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Seaweed to Dendrite Transition in Directional Solidification
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We simulate directional solidification using a phase-field model solved with adaptive mesh refine-
ment. For small surface tension anisotropy directed at 45� relative to the pulling direction we observe a
crossover from a seaweed to a dendritic morphology as the thermal gradient is lowered, consistent with
recent experimental findings. We show that the morphology of crystal structures can be unambiguously
characterized through the local interface velocity distribution. We derive semiempirically an estimate
for the crossover from seaweed to dendrite as a function of thermal gradient and pulling speed.
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branches of the solidification front. Surviving tips grow by Wo, the interface width, and time by 	o, the interface
The study of solidification microstructures is funda-
mental to many problems of scientific and practical sig-
nificance. Among these is the optimization of metal
alloys, the properties of which depend on their micro-
structure [1,2]. In traditional casting, microstructure is
formed through solidification and thermomechanical pro-
cessing, which typically destroys the initial as-cast struc-
ture. In emerging technologies, such as strip casting, thin
alloy strips are rapidly cooled with little thermomechani-
cal treatment. In these materials, the final microstructure
is largely governed by the physics of solidification.

The fundamental solidification structure is the den-
drite. Dendrites can be grown in isolation, where their
growth rate is selected by a solvability criterion that is
established due to a singular perturbation in the surface
tension anisotropy [3,4]. In casting applications solidifi-
cation occurs as a competitive growth of multiple arrays,
often growing as an advancing front, directionally sol-
idified in a thermal gradient established by heat flow out
of a cast.

A paradigm used to study solidification in a 2D geo-
metry — a phenomenon with many parallels in strip
casting — is directional solidification. In this process a
material is solidified while being pulled through a uni-
directional temperature gradient G at a velocity v. The
solidification front becomes unstable by the Mullins-
Sekerka instability [5], leading to a variety of complex
cell and dendrite patterns. A long-standing problem has
been to elucidate the mechanism of wavelength selection
in such cellular or dendritic arrays. This problem has been
extensively examined experimentally [6–15], and theo-
retically [6,10,16–20] using boundary integral methods,
phase-field models, and semiempirical thermodynamic
considerations.

Another class of directionally solidified microstruc-
tures recently examined experimentally [6,15] and nu-
merically [6,21] is known as seaweed. These structures
are formed through successive tip splitting of primary
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and continue to split, while trailing branches become
subsumed by neighbor interactions. Seaweed can emerge
when the direction of solidification is tilted at an angle
with respect to the direction of a small surface tension
anisotropy. Of particular importance is the recent experi-
mental observation [15] that when the thermal gradient is
reduced, there is a morphological transition from sea-
weed to directed dendritic structures that lock into the
symmetric anisotropy directions. It has been conjec-
tured that this transition is an effect of the finite surface
tension anisotropy [15]. The precise mechanism of this
morphological transition remains unexplained, however.
Understanding how the thermal gradient, pulling speed,
and crystalline anisotropy control dendritic growth is
critical in predicting solidification microstructures in
polycrystalline materials.

In this Letter, we report simulations that examine the
crossover mechanism for the seaweed to dendrite tran-
sition reported in Ref. [15]. We use a phase-field model
solved on an adaptive grid, gaining access to systems with
reduced finite size effects, a factor which has tradition-
ally plagued studies where the size of the system is on
the order of the diffusion length. We find a morphologi-
cal transformation from seaweed to directed dendritic
growth as the thermal gradient is decreased. The cross-
over transition is shown to be well characterized through
the local interface velocity distribution function. We then
derive a semianalytic phase diagram of seaweed versus
dendrite growth as a function of pulling velocity and
thermal gradient.

We model directional solidification with a phase-field
model of an ideal binary alloy with parallel solidus and
liquidus slopes [17,20]. The model couples an order pa-
rameter � to a concentration field C. The field �� ~xx� takes
on the values � � �1 in the solid phase, � � 1 in the
liquid phase, and interpolates continuously between these
states in the interface region. The field C is normalized to
the concentration gap �C. In units where space is scaled
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FIG. 1. Seaweed (anisotropy " � 0:0075, thermal gradient
Gm � 0:0008) is characterized by successive tip splitting.
Insets show the distribution of forward (top) and transverse
(bottom) interface velocities.
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kinetics time, the equations of motion for the two fields
are given by
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where � � C� P���=2, P��� � �15=8���� 2�3=3

�5=5� and the equations have been written in a frame
of reference moving with the pulling velocity vp �
�vs	o�=Wo, where vs is the dimensional pulling speed.
The two fields are coupled via the constant �. The di-
mensionless diffusion constant is D � DL	o=W2

o , where
DL is the diffusion constant in the liquid. Two-sided
diffusion is controlled by q��� � 1=fQ1 
Q2��

b�1� j�j�	g [22], where Q1 and Q2 are selected such
that the ratio of solid to liquid diffusion constants
Ds=D � � � 0:1, and b is a constant (specified below).
Temperature is prescribed by a frozen field U � �To 

Gmz, where z is the pulling direction and Gm �
G�Wo=�CML, with G the thermal gradient, ML the
liquidus slope, and To�� 0� a reference temperature.
Surface tension anisotropy is defined in terms of ~nn �
~rr�=jr�j, the unit normal to the contours of �.
Specifically, A� ~nn� � �1� 3"4	�1


4"4
1�3"4

��nx�4 
 �ny�4�	,
where "4 is the anisotropy constant. The anisotropic inter-
face width is thus defined as W� ~nn� � WoA� ~nn� and the
characteristic time 	� ~nn� � 	oA

2� ~nn� [23–25].
The constants Wo, 	o, �, and b are interrelated by an

asymptotic analysis [26] which maps the phase-field
model onto the sharp interface limit defined by (1) solute
diffusion in the bulk phases, (2) flux conservation at
phase boundaries, and (3) the Gibb’s Thomson condition
Cint � Ceq � �d� ~nn�$� %� ~nn�v, with $ the local interface
curvature, d� ~nn� � do�A� ~nn� 
 @

2A=@�cos�1nx�
2	, where do

is the isotropic capillary length, and v is the local inter-
face speed. In the limit % � 0, we obtain b � 0:925,
do=W � 0:471=�, and D � 1:92�. We note that our re-
sults will also hold qualitatively for a wider range of
phase-field parameters.

The phase-field model was simulated using a finite
element method on an adaptive grid, with zero-flux
boundary conditions in both C and � as in Ref. [28].
Solidification is initiated by a small-amplitude, randomly
perturbed solid/liquid interface. The initial solute profile
C� ~xx; 0� was set to a steady-state diffusion profile normal
to the interface, while �� ~xx; 0� � tanh� ~xx=

������
�2�

p
	 along the

normal to the interface. The system size was 4092� 4092
with a minimum grid spacing of dxmin � 0:5. We note
that simulations with larger dx � 1 also reproduce our
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results, with a small shift in the corresponding critical
thermal gradient (�Gm � 0:0002) for ranges of anisot-
ropy examined. Also, simulations in smaller systems
(1024� 1024) do not clearly exhibit the crossover tran-
sition from seaweed to dendrites, while doubling the
system size to 8196� 8196 leads to the same results as
those in the 4092� 4092 system. We used explicit time
integration, with a time step dt � 0:01. The coupling
parameter � � 1 for all simulations. The dimensionless
pulling speed was fixed for all our numerical runs at vp �
0:015, corresponding to v � 32 �m=s for a pivalic acid
(PVA) 0.04 wt.% acetone alloy. Typical cooling rates
examined ranged from 0:014-1 K=s.

We simulated directional solidification with vp ori-
ented along the z axis and surface tension anisotropy
oriented & � 45� with respect to vp. For all nonzero
anisotropy values examined, cellular structures emerged
at large thermal gradients Gm. As Gm was lowered, sea-
weed structures emerged. Figure 1 shows a typical
seaweed configuration for G � 0:001 and "4 � 0:0075.
This morphology is characterized by successive tip split-
ting, closely resembling the experimental seaweed of
Refs. [6,15]. Lowering Gm further gave rise to dendrites
that lock into the anisotropy directions. Figure 2 shows a
typical dendritic morphology, similar to the experimental
data in Fig. 25 of Ref. [6]. We note that the dendrites in
Fig. 2 resemble the experimental branches in Fig. 7a in
Ref. [15], which are presented as part of a seaweed,
although the branches look dendritic. We found that near
the crossover, seaweed branches can resemble dendritic
side branches making visual distinction between seaweed
or dendrite ambiguous.

Evidence of the crossover between seaweed and den-
dritic morphology is quantified by examining the inter-
face velocity distribution. Figure 3 shows the distribution
of transverse (x direction) velocity (vx) for different Gm
155502-2



FIG. 2. Oriented dendrites (anisotropy " � 0:0075, thermal
gradient Gm � 0:0002), growing near the & � *=4 direction.
Insets show the distribution of forward (top) and transverse
(bottom) interface velocities.
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and "4. Figure 4 shows the corresponding distributions in
the pulling direction (vz). The z velocity is biased to the
right since the sample is pulled to the left. The distribu-
tions represent microstructure development for t > 1 s. In
all cases, the narrowest distributions correspond to sea-
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FIG. 3 (color online). Distribution of transverse (x axis) inter-
face velocity for different gradients (shown in the legend). For
all "4, the narrowest distributions correspond to seaweed. The
broadening of the distribution corresponds to the emergence of
oriented dendrites.
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weed morphologies. In this regime the relative z velocity
of the interface is small, while x-direction velocity is
limited due to interbranch interactions. AsGm is lowered,
large-velocity shoulders begin to appear in both distribu-
tions, becoming progressively broader as clearly defined
oriented dendrites emerge. The crossover gradient corre-
sponds to Gm � 0:0005 for "4 � 0:005 and Gm � 0:0003
for "4 < 0:005. We note the weak dependence ofGm on "4.
The dimensionless tip undercooling (� � 1� z=lT ,
where lT � �=Gm is the thermal length) was lowest for
seaweed and largest for dendrites. This leads to large
velocities at low Gm (e.g., � � 0:93 for Gm � 0:000 05,
"4 � 0:001) and decreasing interbranch spacing, consis-
tent with Mullins-Sekerka theory. At these low values of
Gm we are likely observing the effects of the finite-
interface thickness and kinetics as the diffusion length
is of order the interface thickness, making our results in
this regime qualitative. We note, however, that for the
anisotropies examined, the crossover transition from sea-
weed to dendrites always occurred for Gm above the
threshold where kinetic or finite-interface effects could
be observed. We also note that similar evidence for a
crossover was observed if we examine the distribution
of local interface-normal angles.

An estimate of the crossover gradient from seaweed
to dendritic growth is obtained by noting that the
wavelength �� of a dendritic array tilted at an angle &
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FIG. 4 (color online). Distribution of the local interface ve-
locity in the pulling (z axis) direction corresponding to the data
of Fig. 3.
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to the z axis must satisfy the selection criterion �� � +lT ,
where + is some proportionality constant. This criterion
requires that the wavelength of a tilted dendritic array
must scale with lT , which determines the maximum am-
plitude of a dendritic protrusion along the growth di-
rection. For the form of �� we follow Ref. [9], which finds
experimentally that the wavelength of a dendritic ar-
ray �� / �dolDlT�

1=3, where do�&� � do�1
 15"4 cos�4&��
and lD � 2D=�vp cos&�, with vp cos& representing the
average normal velocity of the array at steady state. The
constant + is estimated using the additional information
that the onset of dendritic morphology occurs when
lT=lD � 8 (consistent with other work [6,29]). Using
this to eliminate lT in the onset criterion above gives + �
0:03. Replacing + in the selection criterion finally gives

G� � Pf
���������������������������������������������������������������������
�vp cos&�=�Ddo�1� 15"4 cos4&��

q
with Pf �

0:004. For our fixed velocity of vp � 0:015, & � *=4,
and "4 � 0:005, our predicted crossover for G� �
0:000 45, consistent with the data of Figs. 3 and 4, which
show a crossover just below Gm � 0:0005. We note that
using the form �� � �l2TlDdo�

1=4 developed by Hunt and
Jackson [30] gives the same form for G�, with Pf �
0:0032. Fitting the above onset criterion directly to our
"4 � 0:005, G� � 0:0005 data by estimating the transient
normal velocity from Figs. 3 and 4 gives Pf � 0:0027,
consistent with the theoretical derivations above.

We can use this selection criterion to define a morpho-
logical phase diagram for Gm�vp� for a fixed "4.
Examination of Gm�vp� also predicts that there will be
a crossover from seaweed to dendrites as vp is increased,
consistent with the findings of [6]. This is expected as
lD=lT ! 0 as vp increases. We note that at sufficiently
large vp the fastest growing unstable wavelength will
always occur in the forward direction regardless of the
angle of anisotropy. We therefore only expect Gm�vP� to
be valid at small vp.

To conclude, we have investigated the crossover tran-
sition from seaweed structures to tilted dendritic arrays
which are oriented near the symmetric anisotropy direc-
tions, consistent with experiments [15]. We found that the
transition is characterized through a broadening of the
local interface velocity distribution. Specifically, pure
seaweed exhibit a narrow transverse velocity distri-
bution near vx � 0. Oriented dendritic arrays, which
gradually emerge when the thermal gradient is lowered
below a certain value, display distinct shoulders in their
transverse distribution. A semianalytical theory of the
transition was derived, yielding a Gm-vp phase diagram
for the crossover between seaweed and dendritic states
for low vp.
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