
 1 

Material and shape selection for stiff beams under non-uniform flexure 

A. Amany and D. Pasini1  

Mechanical Engineering Department, McGill University 

 
1 Corresponding author: damiano.pasini@mcgill.ca 

Mechanical Engineering Department, McGill University 

Macdonald Engineering Building, room 372 

817 Sherbrooke Street West 

Montreal, Quebec, H3A2K6, Canada 

tel. (1) 514 398 6295 

fax. (1) 514 398 7365  

 

A shape and material selection model has been previously introduced to characterize the structural 

efficiency of a slender beam under pure bending. The method is extended here and applied to the case of a 

beam undergoing non-uniform flexure. In the first part of this paper, the strain energy density is used to 

formulate the beam stiffness in terms of strain energies due to both transverse shear forces and bending 

moments. Shape transformers are defined to capture the shear deformation that shapes of alternative cross-

section exhibit with respect to beam slenderness. In the second part, the expressions of the shape properties 

are plotted on to selection charts that assist co-selecting the best material, shape and slenderness of a 

lightweight stiff beam under non-uniform bending. Numeric results from finite element analysis validate 

the model for concept design.  

 

Keywords: performance indices (H); material selection charts (H); selection for material properties 

(H). 

 

1 Introduction 

 

Optimized slender and short-thick components are used in building, aircraft and machine structures to 

increase performance and lower material cost. Whereas the former exist in most applications, the latter are 

frequently encountered in concrete and steel structures. Squat beams, for example, contribute to stiffen 

foundation walls and increase the load capacity of walls supported by columns [1]. Short beams with thin 

webs are also an integral part of aircraft structures, and short-thick cantilevers are used for gear teeth [2,3].  
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The strain response of a beam strongly depends on the type of applied load. In practice, most beams 

are subjected to loads that induce non-uniform bending, which consists of both bending moments and shear 

forces. Once deformed, the beam stores strain energy due to normal and shear stresses. In a slender beam, 

however, the strain energy of shear is negligible since it is relatively small in comparison with the strain 

energy due to bending. Typically, for a length-to-height ratio as high as 10 the shear deformation is less 

than 3% and the beam can be assumed to undergo pure flexure. On the other hand, in a short-thick beam, 

the pure bending assumption ceases to hold. The shear strain cannot be ignored, because a beam 

slenderness as large as 0.2 induces a shear deflection which is at least 10% of that caused by bending [4].  

Besides slenderness and applied load, structural geometry and material are factors governing 

deformation and mass-efficiency. Several researchers have developed design methods to optimize the 

material and geometry selection. Most of them, e.g. Shanley [5], Cox [6], Parkhouse [7], Ashby[8], and 

Pasini [9,10], introduced shape parameters, performance criteria, and selection charts to visualize the 

impact of design variables on structural efficiency. Cox and Shanley, for example, used a structure-loading-

coefficient for a visual comparison of the mass-efficiency of structural concepts. Ashby [8,11] proposed a 

material index to characterize the efficiency of a material, and introduced the well-known material-property 

charts, an invaluable tool for material selection. In his work, Ashby [8] assumed that the impacts of 

material and shape are not independent and, subsequently, introduced a shape factor in the material index to 

allow for material and shape co-selection. More recently, a selection model has been presented to compare 

the lightweight potential of shaped materials on shape property charts. Based on a shape classification, the 

method introduces shape transformers to characterize the role of shape and decouple it from the size effect 

[9,10,12,13].  

In the design for stiffness, the aforementioned methods may be applied to non-uniform bending, as 

long as the beam is slender [4,14,15]. Their inaccuracy, however, amplifies with the increase of the beam 

slenderness ratio. This paper examines this last issue by focusing on the effect that shear strain and 

slenderness have on the co-selection of material and geometry. A method, previously introduced for pure 

bending [10], is extended to include non-uniform flexure and is reformulated for the lightweight design of 

beams of any slenderness. In section 2, the stiffness of a beam is modeled for compliance due to combined 

shear and bending loading. Shape transformers are introduced in sections 3, 4 and 6 to model beam 
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stiffness and performance of both slender and short-thick beams. The impact of slenderness is demonstrated 

in section 5 followed by design maps in section 7. Section 8 presents finite element analysis results to 

validate the model.  

2 Beam Stiffness for non-uniform Bending  

 

Under non-uniform bending, the beam resistance to deformation can be expressed as a function of the 

shear and bending stiffness. In this work, the beam cross-section is assumed to be uniform along its length 

with homogeneous and isotropic material. The longitudinal neutral axis is linear and coincides with the x-

axis, and the orientations of y- and z-axes are respectively along the height and width of the cross-section.  

Consider a centrally loaded and simply supported beam undergoing small and linear-elastic 

deformation. The beam is modelled as a system of two springs mounted in series under a load P, similarly 

to the model of a beam under non-uniform bending in [16]. One spring is associated to the bending 

deflection, b , at the location of the applied load. The other governs the shear deflection, s , at the same 

location. Therefore, the beam stiffness, k , can be expressed as a function of the individual stiffness due to 

bending, bb Pk  , and shear, ss Pk  , as:  
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In the above expression, the elastic deflection sb    is unknown. To compute the two spring 

deflections, we apply the Castigliano’s theorem to the total strain energy density of the beam subjected to 

bending and shear forces [2,4,17]. In the case of non-uniform bending, the total strain energy due to a state 

of bending and shear stresses,   and  , can be expressed as:  
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where bu and su  are the bending and shear strain energy per unit volume; E and G  are respectively 

the Young’s and shear modulus. The next step in calculating the beam deflection is to apply Castigliano’s 

theorem at the location of the applied load. By differentiating the integral of the strain energy with respect 

to the load applied at the location of deformation and by substituting the internal bending and shear stresses 

with the external force, we obtain:  
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which, substituted in (1), gives the following beam stiffness:  
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where   and   are constants dependent on boundary conditions and load location. For a simply 

supported beam, the constants are found to be 48  and 4  [2]; furthermore, K is the shear 

correction factor dependent on the shear stress distribution, which in a solid rectangular cross-section is 

parabolic with respect to the height.  

The shear correction factor is governed by the cross-section shape. Approximate expressions of K are 

available in the literature for basic cross-sections [4,18-20]. For example, in Timoshenko beam theory, a 

shear correction factor is introduced to compensate for the error due to assuming a constant shear stress in 

the cross-section. The following describes a method to model the shape properties of a cross-section and it 

will be used in section 4.1 to formulate K for alternative shapes.  

 

3 Methodology  
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The scheme used in this paper is based on the notion that the geometry of a cross-section can be 

described by two distinct entities [10]. One governs the size of the cross-section, the other its shape. The 

former is represented, in two-dimensions, by a rectangle, namely the envelope, D, of dimensions ( B , H ) 

equal to those of the cross-section. The latter is the shape, S , of the figure enclosed in D with geometric 

properties described by dimensionless parameters called shape transformers. Decoupling D from S leads to 

the definition of scalar operators that deal with the scaling and the shaping of a cross-section. The former is 

described by envelope multipliers; the latter by shape transformers, which represent the geometric 

properties of a shape, similarly to the physical properties of a material. 

A shape transformer 
g  is defined by normalizing a geometric characteristic, g , of the cross-section 

shape by that of the envelope as:  

 

Dg gg  (5)  

 

where g  represents a geometric quantity of the shape, such as the area, A , or the second moment of 

area, I , and 
Dg  that of the envelope. Shape transformers are generally expressed in terms of Bbc   and 

Hhd  , with 10  c  and 10  d . When the material saturates the envelope completely, the shape 

is a solid rectangle, which is chosen to be a reference shape with g  unity; on the other hand, 10  g  

for all other shapes.  

The above scheme has been used to categorize shape concepts. Shapes have been classified into 

families and classes in a way similar to material classification [13]. Shapes falling into a family can be solid 

and hollow. The former should originate from the solid shape of the family. The latter falls into a family if 

the contour of the removed material, i.e. the internal hole, is the same as that of the external profile. Table 1 

presents three shape families together with the shape classes of the rectangles, the ellipses, and the 

diamonds. Here, a shape class is defined by the direction in which the material layers are scaled with 

respect to the envelope. Shape classes are ideal limiting-cases that define the boundaries of all possible 

beam stiffness behavior for a given loading. They are theoretical, but represent approximately the cases of a 
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bi-material system in which the low density core layers can be neglected. Three shape classes are 

considered in this work, namely vertical, horizontal and proportional scaled layers classes, as illustrated in 

Table 1. 

Shape transformers generally enable to decouple the effects of various parameters in an expression of 

classical mechanics, such as a failure mechanism. In general, an equation of mechanics ..ME , can be 

expressed in terms of design specifications, material, and geometric properties as 

 

Dg gMFME  ..         (6) 

 

where F  identifies  the design specifications and M  corresponds to material properties. 
g  

symbolizes the shape transformers of the cross-section for a given geometric quantity g of the shape, and 

Dg  represents the geometric quantity of the envelope.  

 

4 Shear Shape Transformers for Modeling Non-Uniform Bending Stiffness 

 

To apply the above scheme to non-uniform bending stiffness design, we need to formulate the shape 

transformers for pure shear stiffness. Equation (4) shows that the geometric contribution governing shear 

stiffness is K/A. In section 4.1, symbolic expressions of the shear correction factor are derived for the shape 

families. We use the results in section 4.2 to formulate the shape transformers and substitute them into the 

beam stiffness.  

 

4.1 The Shear Correction Factor for Shape Families 

 

As previously described, the shear correction factor is obtained by applying the strain energy method 

and Castigliano’s theorem to the shape families and their classes. For hollow shapes, the first moment of 

inertia is evaluated separately in the first cross-section segment, 20 hy   or 02  yh  and in the 

second one, 22 Hyh   or 22 hyH  , [4,21].  
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Rectangles. For the family of the rectangles shown in Table 1, the expression of the shear correction 

factor K  is given by:  
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For the reference cross-section, i.e. solid rectangle where c=0 and d=0, and for the class of 

horizontally scaled layers where d=1, the value of K  is 6/5, which is in agreement with that found in 

literature [2,3,17,22].  

Applying the scaling conditions c=d and c=1 to Eq.(7), gives the shear correction factor respectively 

for the proportionally and vertically scaled layers classes. These expressions will be used in section 4.2 to 

formulate the shape transformers, as illustrated in Table 2.  

 

Ellipses. Similarly, we apply the strain energy method and Castigliano’s theorem to each shape class 

of the family of the ellipses. For the proportionally scaled hollow ellipse, the shear correction factor is 

given by:  
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For a solid ellipse and for the horizontally scaled layers ellipse, the shear correction factor is correctly 

found to be equivalent to that of a circle [2], which is 910K . The shear correction factor for the 

vertically scaled ellipse is obtained by numeric analysis.  

 

Diamonds. For the proportionally scaled diamond, K is given by:  
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The shear correction factor for a solid diamond and for the horizontally scaled diamond is 3031K , 

which is in agreement with [2]. The above expressions given for alternative shapes are used in the 

following section to formulate the shape transformers for pure shear stiffness. 

 

4.2 Beam stiffness for non-uniform flexure 

 

The shear shape transformer 
S  governs the pure shear correction factor of a cross-section. As 

defined in Eq. (5), 
S  is a measure of the geometric term, KA , relative to that of the envelope, given by:  

 

   
DDS KKAA  (10) 

 

Table 2 summarizes the shape transformers for the shapes illustrated in Table 1. Similar to materials, 

shapes of a family exhibit properties that fall into a particular range of properties. For the hollow 

rectangles, ellipses and diamonds, S  varies respectively as follows: 10  S , 100270   S  and 

31180  S .  

If S  is substituted in Eq.(4), the terms of shape, material and size are decoupled in the shear stiffness, 

which can be expressed as:  

 

   DDSs KAGLk    (11)  

 

In addition to material and geometry, the slenderness governs the beam deformation under non-

uniform bending. When variable, H/L has a major impact on the pure shear stiffness which differs from that 
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on the pure bending stiffness. As mentioned, the shear stiffness is a linear function of H/L, whereas in pure 

bending stiffness, the relation bk =f(H/L) is cubic. To express the dependence of the beam stiffness on the 

beam slenderness, we write sk and bk  separately as:  

 

    LHBGk Ss   65  (12) 

    3
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By substituting the above relations in Eq. (1), we obtain the beam stiffness under non-uniform flexure:  
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5 The impact of slenderness 

 

Fig.1 illustrates how the beam resistance to shear and bending deformations, i.e. s  and b , changes 

with the beam slenderness. In the plot, curves of shear and bending deflection relative to the beam 

deflection,  , are shown for steel and iron beams of the rectangle family.  

The curves confirm that for 1.00 << LH , the stiffness of a prismatic beam is governed mainly by the 

bending strain. For relatively slender beams with 2.01.0 << LH , the deflection due to shear increases by 

no more than 10% of the beam deflection. However, for deep beams, where 12.0 << LH , the shear 

contribution is no longer negligible because it is greater than 10%. For example, for a depth-to-span ratio of 

0.5, the shear contribution is approximately 40%.  

The horizontally scaled layers class exhibits a variation of the shear contribution with respect to LH  

equivalent to that of the solid rectangle. For the rectangles class of the proportionally scaled layers, the 

impact of slenderness depends on the size of the opening. The thinner the cross-section walls, the greater 

the shear deformation. Furthermore, as expected, the impact of slenderness for iron and steel is low, 
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because the materials have similar properties. For example, stiffness contributions are equal at 

566.0LH  and 589.0LH  respectively for prismatic steel and iron beams. On the other hand, a 

change of shape properties has a larger impact on the stiffness contributions. Hollow cross-sections 

undergo a significant shear deformation, which even for relatively slender beams cannot be systematically 

neglected.  

 

6 Performance Indices for minimum mass  

 

Based on the previous results, this section presents performance indices of minimum mass for pure shear 

stiffness design and non-uniform bending stiffness design. 

 

6.1 Pure Shear Stiffness  

 

In lightweight design, the minimum mass of a generic beam relative to that of a reference beam can be 

measured by a performance index, p. Maximizing p results in minimizing mass.  

Similar to the procedure followed for pure bending stiffness [9], p is derived here for a pure shear 

stiffness requirement. The shape and material properties of the reference prismatic beam, as well as its 

mass, are assumed to be unity [9]. For prescribed shear stiffness, length, load and boundary conditions, the 

performance index for minimum mass of a generic beam, p, relative to the reference is given by: 

 

Auvm
p
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Where oBBu   and oHHv  are the envelope multipliers governing the scaling of a generic cross-

section with ),( HBD  to the reference rectangle ),( ooo HBD .  

Since in pure shear stiffness design k is specified, we write the shear stiffness ratio of a generic beam, 

k, to the reference beam, ko, as  
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Rearranging Eq. (16) to substitute uv in Eq. (15) gives the following performance index:  
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Regardless of scaling, the performance in pure shear stiffness design is governed only by shape and 

material properties. For material selection, the shape is constant and p reduces to 


G
, whereas the 

performance for shape selection is given by:  
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where 
s  is the shear stiffness efficiency, analogous to that introduced for bending [13]. Fig. 2 

illustrates in a bar chart the ranges of 
s  for the shape families. The bounds are obtained by calculating the 

limit of 
s for 0A  and 1A  for each shape class. Although theoretical, because no manufacturing 

constraints and buckling requirements are considered, the ranges help select lightweight shapes in pure 

shear stiffness design. As expected, the best shape class in pure shear stiffness is no longer the most 

efficient in pure bending stiffness [13]. The vertically scaled shape class is indeed the least efficient for 

pure shear stiffness regardless of the shape family. On the other hand, the horizontally scaled layers classes 

are the most efficient in shear stiffness. Among the families of Table 1, the diamonds is the most efficient, 

followed by the ellipses.  

 

6.2 Non-uniform bending  
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In non-uniform bending, the shear stiffness is coupled with the bending stiffness (Eq. (4)). A minimum 

mass criterion for the co-selection of material, shape, and slenderness of a beam can be obtained by 

combining Eq. (15) with (16). Hence, for a prescribed envelope, beam stiffness and boundary conditions, 

the performance p  of a beam is given by:  
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7 Shape and Material Selection Charts  

 

Selection charts help to develop a visual understanding for the optimum design of structures. Maps are 

presented here to ease material, shape and slenderness co-selection in lightweight stiffness design.  

 

7.1 Pure Shear stiffness design  

 

Fig. 3 illustrates parametric plots of SG  versus A  for beams in pure shear. For given envelope 

and increasing values, from 0 to 1, of the parameters c  and d , the curves illustrate the resistance of 

alternative shapes to deform under shear strain. In contrast to pure bending, in pure shear the stiffness 

boundaries change. Not all shapes of the ellipse and diamond families fall within curves 1 and 2; rather 

only the rectangles classes are included in the domain. For a given material, higher shear stiffness can be 

obtained from the ellipse and diamond families because of a more efficient material distribution.  

In pure shear stiffness, the upper and lower limiting curves of the rectangle family describe the 

horizontally and vertically scaled layers as opposed to those obtained in pure bending stiffness. For the 

rectangle class of horizontally scaled layers, the shear stiffness is linearly proportional to the amount of 

material, as it was for bending. However, for the proportionally scaled layers the performance drops and 

becomes the lowest for vertically scaled layers. This class is the least efficient because the cross-section 

core has no material to balance the maximum shear force.  
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Similar behaviors are observed for ellipse and diamond shapes. However, the vertically scaled layers 

class for the ellipses and diamonds perform better than that of the rectangles. The reason is that the former 

shapes allow material distribution close to the neutral axis, where shear stress is maximum.  

If the envelope is free to be scaled along prescribed directions, graphical selection in pure shear 

stiffness can be conveniently performed by using logarithmic charts. In this scenario, selection guidelines 

describing the performance for a given scaling condition are introduced in a way similar to bending. After 

taking the logarithmic function and rearranging, their equation from Eq. (17) can be written as: 

 

pG AS logloglog    (20) 

 

In contrast to pure bending, in pure shear scaling does not impact the mass-efficiency. For any scaling 

condition, the iso-performance line has a slope equal to unity; the higher the y-intercept the better the 

performance. As an example, Fig. 4 shows three parallel lines corresponding to 25.0p , 5.0  and 75.0  

for shape selection. For a prescribed shear stiffness requirement, shapes above a line perform better than 

those below, regardless of the relative scaling of the envelopes.  

 

7.2 Non-uniform bending stiffness design  

 

For stiffness design of beams under non-uniform bending, pure shear stiffness is coupled with pure 

bending stiffness. With respect to slenderness the shear deformation scales with a law different than that for 

bending. For the former, deflection scales up linearly with H/L; whereas for the latter with the cube of H/L.  

For a given envelope, Fig. 5, Fig. 6 and Fig. 7 illustrate the impact of varying slenderness on the 

stiffness of the shape families and their classes. Slenderness is assumed to be respectively: 410LH , 

1102  , 
1105   and, it is used with Eq. (19) to plot the performance for steel and iron, chosen as sample 

materials.  

In Fig. 5, the curves plotted for slender beams match those obtained in previous works for pure 

bending [9,10,13]. Compared to this case, Fig. 6 shows that for a relatively slender beam, the performance 
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of the most efficient shape in pure bending drops. For the class of the vertically scaled layers, the best 

shape in bending is the least efficient, since for this ideal shape the material does not fill the core, where the 

shear stress is highest. Fig. 7 plots the beam stiffness for beam with 5.0LH . As can be observed, the 

curves are equivalent to those obtained for pure shear stiffness design (Fig. 3).  

The charts presented in this work assist material and shape selection for lightweight stiffness of short-

thick and slender beams. Through examination, insight can be gained into the impact of slenderness on 

beam stiffness and structural performance.  

 

8 Model Validation  

 

This section presents the numeric results obtained through Finite Element Analysis (software package: 

ANSYS®) and compares them to those predicted by the model presented in this paper. The test case is that 

of a simply supported steel beam under a mid-span load 1000P N. Cross-section dimensions are 

1.0B m, 2.0H m, and material properties  =7500 kg/m3, E =200 GPa, G =75 GPa. The beams are 

modeled as beam elements (BEAM189) that can capture flexural, torsional, shear effects as well as warping 

effects. The numerical stiffness ratio  
ANSYSDkk  for each tested beam is determined as:  

 

  ANSYSANSYSDANSYSDkk max_max_   (21)  

 

with data ANSYSDmax_ , for the envelope shape with 0 dc  and ANSYSmax_ , for the shape with 

prescribed c and d.  

Fig. 8 and Fig. 9 show FEA results obtained as Eq. (21) superimposed to the model plots. In Fig. 8, the 

vertically scaled rectangle concept, with 99.0c and varying d  is plotted for varying depth-to-span ratios. 

On the other hand, Fig. 9 illustrates structural concepts for the proportionally and vertically scaled layers of 

the rectangle family. In both cases, a good agreement is observed between the model and numeric results. 

The errors vary in the percentage range of 0.01-6.28. The reason of the discrepancy is due to the beam 

element used in ANSYS®, which can also account for the warping effect. However, the divergence is 
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within an acceptable range, especially for concept design. Similar results obtained for the families of the 

ellipses and diamonds confirm that the model is suitable for early optimization of beams under non-uniform 

flexure.  

 

9 Concluding Remarks  

 

This work extends a previous method for material and shape selection for the stiffness design of a 

beam under non-uniform bending. Cross-section size and shape, beam slenderness, and material govern the 

minimum mass of a beam, designed to meet a given stiffness requirement. The beam stiffness has been 

formulated as a combination of bending and shear stiffness. Shape transformers, introduced to model the 

pure shear correction factor, have been obtained by applying the strain energy method and Castigliano’s 

theorem to alternative shape concepts.  

The results have been used to develop design maps and efficiency bar charts that assist the co-selection 

of slenderness, shape and material for optimizing the lightweight design of stiff beams under non-uniform 

flexure. The results were validated by using finite element analysis to confirm that the model can be used 

appropriately at the concept stage of design, because the error falls within 6%.  
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