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’ ) ABSTRACT

( . A study 1s made to show that a quhntum mechanical analogue

of the Goldhaber model predicts a structure in the momentum distribu-

&

tion of ¢X's fragmenting from the jectile 6 Li. This structure
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should be measurable. . ) . /
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Nous démontrons qu'une modéﬂ quantique analogue au modéle o "
4
de Goldhaber prédit une structure précise pour la distribution des
e . -
impulsions des particules ¢f obtenues par fragmentation des projectiles
% ¢ E
de Li. Cette structure devrait €tre, en principe, mesurable. 1
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Fig. 1 Participants and spectators. Certain part A2 overlaps with a

’

certain part BZ; they are the participants. Parts Al and B1

are the spectators.

Fig. 2  The probability distribution] (P) in the frame of

the projectile. The normalisation is such that] (0) = 1.

. . -

3

' - Fig. 3 For 6Li projectile at 200 MeV/nucleon in the lab, a theoretical
J o
. (i
/. ., o . computation of m (7? ) for the o's where

the angles of measurements are 00, 2° and 4°.
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CHAPTE% I
+ ENTRODUCTION
ix‘ . . -
. This thesis will deal w;th fragmentation of projectiles in
: high energy heaxfzy ion collisions. Although the concepts were first
developed for collisions in Bevalac energy region (250 MeV/nuclgon. to

v 2,1 GeV/nucleon) these seem to have validity also in significantly

lower energy regime. This has been verified experimentally.

A concept frequently used in relativistic heavy ion colli-
ASioris (RHIC) is that of spectators and participants. Tor a g&ven
impact parameter, a certain fraction of the projectile<will overlap

with qndther certain fraction of the target. These parts are directly "

ey

involved in the collision and form the participants. The parts that
do not overlap are spectators. Thus there will be a projectile like
p . .
spectator and a target l'ikevspectator. The projectile like spectator
will fly off in the forward direction. The existence of these p;o-
jectdile like spectators has been verified in counter type experiments,
as well as in streamer chamber experiments. The’y have a velocity
spread around the original beam velocity. A quant'um mechanical cal-
culation of this velocity spread is the subject of this thesis. We
wili deal with the concept of participants and spectators in the next

chapter in greéter detail; in the remainder of this introduction we

will very briefly ireview the past history of the subject of velocity

%
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" distribution of fragments in RHIC. [The review will be brief; it does
-4 .
not aim at being complete. ,

R

v

. Rather accurate measurements of the momentum distribution of
J ' '

Projectile like fragments were mad€ in 1975 by Greiner et al 1. Theoreti-
cal predictions were made by Feshbach and Huang 2‘ An elegant and‘sim;)le
model for the velocity distribution was proposed by Goldhaber 3 in 10974.
This work, by 1far, has proved to be the most important theoretical
development. The work presented in the thesis, is a quantum mechanical
extension of the Goldhaber model, applied to a specific case. Goldhaber
modei is a simple Fermi gas model. Hufner and Abul-Magd 4 use; Glauber .
type approach to treat fragmentation and found the limits in which
Goldhaber results are recovered. Bertsch 2 pointed out that inclusion
of ax;t etyy in the Goldhaber modeél will lead to a reduction of the
velocKty spread. McVoy and Nemes 6 have treated fragmentation in the
local momentum plane wave approximation and obtained Goldhaber's
results, In the 5th hig;l energy heavy ion study at Berkeley, Wong 7
proposed a basic distribution model applicable to bdéth the peripheral
fragmentation and the central collision processes.

The width of the momentum distribution at 213 MeV/nucleon was
measured by Vyogi et al 8 at 213 MeV/nucleon. Lower incident energy

data at 86 MeV/nucleon were obtained by Mougey 9 et al at CERN. Some

other relevant experiments can be found in references 10, 11 and 12,
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+ The plan of the thesis is as follows. In Chapter II we

describe the Goldhaﬁer model. Chapter iII is the major part of the

thesis. Here we develop a quantum mechanicgldextension of the Goldhaber
Eodel and apply it to fragmentation of 6Li into o< particle. We find

that a structure in the momentum distribution is predicted. While

rather accurate experiments are needed to establish this structure,,

the possibility of measuring the structure cannot be ruled out. In
particular, in t'he proposed heavy ion facility MARIA at the University

’of Alberta, Edmonton, such experiments are egtirely feasible with the X

high beam current.

R
v

Summary and discussions are presented in Chapter IV. Some

mathematical details are relegated to the Appendix.
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‘standing this region of violent collision. This, however*, does not

S R R~ !

« CHAPTER II

L L]

’ PARTICIPANTS AND SPECIATORS; THE GOLDHABER MODEL

Consider the folldwing collision of two heavy lons .(Fig. 1).

For a given impact parameter b, a fraction A, will collide with a

2

certain fraction BZ' If the enexrgy of collision is high (Bevalac

éenergies), then the fact that Al was attached to A2 is entlrely inci-

dental. The binding energy is 8 MeV/nucleon and this is negligible
compared to the energy of collision. Thus Al will fly off with very

nearly the original velocity 1 .

L 4

What happens to A, and B, is another story. This is the

2
region of violent collision. These may form a fireball, two fireballs

¢

or firestreaks. Most of the effogts in RHIC have been ’t:owards under—

concern us directly in this thesis and we merely refer to a review

articl!.e 13.-

\

~ The process of sepa\ration‘of Al from A2 is called abrasion.

This takes place so fast that what one sees is the momentun distribu—
' I

tion of A1 in the nucleus A. Let us elaborate on this point further.

by

It is convenient to go to the frame of the projectile. In this frame

?A = 0. Now let us imagine for a moment that fucleons’ inside the

nucleus are all frozen. Then after abrasion we will have ?Alz .;AZ = 0.

9

o e e is Al Tl
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have Fermi motion, then, after abrasion all we are guaranteed is that
!

-— P

—~ —
PAl + PAZ = 0. In general PAl is not zgro (although ( PAl) = 0)

and the problem is to find this dist;ibution.\

A
If we have A nucleons then f’;: 0 means ‘Z; P =0

Therefore

l] ! .

————lp

, ’ ‘ 2 — |
‘ = ¢ i - . [~ =0
? (Z‘:P.P) = 7‘3 +¢2,;7? 7"’3 (2.1)
}7\_\ A 2 u

—
PP
( ' There are A terms in Z 7? 5 ‘A(A-1) terns in Z ? . {d

\ r " "Thus define avérage values thrm:;l’m . : “4d
- — 2
' 2 { 3 .
(P) =521 o
\ .
(2.2) .
o o=

(7.? : 7d? >: Z P . IJ .

’ A(H‘? (2.3)
&

l4

Hence eq. (2.1) can be rewritten as

P

However, if the nucleons insids the nucleus are not frozen, i.e., they

e ot s gt o
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il

B(’Pl> + A

. which gives

’3-. =
(R -F)

L ]

. Now let us consider picking out M

(in Fig. 1, A

(B !

1

If we want to choose

n

LS ——— ot o Pt i

i,
Q

(2.4)

nucleons out of A

[y
=m ). Obviously - <1?n ) @ . but what about

nucleons out of A nucleons we can

choose it (:) ways. For example, for M & 3, we can have

FPeB® +T
] 1

)Z

3
Lo 4 —yr — 2
or (1? + 72 + 7? )
' — — P FA
or (T? + 7? + "2)
- ]
that, for example, 7?

A-2
n~-2

A-1

etc.

It is then clear,
—p -

occurs( n-—l) times, P . 7? occurs

times. We can then write

oA

T YA PG A Ty

PR ST

-
B LA

LT ‘, S ¢ wed il R R bwifs |
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| A-2 = Byt
CE R ERE =)0
"o (2.5)
{ 2 . -
We now write . ) Ez = A <P ) (eq. (2:2))

IP 7’;" =/ (ﬂ-i)(ﬁ-g):,q (P'Xeq. (2.3) and (2.4)). The algebra .

now can be worked out to give

(R)=452 (7).

(2.6)

.ForaFermi gas <Pz)=~g—' <’Pr=z> whey{e PF = Fexmi

momentum is ‘of the order of 230 Mev/C for nuclei.

~
Equatdon (2.6) gives the average value of the square of

momentun PIZ1 . At this stage it is aséumed that the distribution of

momentum ./O (Pn) is Gaussian

7 e ' -
./ (B) = "2 3 ‘ .
(00" )* 2.7)
. a 2 2 ’
Then <73 ) = 36 .
' 2 (p-n)
2 ! m{A-N)
Je 0 =-3——72 A-1 (2.8)




& ‘<

Equations (2.7) and (2.8) are the final equations of the
Goldhaber model. We note that all possible partitiol;\sﬁ of n nucleons
from A nucleons have been allowed for; thus the n nucleons comé out
,in all possible internal states of excitation. Indeed in all experi-~

ments reported so far there is no selectivity as to the quantum state
) ™~

of the fragment. For example, if 160 fragments into 12C, the detector
does not care whether the 120 nucleus is in the ground state or any of
the particle stable excited states. It is possible to devise experi- °

/
ments which allow for Selectivity for a particul ar quantum state, but

such experiments have not yet been done. Secondly, the model for the
nucleus is a Fermi gas model. Note also that a Gaussian %istribbttélon

is assumed; once this 1ig assumed < > allows one to fix the para-—

Vﬁ\‘; meter of the Gaussian once for all. There is a universality in equa—

’

tions (2.7) and (2.8) since PF stays fairly constant with mass number

A.
. /
The Goldhaber model has been widely used in all experimental
apalyses 1, 8 9,10, 11, 12 and in many theoreti'cal investigations A
5, 6, 7

. One of its virtues is its simplicity. 1In the next chapter

we consider a quantum mechanical extension of the Goldhaber model.
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.CHAPTER III
A QUANTUM MECHANICAL E‘XTENSION OF THE GOLDHABER

MODEL AND ITS APPLICATION TO 6Li N

Basically, the Goldhaber model asks: what is the momentum
distribution of n nucleons in a nucleus which has A nucleons? Let the_
ground state wavefunction of A nucleons be;q ([}(A). Then it is

’ o o

- o . y
always possible to write . .

AY (p) = 2:74 { AR (ﬂ"") £ (m)} O e

: funktion is an "intrinsic" wavefunction. The usual shell model wave-

> 6

of malss motion for the whole nucleus. Usually this centre of mass
motiod is of a simple kind, namely, it is in the ground state of a

three |dimensional harmonic oscillator. It dis obvious that since we

<

are dellaing with an overall mass motion of n nucleons in a nucleus of

.

A nuclleus, we should start with wavefunctions which have no spurious

overall centre of mass motion for the A nucleons. In a similar

ey,

BNy L S

e e

g o

rn e s s S o ————— 0 oD g,
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A-n nucleons. Here L is defined as
. ) A .
— I
o ) A - L) 5
R = e P A-m o, (3.2)

%

- '
The relative wavefunction )C (/2- ) can be Fourier expanded

. bd i
( - (Ex s
% (20 =@mm | % (F)e d (3.3)
- s !
- I -zf./zf d ]
a‘d (%) (2n )™ i *) (3.4)

Here k is the relative momentum .

? a

- - 4
2=ﬁ-ﬂ’fm~m {;—m ‘ ) >

A . ‘ (3.5)

.

x*
W . > —p

In the rest frame of the A nucleons f,,, t K -'{;a =0 1

thus also is the momentum of the n-nucleons in the rest frame of

the parent nucleus. This is, of course, the quantity we are after.

\ —— ,
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The expansion implied in eq. (3.1) is well known in theories

'

<]
of nuclear reactions and in cluster models of nuclei 14. Eq. (3.1)

«

is very often the starting point of resonating group calculations. Some
) .

—
comments- are in order about the function, 5‘)‘6 (}L) . The function

W m & (a-m g"a’ (1)

A has very non trivial consequences in eq. (3.1). Different choices

‘-_’ N .
of ﬁ‘ () can lead to the same final function )4 (ff (_H) . There
d -t '
is therefore some ambiguity in defining ‘.J ()L) although thexre is "

t
is not antisymmetrised. The antisymmetriser

no such ambiguity in the final antisymmetrised wavefunction.
v

The expansion (3.1) is mathematically non-trivial. Therefore
here we try a simple case but one which is still experimentally meaning-

ful. We will consider the breakup of 6Li into an X particle and two

nucleons. Since X has no particle-stable excited states the summation:

on i is restricted to the ground state of ¢ . The summation on j

is still unstricted since tle experiment does not care which final

' 1
state the two nucleons were left behind. Thus tl;e'probability we want

(see eq. (2.7)) is

N

(3.6)

| N - z
. \/O(Z)o( ZI(A{ éz,,j(infr;n;.}_)” f(fﬂfrl‘hSiC)%(infr;nﬁfc) 6£f-/¢. >,

We have made a slight change of notation from the one used in eq.

(3.1).‘ In eq. (3.6) it is not necessary to antisymmetrise both the

I O e

LL WU
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s

> J ,

bra and the ket, and we find it mathefiatically more convenient to

antisymmetrise the bra.
1]

We now outline the steps needed to computé eq. (3.6). We ‘1
- ' ¢ T
take the shell model wavefunction for 6Li to beﬁ[(‘s) (lP) L=o S‘;o] .
o ¥

We also take the magneticvsubstate to be M= 1. The final
answer will not depe‘x’\df;xpon the magnetic substate. This shell model

wavefunction is

4[(15)‘(@)1 Lo S=1 , Mz |

b i

ad 2t
=jl.e & (X51‘+ Z)Z ,Z;Z‘) (}j

K -
\> : 3.7 J

//

e

z’v
oot
Here is a spin-isogpin wavefunction

W. rx%;,, ‘X%(.z%) 'X_;;i ")(,.m X_L_(Sz 'Xﬁ_;(_'c)

!
- T (3.8)

L g

'

[y

-~
7

The subscripts to % refer to isospin and spin; i.e.,

% 4 _ 1 is a proton with spin down. In equations (3.7) and (3.8)
T T2z
before antisymmetrisation, we singled out partdicles 1 to 4 being (13)4‘

w.——-«-—‘-—--——ﬂ...__')——»A—- ——— S e e -y 8 VAR, P

B ST

S N




~

2 A
- ¢ -al_A
» L; (shell ﬂaJel') =€ /J(XS_XU %%+ L) (‘f) '
. . 3 '

@

the shell model wavefunction for 6Li. We have (/0 extracf from it the
L 4
e <] is

.intrinsic-state. Note that in eq. (3.7)

already symmetric thus we can take the operator% past it and ?re

left with

(3.9)

v

A

* In order to extract the centre of mass motion, we now go to

-

the Jacobi coordinates. Define

T - -
2 =2k q
j?:z_ - __lz__( '.,}l:—- 2-{43) .
= J_(}Z +)L1*J&3‘3)l4) ’ ‘,
QJ = 3 ' .,
—p ed 4
-2 -2, (3.10)

L))
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In thé exponential part, the c.m. part is easily seen to separate out
but in the remainder part of the above wavefunction the intrinsic and
the c.m. appear to be coupled. Actually the operator }4 kills all

RY 3
parts&hich has an R in it. Consider the part . Since R

2

is already symmetric we can take past R and then (-[j is
readily seen to'vanish ( (’ is defined in eq. (3.8)). What is less

»

. - —
.obvious 1is that R /X C-}} = 0 but this is shown to be true

in the Appendix. We thus see t’n;t the c.m. part is a purely simple

harmonic motion. Taking this out we have

4
“Lep(intrnsic) " :
' (l"l rinsic ~ ~l ‘ 3‘- 3 Al
L 2a) -2anry -5 Qe -FQ
—-{-Qé, é':!- T ef X

.‘ Nl‘ ' ’
AEA )Y -

(3.13) '

[}

We now consider the ket of eq. (3.6),. This can be written

(4 3 i
" as CP.‘ (intrinsic) CP?’J- (intrinsic) e {

4
~
~t *
R ~ b 2 al ~ L‘e-)z
- — h -“'q -2 ¢ —_ * (.
_ T gy et 2&(/2“) € :

AP CINE N ‘ Y TR
SRR ,u”'*'i‘.”fva, . g 1
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There is no need to antisymmetrise and there iso no loss of generality

in taking Lf) to be that given by eq. (3.8). In the above equation
~ .

CP‘J ()Lsé ) will have to span a complete set of states. We

#
will take a three dimensional harmonic oscillator basis of which the

lowest state (N=0 £ 0) is

~2
3 _Lal
~ —
a Y z (Y4
¢ ) = (7)€ * .
2 N0 , 40
(3.15)
Another state which has N=2 0 =0 is
' E;’
3 2 vy -5l
b Gy . [2(F)7 s3] 8
Z,N=4,1=o
(3.16)

It turns out that in the overlap integral of eq. (3.6) only
the two states of eqs. (3.15) and (3.16) contribute, the rest give

zero. The overlap integral is still somewhat lengthy to calculate and

-

we provide the calculational details in the Appendix. The final

answer for the right hand side of eq. (3.6) is

L) '

2

p o 20 / + —2-2(' --f— )
) =C 4 ¢

, : (3.17)

\/
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Several comments on eq. (3.17) are in prder. The overall
Guassian shape is a direct ‘consequence of using harmonic oscillator

wavefunctions for 6Li. We can also understand the numerxrical factor

2
.;‘ﬁ AN in eq. (3.17). fhis came from the Fourier ?ranszfom
4 k!
-3l axn
of e ? in eq. (3.12). The factor-g- arises because

the reduced mass of an o and two nucleons is

i ot
e

If one uses harmonic oscillator shell model wavefunctions for the

ground state, then the relative motion of n nucleons and (A-n)

nucleons will always have a Gaussian overall behaviour given by

‘m (A-m 2
€ XpP [ ( R/Z ] . However, the relative motion
' 3
: -
is not just a Gaussian (note the other factors involving A  in
£2
J X

(3.17) arose just from the Fourier transform of e*’]’

in eq.

[- mpm) :"’" a)i"]

equation (3.13). Nonetheless the hfactor

for the case h =2 ,A=6. 1Ina more general case the overlap integral
t 4
will give rise to €KF [‘ aa ,,(,4,,.,)] and when squared for
A

(73(%) the overall mutliplicative factor will be GKP[" 20 n(A-m)

The same factor in the Goldhaber model is (eqs. (2.7)-and (2.8)) is

I ! X .
ep[-# zT ey Since Q= Th the
factor _,..2-5— is replaced by A in the harmonic oL

2K, '
1
cillator model. If we take MC = 939 /Yev , }
-4 » ;
ﬁw: 4‘/4 Me‘/ J /;C - 230 /‘18‘/ then A 6- -
me 2; T~

4 1
:LA/’ X0.5¢9%1 . For A 6 the two answers are about ldentical but

1
wei: note that in the harmonic oscillator model there is an A dependence
1éft.
‘T
\

|
| , o

R . AT A e
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The quantity _/(-E) of eq. (3.17) is plof:ted in Fig. 2,
We note that there is a structure: there i@ a dip at ?&f 200 N‘%
This 15 a new feature and cémes from the polynomial multiplying the
exponential factor in eq. (3.17). The precise numbers appedring in
the polynomial come out of calculations (Appendix) but here we note
that contributions are from only two values of j (eq. (3.6)). The/\
two wavefunctidns <P-,_' that contribute are written down in eqs!
(3.15) and (3.16). To understand why there is structure, one should
look at 6Li (intrinsic) as written down in Eq. (3.13). The polynomial
there is /1 (9‘; )LZ - _‘T_’_.zs_: ) q} . . Str”ange as it may seem,
after antisymmetrisation _%/’2}6 contribute exactly

'
in the same fashion as ..3..—4 does (see Appendix; such peculiarities

-'are well known in the cluster model 14). Thus the relative motion

between X and d isnot a N=0 £=0 harmonic oscillator
but, loosely speaking, it is a N = 2 ,[ =0 mode. Thus the Fourier

v

transform will exhibit structure.

Eq. (3.17) allows us to write

17

. 3t 2 2 '
ﬁ(?):/\é"“ [’*’?("z{;)] ,

&P ‘ , . (3.18)
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Where A is a constant. This eqpation'is valid in the frame of the

3
projectile. We want to convert this to an expression forda‘ (?,_),
dE.d,

a quantity which was, for example, measuxed in ref. 9.

The subscript L refers to lab measured quantities. Let 6:. be the

direction of observation, 72 be the momentum; /; = % be the -

[
P - /(6 ATEP)

Then

beam velocity; )/.;

" (3.19)

”

m
Q. Q_u
5|
'f\
Aav,
N—

"
gl
Q.
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to obtain finally

3 /
& (p)-PE % ()

(3.20)

-

ween B ant P 1o g :
The relationship between [ and is given by eq. (3.19).

3 L.

da

rar=aama— where 63 is
dE\‘_—dﬂL

For illustration, assume that the incident beam is

L]
At 0° degree where the fragmentation cross-section

In Fig. 3 we plot
at 0°, 2° and 4°.
at 200 MeV/nucleon.
i1s highest, the predicted dip comes at values of momentum where the
cross-section is below an order of nagnitude of the maximum cross-

At 40, the value of the cross-section at the dip is comparablé

ssection.

to the value at the maximum, but the cross-section at any momeritum is

¢

small. Thus, In general, rather precise measurements are needed to

find the structure. For example, the error bars in the experiments

of ref 8 will completely hide the structure. However future machines

being.planned will have beam intensities two orders of magnitude higher
/

(for exéﬁple, in the proposed MARIA project at University of Alberta,

. ¢
Edmonton) and then such experiments for low cross-sectlons are quite

feasible.

) \ ° e
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We have done a quantum mechanical calculation based on the
Goldhaber model and found that the momentum distribution of of's
fragmenting from 6Li, is predicted to have some structure. Will the

stru{tb,ure be there in Ather fragmentations and if so, why have they not

Ty
¥

been observed? N .

In answer to the last part, measurements have not been accurate
enough to measure structure even if it were present. The key questions

! (C) asked so far have been the widths of the momentum distribution rather
than the detailed measurements of shapes. But astde from that, structure}a
may be washed out, even in theory, in other frapgmentations. In order to
appreciate this, let us refer back eq. (3.6). There is no summation,

V' on various quantum states of the ¢X because of has only one particle
stable state. For other fragmentation processes {for example, "O
fragmenting into 15N), there would be summation over the particle stable
state of the fragment and this has the effect of wiping out structure.
For the case of & fragmenting from 6Li, in eq. (3.6) a, Yuns over

o

two states (these states are written down in eqs. (3.15) and (3/.16). @
I.f we were so lucky as to have only one state, namely the one of eq.
(3.15), we would have, in theory, not a dip but an actual zero and the

(C‘ ~ prediction would be more interesting. ' The more summation there is, the

IR } e+ e s e
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more unlikely it is to get any structure,

Notice that we have made no mention of the actual nucleon-
nucleon interaction which causes fragmentation to take place. The
assum})tion is the same as in the ’Goldhaber model: naiely, tha't abrasion
takes place so fast that nucleons do not readjust. One gets the
momentum distribution that was there before the Lt:wo~nuc:1ei actually hit
each other. The problem has been looked at in time independent formalism
by McVoy and Nemes 6 . They find that nucleon-nucleon interaction should

affect the overall cross-section but not affect the shape. 1If so,

Then our calculations are still wvalid.

' Thus the ozx}y reason that the structure may get wiped out 1is
that there may be other competing processes that dominate where the
fragmentation cross-section is low. For example, one such possibility
could be that 6Li ig first excited and then boil off an (o8 One
could think of other alternatives, however, unlikely. Only detailed

experiments could tell.

.
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’ APPENDIX .
We start with eq., (3.12). We have to consider
”~ z
ind [ g z ]
(R-%2) - 7+ %% (f)
(a-1)
where (V is the spin-isospin wavefunction of eq. (3.8).
W, qx o 2o x®x o) 5 xE)
R W Lo Tyl ! -4 L
) [ 3 T2 1 3 L t
(A-2)

’

L]

2 -
It is obvious that the R term drops out after antisymmetrisation; R
is symmetric thus A can be taken past it to act -on CH and this will

-

-
give zero. The term linear in R can be written as

SRAES

The identity operatio;l, P(1,5), P(3,6) and P(1,5) P(3,6) all leave q}
—
invariant. However, /2 from eq. (3.10) is given by

— § — ‘
~“/?,=’4L‘2:)z" _-—'é—-(s_d-z;)

[ 3-1] (A_a)

R

[P
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Thus, for example, under interchange of 1 and 5, X goes to

s b

L => T"(}?—g +)lz -\-JL3 -!'qu,) - .12- (/2, -’-/259 ‘_,?
(A-4)

One can readily verify that

[" P(us) - P(3.6) +'P(|,§)P(3,4)JZ @ -0

-

' -
A little thinking shows that this is enough to conclude tha Y =0

It is not necessary to write out each term.

The overlap integral that one has is then (see egs. (3.13)
and (3.14))
Y
overlap —j jc‘ Ajt ‘-'Ij& J’zd
~7 2
A, -tar
4 Az { Zz ] ({)1
)4 T T ¢ Tk
<P APy -’ A
e -0, -Zal ¢
FEO g sf‘d(a“)(])e .
% -
(A-5)

|
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: . *
The .antisymmetriser acts upon ‘f) but not upon (f/ . One can

v

see from eq: (A-2) that the only permutations that do not lead to zero

because of orthogonality of spins are \1 - P(1,5) - P(3,6) + P(1,5) P(3,6).

- -t vt s
We have to find the effects of these pew‘i‘mutations on both 2 and le‘G
; —
For example, let us again find the effect of P(1,5) on AN . Wepgo
back to eq. (A-4) and make use of eq. (3.11) to obtain that
P — -t :’ ',:,’
= P 3/';_,3}}'-_'__);_,__3_’_]&
—_— - - - 2 .
/Z=>4/L"'x 5¢ g . ¢ le ™ 3 (A=6)
¢
—~ 4
For /Zs.‘ , the use of egs. (3.10) and (3.11) lead to the results
that
v e = =
S T, L, r5 L2
lU:S)Jlt‘,:jz +—{}Z'*3/Z1T4/23 + 7 5 ,
/ (A-7)
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The procedure should now be clear,

'

It would seem that after antisymmetrisation there will be many
terms in the overlap integral of eq. (A-5). However, one immediately

notices that many of thxase terms are of the type
a.ll. ..bMP
—
J[>Q /2 e C‘)Z J'JZ

L3

The final overlap calculation reduced to calculating

overlap =

«( SR e S b T .
1.3t Tt 2o ('gja
-+al, -2qn, -$ax )
€T T gFMN P e "
3 ¢
4%, d%, d7 da dag, |
(4-8)
q? (_}25—5 ) _1s a complete set of states. If we take the

% harmonic oscillator basis then it is obvious that only two i's

——— , - B m*_v._f:?_




contribute. These two wavefunctions are given in egs. (3.15) and
(3.15). The overlaps are calculated for each. The sum of the squares

of the overlap is given in eq. €3.17).
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