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Stochastic Eutectic Growth
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A full phase field model of eutectic growth is proposed, which incorporates the generic features
of a eutectic phase diagram and reduces to the sharp-interface model in the appropriate limit.
Large scale two-dimensional simulations are presented for the isothermal solidification of a uniformly
undercooled eutectic melt, in which the Avrami exponent is 3. The results of this study identify three
possible growth mechanisms: diffusion limited growth, lamellar growth, and spinodal decomposition.
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A eutectic is characterized by a point in the temper-
ature concentration plane (T',C) known as the eutectic
point at which a liquid coexists with two solid phases
of different concentration. Isothermal solidification of a
eutectic liquid is a complex process involving the nucle-
ation and growth of two solid phases and can lead to a
multitude of microstructures. The study of the kinet-
ics of such pattern formation and domain growth has
been greatly enhanced by the concepts of universal dy-
namical scaling. It is now generally accepted [1,2] that
systems with conserved and nonconserved order parame-
ters form separate universality classes defined in part by
power law growth of the average domain size with dynam-
ical exponents = of 1/3 and 1/2, respectively. Eutectic
solidification involves the coupling of conserved concen-
tration and nonconserved liquid/solid order parameter
fields. To investigate this, a full phase field model is in-
troduced. A phase field model is needed for this study
since the standard sharp-interface model [3-6], used for
directional eutectic growth in which a liquid/solid inter-
face is pulled through a temperature gradient, cannot
treat the stochastic nature of nucleation and is difficult to
implement for a collection of multivalued interfaces. To
verify the model and corresponding discrete map, many
known results for directional eutectic solidification [3,5]
are recovered. Finally large scale numerical simulations
of isothermal eutectic solidification from an undercooled
melt are presented. These indicate three possible growth
mechanisms for the concentration field: diffusion limited
growth (z = 1/2), lamellar growth (z = 0), and spinodal
decomposition or Ostwald ripening (z = 1/3).

The model is presented in terms of a free energy F
which is a functional of ¢ x C — Cg, the deviation from
the eutectic concentration, and a liquid/solid order pa-
rameter . To lowest order, F can be written as

Fle,¥}=[dr(f(c, ¥)+Ky| VY| /2+K,|Vc]* /2], (1)
where f(c,9) = —ry?/2 + up?/4 + (AT — BP)Y +

wc?/2 + bet /4, AT = T — T,, with T}, the melting tem-
perature at 8 = 0, and the other parameters are phe-

nomenological constants. Solid (liquid) phases are rep-
resented by ¥ > 0 (¢ < 0). T is fixed externally, which
is an excellent approximation for 2D films, metals, and
metalloids where concentration diffusion is orders of mag-
nitude slower than that of T', so latent heat generated by
the transition may be ignored. The dynamics is realized
by Langevin equations,

Oy /0t = —T'y(6F /6%) + ny, (2)
dc/dt = T V2(6F/6c) + 1. 3)

Tcy are mobilities, (ny(r,t)ny(0,0)) = 2Ty keT8(r)5(t),
and (n(r,t)n.(0,0)) = 2T kpTV25(r)6(t). The mean-
field phase diagram of this model is illustrated in Fig. 1
for parameters (r,b,w,a,8) = (1,1,0,0.15,0.15). Also
included in this diagram are the metastable extensions
of the liquidus and solidus lines. When w < B(r/u)'/?
and o(r/u)/? <« 1, the eutectic point is given by
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FIG. 1. Phase diagram of Eq. (1) for (r,b,w,a,8)=
(1,1,0,0.15,0.15). Dashed (solid) lines: boundaries of
metastable (stable) phases. S (£) is solid 3 > 0 (liquid ¥ < 0)
phase.
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(ATg, cg) =~ ([26(r/u)'/? — w]?/8ba, 0). Similar expres-
sions can be derived for the coexistence lines and chemi-
cal potential 4. Phase field modeling of liquid/solid tran-
sitions has been described elsewhere [7].

The sharp-interface model can be obtained from Egs.
(2) and (3) using standard techniques [8,9] in the appro-
priate limit. The two assumptions that must be made
are that the interface of width £ is in local thermody-
namic equilibrium and that the curvature is small or
k€ 2 0. Also, the interface must exist. Note that the
phase field model provides a phenomenological descrip-
tion of eutectic growth even when growth cannot be de-
scribed by an interface model. The Gibbs-Thomson con-
dition is 6c/cmis = t[dok + (AT — ATg)/Mmcmis), where
do = 0/(c2;s0u/dc), o = 2K, [ du(dcP/0u)?, cmis is the
miscibility gap, m is the slope of the liquidus, ¢? is a
stationary planar interface at AT = ATEg, and éc and
AT are evaluated at the interface. The plus and mi-
nus signs refer to the ¢ < 0 and ¢ > 0 phases. In-
tegration of Eq. (3) across a moving interface gives
Un(cs—c)i-§ = D106c/Ou|;—Ds86c/duls, where the sub-
scripts | and s refer to the liquid and solid sides of the in-
terface and vy, is the velocity normal to the interface. The
diffusion constants are given by D;, = ['c(82f/8c?)y,s.
These boundary conditions and the fact that Eq. (3)
reduces to a diffusion equation in the liquid and solid
phases comprise the sharp-interface model [3-6].

For computational efficiency, a simple discrete map was
constructed from Egs. (2) and (3) using Euler’s method
for the time derivative and a nearest neighbor approxi-
mation for the Laplacians. This was simulated on both
square and hexagonal lattices with time step 0.05, mesh
size 1.3, 'y =Tc =r=b= K, =1, and 8 = «.
As a consequence of the universality of domain growth,
the continuum model, discrete map, and sharp-interface
model are all equally valid phenomenological models of
eutectic growth, which has been exploited in many nu-
merical studies [2]. To support this, the map was used to
recover many known results [3,5] on directional eutectic
growth.

Directional eutectic growth is implemented numeri-
cally through AT = G(y — vt), where y is the pulling
direction and v is the pulling velocity. In these simula-
tions, (G, a,w, Ky) = (0.01,0.15,0.01,1). For a given v,
steady state interface profiles were obtained as a function
of lamellar wavelength A and, as in other works [3,5], the
minimum undercooling assumption was used to select A
and the average interfacial undercooling AT,,. Details
will be reported in a future paper. A summary of this
study is shown in Fig. 2 in which the following well-known
[3,5,10] relationships were obtained: A=2 o v [Fig. 2(a)]
and (AT,, — ATg)? « v [Fig. 2(b)]. Discrete branches
of solutions exist for different initial conditions [5]. The
recently discovered [4,5,11,12] tilt wave instability was
studied by fixing A and increasing v until the lamellae
undergo a tilting transition. Figure 2(c) shows the tilt
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FIG. 2. Simulation of directional eutectic growth. v as
function of (a) 1/A%; (b) (ATm — ATE)?; (c) tilt angle (6).
(d) Points are solid/solid interface position ten lattice spaces
behind the liquid/solid front as a function of time.

angle 6 as a function of v, where § = 0° corresponds
to lamellae that are perpendicular to the interface. All
these results are consistent with earlier simulations [5].
Tilt waves can also be generated by random initial con-
ditions at sufficiently large v [Fig. 2(d)] or by thermal
fluctuations.

Using the same discrete map, a 2D numerical study of
isothermal solidification of a uniformly undercooled eu-
tectic liquid was performed on a hexagonal lattice with
periodic boundary conditions and ¢y = cg = 0. Nucle-
ation and growth of solid droplets and the phase sep-
aration process are illustrated respectively in the first
and second columns of Fig. 3. The parameters used are
(Ky,w,a,AT) = (1/8,0,0.15, —0.4) on a system of size
256 x 256 with thermal fluctuations of magnitude 0.29
in 9. The initial undercooled liquid state is represented
as ¥(z,y) = —1 + n and ¢(z,y) = 7, where |n| < 0.1
is random. The third column of Fig. 3 corresponds to a
second type of simulation in which a small solid droplet is
incorporated in the initial conditions but without ther-
mal fluctuations. The system size was 512 x 512 and
the parameters were (K, w, o, AT) = (1,0,0.15,-0.2).
In these and other simulations, the lamellar wavelength
A* selected decreased with increasing interface velocity
v which is proportional to AT, although the minimum
undercooling assumption cannot be made as AT is fixed.

The statistics of ordering for the first set of simula-
tions was analyzed by monitoring the solid volume frac-
tion X (¢) and the spherically averaged structure factors
of both fields: Sy(k,t) = (|%(k,t)|?) and S.(k,t) =
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FIG. 3. Grey scale plots of ordering fields. In (a) to (c)
black, solid (p > 0); light grey, liquid (¥ < 0) at times
t = 1000, 1600, and 3150. (d) to (f) are counterparts of
(a) to (c) for concentration field. White: ¢ = —0.6; black:
¢ = 0.6. (g) to (i) show concentration field at ¢t = 2500, 3750,
and 5000. See text for parameters and initial configurations.

{le(k,t)|?). The results were averaged over 33 indepen-
dent runs. X (t) can be fitted by a Kolmogorov [13] form
with an Avrami exponent of 3: X (t) = 1 — e~ ¥1v*(t=t0)*
where I is the nucleation rate and to the waiting time.
The fit and sample structure factors for both fields are
shown in Fig. 4. Sy(k,t) shows poor quantitative agree-
ment with Sekimoto’s expression [14].

The peak position kp,, height Sy, = Se(km,t)/(c?),
and width w of S.(k,t) are displayed in Fig. 5. Before
interpreting these results, it is useful to consider several
simple examples. At late times, when X (t) = 1, Eq. (3)
reduces to the Cahn-Hilliard-Cook [15] model of spinodal
decomposition. In this limit, k,,/w and S, k2, are con-
stant and kn, o t™* with z = 1/3. 27 /k,, is interpreted
as the average domain size. In contrast, if the domain
size A* is fixed, then k., is also and Sy, is proportional to
the average size of the growing droplets. Since domains
grow at constant v and Sy, o 1/w, 1/w o t1. This is seen
in the last column of Fig. 3 and will be termed lamellar
growth. If a collection of uncorrelated solid droplets each
consisting of a set of stripes or lamellae in ¢ of average
size 27 /ky, is considered, the structure factor takes the
form S.(k,t)/(c®) ~ k;%(km/w)f([k — km]/w). In prin-
ciple w and k,, are both time-dependent quantities.

During the early stages of growth, both (Spmw/km)Y/?
and 1/k,, increase as t}/2. In this time regime, the initial
lamellar wavelength is smaller than A\* and is increasing
at the expense of the surrounding liquid matrix. This
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FIG. 4. Open squares: solid volume fraction X (t); the solid
line is a fit to the Kolmogorov [13] form given in the text. Top
left inset: Sample structure factor for ¢ field at ¢ = 2500.
Bottom right inset: Sample structure factor for c field also at
t = 2500.

diffusion limited process leads to an exponent of 1/2.
As the droplets coalesce, spinodal decomposition takes
over, which will eventually give an exponent of 1/3. The
smaller exponent seen in Fig. 5 (z =~ 1/4) is simply a
precursor to the asymptotic exponent of 1/3. Many nu-
merical studies [2] have shown that the dynamic expo-
nent in spinodal decomposition starts at a value smaller
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FIG. 5. Open circles, solid circles, and open triangles cor-
respond to In(Q) = In(1/km) + 0.55, In([Smw/km]*?) + 1.7,
and In(k., /w), respectively.
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than 1/3. These simulations may also be hampered by
an initial state that contains lamellar structures.

The dynamics of k,,/w provides additional insight
into the ordering. Most striking are the three distinct
plateaus seen in Fig. 5. Figures 3(d) and 3(e) indi-
cate that the first and second plateaus correspond to the
growth of the initial drop of precipitate and the next shell
or layer of the opposite phase, respectively. The width
w decreases as the second shell grows since it is highly
correlated with the initial precipitate. The last plateau
corresponds to spinodal decomposition occurring when
the sample is approximately 90% solidified.

To summarize, three distinct growth mechanisms have
been identified. Initially, diffusion limited growth occurs
as shown in Figs. 3(d) and 3(e) leading to a growth ex-
ponent of 1/2. If the solid drops are allowed to grow
large without coalescence, as in Figs. 3(g) to 3(i), lamel-
lar ordering occurs in which k,, « t® and w o« t~!. Fi-
nally when the solid drops coalesce spinodal decomposi-
tion takes over as in Fig. 3(f). For this model, spinodal
decomposition, or Ostwald ripening for off-eutectic con-
centrations, will be the infinite time mechanism. How-
ever, which growth mechanisms can be observed depends
on the quench.

Preliminary experimental results on the eutectic crys-
talization of amorphous metallic glasses have been re-
ported by Fischer et al. [16]. In these experiments, both
the small and large angle time resolved x-ray scatter-
ing patterns are measured, which respectively measure
correlations in the electron density (c) and the crystal
structure (¢). Thus the scaling exponents should be
directly measurable. However, direct comparisons are
complicated by differences in the average density of the
amorphous and crystal phases and lattice mismatches at
grain boundaries. We are presently incorporating some
of these features to better describe such experiments.
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FIG. 3. Grey scale plots of ordering fields. In (a) to (c)
black, solid (i > 0); light grey, liquid (¥ < 0) at times
t = 1000, 1600, and 3150. (d) to (f) are counterparts of
(a) to (c) for concentration field. White: ¢ = —0.6; black:
c=0.6. (g) to (i) show concentration field at t = 2500, 3750,
and 5000. See text for parameters and initial configurations.



