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We study growing interfaces by the numerical simulation of several three-dimensional systems: the
Kardar-Parisi-Zhang equation, a discrete variant of that model, and a solid-on-solid model with asym-
metric rates of evaporation and condensation. Growth exponents in the rough phase are calculated, and
we estimate the kinetic roughening transition temperature, its dependence on driving force, and analyze
the transition by finite-size scaling. We find the transition depends strongly on driving force, which

could be investigated experimentally.
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Roughening transitions play an important role in
three-dimensional crystal growth.'™> Nevertheless, while
the roughening transition is reasonably well understood
in equilibrium, its nature in systems which are far from
equilibrium is not. In experiments on epitaxy,® where an
interface grows at a constant rate, it is of interest to
determine how a constant driving force affects the transi-
tion. For example, one would like to know the roughness
of the interface above the transition temperature Tg, as
well as the conditions, if any, under which an interface
can be grown in the smooth faceted phase which exists
below Tr. Experiments on crystal growth’ find that one
can go from a smooth to a rough phase by increasing the
driving force beyond a particular strength, at a fixed
temperature 7 < Tg. It should also be noted that the
dynamics of a growing interface separating two phases is
a fundamental problem in condensed-matter physics.

An important model for driven interface growth has
been introduced by Kardar, Parisi, and Zhang (KPZ).}
It is a nonlinear differential equation [Eq. (1) below]
which can be used to study the universal long-time,
long-wavelength properties of the width W of a driven
interface. The width typically obeys® W(L,t1)~L*
x f(tL ~?), where L is the linear size of the growing sub-
strate, ¢ is time, and f is a scaling function. For dimen-
sion d =2, a fluctuation-dissipation theorem allows one
to calculate the interface exponents, y=7% and z=73.
These are consistent with numerical simulations,>!® and
are different from the equilibrium roughening exponents
x=3—d)/2 and z=2.

The situation in the more experimentally interesting
case of d=3 is more problematic. Three dimensions is
the critical dimension d. of this system, above which
nonlinearities are naively irrelevant. However, at d,, the
KPZ equation does not have a stable fixed point, and
growth information can only be inferred indirectly, al-
though it should be noted that the KPZ equation satisfies
the scaling relation y +z =2, when the nonlinear term is
relevant. This is unfortunate, since the KPZ model pro-
vides a description of the driven interface growth in three
dimensions. Given this unclear situation, there have

been several conjectures'! for the value of the growth ex-
ponents as a function of d.

Hence we felt it worthwhile to study driven growth in
three-dimensional systems. We report numerical studies
of three models which we expect to be in the same
dynamical universality class in the rough phase. First, we
have numerically integrated the KPZ equations of
motion directly at the critical dimension to determine
growth exponents. Second, the possibility of a kinetic
roughening transition was investigated through the study
of variants of two important models used to study it in
the past: the discrete Gaussian model and the solid-on-
solid (SOS) model.'->'?-!5 Qur results are consistent
with x/z=0.13, and y+z =2, for the KPZ equation
and the SOS model in the rough phase.'® We find that
our data for both a discrete KPZ model and an asym-
metric SOS model can be interpreted in terms of a
roughening transition occurring at a nonzero Tg, which
appears to be stronger than the usual Kosterlitz-Thouless
transition. We characterize it with a simple finite-size
scaling Ansatz, as is used for second-order phase transi-
tions. The transition here corresponds to a nonequilibri-
um phase transition such as has been studied for driven
diffusive systems. !’

The KPZ equation is

Bh _
at

where h(x,?) is the height of the interface from a refer-
ence plane, and is assumed to be a single-valued function
of position x, and v and A are constants. The random
noise 7n satisfies Gaussian statistics with the second mo-
ment given by

(x,)n(x, ') =2D6""(x—x")6(t—1'), )

vV2h+%(Vh)2+r;, )

where angular brackets denote an ensemble average and
D is a constant. It provides the most simple model of
driven growth. The nonlinear term is crucial, since it
breaks the symmetry of positive and negative h. This
piece cannot be derived from a free energy, and has a ki-
netic origin. Amongst other effects, it causes the average
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position of the interface tp grow at a constant rate at late
times. Therefore, while the system approaches steady-
state growth, it never equilibrates. If the nonlinear cou-
pling constant A=0, Eq. (1) describes the dynamics of
roughening;"''3-!° the fluctuation-dissipation relation im-
plies that the ratio D/v=T, where T is the temperature
in units of Boltzmann’s constant divided by the surface
tension.

We have integrated the KPZ dynamical equation in
both d=2 and the critical dimension d. =3. We choose
units such that D=1, but let both v and A vary in antici-
pation of our study of the discrete KPZ model below
(one may choose v=1 also'®). It is convenient to esti-
mate y and B, where W(L,t)~tPg(tL ~?), so that
B=x/z. The growth is monitored through W(L,t)
=[(h—(n))M]1'2 to give B before saturation occurs,
while y is obtained by waiting until the width has
reached its steady-state value, since W~L* as t— oo,
Large numbers of independent runs were done to obtain
good statistics. In d =2, we find $=0.33 for nonzero A,
and f=0.25 for A =0, while y =0.5 for all A with very
high numerical precision. These are consistent with the
known exponents, mentioned above.

In the critical dimension, d =3, the integration of the
KPZ equation is hampered by large fluctuations and
crossover effects. Besides a large number of independent
runs for average, one must study sufficiently large system
sizes so that the growth of the width persists until the
nonlinear term becomes important. We studied systems
of edge length L =128, and integrated over times up to
40000 time steps with a time mesh of 0.001. We obtain
B=0.13£0.02 for late times with fifty independent runs
(see Fig. 1). Note that the effective exponent drops to
that value from B~0.5 for early times (due to the noise
n). The steady-state exponent y is much more difficult
to estimate. To obtain reasonable statistics with a large
number of independent runs, we are limited with rather
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FIG. 1. In-In plot of interface width W vs time ¢ in three di-
mensions. Edge length is L =128 for the continuous KPZ
model and L =100 for the asymmetric SOS model. The slope
gives the growth exponent B=yx/z == 0.13. Data for the SOS
model were shifted along both axes for convenience.

small systems. With L <30, y is found to be 0.24
+0.04. In these runs, we let v=1 and A =200. The in-
dependent measurements of g and y give y+z=2.1.
Other values of v and A were studied, and give values of
the exponents consistent with those quoted above.'® The
results are different from the usual roughening exponents
which give both B and x to be 0, since W has only a loga-
rithmic divergence. Below, we discuss our results for g
and y further.

The possibility of a kinetic roughening transition can-
not be studied with the continuum KPZ equation.
Therefore, we introduce a generalized model, motivated
by the discrete Gaussian model of Chui and Weeks,'?
which has been used to study the equilibrium roughening
transition. This corresponds to Eq. (1) on a lattice, with
the height variable h restricted to integer values of the
lattice constant. We call this the discrete KPZ model,
since choosing A=0 gives the discrete Gaussian model.
Figure 2 shows the typical growth of the average height
in a given run as a function of time. Different curves are
for different driving forces A with the temperature 7 =1/
v< Tr(A=0) fixed. For small values of A, the growth is
one layer at a time (curves a and b), suggesting that the
system is in faceted phase. For large values of A, the
growth becomes continuous (curve e), signaling that the
rough phase is reached. Unfortunately, the discrete
KPZ model is numerically a difficult problem, so our ob-
servations are only qualitative. To undertake a quantita-
tive study, we consider a nonequilibrium SOS model
with asymmetric rates of evaporation and condensation.

The SOS model has a roughening transition in equilib-
rium,"'> and its nonequilibrium properties have been
previously studied by many authors, particularly Gil-
mer. " Analytic work, within linear response, has been
done by Chui and Weeks'? and by Saito.'*!'> We use

FIG. 2. The height of the interface for representative runs
in the discrete KPZ model, as the nonlinear driving force is in-
creased (labeled a-e). Note the change from layered to con-
tinous growth.
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the SOS Hamiltonian, H=X | h;—h;|, for Monte
Carlo attempts, but bias those attempts by an amount
Aq, which is the fractional amount of extra attempts
made on one side. This implies that A, =0 gives equilib-
rium, while A, > 0 causes a constant velocity of the inter-
face. We expect this asymmetry allows terms even in VA
to appear in long-wavelength equations of motion, so
that this model would be in the same universality class as
the KPZ equation.

To check this, we first calculated the growth exponents
for the asymmetric SOS model. In d=2, we obtained
2=0.50 for all A,. For any nonzero A,, we expect f= ¥,
although transients were important for small values of
As: The effective exponents were B(A,=1.0)=0.33,
B(0.8) = 0.31, B(0.6) = 0.31, B(0.4) =0.29, and (0.2)
==0.29, while B(A,=0) =0.25 for runs in systems of
edge lengths up to L=6000 and times up to 40000
Monte Carlo steps. In the rough phase in d=3 the
asymmetric SOS model gives $=0.13+0.02, and
x=0.25, which are in agreement with the results of in-
tegrating the KPZ equation (see Fig. 1). These results
constitute our best estimates for the growth exponents.
Our results are not consistent with conjectures in the
literature.!' Those conjectures were, however, motivated
by the study of simple models which, although they share
similar features to the KPZ equation, are not obviously
in the same universality class. Nevertheless, we caution
that crossover effects could play an important role in
d =3, because it is a marginal dimension, which may im-
ply considerable systematic errors in our estimation of
exponents. Further study is required to definitively
determine the nature of growth in d=3.

The possibility of a roughening transition was ana-
lyzed with C, which is the analog of specific heat defined
by C=(H* —(H)?)/LY"'T?% Here C is a nonequilibri-
um quantity describing fluctuations of local bond ener-

gies in the steady state. There is no anomaly in the
specific heat for roughening of an equilibrium interface, !
although there is a bump close to Tg. In the driven sys-
tem, however, we expect any roughening transition to be
stronger than the usual Kosterlitz-Thouless-type transi-
tion for equilibrium, because y > 0 in the driven rough
phase while y=0(log) in equilibrium. Indeed, we find
that C is strongly peaked for nonzero A (see Fig. 3), and
from inspection of configurations, that its peak corre-
sponds to the roughening transition. Thus we interpret
the peak position as Tr(A,L), which shifts to lower tem-
peratures as A is increased. Motivated by the equation of
motion, we fit this to Tp(A) ~Tx(0)/[1+O0Q)], in the
inset to Fig. 3, where"!® Tx(0) =1.24 is the equilibrium
roughening transition temperature for the SOS model.
This implies one can go from the smooth to the rough
phase by increasing the driving force at a given tempera-
ture, as seen qualitatively for the discrete KPZ model
mentioned above. This feature has also been observed
experimentally.” To estimate the nature of possible
singular behavior in C, in the absence of theory which in-
cludes the effect of the nonlinearity, we have followed
standard treatments for second-order transitions. We
make the finite-size scaling Ansatz, C~L"F(| T —Tg|
xL '/V), and fit to find « and v. These are not equilibri-
um exponents since C could depend on the dynamical
universality class.?® We caution here that such a pro-
cedure is not appropriate for the equilibrium case
(A,=0) since, as mentioned above, the equilibrium
roughening transition is of Kosterlitz-Thouless type.
From the data collapse shown in Fig. 4 for A, =0.4, we
find that our Ansatz is self-consistent, and allows us to
estimate a/v=0.5 and v=1.5. Finally, from v we esti-
mate TgR(L— o) =0.54 for A,=0.4, using Tg(L)
=Tr(L— )+0(1/L""). We believe that an ultimate
validation of this Ansatz can only come from further
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FIG. 3. Plot of fluctuations in local bond energy C for the asymmetric SOS model as a function of driving force A, =0 to
Ao =0.08, as indicated. Inset: The position of the maximum for different driving forces (point at A, =0 from Ref. 13). Normalizing
Tr(1) with (Refs. 1 and 19) T(0) =1.24 is only for convenience.
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FIG. 4. Finite-size scaling plot of fluctuations in local bond
energy for the asymmetric SOS model C/L%* vs | T —Tr|
XL'", with a/v=0.5, v=1.5, L =10-40, as indicated, and
As=0.4. Tgr(L) is the peak position of the bond energy fluc-
tuations for system of size L.

study of the nature of this nonequilibrium phase transi-
tion. However, our results can be consistently, and we
believe most naturally, interpreted in terms of a transi-
tion occurring at a nonzero temperature.

In summary, we have integrated the dynamical inter-
face model for driven growth introduced by Kardar, Par-
isi, and Zhang, and generalized it to a discrete model.
To the accuracy of our study, the KPZ equation belongs
to the same universality class as the solid-on-solid model,
with asymmetric rates of evaporation and condensation,
in the rough phase. Numerical simulations suggest the
possibility of a roughening transition at nonzero temper-
ature in the two discrete models, which we characterized
by a finite-size scaling Ansatz. These results, in particu-
lar the kinetic roughening transition in driven interfacial
growth, are experimentally accessible by many methods.
Such a study would be of considerable interest.
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