument to Assess System Deficiencies
and Change in Requirements

This section contains the instrument which was used to assess the deficiencies of the CES POC
system at the time of completion of the system (in Sept.’92) and measure the environmental evo-
lution during system implementation (Sept.”92-Sept."94) and re-implementation (Sept."94-

Maurch-96).

78

AN INSTRUMENT TO ASSESS SYSTEM DEFICIENCIES &
CHANGE IN REQUIREMENTS

The purpose of this instrument is to assess any defictencies of the Congruence Evaluation System.
a proof of concept system (CES POC system). at the time of completion of the svstem (Sept.
1994). and also to assess the change in requirements for this system due to the evolution of the
process cyele environment (i.e.. all the tools that are being built in the Software Engineering Lab.
at McGill) during the course of development of the CES POC system thereafter called “the sys-
tem”) and thereufter.

Determining the deficiencies of the svstem at the time of completion (Section A) will help us list

the “new’ system requirements which can be considered during the re-implementation of the sys-

tem. o0 as to eliminate the identified deficiencies. Also. determining the environmental evolution

(Section B) during the course of development of the system will help us determine the consequent

change in system requirements which was the primary cause for the re-implementation. Similariy.
we would like to assess the evolution of the environment during the re-implementation and there-
after.

The gathered data would be used. without disclosing the identity of any individual for rescarch
purposes.

Participant Name:

Date:

Note: The need for the name is only for purposes of tracking issucs and for following up on issucs should it become
necessary.

79

You will find in this questionnaire a list of criteria to measure the purposes served by the system at
the time of completion of the sysien. and the deficiencies of the system (Section A). You will also
find questions related to the environmental evolution und the consequent change in system
requirements {Section B). Included with cach question is a 7-point polar scale to record vour
response and another 7-point scale to record vour “contidence level” in answering the question:

12343567
—_—
vl o n
"9:.-:.(:-’99
T EE AR =3
EeZTEE e C
S == o=
Eb\f_.:\f‘:(‘-.‘:
-w =z ool YRy
- . — %
— -’ -'ﬂ_
< = T =
= = =
= =

« [[you do not know the answer, plcase leave the response blank and check the Don’t Know box

(TA).

Example; Let us assume that we are concerned about the criteria (or construct) “Detect Quality™.
then:

= Ifyou feel that the concept is “extremely closely” characterized by one end of the scale, you
should check-mark as follows:

Extremely Low 1__I__|__I_I__|__IXI Exwemely High

Extremely Low 1XJ_1_J_1_I_i_1 Extremely High

[

+ If you teel that the concept is *quite closely
should check-mark as follows:

characterized by one end of the scale, you

Extremely Low 1__|__|__|__|__IXI__! Extremely High

Extremely Low I_I2|_I_|__|__I__| Extremely High

= It you feel that the concept is “slightly closely” characterized by one end of the scale. you
should check-mark as follows:
Extremely Low 1_|__|__I_ [XI_ I} Extremely High

Extremely Low _I__IAI__|_1_]_| Extremely High

= 1t you feel that the concept is “equally closely’ characterized by one or the other end of the
scale. or is characterized as *neutral” on the scale, you should check-mark as follows:

Extremely Low | |_IX1_]_J_| Extremely High

30

SECTION A [INSTRUMENT TO ASSESS SYSTEM DEFICIENCIES]

Note: For cach of the questions below, assess the eriteria as at the time of svstem compiction
(Sept. 1994). it is important to give the rationale for the measure chosen: otherwise the measure is
not very helptul.

Please feel free to add any other factors which you may deem fit to mention here.

Al. Understandability: Is the system casily understandable? (i.c., Is the purpose of the system
clear? Is the system operation casy 1o comprehend? Exclude system design and implementation
issues here.)

Not understandable | L1 | 1| | Understandable

Confidence Level: Not Confident |_|_|_|_|_I 1 IConfident Don't Know [|_|

Rationale:

A2. Completeness: Does the system provide all the key features necessary in the domain of proc-
ess fitness?

Incomplete 111 _J_1_1_[I Complew
2

Confidence Level: Not Confident __|_|_] _1_|_I_!Confident Don’t Know |_|

Rationale:

A3. Conciseness: Is the system concise (i.c.. there is no ‘excess” information in user screens or in
the system as a whole) without sacrificing understandability?

Poor conciseness 1 J_d__1__I__1_I__I Extrecmcly concise

1234567

Confidence Level: Not Confident [__|__)_|_1} |_! 1Confident Don't Knowi_|

8l

Rationatle:

A4, Security: Cun you damage the process model/context values and relationships and does the
system warn you of such inadvertent actions?

Notsccure |__I_1_d__1_1 1 | Highly secure

Confidence Level: Not Confident [_I_ | | _1_1_|_}Confident Don’t Know I_i

Rationale:

AS. Consistency: Doces the system exhibit consistent terminology. symbols. notations and con-
cepts in its operation?
. Not Consistent 1_1__1__I_1_1_1 | Consistent

(N, SR SUS— P P S—F S

Confidence Level: Not Confident |_)__1_1_J_|_1_| | Confident Don’t Know I_|

Rationule:

A6. Maintainability: Has adequate documentation of the system been provided to assist in future
maintenance (corrective, adaptive or perfective)?

1234567

— — — —" " e——

. Rationale:

o
2

A7. Validity: Has the system been validated with respect to the underlying concept of congruence
(1.¢.. the congruence measures produced by the tool indeed characterize congruence)?

No validation I l__1__I__l__} Thorough validation

Confidence Level: Not Confident |_I_t_ ¢ | | I I Contident Don™t Know [_]

Rationale;

AS. Usability: Is the system user-friendly? (¢.g.. are the displays simple to understand: does the
system have “help” menus?)
Not user-triendly LI 1111 Extremely user-friendly

Confidence Level: Not Confident I__I__1__J__I__I_1__IConfident Don’t Know I_|

Rationale:

A9. Reliability: Is the system reliable? (i.c.. does it repeatedly produce correct results?)

Not reliable i1 1|} Extremely relinble -

1234567

Confidence Level: Not Confident I__1_§ § 1_|_1_!Confident Don’t Know I_|

Rationale:

AlQ. Structuredness: Has the system heen developed with a high degree of structuredness (for

-
!

83

instance, using a highly structured language like C++ and/or structured design methods)?
Extremely Unstructured 1 I_I__1__1__I__I__I Structured

Confidence Level: Not Confident 1_I_I_{ | _I_!_I1Confident Don’t Know |_|

. . . it e g

Rationale:

All. Efficiency: Docs the system fulfil its purpose without a waste of resources {for instance,
CPU time. memory requirements)?
Inefticient 1|11 |__1_ | Extremely cfficient

12345 67

Contfidence Level: Not Confident]____[_|__]___[__[_]__] Confident Don't Know I__|
P 23435 6 7

Rationule:

A12. Customizability: Is the system user-programmable (i.e.. is it possible to customize data
stored in the database, for instance, can the user add or delete existing process model attributes:
can the user change the process model-context relationship values?)?

Poor user-programmability i__|__I__I_1_I|__|__| Highly user-programmable

Confidence Level: Not Confident |_J_1I_1_1_1_| ! Confident Don’t Know |_|

Rationale:

"& 13. Portability: Is the system portable to other platforms (say. UNIX)?

Notportable |_I_| I ! | [Portable (no modifications needed)

Contidence Level: Not Contident 11111 Contdent

Don’t Know ||

Rationale:

Al Imtegrability: Is the svstem stand-alone or must it be executed as part of the process-cvele
tool-kit?

Compiletely stand-alone 1111 ||

Confidence Level: Not Confident 1__I_ 111 _1__1Contident Don’t Know |_|

Rationale:

A15. Survivability: Is the system “robust” ¢nough to survive any changes in the environment”?

Notsurvivable 1)t _1_1_1__| High survivability

Confidence Level: Not Confident I__I__1__1_1_1 | |Confident Don’t Know |_}

Rationale:

85

SECTICN B IINSTRUMENT TO ASSESS ENVIRONMENT EVOLUTION]

. Note: Foreach of the questions belews., assess the eriteria as at the start of svstem implementation
(Sept, 1992, at the e of system completion (Sept. 19940 and at the tme of completion of re-
mmplementation (March 19961 1 is importani to give the rationale for the measure chosen: other-
wise the measure s not very helptul.

Please note that this section has been divided into three sub-sections: B.1, B.2 and B.3. Section
B.I comprises of questions specitic 1o the environmental goals, section B,2 comprises of ques-
tons specific to the predictors of environmental change and section B.3 comprises of other
related guestions.

Please feel free to add any other factors which you may deem fit to mention here.

Section B.1 [Questions pertainine to environmental soals]

B1. Realization of the goal of having & process evele tool-Kit (1.e.. “process integration”, all tools
to be used to support @ software development process):

Sept, 1992: Norealization |1 |_ 1 _I__I_ | High realization

Sept. 1994 No realization 1_J_1_|_1_1_1_1 High realization

March 1996: No realization P b

Confidence Level: Not Confident I__I__I__i__I__I__1I__1Confident Don’t Know I_|

Rationale:

B2. Realization of the goal of having *data integration” for all the tools' in the process cycle envi-
ronment {i.c.. data is shared among difterent tools. ¢.g.. by using a shared repository):

Sept, 1992: Norcalization |_{_|_1_)_|_I_| High realization

Sept. 1994: No realization |_J_|_}_1_1_1_1 High realization

._.
i~
LFY)
-
wn
]
-~ =

. 1. CES, X-Elicit, V-Elicit. Generaliser

86

March 19960 No realization |__I__{__1____I__I__I High realization

Contidence Level: NotContident | 11 1 |1 |t [Contident Don’t Know I_|

Rattonale:

B3. Realization of the goul of having “uscr-interface integration” for all the tools in the process
cycle environment (i.¢.. all the tools can be invoked from a common user interface):

Sept. 1992: No realization |__|_I__|_|_ 111 High realization

1234567

Sept. 1994: No realization |__|__J_!__|_ [__I__I High realization

— — —— — — — —

12345 67

Muarch 1996: No realization 1__I__i__I__I__I__|__| High realization

12343567

Confidence Level: Not Confident |_|__|_I_I_t 1_1Confident Don't Know L_|

e — e . e . v

Rationale:

B4. Realization of the goal of having “control integration™ for some or all the tools in the process
cycle environment (i.e.. a tool can be invoked through another tool):

Sept. 1992: Norealization |__I__|__I_I__I_ | High realization
12343567

ept. 1994: Norealizaton I__I__I_t || I_1 High realization
1234567

March 1996: No realization I_|__J_|_i_I__| High realization

1234567

. Confidence Level: NotConfident | 1 | | | [| |Confident Don't Know I_|

Rationale:

B3. Realization of the goal of having “platform integration” for all tools in the process eyvele envi-
ronment ti.c.. all tools run on the same or compatible operating system so as o allow “inter-oper-
ability ™

Sept. 1992: Novrealization 1__|__1_1_1____1__1 High realization

1234 5 67

Sept. 1994: No realizavion 1_|__|_1__I__I__1__I High realization

—
12
(7]
i
"

>
-~

March 1996: No realization [__|___I__1__I__I_| High realization

12345 67

Confidence Level: NotCenfident 1_1 11 1 1 | _[IContident Don’t Know I_]

Rattonale:

B6. Realization of the goal of integrating the CES system., in particular, in the process cycle envi-
ronment:
Sept. 1992: No realization 1__I__|__|__I__I__I__| High rcalization

. s, — | S .

1234567

Sept. 1994: No realization |_|__I_1__I_{ 1| High rcalization

. s . e sy . s,

March 1996: No realization I__I__|__I_|_I__I_ | High realization

— — At —" — v—— —

1234567

Conﬁdencc Leve]: Not Conﬁdcnt]_l_]_l__[_[_l_l Conﬁdcnt Don'[Know [_I
1234567 '

Rationale:

88

17, Reatizaton of the goal of evolving the CES system n the process evele environment:

Sept. 1992 Norcalizawiion i 1L 11| High realization

Sept. 1994 No realizat . o
Sept 9 Norealization | High rcalization

March 1996: No realization | |y 1 | ||| High realization

Confidence Level: NotConfident |} | | |]Cnnlldc.n[Don’t Know |_|

Rationale:

BE. Realization of the goal of having a distributed, client-server architecture in the process cvele
environment:

12343567

Sept. 1994 Norealization |__{_i_1_|_1__I_ | High realization

March 1996: No realization I__|__1 _{__I__|I__1 | High realization

Confidence Level: Not Confident ____1_1_} |]_ | Confident Don’t Know I_|

Rationale:

B9. Realization of change of goals (for the entire team) from focus on *software process conccpts
and methods™ to “software process concepts. methods and tools™?

Sept. 1992: Norealization |_1_{_|_ | j_I_ | High realization

Sept. 1994: Norealization 1_ | | I | 1| | High realization

March 1996 Noreadization | 4 1 1 | |

oD igh readization

Contidence Level: Not Contident /11111 I_ IConiident Don’t Know |

Rationatle:

Section B.2 |Questions pertaining to predictors of environmental chaneel

B10. Realization that software organisations will evince more interest in a “fully integrated” (ali
tvpes of integration) tool-Kit than in isolated tools?

Sept. 1992: No realization 1__J_1_|__1_1_1_| High realization

Sept. 1994: No realization 1__f_1_I__I_ |__I__I High realization

1234567

March 1996: No realization 1__J_|__I__I_1_1 High rcalization

— — i ¥ e e

Contidence Level: Not Confident I_|__1_t 1 || |Confident Don’t Know I_|

Rationale:

B 1. Realization of the existence of *flaws’ in the existing environment which could cause the
environment to evolve in the future (i.e.. could it have been predicted at any given time that there
would be an imminent change in the environment in the futurc)?

Sept. 1992: No realization It 1_I_1_t | High rcalization
1234567

1234567

March 1996 No realization |t L1 i 11 High reabization

Contidence Level: Not Contident 11111 I__I_iConiudent Don’t Know |_|

Rationale:

B 12. Realization that existing prototvpes were “throw-awayv” prototvpes rather than “evolutionany”
£p ¥p)))
prototypes?

Sept. 1992: No realization |_1__{__1_I__I__I__| High realization

Sept. 1994: No realization [_I_I__|_I_} I_i Jigh realization

[
¥
i 38
L9 /]
O
-]

March 1996: No realization 1T _I_I__1_I High rcalization

Confidence Level: Not Confident |__1__1__I_I 1 I 1Confident Don't Know I_]

Rationale;

Section B.3 jons

B13. Existence of 2 ‘common vision® for the entire team {guided by the process cycle)?

Sept. 1992: Extremely Low I__I__I1_I_ | | I [Extremely High

Sept. 1994: Extremely Low 1__I__I__I__I_I_1__I Extremely High

March 1996: Extremely Low !_I__I_1_J_1_! | Extremely High

1234567

Contidence Level: NotConndent 110 b 13T TContident Don't Know ||
¢ 234 5 6"

Rattonale:

B[4, Realization of the impact of the concept of process cyele on the actual software development
activitios:

Sept, 1992: Norealization __1_i_[_i__I_1_ 1 High realization

Sept. 1994: Norealization ||| [_i_I_I_1 High reulization

March 1996: No realization |__i__I__1_|_1_|_ | High realization

Contidence Level: Not Contident 1I_1_1_ 11 t | |Contident Don't Know |_|

Rationale:

B15. Realization about the prioritization on separating code dealing with “software functionality”
from code dealing with “integration mechanisms” (i.c.. standards to facilitate different types of
integration. ¢.g.. MOTIF as a standard to support user-interface integration):

Sept. 1992: Norealization 1__I__I__I__1__1__|__I Hish rcalization

— — . — ——"— —

Sept. 1994: No realization 1__I__|__I_I_1_I__| High realization

March 1996: No realization |_§_|_|_I_I_I_1 High realization

Confidence Level: NotConfident | | 11 t | |]Confident Don’t Know I_|

. Rationale:

B316. Were the existing software systems “robust” enough to survive any changes in the environ-
ment (this is anaogous to Darwinian concept of “Survival of the fittest™h?

Sept. 19921 Not robust |_I_1_1_1_1__1_i Extremely Robust

Sept. 1994 Not robust (1T 1_1__1 Extremely Robust

March 1996: Not robust I__t_t_1_1_I_l_1 Extremely Robust

Contidence Level: NotConfident| | | | 1 I | |Confident Don't Know |_|

Rationale:

B17. Realization that any changes in the laboratory environment could seriously affect the proto-
type systems housed in the environment (i.e.. realization that the systems were nor immune to
changes in the environment):

Sept. 1992: No realization [_I_[_|_!__I_I 1 High realization

Sept. 1994: No realization |__l__L_I_I__I_|__| High realization

March 1996: No realization |__|_I_}_1_[I_}_ | High realization

12345 67
Confidence Level: Not Confident I__|__|_1__|__|_|_[|Confident Don’t Know [_|

1234567

Rationale:

93

References

[1] Aziz bin Deraman. “Reguirement for a Sottware Maintenance Process Maodel: A Review™,

Malaysian Journal ol Computer Science. vol. 8. no. 2. pp. 174-202. Dee. 1995

(2] An American National Standard [EEE Standard Glossary of Software Engineering Terminol

ogv. ANSVIEEE Standard 729, 1983
[3] Khaled El Emam and N. H. Madhavji. “A model of the factors affecting the success of a
requirements engineering process . Technical report. Macroscope Project Phase H1 Report, Mon-

réal. Feb. 94

[4] B. W. Bochm, A Spiral Model of Software Development and Enhancement™. ACM SIG
SOFT Software Engineering Notes. 11(4): 14-24. Aug. 1986

[5] B. Curtis. "Maintaining the Software Process™, In Proc, of the IEEE Conference on Software

Maintenance. pp. 2-6. 1992
[6] David Alex Lamb. “Softwarc Engincering: Planning for Change™. Prentice Hall, 1988

[71 Merlin Dorfman, Richard H. Thaver. “Standards. Guidelines. and Examples on System and

Software requirements Engineering™. IEEE Computer Society Press Tutonial, 1990

[8] Tom Gilb. Susannah Finzi. “Principles of Software Engineering Management™, Addison-Wes
ley Publishing Company, 1988

(9] G. Peres. K. ELEmam, N Madbavii "Customising Software Process Models™ In Proc. of
the 4th European Workshop on Sofiware Process Technoiogy, Noordwijkerhout, The Netherlunds,

Springer Verlug, April 1993

[10] Graciela Perez, A System tor Evaluating the Fitness of Seitwure Process Models™, Masters

Thesis, MeGill Universiy. Montreal, Canada, June [994

[1T]1W. S, Humphrey, D, H. Kitson and T. C. Kasse. “The State of Softwure Engineering Practice:
A preliminary report”™, In Proc, of the 1th International Conference on Software Engincering. pp.
277-288. Pittsburg. Pennsylvania, May 1989

[12]} M. Dowson (chair), W, S. Humphrev, M. M. Lehman. and L. Osterweil, "Why is Process
Important?™. In Proc. of Ist International Conterence on the Software Process, pp. 2-5. Redondo
Beach, CA. Oct. 1991

[13] Kenneth D, Shere. “Software Engineering and Management™. prentice Hall. 1988

[14] Lowell Jay Arthur. “Software Evolutien: The Software maintenance Challenge™. Johr: Wiley

& Sons. 1988
[15] P.). Layvzell. L. Macaulay. "An Investigation into Software Maintenance - Perception and
Practices™, In Proc. of the IEEE Conf. on Software Maintenance. pp. 130-140. San Diego. CA.

Nov. 1990

{16] Norman F. Schneidewind. “The State of Software Maintenance™, {EEE Transactions on

Software Engincering. vol. SE-13. no. 3. March 1987

[17] Nazim H. Mﬁdhuvji. “Tne Process Cvcle™. IEE/BCS Software Engineering Journal. 6(5):
234-242, Sep. 1991

[18] Martyn A. Ould. “Strategies for Softwure Engineering: The Management of Risk and Qual-

95

v Wiley Sertes, 1[990

1197 James Martin, Carma Meclure. "Software Mamtenancee: The Problem and 1ts Solunions”,

Prentice Hall, 1983

[20] Roger S, Pressman., “Software Engincering: A Practitioner’s Approach™. MeGraw Hill lawer

national. 1992
[217] lan Sommerville. "Software Engineering™. Addison Wesley, 1992

[22] Richard H. Thaver. Merlin Dortman, “Systent and Sottware Requirements Engineering™,

IEEE Computer Socicty Press Tutorial, 1990

23] Wilma M. Osborne. "Building and Sustaining Software Maintainability™, In Proc. of IEEE

Cont. on Software Maintenance., Austin, TN, Sept. 1987

[24] L. A. Belady. “Evolved Software for the 80's™. Computer. vol. 12, no. 2. pp. 79-82. Feb.
1979

[25]1 B. P. Lientz and E. B. Swanson. “Software Maintenance Management™. Reading, MA: Addi-
son-Wesley, 1980

{26] William D. Rowe. “An Anatomy of Risk™, Robert E. Kricger Publishing Co.. Malabar, FL.
1988

[27] Khaled El Emam. Soizic Quintin and Nazim H. Madhavji. “User participation in the require-
ments engineering process: An empirical study™. Requirements Engineering Journal | 1(1),

Springer. 1996.

[28] D. P. Chattopadhyaya. “Environment Evolution and Values™, South Astan Publishers Pvt.
Ltd.. New Delhi. 1982

96

[29] Robert N. Charcite. “Soltware Engineering Risk Analvsis and Management™, MeGraw Hill,

[URY

[30] Anthony [Wisserman, “Tool Integration in Software Engineering Environments™, Interna-

tionad Workshop on Environments, Chinon. France. Sept.’89

[3T] W. W, Rovee. "Managing the development of large software systems™. Proc. IEEE Wescon.
August 1970, pp. 1-9 (see also Proc. 9th Intl. Conf. on Software Engincering. 1987 (IEEE Com-
puter Society Press) pp. 299-310)

[32] L.A. Belady and M. M., Lehman, “Programming System Dynamics or the Metadynamics of
Systems in Maintenance and Growth™, IBM Research Report RC 3546 T. J. Watson Research

Center, Yorktown Heights. N. Y. Sep 1971

[33] L. A. Belady and M. M. Lehman. An introduction to Growth Dynamics. Statistical Cornpu-

ter Performance Evaluation™, Academic Press, pp. 503-311. N. Y., 1932

[34] L. A. Belady amd M. M. Lehman, “Evolution Dynamics of Large Programs™, IBM Systems

Journal. vol. 15, No. 3. 1976

[35] Robert B. Grady. “Measuring and Managing Software Maintenance™, [EEE Software. pp. 35-
43, Sep 1987

[36] R. Grady and D. Caswell. “Software Metrics: Establishing a Company-Wide Program™,
Prentice-Hall. Engelwood Cliffs. NJ.. 1987, pp.S8. 110. 123, 124 and 159.

[37] Gregory W. Jones. Software Engineering. John Wiley & Sons. 1990
[38] David Lorge Parnas, “Software Aging™, Invited Plenary Talk. International Conference on

Software Engineering. 1994

97

[39] NN Eehman, FoONC Parr, “Program Exolution and Tis Timpact on Sotiare Fasmeerng

Proc. of 2nd Intl. Cont, on Software Engmeernng. pp. 330-335,. 000 1970

[40] M. M. Lehman, “The Programming Process™ IBNM Ros, Rep. RC 27220 IBN Res. Centre,

Yorktown Heights, NY 10394, Sept. 19649

[+17 M. M. Lehman, Lo AL Belady, “Program Evolution: Processes of Sottware Change™. Aca-

demic Press. London., 1983

{42] F. Brooks. *The Mythical Mun Month™. Addison-Wesley, 1973

[4+3] N. H. Madhavji. K. El Emam. T. Bruckhaus. “An on-going study of factors causing process
evolution™. In Prog¢. of the Intl. Workshop on the Evolution of Sottware Processes, Gault Estate,
Mt. St. Hilare. PQ. Canada. Jan 1993

[44] K. El Emam. N. H. Madhavji. K. Toubache, “Empirically doven improvement of generic
process models™, In Proc. of the 8th Internationa] Software Process Workshop. pp. 61-65. War-

den. Germany. March 1993

[45] W. Fry. D. A. Smith. “Congruence. contingency and theory building™, Academy of Manage-

ment Review, 12(1): 117-132. 1987

[46] W. G. Egelhoft, “Strategy and structure in multinational corporations: An information

processing approach™. Administrative Science Quarterly, 27, pp. 435-458, 1982

[47] R. Rumelt. “Strategy. structure and economic pertormance™. Boston. Harvard University

Press, 1974

[48] C. Perrow. “Organizational analysis: A sociological view”. Belmont. CA: Wadsworth publis-

ing. 1970

98

[49] J. Woodward. “Industrial Organization: Theory and practice™. London: Oxtord University

Press. 1963
[50] K. R. Andrews, *The concept of corporate strategy™. Homewood. IL. Irwin Publishing. 1971

[51] R. E. Miles. C. C. Snow, "Organizational strategy. structure and process™. New York.

McGraw Hill. 1978

[52] R. E. White. R, G. Hamermesh. “Toward a model of business unit performance: An integra-

tive approach™. Academy of Management Review. vol. 6. pp. 213-224, 1981

[53] J. Gaibraith. D. Nathonson. “Strategy implementation: The role of structure and process™.
24 p

New York. West publishing. 1978

[54]J. L. Kerr. C. C. Snow, “Corporate strategicw and rewards: A conceptual framework™, Paper

presented at the mecting of the Academy of Management. Detroit. Aug. 1980

[55] M. S. Salter. “Taylor incentive compensation to strategy™. Harvard Business Review, 51(2):
pp- 94-102, 1973

[56] D. A. Scheilenberg. “Strategy implementation: The effects of congruence between strategy,

structure and reward systems on performance™, Doctoral dissertation. Indiana University. 1983
[57] J. Nunnally. “Psychometric theory™, McGraw Hill, 1967

[58] R. Veryard. “Implementing a methodology™. In Information and Software Technology. 29(9):
pp. 469474, Nov. 1987

[59] Richard E. Zultner. “TQM for technical teams™, Communications of the ACM. vol. 36. no.
10, Oct. 1993 E

[60] W. Hansen. “Creation of hicrarchic text with & computer display™, Ph. D. thesis, Comp. Sei.

Dept.. Stanford University. Stanford. CA. June [971

[61] Tim Teitelbaum., Thomas Reps. “The Cornell Program Syathesizer: A Syntax Directed Pro-

gramming Environment”. Coomunications of the ACM. vol. 24, no. 9. Sept. 1981
[62] Leon Osterweil, “Software processes are sottware too™, Communications of the ACM, 1987

[63] C. Osgood. G. Suci. P. Tannenbaum, “The measurement of meaning™. Univ. of [linois Press,
1967

[64] Barry W. Bochm. John R. Brown. Hans Kaspar, Myron Lipow. Gordon J. MacLeod and
Michael J. Merritt, "Characteristics of Software Quality”™, TRW Series of Sottware Technology.
Noth Holland Publishing. 1978

[65] Khaled El Emam. Nazim H. Madhavji. “Mecasuring the success ol requirements engineering
processes™, Proc. of the Second IEEE International Symposium on Requirements Engg. pp. 204-
211. York. England. March 1995

[66] V. R. Basili. A. J. Turner. “Tterative enhancement: A practical technique for software deovel-

opment”. IEEE Transactions on Software Engineering. vol. SE-I. no. 4. pp. 390-396. Dec 1975

[67] L. A. Belady, M. M. Lehman, “A model of large program development”, IBM Systems Jour-
nal, 15, 3 (1976). pp. 225-252

[68] Warren'Harrison, Curtis Cook, “Insights on improving the maintenance process through soft-

ware measurement”, IEEE Conf. on Software Maintenance. pp. 37-45, San Diego, CA, Nov. 1990

-
P -

~T

100

