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Abstract
Q

/

‘We find the 'geﬁerating function for group tensors/contained in
thé enveloping algebra of each simple compact Agroup of rank three or less. ’
The generatiné fun;tion dep‘end:s on “dummy variables which. carry, as exponents,
the degrees and representatior; labels of the tensors; it suggests an
integrity basis, a finite number of elementary tensors’, in terms of which
all car:be expressed as "stretched tensor products. we‘ show how the generating
functions for tensors in the enve]gping aléebra of S0(5) and SU(3) reduce
when the-tensors are acting on the basis of represeptations for which one

of the’ Cartgn 'l‘abe'ls‘ vanish. The missing label problem in the reduction

1 . . J
-+ $0(5) D SO(3) restricted to $0(5) representations of the type (0,v) is

considered; “the eigenvalues and ‘eigenvectors of a missing label operator

are Found up to (including) represenmz)‘. )
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Sommaire )

FL)

/ La fonction génératrice des tenseurs contenus dans 1'algébre en-

hveloppante est évaluée pour chaque grolpe simple et comp;ct de rang <3.
Cette fonction' génératrice dépend d'un certain nombre de variables dont les
exposants correspoﬁdent aux degrés et aux &tiquettes de représentation des
tenseurs; cette fonction génératrice peut &tre interprétée en terme d'un

“ensemble fini de tg,nqseurs élémentaires a partir desquels tous les tenseurs
peuvent €tre obtenus. Nous évaluons la fonction gé_nérati‘ice réduite dfs
groupes SO0(5) et SU(3) lorsque les t\enseurs op2rent sur les basé; de repré-
sentations pour lesquelles une étiquétte de Cartan est égale & z&ro. Le pro-
bléme d'é&tiquetage lors :de 1a réduction 50(5) 2 SO(3) limitée aux représen-
tations de type (0 V) est so1yt1onné en terme d'un opérateur d'étiquetage

. pour 1eque] nous &valuons ses valeurs propres et vecteurs propnes Jusqu'a

—

et incluant la représentation (0 12).
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Chapters I and 11 as well as appendix A and C contains no new material,

A1l the material presented in chapters IIl to VI and in appendix B is

orfginal unless specified. More specificaﬁy,the main results are

) \ ‘ 4] The generating functions giving a basis for all tensors
19 the enveloping algebra of each simple compact group
of ‘rank s;\aérived in chapter 111,
(2) The group-subgroup ci;ar;acteristic function introduced
~in cha‘pter 111 and defined in ‘a*ppen&jx B.
(3) Tﬁe polynomial‘ expre;ssions given in chapter V corrésponding
to the hf@h‘ést compérients oj; the e'le‘mehtéry tensors for
- the groups SU(3) and SO(5). | |
(4) The approach(chapter V ) to the problem of Ffinding how
the gengrating‘ functions for tensors\i n the enveloping .
a]gebra r;sdu'c':e when the tensoré.‘ are acting on the basis
of representations forj'which one or more Cartan labels
vanish .The reduced forms of the generat1ng‘ ’
functions for SU(3) and S0(5), '
(5) The technique bj} Mwhich Ton’e obj:ains a generafing function

&fqr subgroup scalars in the enveloping.algebra of a group

from the generatirig:func,tion for group tensors, = '~
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CHAPTER 1

/

\ 2 o *
L INTRODUCTION 4

The envelo’pihdf'algebra oﬁ a Lie group has pFfoven to be a useful
concépt in theor_eticél physics; its structure has been the .subject of many -
. -

investigations.

The problem of labelling states in terms of a complete set of
conmuting operators, in the case where one uses a non-canonical. chain of
groups (the missing Tabel prob'lem) has motivated the search for subgroup

1.2, ?, which:were

scalars m the enve]opmg algebra of a group. Solutions
given for various group- subgroup combinations, have a cmmon characterist'ic H f
a‘H subgr‘oup §_c_agars are finjtely generated, i.e., there exists a finite

set of elementary subgmuﬁ scalars from whiich al1 may be cpnstructed

. - :Jx N
~ Other elements of .the enve'loping al?bra of Lie groups have been
the subject of many studies. In partic]e physics, a knomedge of a basis

for al1 vector operators (tens'grs that transform by the adjoint representation)

;- . . J .
tumis' out to be important in the derivation of mass formulas; good examples .

o~

of such calculations (apart/ . from the well known Gell-Mann-Okubo SU(3)

-wass formula) are Okubo 's SU(4) and SU(8) mass formulas?. SA complete de-
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operators’i‘q the enveloping algebras of AR,’ Bﬂ.’ C!,’ DR, and GQ, in any given

“

irrdducible representation, was given by Okubo. o

Shift operators which raise and lower irreducible represéntations

_of a~subgroup H of a group G are polynomials in the gene,rat(;rs of G, t.e.,
a elements of the enveloping algebra of fhe group; they have proven-useful

for the classification and analysis of irreducible representations of various

groups. Shift operator techm'qhes have been develpped‘ by several authorss‘”.

Nagel and Mosi;insky*s operators which raise and lower the representations
L

[ R AR

Jo
_—~  of U(n-1) contained in a representation of U(n) and Hughes and Yadegar’s
0(3) shift operators are good examples.

e L

The Casimir operators, whose eigenvalues label the represeﬁtat;iéhs

- ) were probably the most studied elements of the enveloping algebras of ’I’.ie

»19

groups. It has long been knong 8 that for a group G of rank 4 there-are

. Just & functionally independent polynomials in the generators, or Casimir
{;r‘l .

“invariants. The degrees of these invariants for all simple Lie algebras have
20

T s,

been_‘given by Racah. For example he showed™ " that for Az’ Bz’ C-n, D]1 and

G, the degrees of the Casimirs were as follows

)

\ o 15, M ,
B, : 15, 1% ..., 1% , .
h PR U LR Lo A
' R GRS LA L |
, 6 : 1,15
f-’ As meritioned by Kostantm, it follows from a /1/;heorem of Chevalley that for
J §Q ( a grdup G of rank %, there are as many Caéimirs as linearly independent

A

g,

B




. the degree v; and c; of the ¥

¥

vector operators (not counting those obtained through multiplication by
invariants) in the enveloping algebra of G, and the relationship between
th vector and Casimir operator is given by

the following formula

= Vit 1 i=1,2,...8%8 . (1.2)
The problem of constructing the Casimirs and then computing their eigen- 7
value spectrum has been studied on many occasionszz'zs. Recently,
5

- simplified derivations of Fheir eigenvalues have been given by Okubo™ and

Edwardszg. \

Now Casimirs, subgroup scalars and vector operators are only three

!

out of an infinite number of types (we are refexring here to their trans-

formation properties under the group) of tensors that can be found in the
enveloping algebra of a group. More general results on the global structure N\
of envé]oping algebras has been obtained by Kostantm as early as 1963. He
slinwed‘ that the number Py of linearly independent A-tensors (‘\ténsors that
transform by the () representation of the group where A are the Cartan labels),
in thelenve1op1’ng algebra is equal (not counting those obtainef:i through
multiplication by invariants in the enveloping algebra; we shall refer to

this as “modulo multiplication by Casii;nirs") to the number. of states of zero
weight in the representation (1) (here (\) is any irreducible representation
other thar; the saalar one); he also proved that the highest degree of a
X—tensor (niodu]o multiplication by Casimirs) is the sum of the coefficients of

3

the/simp“iecroots in the highest weight of (A).

i

So far we have been talking about the irreducible tensors into !

which the enveloping algebra decomposes under the action of the group or

!




/
vahish ? Concerning this problem, Okubo

J

subgroup., A,p:\oblem which is of interest in theoretical physics is that of
the action of these operators on the basis of s\ome given irrveducible repre-
sentation. It has long been known that the enveloping algebra of SU(3)
contains- two (modu‘lo multiplication by Casimirs) 1inearly independent ﬁctor'
operators res;;ectively of degrees one and two. Do they remain linearly
independent (here I refer the reader to the first two paragraphs of section
2 of chapter V; there we discuss of two definitions of linear independence)
when acting on the basis of represe'qtatioﬁs in which one of the_Cartan labels
5 proved for simple Lie algebras that
the number nv(v) of linearly independent vector o_berators in a representation
{v) 1s given by the following formula ' | ,
nv(v) =n - nglv) ; (1.3)
where n Ts the number of fundamental 1rreducible representations of the

algebrs and ng(v) is the number of Cartan labels specifying the representation

"~ (v) which are equal to zero. In the case of SU(3), n z 2 so that when acting

on a general representation (no(v) = 0) there are two lineav;ly independent

¥

vector operators and only one in the case fbf (v,O) or (0,v) representations.
More genera1 results were obtained by Kostantm
oping algebra of Lie groups; *he showec! that the multiplicity of a A-tensor
when acting on the basis of a representation (v) is equal to the multiplicity
of (v) in the Clebth-Gordan series of (1) x (v).f The fact, that the number
of linearly independent tensor operators \of: a givenntype de;;ends on the
representation on which it is acting, may be understood in terms of certain

identities among the generators; these identities have been studied by

various authm‘s(5 - 34)

o e v ey I - et +7 g I ST o o T e hasd
. AATLI Re BRI T WM TN R g‘&rmfﬁ@ P .ﬁ’,.. K v G, o e e e e = e o e

s e bt

for all tensors in the envel- /

i
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Although much work hgs been done on the structure of enveloping
algebras, so far no comp}ete description (egtcept for SU(2)) has been given
of what is available in terms of irreducible group tensors in the enveloping
algebra of any Lie group, in other words the prqblem of finding a bas1'§ for
all the irreducible ’tenso'rs into which t!le enveloping algebra decomposes under
the action of the group has never been solved. In the case of SU(Z), Kostantm
showed ~§hat the enveloping algebra decomposes into A-tensors (modulo multi-
plication by éasimirs) of dimension d = 2j + 1 where each has multiplicity
one and degree m; given as follows (A= 2j)

J

mj:j withj=1,2, ... = . (1.4)

Now many groups of rank ¢ 3 have proven to be useful in physics and a complete

.descr%ption of the structure of their enveloping algebra would be of interest

for present and future applications. For instance in atomic physics orbital

states have been classified according to several chain of groups; long ago

Raca\h35 labelled the orbital states of the #—sheﬂ by considering the chain

SuU(7)>50(7)> G, > S0(3).

3% where states

are classified according to the SU(3)D50(3) chain. In the wigner37 super-

In nuclear physics we have the well known sh/e]l model of Elliot

multiplet modsl, the many nucleon spin-isospin states are classified according
to the irreducible representations of SU(4) in a SU(2)xSU(2) basis. More

recent models in nuclear physics such as the interacting boson model of Arima

and lache]lo38 make use of a chain such as

U(6 PU(5)250(5)250(3). /
The symplectic group-Sp(6) was shown by Rowe and Rosenstee139 to be important

in relating the collective and independent particle models.

3
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The cbject of this thesis may be divided into three parts
(1) Establish a basis for all tensors in the enve10pi;19 algebras
of sifiple compact Lie groups of rankjs3-.
' (2) Discuss the existence of these basesr when acting on general
. and degenerate represéntation§ (one or more Cartan labels -
being zero). We shall consider in detail the case of SU(3)
. and SO(5). .
(3) Consider the mis:sing label problem in the reduction
$0(5)>50(3) restricted to S0(5) representations of the

type (0,v); the eigenvalues and éigenvectors of a missing

label operator are found up to (including) representation (0,12).

(- * The thesis is divided as follows : in chap II,after a few definitions, we
) discuss in some detail the generating function concept as applied to continuous

/groups; in chapter 111 the problem of the reduction of enveloping algebras

is considereci and answers are given for the above mentioned groups; results |
of 6hapter II1 have been subjected to many tests, these ar‘e diécuss_ed in chapter
V; iﬁ chapter V we disc‘uss of a method df constructing tensors in the enveloping
algebra of a group and consider the problem of the existence of these tensors

when acting on the basis of general and degenerate representations; the

missinﬁ label problem is discussed in chapter VI and solved in the case of

A
S0(5)2S0(3) in terms of a missing label operator. The thesis ends with

" a brief conclusion. |
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CHAPTER II

1

FORMALISM

2.1 Definitians

We begin by a brief descripti‘on of the Lie groups of interest (all
are connected, compact and simple) and their corresponding Lie‘algebras.
. s
The variables in real n dimensional space R" will be designated

X
2‘5 (Z.I, :,.., Zn‘).

]

(x], ...» Xp) and in the complex space c" as

The special unitary group SU(n) is the (n2—1)-parameter group of =
comp]ex unitary unimodular (detennmant equa1 to + 1) n dimensional matrices

*
which leave invariant- the Henmtwan form }: 2, 2. Its Lie algebra has nz-)
14 1 ]
generators (the order r of the group) and is the real compact form of A ;.

The rank £ (the maximum number of mutually commuting generators or the number

of representation 'labgis) of the group is n-1. «

& .
The real special orthogonal group 50(n)™is the {n{n-} }-parameter

group of real orthogonal n nimr;sional"dmatriceé of determinant + 1, which
* 2
leaves invariant the real quadratic form Z Xg Its algebra has n(n-1) -

ial
generators and.is the real compact form of B(n n-1) for n odd and of D nts for

n even. The rank of the group is {n:1) for n odd _and:n for n,ﬂeven.
J ¢ 00 T - - 7 .
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The unitary sympl‘ectic group Sp(2n) is the {n(2n+1)}-parameter -
group of 2n dimensional real unitary matrices which leave invariant the
‘ n
nondegenerate skew-symnetmc bﬂmear form I (x _y - X y1) of two vectors,
iz]
X = (x], sees X x.l, n) and Y = (y], ees Yo y), n)' Its
algebra has n(2n+1) generators and is the real compact form of Cn’ Its

\
rank is n.

s

The exceptional group G2 is a 14 parameter group of Z dimensional

matrices. Its eﬂgebra has 14 generators and is of:rank 2.
-

Due to the following isomorphisms (we designate the Lie dl1gebra
associated with a given Lie group by the same letter a/s for the group, but
in Tower case}) '

su(2) ~so0(3)~sp(2), so(5)~sp(4), su(4)~so(6), (
otr study gfl t'he'st{*u‘cture of enveloping algebras of compact ijmple‘groubs
of rank <3 may be reduced -to that of the following groups : su(2), su(3), “
50(5), G,, SU(4), Sp(6) and SO0(7). We complete this section with the

definitiohs of enve'loping algebra, tensor and tensor operator.
$ ' :

Let. L be the L1e algebra of some Lie grpup G with basis (generators)
Xps +oe Xy and conmutatmn rules [X ] Xk. where C K are the
structure constants. The Tinear assomatwe (assom ative mu1t1 plication)
algebra composed-of all possibie products of generator:e. of L, taken in all
possible orders plus an identity element and where the coulnutator
XX XjX is 1dent1 fied with the correspondmg Lie product [X I § ], is

i
known as the umversa] enveloping algebra of G.

e I Fmeic i 271 ) L A I i e T IR TN
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A set r(a) of Hnear]y independent basis vectors that transform
among themse]ves under anirreducib'le represéntation (A) = (11, cees Az) of
| a group, will be referred to as an irreducible ’tensor r{r); the Ay are the
Cartan labels. Individual basis vectors (.the:c\omponents of T'(1)) will be

e denoted I'(A3k) where‘ k designatesl all distinguishing labels (weights and

others). This transformation property of a tensor for' finite and infin-

itesimal transfonnat'ions of the group may be wr1 tten as follows
R A k.= 3 LA kD k™ (R x 6D,
A ~ - . . ’
X 1M K : L, | Ak Quk” ] %5 | x k), | .‘

‘with the identification” |A; k) = I'-(A k); R represents a’fim'te transformation

Hi

and XE(; (c:.-'?, r)a generator of the algeﬁra. S

) .
{; ' A set T(X) of linearly independent operators T(A3 k), that transform
Jamong ;:hemselves under the operations of a group according to an 1rreduc1b1e
representation (1), is said to fom an irredumb]e tensor operator T(2); that
1s, under finite and 1nf1n1ta!4ma1 transformations of the group, T(A; k)
transforms as follows '

R TGS k) R - £.T 0 k) Qi kR A K

[x‘},‘ 'T(g ;k)]

T (s k) s k7 ] X a5 k.

Ter;§ors in the enveloping algebra of a group are tensor operators

.whose component.s, agg’ polyndnials in the generators of the group,

|
S
T
SRS

- w23 e et piane e 4
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’ theory of finite and continuous groups. Our discussion will Be\

" restricted to the case of continuous groups. . 3

There is one knmfvn exception to this, i.e., & GF whose bo‘wer series expansion

10

2.2 Generating function concept for continuous groups

Introduged in 189? by Molien40 in the study of invariants of a !
finite group of complex matrices, the generating function (GF) concept has

p'rogven, in the past few years, to be a useful tool in the representation
41-48 ‘

\

There are\several types (the word type refers to the infoma{:ion
carried by these functions) of GF’s but all those‘c§a1cu1ated recently have
the same general format : they are functions of several variables Vo which
when exb%fnded into a power series contain but positive terms; they are
fractions, or’ 'sums of ‘fractions, whose denominator factors have the form
(1-X), the X’s nndJ;he numerator terms Y being <alget)raic expressions of the

i N, Ny .
form Vi Vo T eea ¥ with Mys eees N being 1ntegers. An exanple of such

n
a functlon would be - ‘ )

G (v1, Vos v3) = (1 + vy vy Vg ) {(1- v] ) (1- -V vz)
(2.1)
x (1- -Vy vy ) (T»v2 vy )}

contavlns negative terms;"/we shall discuss such a function in a later chapter.
Not only are GF’s a compact way of pl;esenting certain resiﬂts but they aHow
through res1due calculations, the manipu]ation of a large amount of informa- -
tion; they may be added, subtracted and in certain case, coupled and
substituted one 1nto another. Since we make extensive use of this recently

revived concept in the present thesis we will in what follows discuss several

types of GF s by actyally giving examples and analyzing the 1nformation
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carried Hy them. As a complement to this discussion, we-illustrate in

appendix A certain GF techniques.

i
i

(a) Generaﬁng funcﬁ'én for polynomial 1rreducil;1e tensors

It will be shown in chaplter _I'II that the stud_!‘ of the structure of

the enveloping algebra of a simple compact Lie grovupVG may be neduced’ to
the problem of finding a basis for all irreducible tensars, with respect to
G, whose componer;tls are polynomials in the componerits of a certain tensor T';
in"other words, our problem will be that of finding‘ a basis for the irreducible
tensors that can be obtained from the following ten;or produc;ts

(I‘)lqj ={rxr ...xr}u i‘dent'icaﬂ copies, u =1, o (2.2)
A1l these tensors, of whic;l there are an infinite n‘umber, may be préseﬁfed

in a compact way in terms of a GF (reférred to as the GF for tensors based

onT). for example, if I' is a j= 2 (A=4) SU(2) tensor, the G»F49 giving a
basis for all ir}*’educible SU(Z)/ ‘tensors based on T is _
B(U,A) = (WURAS)(-UAY) (1P (- (-0 (2.3)

where U carries the degree in T' and A the. representation Tabel (unless
s;;ecified all rep;-esentqtion labels ip t;n's thesis are Cartan labels) as-
exponents. A term Cin W A} in the expansion of (2.3) inf(?”nns us that the
nufiber of linearly independent 1rreduc1’b\)e SU(2) tensors, which transformm as

(A) and whose components are polynomials of degree u in the components of I',

. is Car The GF (2.3) does not only enumerate all tensors but also suggests

an integrity 'basis, i.e., a finite set of elementary( tensors in terms of
which all 'may be obtained as stretched tensor products. The stretched tensor
product of two tensors I'; and T, is a tensor I'y whose highest weight is the
sun of the highest weigh’ts of ', and I';, which implies that representation
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\ “Jabels in such a product are additive. Denoting by (u,A) the tensors .
enumerated in (2.3), where u is the degree and. X the representation label,
the integrity basis for tensors whose components aré polynomiatls in tl;e
Jj=2 SU(2) tensor is |

11,8), (2,4), (2,0, (3,0) and (3,6).
The structure of j:"hg GF&(Z.Q) tells us that all linearly independent tensors
may be obfained by the fqnowing stretched k"tensor products of powers of

: elementary ones

z ' L (2,4)°

. (2,00°. 3,09 (3.6)8
where a,b,c and d may take values (integer) ffom 0 to » while e may ?nly be
Oor 1., For examp1ie the choice a=3, b=2, c=0, d and e = 1 gives the tensor
1(13,26), i.e., a tensor of degree 13 that transforms by the A = 26 (j=13)
representation. That (3;6)jappears in the numerator of G (U,A) implie$ that
- the stretched square of it is a linear combination of stretched products
| of the other elementary tensors "vénd hence redundant, i.é. s

(3,62 = A 2,03+ B (1,02, (2,8).(2,0) + ¢ (1,83, (3.,0). X

The interpretation of these functions in terms of an integrity basis is pot

always trivial; a glance at the GF (3.53) should convince the reader.

e

g

§;‘ - ' The products {2.2) are a particular caseof the following tensor

CL products
. 1 4

{r x I ... xT} u independent copies, u = 1, = . (2.4)

R

The irreducible tensorjs arising from {2.4) are characterizéd not ofﬂy b&
\ their degree in T and their representation labels but also by their exchange

symmetries; this problem, known as.the calculation of plethysms, is of

R T R e

( ’ particular interest in the study of many”identical particle systems in quantum,

i

o weapern Ty

H




AP

B L

{
| 13 |
(1 . ’ ‘ - ]
\{tly/sjcs. Here again the results of such calculations may be ‘expressed in ’ 1

terms of a GF46, but will not be discussed here. The polynomial’ tensors

obtained from the products (2.2) constditute the symmetric plethysm. } : . }
- . - - ° i

{

1

(b) Generating function for weights corresponding to a generating N
function for tensors based on & tensor T

Since weights are additive in the tensor product of representations,
the products (2.2) may be realized in f.dimensional (2 beigfg the rank of
the group) weight space by a weight GF W giving al1 weights arising from such

products W is a fraction whose numerator is unity, with a one to one corre=

spondernce between its denominator factors (1-X) and weights of T. Wwill be / '

referred to as the GF for weights cor/responding to a GF for tensors based . J
|

¢ . on I'. For example the GF for weights corresponding to the GF (2.3? for ;
) . ' /

) SU(2) tensors based on a j = 2 tensor I' is | , J

|

W(u,n) = {(1-tn*) (1-un?) (1-U) (1-un~2) (1-tn~*)3"' (2.5) |

where U carries the degree in T and n the weight as exponents. A term [cuw i
- ¥

. . ‘ |
y nw]in the expansion of (2.5), indicates the presence of a weight w with , J
|

p multiplicity ¢, » in the tensor product - c,
{r(j=2) x ... x "{j=2)} u identical copies. ' . ; '#
T - s
T
jo e (c) Group-subgroup generating functions - generating functions for x ﬁ
' branching rules ) , \ % L
It has been shownso'53 in the case of compact groups. for various | %

gmtp-subgroup combmations, that the reduction of the 1rmduc1b1e represen-

. tations (IR”s) of 2 group into irreducible representations (multiplets) of a Co
subgroup, i.e. the branching rules, may be defined in terms of stretched ‘
products of powers of a finite set of elarlegfcary factors denoted. by

10
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l -A;,‘Ae and N carry respectively the representation labels of SU(3) and SO(3)

(
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(Ays «ves Ay 3 M7, ... N, ) where X; and n; are respectively the Cartan
1 26 1 Ly i i -
labels of the IR and the multiplet to which it belongs. \rleitzenbb'ckﬂ4

proved that this set is finite for all 'semis‘imp]e Lie groups.

This suggests that the bra'nching'\ rules may be expressed in terms -

ofa GF whose terms X and Y, as defined earlier, would correspond to elementary -
factors or (in the case of Y) to s‘tretched products of powers of them (Cartan
]abe:ls addiltive). For exa]np'le. the blranching rules for SU(3)2>S0(3) is given
by the following stretched products of elementary factors (Sg§3) labels are
‘doubed : n = 23). -

(10;2)2. (01:2)P (20;0)%. (02;0)%. (1m;2)F (2.6) .
where a“,b, ¢ and d can take integer values from 0 to = and f = 0,1 only.

The 6F49 corresponding to (2.6).is , ¢
. L ' -1
F(Ay,A2;08) = (1+MA2NE)L(1=AN2) (1-A7 )(1-A2N2)(1-23)} (2.7) -

as -exponents. Isolating the term in AJA3 in (2.7)

B A5 (N®NGa2Nb1),
indicates the following reduction |
(22)> (8) + (6) + 2(4) + (0).

/ This type of GF will be {referred to \as the group-subgroup G\In: or the
GF for branching rules. This function not only yives the] branching rules,

but when interpreted in terms o0f an integrity basis (the elementary permissible
diagrams of Devi and Moskinsky), i.e. a finite set gf elementary factors |
((2.6) 1/n the case of. (2.7)),.givesasolution to the corresponding internal

?\state) Jabelling pfoﬁ'iémss'm

o

. A GF for tensors based on a tensor T’ may bé

! -

{ - 3

R R
- RN T g .= iy
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\

reduced to its corresponding GF for weights by making use of one or more

group-subgroup GF’s; this technique which consists in substituting one GF - ‘

-~

into another is discussed in section 4 of ‘appendix A.

.

(d) Génerating,function for Clebsch-Gordan series

Just as'in the case of the branching rules where we maké use of
a complete set of elementary factors, we may express all couplings by the
stretched products of powers of a complete set of elementary couplings with
certain combinations of them being considered as redund;nt. A set of
elementary couplings has- been found for various group562'67 such as SU(2),

SU(3), Su(4), Su(5) and SO(5).

These couplings are actua]iy a consequence of the interpretation
of the general inv;riant of these groups as products ofvpowers of certaiw o
elementary scalars in three representations. Denoting the elementary couplings
of SU(2) by (X),22,)) where A; and A, are the Cartan labels of the IR’s being
coupled and A tve Cartan label of the product representation (the Cartan
labels béﬁng twice the angular momentum value), the integrity basis consists of

. (0,1,1), (1,0,1), (1,1,0)

with no redundant cgmbination,; this actually means that the Clebsth-Goridan
series of any coupling of two SU{2) representations may be obtained from the
following stretched products (Cartan labels additive).

R ot .0 - (2.8)
with a, b, and c being any integers from 0 to =». The above products may bé
expresse& 1netgrms of the fo]]owiﬁg GF . |

.C(A1,02,4) = {{1-4,A) (1-MA) (1-MA2)} ’ (2.9)
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] . : R
where A;, A, carry the Cartan labels of the IR’s being coupled as exponenﬁs

and A that of the product IR. Splitting off the term in A} A3 in (2.9)

w

we get
| - AA3 (A% + A 4 A% 4 A°)

which in terms.of the angular momentum coupling is interpreted as follows
3y%x3/, =3+24140.

This 'type of GF wi]] be referred to as the GF for the Clebsch-Gordan series.

-~
~ 1

Not only does it give all couplings but can be used to couple two GF’s for
tensors; a coupling technique by means of residue calculations is discussed

in section 4 of appendix A.

It will be noticed that all GF’s described above have the following
( *  common characteristic : all numeratorsncontain only positive terms and every
denominaior factor is such that, if expanded in a power series; it contains
but po;itive terms. Only -from GF’s having such a property can one deduce .
information about fhe existenge of ;n integrity basis: Bringing GF*®s to such
a format may often be a difficult task. We now turn to the probiem of the

reduction of enveloping algebras of simple compact Lie groups of rank < 3.

-

|
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REDUCTION OF ENVELOPING ALGEBRAS OF ,LOH.-RANKJGROUP\568

o

!

3.1 QOur approach to the reduction problem

Let us first recall our objective : it is to find, to enumerate a
basis for all tensors in the enveloping algebras of simple compact groups of
rank ¢ 3. In order to give a complete &escription of a basis for tensors
in the enveloping algébra U of a group G, one must answer the following
questiqns'.concerhing any of its elements

(’l) By which representation does it transform ? :

(2) What is its degree (its components being polynomials 1n the
generators) ? , ) J

(3) What is its multiplicity ?

[

(4) How do we construct it ?

|

~, The set of all symmetric homogeneous polynomials in the generators

forms a basi{s of U (Poincare-Birkhoff-m tt Theorem69 ); furthermare the order

in a2 product of generators does not affect its transformation properties

'under G. "Hence the basis for (symnetric) tensors in U corresponds precisely

to the basfs for tensors whose canponen'ts are polynomials in the components
of ? tensor&/which transforms by the a‘djojint“ representation of 6 { we will

refer-to such tensors as polynomfal tensors ).
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Answering the above four questions for polynomial tensors is -
therefore answering them for tensor“s inlU sinceé once one knows the algebrdic
form of a polynomial tensor, the corresponding tensor in U is obtained through

-

symmetrization (with respect to order). '
. |

The problem of the reduction of enveloping algebras of compact groups
is therefore reduced to that of constructing a GF for polynomial irreducible
tensors based on a tensor Tpe

3.2 Methods of constructing generating functions for polynomial tensors

¢

A possible approach to this problem 1is the one proposed by Gaskell,
Peccia and Sharp"'9 (see appendix A) which consists in starting with a v)eight
GF. Unfortunately, the tedium of the method increases rapidly with the number
of generators. Two a]ternativé approaches are considered in this thesis,
each of"‘ more or less general applicability. One is basically the elementary
multiplet method d'i}scussed in appendix A; however, instead of usi;xg the chain
SU(r)> G(r being the order of the group G, the numB;r of generators of its
alygebra) we insert m 1t whenever G is not maxi)mah one or more “intermediate
groups and consider chams such as SU(r)> G ‘5 G; one finds the GF for SU(r)>
6’ and for G"> 6 and substituth the Tatter in the former. Oqe can also
make_use of a new type of relation between two semisimple groups and cons'idelr

chains of the type SU(r)D 6¥ > G where G’ >G means that G is subjoined to 6”.
46 |

o

. The- above techniques, first proposed by Patera and Sharp — in the evaluation
_ of GF*s for general plethysms, simplifies the calculations cons1derab'ly,

they will be discussed in greater detail in section 3 of this] éﬁapter.

el




)

)

19

The other approach, which we beljeve to b? novel, is to work through

a subgroup H of G. The tgnsor I'A is a reducible tensor d¢f H; Jenoting by

I‘H‘, r2, ..‘I.,I‘H"I the n irreducible subgroup tensors into which I‘A reduces,
it may be relatively easy to construct the GF for H tensors based on the n
tensors I‘H“ (u =1, n). Under cerf:ain circumstances it may be possible to

convert that su}bgroup GF into the corresponding GF for G tensors based m‘I‘A.

A necessary tool in doing this conversion is the group-subgroup characteristic

o

function; i(\'the remainder of this section we shall give examples of such a

function and show how it can be useful for our purpose.!

Let G be a simple compact group and H its SémiSilQp'le or reductive

subgroup. The subgroup content of an irreducible representation (A) of G

may be written L. -
. H v v H \)1-
&(N) = L CA\)N » N" = I N'i . (3.])
v C el

(v) = (Vvas ooy W‘H) are the representation labels o‘f H, and N are dummy

variables carrying those labels as exponents; v is the multiplicity of the

subgroup representation (v) in_the group representation (A) : (Al,'..., Ago).
p/ 26

In appendix B, the group-subgroup characteristic E;’ (ﬂ {s defined

|
and it is proved that in terms of it, the subgroup content may be written
xmw - dm (3.2)

As (3.2) suggests, the group-subgiroup characteristic function is a general-
izatioh of Weyl’s characteristic function (see A.8) to which it reduces when
the subgroup is the Cartan subgroup (h('l) X ... X U(l)'(ﬁ. times), whose

representation labels are the components of the weight. ;’f (N) may be

S
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evaluated ..s'i;.raigh;forward]y froni its definition (B.1) in each case of
interest. In principle g;{ (N) may also-be evaluated from the definition;
hwever,, it may be easier to eva]ua’te X}; (N) in the form (3.2) from the
appropriate GF for GoH branching rules, if it is known, and read off

!

b:? (N). We give explicit examples.

B L LT

The group-subgroup GF for SU{(3)> SU(2) x U(1) is known to be50
-2 =1 2 -3
F(A1,A23N0,02) = {(1-MNaN2) (1-AuN; ) (T-AoNaNz ) (T-A2N2)} , (3.3)

where Ay, A, carry the SU(3) representation labels as exponents, N’l carries-

P et it L il

twice the isospin,, N, three times the hypercharge. The SU(2) x U(1) content

-

of the SU(3) representation (A1,%2) is the coeffic\:ient of AM 32 in the

i expansion of (3.3); this can “be evatuated by taking apbropriate residues of
f ( (3.3) H C i e |

;3 | ijlleNl,Nz) = L Reslhl\am Azl CF(Ay 5 Ap 5 Ny, N2) ‘ (3.4?
? This method of obtaining )nglz {N1,N2) by the above residue calculations,

% implies a power series expan’sion of the denominator i1’au:tor's/(1-2) and there-l
§ fore one must impose certain restrictions on the norms of the variables

-

T A1,hg Ny SN, (see discussion leading to (A.4));the above consideration remains

true for all residue calcmétions in this thesis and will therefore not be

-repeated. In (3.4) we make $he following choice of norms : |N1{ = INz| =1
and the Ai,A; residues are those at poles inside circles whose radii are a

little greater than unity,(3.4) may be written

Mt AgH
L Res ks Ay Az

- . (3.5)
- - < .
(A1-NaNz) (Ag-N ) U\zq‘th‘) (A2-N;) .

. . -1
¢ The residue at poles Av=NiN and A2=N:Nz s
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{ : |
N1X1+)\2+1 Nzkl-')q )
' P 3 = 7 . ’ (3.6)
(NlNz"N2 ) (NINZ "Nz)
Z .,
/ The residue at poles A,=N;N» and (BzzNzis -
Nllrﬁl Ny 112+A}+3 ) _ (3.75
- =z 2 =1 .
M - (NINz"Nz ) (Nz =N:N; ) '
’ -2 -1
The residue at poles Ai=N, and A=N;N; is
. J lezﬂ Nz-zlrlz—? ==
= - (3.8)
by (N2 -NiN2) (NiN2 -N2 )
. - -2 2 -
The residue at poles A;=N; and Ax=N. is ,
N, ~2A5+2), -
-1 » (3.9) /
( -NiN2) (Nz “NlNz )

()

. Adding (3.6), (3.7), (3.8) and (3.9) we get

H Aztl -2);-2Az-3 Al Aj+22243  disdas2 lx-iz ~2A1+2)2
XA1A2(N1:N )- N1 Nz + Nl Nz - -Nl Nz - NZ

’ s *{(3.10
(NN,-N2 ) (NZ-NuN; ) (3.70)

. From the group-subgroup characteristic?®s definition (3.2) we therefore have

that
B, (4 M2) = NI M A A 1A i destihiohe e (311,

-

and

H -2 2 -1
Eoo (N1sNz). = (NaNa2-N2 ) (N2-N;N2 ). (3.11b) .

The group-subgroup 6F for the thain SU(3)3 S0(3) 1549

, N -1
; .. F(A1LA23N) = (1+MA2N) ((1-A1N) (1-A%) (1-A2N) (3-A2))
(,,‘ where A;; Az carry as exponents; the SU(3) representation labels and N the
, /}

angular momentum. /xﬂlh (N) is obtained from the foﬂo&dng sum of residues

g—\'
\
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H -~ - - 4 A
Xara(N) = £ Resy MM 2N F (14, aN) (3.12)
‘ A1, Aged i1 .
= I Res J PRI PR Y9 P W ) -
- MiA; ‘
, " | -1 -2 1 -?
: (1-M~"N) (1-Ar ) (1-A27N) (1-A;)

)
{

with Wiq’l and rviidues at poles inside unit circles; from the above calcu-
lTations'we get the SU(3)> S0(3) characteristic function L

H ! ' -1 © ! b —

Pare () = () 022 LT (8 sl ), (3.132)
and ) n § ,

gl = (1-N) (WN ). ’ ' _ © (3.13b)

where § (A1,A2) is unity if A;,A, are both even, and zero otherwise.-

The GF !giving the branching rules for the case S0{5)>Su(2)
x SU(2) §550

P o v -1
F(A1,A23N1,N2) = {(1-MNy) (0-AaN2) (1-A2) (]-AleNz?} s

. where A;,A; carry the SO(5) representation labels as exponents. Nj,N; carry

those of the subgroup (aﬁ subgroup Tabels are doubled). Taking the appropriate

residues we get .
Ei}f,)‘z (N, N,) = lenmz szM”-N1}‘2+1N2)“+,}‘2+42-N21*1-N}‘n, (3.14a)
Eﬁo (NI’NZ) = (N]Nz“]) (Nl-Nz). ‘ (3:i4b)
~ From the 6, SU(3) GF™0 | /
-1
F(A1,A23N1,N2) = {(0-MNy) (1-MiN2) (1-AzNy) (1-A2N;)}

. s (3.15)
X {(1-A1)  + AzMNiN2 (1-AoNgN2) )
we find the G,2 SU(3) characteristic function |
D ‘ )
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H : : L
ghlz (NlaNz) . Nllz+1N2)q+)\2:2 _Nlll+lz+1N212+1+Nzl‘z+l
’ ‘ | (3.16a)
- N1A2+1+ N1A1+A2+z_ N211+Az+2 : |
Eho (N1N2) = (Na-Ny) (N3-1) (N,-1). (3.16b)

The group-subgroup characteristic function g;" (N) is a linear

Pi whose exponents p; depend Tinearly on the A :

combination of terms 1l Ni J
i

the dummies Ni are defined so that the- coefficients of the Aj are all integers.

As for Weyl®s characteristic function (see figure 9),.it is instructive to
represent gach term of E;\' (N) for a given (A) by a point in QH dimensional
space whose cartesian coordinates are its expone}lts pj. When we let 24 take
all possible values ea/ch ‘term of the gfoup-subgroup characteristic function
defines (is mapped into) a sector in 9}1 dimensional spéce; however contrary

. J
to Weyl’s function, certain sectors may overlap . In figure 1 we illustrate.

5

the icase G, SU(3); notice that the sectors corresponding to ‘the third and

" sixth term of (3.16a) overlap as well as those of the fourth and fifth term.

A tem of E,;;i (N) will be called distinctive if it satisfies the following
two criteria : its ’sector should not be overl ap;{éd by the sector of any other
term, and its exponents\';?i must determine the representation labels Aje A )

sector corresponding to such a term will be called a distinctive sector.

The first two terms of (3.léa) are distinctive terms and so are the first

“ terms of (3.11a), (3.14a). When oy $ 2 gg (N) contains no distinctive

terms; this is the case for SU(3)>5S0(3); but fpr all group-subgroup pairs

which we have examined with by = zé, including SU(3)2su(2) x u(1), sSo(5)>
Su(2) x su(z), su(a)>su(3) x u(1), 6,2 SU(é), 62=SO(4), the group-

subgroup characteristic contains at least one dis}:inctive term. He’ conjecture

that this is the case whenever "H 2 R’G‘

i
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Figure 1 . The distinctive sectors of the group-subgroup
characteristic function of GZ:DSU(3§
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We now turn to the problem of converting a GF for subgroup tensc;i's

into the corresponding GF for group tensors. Consider‘ a GF F(N) for tensors

of the subgroup H of a group G. ' We assume that the tensors are those -

contained in-complete tensors of G and write

FN = 2y (N) g | (3.17)

where X: (N) is the Eubgroup content- of the irreducible representation
tr) of G (see equation(3’,1\).); ¢, is the mitiplicity of (A) in F, and may
depend on other dummy variables such as U in (2.3). Substituting (3.2) into
(3.17) gives . | . N
RN - z g (N
— & (N)
The comparison of equations (A.14) and (3.18) suggests that in the case of

Cy (3.18)

f'H = JLG,'the' group-subgroup characteristic function may play the same role

in converting a GF F(N) for subgroup tensors into the corresponding GF for
group tensors as that of Weyl’s characteristic in transfom'ing a GF for

weights ‘W(m) into a GF for group tensors. Therefore, adapting to our problem

—

the. procedure described in appendix A, we’ first multiply (3.18) by Et{ (N)
giving —_— ” ' '
o m. rm =z g (3.19)
0 - - ) A CA- -

The presence of a A-tensor in 'F(N) is indicated by the presence of 5;' in

"the product E}o' (N). 'F(N), which in turn (the presence of g;f) may be

identified by one of its distinctive terms. Therefore, the conversion is

*
«

done through the following steps ' )

(1) First pick one of the distinctive terms of gg(N); this term
and only it will serve to identify the presence of group tensors
in F(N).

e
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g g T oy ¥ - s P et i
MO N MU Aok ok S 70 e v A R S e e T TG ol i



B S W

g Y SRR AR

gt e, T S L R S S R Kok

D

T

LAY e

26

) - ‘
(2) Multiply  F(N) by £h(N). |
(3) Each term found in Eg(N). F(N). that belongs to the chosen

distinctive sector is replaced (’c)t wich multiplies the term
is kept) by dummy variables carrying the corresponding group °
representation labels as their exponents. All terms of the
*product (3.19) not belonging to the choosen sector’ are dropped.

. ya 0 -
The resulting expression is the'}esirad GF for group tensors.
Formally this is done by the following sydfn‘of residues .
I Res ca P el o Ry (3.20)

— Nis.. 5N Ap i i v ,
q" 3 / -

"The sum$‘over the X, variables ar;e/f‘rom 0 to = they are geometric and may

J
be ‘done explicitly . The resi'du/es are those at poles of N;, ..., NRH inside

unit ci rc'les.

-~

-~

Lét us now proceed to the eva'll(uation of the GF’s for tensors in the
enveloping algebra of simple compact groups of rank < 3 using the methods

described in this section.

3.3 Generating functions for tensors in the enveloping algebras of Jow-rank
groups . \

(a) SU(2), SU(3) and SO(5)

y

Before dealing with the two classical groups of rank two, we dispose
of the rank one group‘nsu(zi. The ‘generators of SU(2) form a vector (j = 1)
operafior; the GF Based on a SU(2) tensor j = 1 as been wqr‘ked out in appendix
A where we sfarted with the corresponding wei ghfc GF. Therefore, the GF, for .
tensors in the $U(2) enveloping algebra is

«“
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/z? . -1 )

6{Uusa) = #(1-U%) (1-un))y . - (a.7)

Its ihterpretat'ion and integrity basis are found in appendix A; nétice that

it agrees with Kostant’s result given in (1.4). ' J

The SU(3) and SO(5) GF’s will be derived by making use of a sub-.
group; we will first construct the GF's for subgroup tensors and then transfom
them into GF's for group tensors using the group-subgroup characteristic .-

function. We begin with ,SU(?’) and make use of the su(2) x U(l)\subgroup.

The §enera£ors of SU(3) decompose under SU(2) x U(1) into a Vector:
and scalar with U(1) labels 0 and two spinors v;ith U(1) labels £ 3. The GF
for SU(2) x U(1) tensors based on tl;e vector and scalar is from (A.7) ] )
Fi (UsN)) = €(1-0) (1-u2) (J-UN’lz)}'—l . " . (3.21)

. -1 . ‘
The factor (1-U) takes account of the scalar. The exponent of Ni» tor avoid

fractwnal exponents later, is twice the isospin.

The GF for tensors based on a SU(2) spinor (1=4) is

Fp (N7 ) = 1 (3.22)
(1-u Ny ) . ' ,

PoR—

where U carries the degree in the spinor and Ny’ twice the isospin . Therefore,

making use of the GF (2. 9) for the SU(2) Clebsch-Gordan series the GF for

R S SE

tensors based on two spmors with u(1) 1abe]s -3 15

N gy ') s =1 Lo
F3 (u N; .Nz) = I Res Ny Nl
: ne s 77T} " =4, )

N?._ N3 (1-UN, Nz) (I’UNI Nz )

: o (3.23)
- N S T 1
rilil

(1-Ny Ny ) “-Nx

200 r2z

Ny ) (N7 ONYT )

. |
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&~ where N> carries the U(1f label and. R
INTE 1 ful<, W) < N[ <1
which leads to ’ q °
,' " ’ E T v =3 -1 ¢ "
'i','Fg’(U;Nl N2) - {(1—'U2) (1-UNy N2 ) (1-UNy N, )} (3.24)
The {sospins of the GF (3.21) and (3.24) must then be coupled again using
|
the SU(2) Clebsch-Gordan GF (2.9) to obtain the GF for SU(2) x U(1) tensors
. ¢ : 4
in the SU(3) enveloping algebra 5
- : - pTl =1 ,"l ” ;ﬂl
Fo (UsN3,N) =ZRes  {NY. Ny Fy(U,NY ) Fa(U,Ny  LNp) «
i Ny Ny “
A x C(N1, Ni » Ny )} .= (3:3)
iy ! "
J )
with thﬁjoﬂowing choice of norms
L3 ’ " . .
_ [Ul<|Ny [Ny f< 10 % “ill'-"!Nzi-'-']
we therefore get | - )
T ' Rt !
Fu(U3N1,N2) = {(1-U) (1-U?) (1-U’ﬁl(l—U3Nz ) (1-UN;N3) (1-UNgNp )}
. . . “ . C (3.26)
x {(1-UNZ) " (14U2N1N3) (T4U2NiN2 ) + (1-U) U2},
We now foliow the prescription described in section 2 by which a GF for
Subgroup tensors is transformed into a GF for group tensors. The first teim
in (3.11a) is a distinctive term so that<folldwing (3.20), the 6F for tensors
in the enveloping algebra of SU(3) is
o — - ) L+]
, A, ]
G (UihiA) = £ L ERes  m-Mfthha?y hyd,
A1,A2=0 NiN2
-2 2 =1
X (NiNz-Nz ) (N2 -NaNz ) Fo (U5 Niol2)} |

i
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The sums over A; and A; being geometric may be done explicitly so thaf

G (U3A1 A2) becomes ‘ )

-

L Res Ny Z(NINZ Nz ) (Nz N1Nz ) Fu (U,Ni,N2) . (3.27)
NiN2 (L AL) (1 =Ng Noy) \

The N3, N, residues in (3.27) are those at poles within unit circles; the

norms ofthe other variables are considered smaller then unity. The result

7

is
G(U3Ay ,A2) = {(1- U ) (1-v ) (1- UA1A2) (1-u AIAZ)}
[ U Az ] (3‘283)
:
(1 u Ay (1-U°A3 )

|
U carries the degree, A, and A, the SU(3) representation labels of the tensors.

Denoting the elementary tensors by (u, A; A,) where u indicates the] -degree
and A,, X, the representation labels, the integrity basis suggested by
(3.28a) is (2,00), (3,00}, (1,11), (2,11), (3,30), (3,03) with the product

(3,30) (3,03) being forbidden. Other forms of G (U;A),A2) are possible
49

6 (Uh1.Ag) = {(1-U2) (1-0%) (1-UMyAz) (1-UAZ) (1-U°A3)}
. (3.28b)
X {1+U2A1A2 + U"A]Az} .

which as the same 1ntegr1ty basis as (3 28a) but in this case the forbidden
product is (2,11)3. Once ohe knaws the elementary factors and syzygyesjt

is eas?to show that the degree m1 of all ﬁndepéndent tensors in the enveloping

algebra of SU(3) is
mi -~ )t> + 'i

with the restriction A-u = 0 mod 3, where ):> and A  arerespectively the

. larger and smaller values of the Cartan labels A, ,)\,,

4
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We now consider the SO(5) group and will make use of its canonical

subgroup SU(2) x SU(2) ~ SO(4). The generators of SO(5) decompose under

SU(2) x Su(2) into a (1,1) quartet and the vectors (2,0) and (0,2) respectively
denoted by W, Q and V. In order to simplify the upcoming calculations, the
representation labels are doubled. First we construct a GF F;(N/,Q,V,NI,N,Z)k
for SU(2) x SU(2) tensors based on the quartet and the two vectoPs keeping

track of the degree of the individual subgroup tensors. The subgroup GF

Fs (N;Nf,N;) and ’;FZ(Q,V;N;,’N;")' respectively based on a quar'tet49 and the two
vectors Q and V are

. -1

CFa(WNDLNZ) = {(1H2) (1-WNGNZ)) \ (3.29)

!

) ‘ -
CRQVNGND) = 1(1-02) (1-v2) (1-gN%) (-WNY)Y (3.30)

where W, Q and V keep track of “the degrees in the quartet and the two vectors.
The N’s carry the representation labels! The GF for the SU(2) x Su(2) Clebsch-

Gordan series is '
’ ’ " ” 7 " / ” £ N
CNi,N2sNi,N2sNy N2 ) = {(1-NaNa) (1-NoNp) (1-NpN2) (1-NoNz) (3-NiN:)

W _ (3.31)
X (1-N2N2)]
so that
J ) PS N R s -1 -1
Fa(W,Q,ViNy ,N2) =" Res {N; Nz Ny N2 Fa(WsNy ,N3" )
) ¢ 4 v -
' | NiN2NiNo - : (3.32)

! w " ’ w=l 41
x Fa{Q,V3NNZ) © (NDNZNY SMz N3 M)

. The N;', Nz" residues are ‘those at poles inside circles a little greater then

P /
unity in radius; only poles inside unit circles for the N; and N, variables
‘are considered; the noﬁqs of the other variables are considered smaller then

unity. ‘[he calculations involved in (3.32) are straightforward but 1abor'i_ous;

v

- the answer is

¥
I

&
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(Fg(w’Q)V;Nl oN2) = 1(1-0%) (1-V2) (1-W2) (1-VNE) (1-av3) (1-wPQv) (1 "leNz)}‘l
l

X | 1+QUW2NHQVWN, No+ VWN, N,
(T-WAWNE) (3.33)

4+ W2VQNZ+QNN; N, +Q2VW3N,N3+QWNZ
(T-WZQNZ) I

Keeping track only of the degree in the generators, (3.33) becomes
C 3 . -1
" E3(UsNa,N2) = {00-0%)  (1-UN3) (3-UND) (1-U*) (1-UN;N.)}

X | T+UNZ+UPN N+ UZNGN (3.34)
' -U°N{

+ UNZsUZN,N,+USN, N+ UPN2 ]
' '('1-U5N§)"" =215

— f {
the variable Q, V and W in (3.33) have been replaced by U, where U carries

i
Y

L] ! -/
the degree in the generators and N;, Ny the SU(2) x SU(2) representation labels.

The next steb is i:o convert Fy{(U3N,,N2) to a GF for group tensors following

the procedure given in (3.20). The first term of (3.14a) is a distinctive

term so that the GF 'G(U;A1,A,) for tensors in the enveloping algebra of SO(5) is

-3 - )
G(U;Au{&z) =~z :e; Ny N:f ﬂ'NJ,Nz JN;-N,)  Fa(UsN, N, (3.35)
N2 (1-N7 A1) “(1-N3 " Mg, ) N

where the Ni, N; residues in (3.35) gre those at poles within unit circles;
the norm of the other variables are considered smaller then unity. The

7
- *»

result is

G(U;A1,A2) - ] +DU~ Af A ' (3.36)
T“T)“(—‘)‘T"T?‘“}-u T-0°) (1-UA7) (1-0%A,) (1-U%AZ) (T-U°AfY |
/ “ i

where A, and A; carry the SO(5) representation labels. Using the same

Al

notation as for SU(3), the integrity basis consists of thequadratic and quartic

i ot e e
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Casimir in\iariants/(z,oo) and {4,00), two decuplets of degree 1 and 3 (1,20)
and (3,20), a quintet (2,01)'and a 14- plet (2,02) each of degree 2, finally
a 35- plet (4,2'l<) of degree 4. The strectched squarle of tht;T 35~ plet is

redundant. The degrees m, 3 3 given by (3.36) of the independent tensors in

the enveloping algebra of SO(5) are as follows

Hg;) f A e2Aae o2 $a0 Ty A only even A1) ;

2
J=0,1,..., l\_g_‘[lz-'l for A2 odd]_
2

and !

e

m;j) M 42 24+2i -2j+41 i=20,1, ,,,,&_1(0,,”,;%" A)
2 | 2
/

j=0,7, -vus Ao = 2 (Az-1 for Az odd)
2 2
The exists no tensors with odd Ay.

We could also derive (3.36) by the e’lementary multiplet method
* using the chain SU(10)2 Su(5)2 50(5); the embedding is such that (10 ... 0)
of SU(10) contains (0100), of SU(5) which contains (20) of SO{5). The SU(10)2
Su(s) 6F for one-rowed representations of SU(10) is {{1-UM;) (I-UZM..)}‘1
where U carries the SU(10) label (the degree) and M,, M, carry the second and
fourth SU(5) labels. Hence if . .F(Mi, Mz, M3, My3Ai,A2) is the GF for SU(5)D
- 50(5) branching rules, we see that
BlUsALAz) = F(O, U, O, U2 Ay, Ag) ’ (3.37)
‘ js the desired GF for tensors in the SO(5) envelopmg a]gebra. The GF F for
SU(5) D S0(5) branching rules is given by Patera and Sharp

An alternative chain is SU(10) 2 SU(4)DS0(5) with the embedding
(10 0)3(200): (20). The SU(W):J Su(4) GF for one-rowed representations

/\k

of SU(10) is {(V-UME) (1-UZME) (1-UM3) (1- U")} Wbe?eW carries the Su(10)

4
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label (the degree) and M;, M, M; carry the SU(4) labels.

y i
Hence if F(M%_, Mz, M3 Ay, M) is the part of the SU(4)> SO(5) GF whl'ich

s even in all SU(4) 1abels, we see that /

, ' Tl ! 7/ -7 '
G (U 3A1,A2) = (I-UY) YF(U,U2,U%A, ,A;) is the desired GF (3.36). The GF

for SU(4)> SO(5) branching rules is given by Patera and Sharp46 |

(b) SU(4) and Gy ]

The GF for tensors in the enveloping algebra of SU(4) could be
evaluated by using the SU(3) x U(1) subgroup and the methods of section 3.3a.

We found it easier to use the chain ‘§U(]5):> SU(6)> SU(4) with the embedding
(10 ... 0)> (87 000)> (101).

The SU(15)> SU(6) generating function, for one-rowed representations

1
of SU(15), 1s {(1-UM) (1-UM4) (1-0°)) , where U qarries the SU(15) Tabel,
or degree, and M2, My carry the second and fourth SU(6) Tabels. The
SU(6)> SU(4) generating function, for representations of SU(6) in which only

the second atid fourth Tabels are non-zero is

F‘z(Mz, My A}H,.Az, As) =

woh,
g

o {(1-M2) (1-M2) (1-Madahs) (1-MuAiha) (1-M2AZ) (1-MEAZ)}

1-MaMyAy Ag) (T-MZMEA.

+ Mzgﬂtﬂfhi + Mzniz\il\i + MfM%A";gHMzﬁM&A,A%A;! (3.38)
aMyA1hy) (1-MzMEAs .

+ M;Hul\fi\z%hMEMsAﬂpMﬁMﬂ;Az) + MIMIAYAZ
(1-MaMyATA, ~MIMEAY
‘4 M,Mﬁzng%hngnsnﬁynﬁngaizxgz + MIM3AZAY
~MaMa oA -M3MeAs '

Cx {wzu'n Aot M,MZARA, + MZMZAAZA

'E‘MWM'&W R e

;
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2 | y

Mz. M. carry the second and fourth SU(6) labels, A;, !\2, A3 the SU(4) labels.
Hence subst1tut1ng (3.38) into the SU(15)3 SU(6) GF, we obtain the desired
GF for tensors in the SU(4) enveloping algebra
6 (Ushihzzha) = (1-0%) 7 F (U, U350 ,02 1) ‘ (3.39)
= L0-02) (3-0%) (-0 (1-Umids) (1-U%AaAs) (1- w3 - U83))

x |1+U*A3A,+U LU “MA +u5AgA§+u‘A"£hu5A,A§A,)
1-U%A1A3) (1-U°A
+ USA,A% 1+U"A A3+U3ALA% )+ U2 AZAY
_(1_1-U"S'—A2A?)JL(Y_‘—§'-U A )"L

3 the SU(4) labels of the?tensors.

U carries the degree and Ay, A,
/ o

Inspection of (3.39) suggests an integrity basis with 17 elements
(the notation is (pabc) where p is the degree and a,b,c the SU{4) labels) :
(2000), (3000), (4000), (1101), (2101), (2020), (4020), (3101), (3210), (3012),
(4250), (4012), (5210), (50]I2), (6121), (6400), (6004). Because of syzygies

the fo]'lowing products of elementary tensors should be eliminated :

(3101) with (3210), (3012); (3210) with (3012), (4012), (5012), (6121),

(6004); (3012) with (4210), (5210), (6121), (6400); (4210) with (4012),

| (5012), (6121), (5004); (4012)] with (5210), (6121), (6400); (5210) with

-

(5012), (6121), (6004); (5012) with (6121), (6400); (6121) with -(6400),
(6008); (6400) with (6008); the squares of (4210), (4012), (5210),
(5012), (6121); the products (3101) (4210) (5210) and (3101) (4012) (5012).

e

 The generating function for tensors. fn the enveloping a!QeBra of
G, could be evaluated with the use of the Su(3) subgroup. However it proves
simpler to get it by exploiting an interesting re‘lationsh‘ip between the
groups SU(4) and 62 based on the fact that the subgroup SU(3) is embedded
similarly in the two groups. ‘

!
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( ! |
‘ . l
With the help of the SU(4)SU(3) generating function ‘
F(A1,A, .Aa‘;Nl.Nz) : . , j
| ((1-1) (1-AN2) (1-AaN) (T-MoNa) (1-AsNg) (1-As)} (3.40) f
g (A1, Az, As carry the SU(4) labels, N,, N, the SU(3) Tabels) a generating f
function JH(A1sA,,As) for SU(4) tensors may be converted into a generating | ‘
function ) i
3(MNa) = 11-Na) (1-N) (Na-a)3 ™ CNENHON, o)
= NiNZ H(N;,NouN2) = N3 H (Ni, NG T) 4 N2 OH(T,NN;) |
+ Ny H(1,N1,1) = N2 H(1,N2,T) + NiN2 H{N;,N3,1) - (3.41)
- NaN, H(1,N1N)) , - :
for SU(3) tensors.
{) Similarly the GZD SU(3) generating function (3.15) converts a
) generating function I\K(AI ,A2) for G, tensors into the generating function
L (M) = L) () (MDY (NBK(N,NG)
; J \ (3.42)
% NZK (NN ) + NINoK(N:NaN,) - NaNBK(NZNoN,)
+ NiK(1,N) = N2K(1N)) “ '
for SU(3) tensors. ‘ \ )
Now suppose that the SU(4) generatipg function H(A),M, ,As),and the
. Gz'generating function K(Ai,A2) are related by the f&ct that they generate - %
| the same SU(3) tensors. It follows fron (3.41) and (3.42) that they are ’ y
rel atéd by the functional equation v i
. : 1 :
o " ’ ’ L
. . i
©) TN
I
j
i
|

o
- B e
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I
NEK(N2,N2) - NEK(N1oNi) + NEN2K(N1,NiN2) - NiN2 K(fjg SN1Nz)
4+ NiK(T1,N1) - Nz K(1,N2) = N3Nz H(Ni,Ni,N2) - NaN2 H(N:, Ny, Np)

b {

- N% H(Nl aNlil)""' N% ‘H(]’NZ:NZ) +N1 H(]ale]) - NZ H“sNz»]) N

+ NaNz H(N3 N2, 1) = NNZH(T,Ng ,N). (3.43)

!

/

l{hder the assumption that H (A;,A;,A3) is symmetric in its first and last
arguments, H'(Ai,A2,A3) = H (As,Az,A1), it can be verified that a formal
solution of (3.43) for K (A;,A;) is

6

. -1
K(Ar,A2) = H (MsAs.A/M ) + A B (ArsAl/h 1), (3.44)

The solution (3.44) suffers from the defect that its expansion

contains, in general, negative powe}*s of h;. These can be eliminated by
adding té K {A;,A,) an appropriate solution of the homogeneous version of

(3.43). It can be verified that, for any A;,Az, 'K'\ilh ’A’-)f

M pde i"‘A;;h?a‘,Aéa“;‘"l .+ satisfies the homogeneous equation. Thus we
’ J
have the following prescription for the solution of (3.43) for K (A;,A;) which

contains no negative powers : expand the right side of (3.44) in powers of Ay

-2, A+t

and replace each negative power mM (A122) by -0y ; drop tems in

-1 J
Ay . Because of the form (3.44) this cannot introduce neqative powers of Az.
The prescription can be formulated in terms of residues :

K(Mh2) =ZRes, [ 1 . M
A MM A-MaKy

’ -1
The first term (A\i-A1)  in the first square bracket picks out the positive

[t + (5 s )] (3.08)

I

\ ‘ -1 -
power part in Ai; the second Kj(A»-MA))  replaces negative powers A3 by

Ai-2,-X;+1

S Vel W and cancels A3l. . : J

o P N N s e et e ———
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" Let us now summarize : given a GF H {A1,A2,A3) for SU(4) tensors
and a GF K (Ay,A;) for G, tensors, and providing the following two conditions

!

are satisfied
(1) H (A1,A2,A3) = H (As,AzM)

(2) H (Ay,A2,A3) and K (Ay,A2) must generate the same SU(3) temsors. |
Actually, as it will be shown below, the relationship (3.45) may
still be useful as long as when reduced under SU(3), H and K

differ only by denominator factors which correspond to SU(3)
scalars,

the G, GF is obtained from the SU(4) one through the relationship (3.45).

. As a first application, we consider the case were H and K are
respectively based on a (010) and (10) tensor. The SU(A) GF is eagsﬂy obtained
by considering the chain SU(6)>SU(4) rejstricted\ to the symetric representations
of SU(6) with the embedding (10000) (010); it is : o

H (UsAy,Az,4s) = (3.46)

=R
‘where U carries the deéree in the (010) tensor and A2 the representation label
as their exponent. Obviously condition (1) is satisfied; since we have the "
following reductions under $U(3)

| (010)> (01) + (10) and (10)3 (10) + {01) + (00),
it follows that, when reduced to SU(3) 6F%s, K = (1-U)" H which satisfies !

PR

condition (2) so that following the prescription given in (3.45),

N ) -1 /
K(A1,02) = {(1-U) (1-U%)} T Res 1 -
(haha) | ey~ wikmy ]

i ¢

@7 Tem T8

(3.47)
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which gives

K(A1 ,Az) - q

(3.48)
(1-v%)

(]‘UAI) ,/ s

which is the correct GZ GF for tensors based on a (10) tensor.

One may also obtain (3. 48) from the SU(4) GF H{A;,A2,A3) for tensors
s1mu]taneously based on the tensors (TOO) and (001) where

H(AI :AZ ,Aa) = (3'49)

1
(1-U%) (1-UA;) (1-UA3)
which satisfies condition (1);

3

(3.49) is easily obtained by coupling the

SU(4) GF's for tensors respectively based on a (100) and a (001) tensor. Since
(100)> (10) + (00) and (001)> (01) + (00),

we have that K = (1-U)H ‘when‘K‘ and H are reduéed to SU(3) GF’s.

Consequently
=1 o
K (Ashs) = (1-U) (1-U2) I Res 1N .
*y . Al U\r"Al’ IAz-A],Ad
S x 1 + 1
©(1-URY) (T-UA, D n(-un) (-u
J.¥) .

= ‘1 “

(7-U%Y (1-UA;) ) -

" The GF for t;ezn§or's~ in the 62 enveloping a]gePra may be obtained
from the SU(4) one given by (3.39) through the relationship (3.45) since
condition (1) is satisfied and the generators of 52 decompose under SU(3) into
an octet, a-triplet and anantitriplet, the same as SU(4), except that the

su(4) geﬁerators contain a!n’additiona'l scalar. It follows that ,if (1-U) «x
6 {UjA1,Az,A3) mhere G (U;Ay,Az,A3) is given by (3.39) ,is substituted for
H (M,A2,A3) in (3.45) ,the result will be the GF for tensors in the Gz

enyelopi ng algebra : /
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6(UsA1,A2) = {(1-U%) (3-U°) (1-UA2) (1-U%A) (1-U°A3) (1-(1“1\%)}“l

[ ]+U5A1A2¥U6A1 +UaAi’A2 -

USA+USAZAL+U7A A +Ut 2ATAS (3.50)
O (0-U°Ry x —_(JIL'U'WA,T_(——] USA2)
+ U5A1A +U9A1A +Ulez+UaA2
_(1“5"7"(-0 A2) (1-U°AZY =&
’5‘

U carries the degree and A;,A, the 62 representation labels of the te%sors.

i

The integrity basis implied by (3.50) consists of 17 elements (the
notation is (pab)'wheye p is the degreg and a, b the 62 labels) : (200), (600),
(101), (220), (310), (330), (402), (420), (501), (511), (531), (630), (621),
(711), (802), (912), (12,03)‘. The following products of elementary tensors
should hot be used : the square or product of any two of (531), (630), (Gél),
(511), (711), (912), (12,03); the p;odugt of (330) with (802), (621), (nie/
(511), .(912), (12,03), of (420) with (802), (511), (912), (12,03), of (501)
with (531), (630), of (802) with (531), (630), (621) (N1), and the product
(330)% (501)%.

~ (c) 5p(6) and s0(7)

+
The generating function for tensors in the enveloping algebra of

Sp(6) 1s most easily determined with-the help of the chain SU(21) 2 SU(6)D Sp(6)
for one-rowed representations of SU(21) with the embedding (10...0)> (20000)>
(200). ‘

14

For one-rowed repi‘esentat;lons of SU(21) it is not hard to show that
the SU(21)> SU{6) branching rules are given by the generating function
F (U;M1 oM, M3, Mu Ms) 4 "{(1-u‘)(ls-un§)(Lu?é%)h-u’n%)(l-u“uﬁ)(l-u’.n’g))"; (3.51)
U carries the SU(21) Tabel (the degree), and My M, ,M;.i‘_l.. ,Ms carry the SU(6) labels
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The generating function for'SU(6)> Sp(6) branching rules is of
some interest in its own h‘ght. By examining.low-1lying representations of
SU(6) we are led to the function - Y

H (Ml » M2, M3| M", M5;A1 ’AZ’Aa)

S LO-MAL) (1M5) (1-MaA2) (1-Mahs) (1-Me) (1-MuAs) (1-Mghy)}
xUL(1-Haty) (1MaMad) (1-MMehz) (1-MiMaMohs)} :

+ MM L (1-Mahy) (1-MiMaf) (1-MuMuRs) (T-MiMaMhs )}

+ MaMshsl(T1-Mshy ) (1-MsMs Az ) (1-MaMshs ) (1-MiMsMsAs )}

+z (MaMyhs) (MzMsAs){(kMaAl)(l MMy ) (1-MMsh3) (1 MlMngAg)} (3.52)
+ MM {(1-MMsA,) (1- 3M5A2)(1-M1M5A2)(1-M1M3M5A3)}
S (MaMuAs ) (MiMsA2) {(1-MaMsdo) (1-MiMuA s ) (1-MaMsh, ) (1= M,M,M,r,As)fl

+ (MaMshs ) (Milsha ) ((1-HsMsha ) (1-MaMsh ) (1-H M ) (1- M1M3M5A3)}

+ (M;M,.A;)(M?Msl\s)(MzMsAz){(] -MiM,A3) (1 Mp_MsAa)(l M;MsAz)(T—MxnngAa)} .
+Mz,M..Amg{(a-MaAl)(17M,r-1:.A3)(1-M2M5A3)(1-M2M..A,A3)} }

t

My, M2, M3, My, Mg carry the SU(6) and A, ,Az2,A; carry the-Sp(6) representation
labels. The integrity basis implied by‘ (3.52) consists of 15 elementary
multiplets (the notation (A1 Az As Ay As3V3:V2 Vs) where the A*s are the R
representation labels for SU(6) and the V’s those of Sp(6) : '

(100005 100), {01000;010), (01000;000), (001003001), (661003100), (000105010),
(000105 000), (00001;]00),'1(10100;010), (00101;0]0),“(01001 ;000), (10010;001),
(100013010), (01010101}, (101015001 |

The form of equation (3.52) 1ndjcht§s that the following products of elementary
multiplets sho’x;ibe\cﬁsca'rded, in brder to avoid redundant states : |

/
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(001005100) with (10001;010), )
(10100;010) with any of (01001;001), 10]b10;]01) :
(00101;010) with any of (10010;001), (01010;101)
(looo'i ;018) with (01010;101),

(01010;101) with (10101;001). T ' "
\ This integrity basis defines SU(GB) polynomial ba;es reduced according to the -
sp(6) subgroup. While (3.52) has not been derived aﬁalyt;'caﬂy, we are
reasonably sure it is correct. For example, it satjsﬁes the dimension aﬁd
_second order index checks for al1 SU(6) representations up to those for

which two Jabels are equal to two and all othelrs eciual to one {(11221),
(21121)-...}; also the GF for tensors in the Sp(6) enveloping algebra derived )

from it, has beer subjected to the checks described in chapter IV.

!

, The GF H of (3.52) must be substwtuted inte F of (3.51) to obtain
the desired GF G (UiM,A2,A3) for tensors in the Sp(6) enveloping algebra.
The form of (3.51) indicates that only the part of (3.52) which is even in all X
SU(6) labels is required. Let ‘H}(Mi ,M%,M%,ﬁ% sME;Ay ,A2,M;) be this even

part; it is obtained . straightforwardly from (3.52). Then th& desired GF is . /

G (U'Aphz,Ag)
= (1-08) W (U 02,00, U*,U%5 Arshzshs) .
= {1-U)(-Un) 1-05) (- U0 (1-UA2) (1-U°A%) (1-0%A2) *
x (1-UR8)) " (01-UPAE)(1-0%,) (1% ) (1-0°08) Y |
X {1+u’4,ﬁs§u“(A§A,+A1AzA3)+u°(A§A2+A1A2A,) ' B4
+ US(ASA3+ATAS AR A+ 2MA2As) ,
+ U (003N 200 AT+ A ASHAIAS ) )
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+H(1-UAF) (1-U%A2) (3-U°A3 ) (1-1°A3 )} "o (h§+A,A;+A1A2A3)
b UB (A AT #A3AZHAL Ao s A NS A3 A, AS+ALARA 5 $A2A2 )

+ U (ARAAZ+A 1AM +00A3 ) + UM 2005403

+ U2 (A3A3AS 4N ABA T +AEAT A AT +ARALAS 40, ALAS)

. Uxu(A;AzAgﬁAi!}g+A¥A‘5+A§A§A§+I{%A2A§) |

+ llj” (AfAzA'id-AfA%A%M?A%AS ) + UMB (A AZA3+ATA A3 4A00,08)

C e UPEARABARY + T(1-UPAR)(1-U*A, ) (1-UA3) (1-0°A3)}

X (U7 (A+A1 Asthadz A5 )+ UPA2A3 .
+ UM (A ASHAZATH A2 AS#ALAS HAEALASHAABAS HAEAS )

+ UM (AfA34AAZ4ARA2 A4+ A2A]) ’
+ 270003+ U (AAAS4MAAT)

+ ULS (A Ao A3+ARAS4ATAR+ATAZAS 403N, 03)

+ UM (ASASAS+MABAT 1+ UM (M ASAT+ARNLAS +ARALAY )
+ UYS (AfApRS+ATAAS+ATABAT J+ U2 ARAZAS) o
& {(1-U4) (-3 ) (1073 ) (103 )y

x {yi2 (A§A§+3AfA2A§+AEA§A%+2A,A§+2A,A2A§+A‘s )
+ Ul“(A1A2A3+A1A%A§+A2A'§)I .

+ UL S {AIAB+2ATANE +AIAZN 4 2NENS42AZ N Y

+ MASHASRALASS 2N NS4 20, Ao ATHAASHIABAS)
+ UM (MM A3+AIABAS+ A2 NS+ MAS+ARA S HAA Ao A S8 MEN, 1)
+ UM (ABA,AS+AZABAS+AIN,AS )+ ULOAZAS ”
o U (Ao NS+ AFABAS+Raod)

+ U20 (A, A5+AZA3+20a 0 A5+ 20NN+ ABAS+ATASAY)

+ U2 (A ABAS+ARAG#ATAS) o

+ U22( A Ao A ARAL NS+ A ABASHARARAS )

42 .

(3.53)




{ ,

+ U3 (AA2AS+A3A2A3)
+ U5 (A3 AAS+AAAS J+ U27 (AZAZAS+AIAZAS )}
+ {(1-U%A2) (1-U"A,) (1-UﬁA§)(1~U9A§)}-l {US (A3A2+A3)
o+ U (20ABA+ARATHAT) + U0 (ArASAs+MIAZA,)
+ U (A AR5 +A A 1 UPS (Af)\%A§+2A1A3A,+A§A; )

+ UP(AEASARHASAR )1 L (1-U20, ) (T-USAZ ) (1-U5A3) (1-UA3))

X (UL (ArAzhs+ A AfR UM (ABA2AS+MAZAS*AL AZRS+AZAE)
+ U (2AZA3+AZAZ+ASA3 +ARAZAE
+ MAAS+ARAIAS+2MAZAT+AAY)
+ U (A AIAS+AL AZASFARAZAZ+A3AE )+ U8 (A A3A3+A3AY)
+ UM (A;AZA342A, A3A3+A,ASA3) |
o 4 UPO(ATAZABAATABAB+ARAZAS+AAZAS )+ U2 (MAZAS+AZAZAY )}
w10 (-0 (-
{UP (s AphstAs ABAS Jb UP2 (AfA2AZ+AIAZA+A1 AZAS+ASAS)
UPS (AFAZA3+AZAS )+ UPS (203N3+AZAZ+ASAZ+ARAZAS

b3

+

+ MM ABHATAZAZ+2MAZA3+ALAY)

+ U7 (A AZAT+ALASAS) + UPB(ALA3A3+A3NY)

+ U2 (A AZABALABAR )+ U2 (AZAZASHATABAHAZA A AL ASAD)
+ U2 (A ASABEALAZAD )+ UZ%(ABAZNS+A,ASAE))
(O-UA3)(1-USA) (1-U7A) (108 )}

x {UP2(A,A3+2A3A3+A303 )+ WP ’(AIA:AM{A%A% )

U7(A A A3+2A, ABA34 A1 AZAS)

+ U"(2A§A§A§j2A;A§A§+éA1A§A§
ARAZAS+ATALAS+ASAY+ATAZAR)

U (A, AZA3+ AL ABAD)+ U20 (A, ASA3+ARAZAS+AZAS 4N AZA)

+

br—

+

+

+
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(3.53)
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a4

+— UZ' (A3AAS+ABAS+2A2AZAS+2A3NY

& 2 Mo A542 ABAAZAZALHAAS 1,8 )
L u“(A1A3A3+A,A§A§+A;AZA%+A£A§A‘3+A%A%A'§+A3A;)

+ UZ3 (A AZAS+ A AZAT+AZAS )+ U2 [AZAZAS+AZAS)

+ U5 (MAZA3+ M ASAR+AZAS + UZ® (AIASAS+2MAZAS+01A3A3)

+ UT’(A'zzssmgA%Ag J¢ U2 (M;AAS+ALABAS)

+ UPARAZAS+UP TATAZAS+U% P ATAZAS)

+ L0-UA2)(1-U5A3) (1-07A3) (1-U%AiA5 )} (3.53),

X {U‘G(Ax}\§+2A1A2A34'-‘{t%A§#A1A%A3)+ 07 (A3A3+0FA2A3)

+ UPAZA A%+ OAZA,A3

¥

+ UM (AFAZ+AIA3+ATA N34 208N, A3+ATAZAZ)

+ UR2(ARAZNGRAZAZ)
+ U3 (AFALNATAZ4 2030, 03408050343 A3A3)
©a UM ATALATR AT ALAZHUY T (AIAZA34A3ALAD)

' Ul°(ZA'{AZA'QH\§A§A§+A§‘A§A3+Aj‘£!\§)}}.

The GF for tensors’ in the enveloping algebra of SO(7) is found with
the help of the chain SU(21)2 sU(7)>50(7) for one-rowed representations of
SU(21) with the embedding (10 ... 0)> (()\00010):3(010). One finds the SU(21)o

"8U(7) and;the SU(7)> sq(ﬂ GF's for branching rules, and substitutes the latter
in the former. The GF for SU(Z{)D SU(7) branching ru'lés is
F (UsKi,KaaKs) = £(1-UK)) (1-U%Ks) (1-UKs)} . (3.58)
U carries the SU(é]) Tabel (the degree) while K;, Xa, Ks carry respectively
first, third and fifth SU(7) labels. Thus we need the GF for SU(7)> SO(7)
branching. ruh;.s ortly for SU(7) representations with the second,fourth “and

sixth 1~abels zero. Slving this probelm by the elementary multiplet method

)

J
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| e
turns out to be very difficult; the main difficulty being that o% choosing
the right elementary multiplets and syzygies among a large number of
possibilities. The qifficulty is reduced considerably if one introduces
the additional group:SU(6) between SU(7) and SO(7); SO(7) is not a subgroup
of su(s} but may be subjoined (SU(6)>S0(7))to it, so that we consider the

l

chain SU(7)> SU(6)>S0(7). ] e

The subjoining of a group to another group,recently introduced by

Patera and Sharp46’48’70£7], is basically a relationship between their weight

systems. The insertion of SU(6) between SU(7) and S0(7) is defined by (000010)>

(00010) + (00001) with (00010) > (010) - (100) + (000) and (00001) > (100)
-(000); for examplie, the subjoining (00001)>(100) - (000) means that the
weights 6f the (00001) representation (after projection by some matrix inté
the 50(7{ weight space) of SU(6) are equal to the weights of (100) minus those
of (000). In general we say that a group B is subjoined to a group A when the
weight diagrams (after projection) of all representations of A may be

expressed in terms of sum and differences of weights of representations of'B.

i The problem of finding q’GE,for’§U(53£>SO(7) branching rules may

3 e

therefore be solved in 7f'iﬁo,steps : fipst finding the GF’s for the chains
SU(7)£>SU(6) and Su(e) > 50(7)mand then substituting one into the other. The
SU(7)> SU(6) GF is (even SU(7) labels zero)
H (K;,Ks,Ks;Mx,Mz,M;,Mu,Ms)
o {(1-Ks) (1-KsMy) (1-KM) -(1-KsMs) (1-Keha) (1-KsMs)Y . - (3.55)

Mi, Mz, M3, My, Ms carry the SO(7) representation labels.
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+ (MaMAD (MaMAAT) £ (14MaA1 ) (1-MaMLAZ) (1-MoMuAL AR ) 1-MsA, W

a6 o

The 6F for SU(6)>S0(7) is
J (M1, M2 Ms Mo Msshn Az s
LOT-Muty ) (1-Mshs ) (1M ) (ToMs ) (1-Maha ) (1-Mua ) (1M ) (1-Ma ) (1-Ms03) (14Ma)}
{{\('I+M2A1 Y(14MyAL ) (1-MaAy ) (T4M3A, )}'1+ MzMy A (HM0y )
(T+MuAy ) (T-M3sAy ) (1-MaMyA1A)} ., M2My A2 { (14M2A1 ) (T4Mu A )
(FoMae)(1-MMiz )} -MoMuASE (1May) (VoML (T- MM RS/
(1+M2M1.A§}—1 - (MzMyhz) (M2M2 ) (144201 ) (140, ) (1 MzM..Az) -
(14M M AZ)} +M3M5A7.{(1+M2A1)(1 M,A,)(nmz)u M3MsA, )}
+ Mznsaa{(lmzm)u-msm)u ~MsMshz ) (1- MngAs)} e
(M2MsAZ (MaMy Ay AT ) ( 1+M2A1 )(1-Msh ) (uMzMsAZ)n MMy A A )}
MoMsdo{(T4Ma A1 ) (14Ms A (1 ‘MsMsﬂz)(HMzMsAz)}
- (MzMsh3) (MaMy A2 J (1400 ) (19Mah2 ) (T4MoMsAs ) (1-MaMuA )}~ -
9 (M2MsA3) (MMs A, ) (1+M2m)(1-M3M5A2)(1-M2M5A§)(1+M2M5A2)}—‘
+ (MaMshz ) (M2MyAS)L(14MA1 ) (1-MaMshZ) (14MaMAAQ (14 MM, AZ) ) <.~ (3.56)
- (|-12M5A§)~(M2M.,A§){H+M2A1)('l ~MaMsA%) (1-MoMy A1 03) (lﬂwzm../s%)}'l
)(MzMsAa)(M;M..Aa)(MzMuAg){(HMzAl)(T+M2M5Az)(1 MzMnJ\Q(HMzM..A%)}
+ (MaMah Y (T4MyA ) (T-Mahy ) (T6Msh) (1-MiMsA, )}
+ (M MLAT(TEMLAL ) (1-MaAr ) (T-MyMa, ) (T-M3MA3) ) -

b3

4

x

»

»x

+

‘v

- (MIM..AZ){(1+M,,A,)(1+|»|3A2)(1'-:Mmazsz)(1+|~1,M..A2)}"l

o (MaMya) (MM JECT4MA ) (1M ) (MM Muz) (1-MaMuy) ]

= (MaMuAZ) (MaMy A ) ((T4MuAL ) (1-MiMahz ) (1-MiMoAS) (T4MaM,A, ) y

+ (M,M.,Az)(MzM..AE){(HM;.A;)(T-M,M“Aﬁ)é]+MI;MuA2)(1+M2M..{1§)}-l

= (MM A3 ) (MaMU AT (14MAy ) (1-MaM AR ) (1-MaM AL A2 ) (T4M M AZ) ) N

+ (MiMyA2 ) (MaMy A2 ) (MaMUAZ) (014 MAAL ) (MM, A, Y(1-MaMohy ) (1+MMAAZ)}

-
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(Mahah) (Mahsa) T (1-Msha ) (14Mahz) (1-MaMahy) (1-Mishz))
(M,Msnsfﬁ) {(1-MaA1 ) (1-MaM3A2) (1-MaMsh,) (1-r«|1|\13|~151\%)}‘1 /
(MiMAZ) (MiMaM3A2) {(1-Msh,) (1-M:1M3A,) (1-MiM,02) (I-M,M;,MSA%)}']
v (MaMsA3) (MyMsMsAR {(1-M3A1)(1—M3r45A2)(1-M2M5A§)(1~M1M3M5A§)}_"
+ (MiMyA3) (MMsA3) {(1-M-3A,)(1-M,M..A§)('1-Mzr451\§)(1-Mzr4..1\11\§)}"l
(M,M..A%)(M2M5A§)(M;M3M5A§){(1—M3A;)(1—M1M..A§)(l;MzMsAﬁ)(l-MIMQMsAi)}4
(MaMsha )} (14MaA2) (1-MM s ) (1-MiMshy ) (1-MyMeh, )
(MaMyhy ) (MsMsha )T (14MsA, ) (1-MaMaA ) (14MMLAL ) (T-MyMsA L))
(MaMshy ) (MMshs )T (145, ) (1-MeMshy ) (T4MAMehy ) (1M, MoA )}
(MiMsha ) (MM JE (1Mo ) (HMaMoA) (T-MaMohs ) (1-MMu A, )}
= (M2MsA2 ) (M:Mshz ) (MzMyA2 ) {(14M3aA, ) (14MMsA, ) (1-MyMsh2 ) (1-MgMy A, )} B
+ (MlMs}tz)(M;MaMsAg){(l—MxMaAz)(]-Mnghz)('I—M;MsAz)(l-M;MaMsA?,)}-J
+ (MlM‘..Ag)(MlMsl\z){(l-MlMsAz)(1—M,M..A§)(I+M1M.,Az)(T-MIMSA’Z)}‘I
+ (MaMuA3 ) (MiMsA ) (MiMsMsAZ){(1-MyMahz ) (1-M M, A3 ) (1-M1 Mo, ) (1-MyHaMsAZ )Y o
+-(MzMsAZ ) (MaMsAp )L (1-MsMsA, ) (1-MMsh3 ) (14MMoh, ) (1-MyMh, )}
+ (M2M5A§)(M;M5Az)(M1M3M5A§){(I—MngAz)(l-MzMsAg)(1:M1M5A2)(}-eM;MSMsA%)]-l
- (Mstﬁz)(MM..A%){(1—M1Mz.A§)(]-MzMsA§)('I-MkaAz)(]*MzMul\g)}-1
+ (M;M..Aﬂ(M,M,,A*;)(Mms:\z){(1-m,m..n§)(1-;&12:451\5,)(1-|~11M,.,A2)(1-»4191;.!4;1\5)}~l
= (MMLAZ) (MoMsA3) (MMA3) {(1-MsMuA3) (1-MMAE) (1-MMa A AS) (T4MMLAZ))
+ (M1M..A2)(MlMsAz)(MzM.,Ai){(1—M1M..A§)(1+M1M..Az)('lt-)M;MsAg)(l-szM..A%)}4
¢ (Masha ) (MiMata) (MMAT)T (1-MaMsh3) (LMD ) (1HgMahs) (1M MLAR))
= (MiMghz ) (MaMyhz ) (MM, AZ) C(14My ML) (1-MiMsA, ) (1-M:Mur;) (14MM,03)) N
+ (MMah 1 (Mo ) (MsMonz ) (HMAT (TS MMeh,) (1-MiMaA ) (1-HaMuRy) (MM} )
_The GF*s giving the branch#ng rules for the- subjoining of a group to another one

+ *

+

+

+

[ ]

+

(3.56)

contajns, contrary to the other types of GF’s so far discussed, negative signs
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in the numerator and positwe signs in the denominator; when interpreted in
terms of an integrity bas1s we therefore get elemenjs with negative s1gn€
(the sign of the product of élementary factors is chosen according to the

usual rule for products).

The- integrity basis implied by (3.56) consists of 25 é'le‘ments
(the notation is (py> Pps P3» Pgs Pgs 315 25s a3) where the p's are the
SU(6) representation ‘labels and the a's those of SO(7) ) :

a = (10000;100), b « -, (10000;000),
o - (000015 100), b*= - (00001;000),
¢ = (010003010), d- (010005000),
c* = (00010;010), d*-  (00010;000),
_f = (001005002), g = (00100;100),
i = (10100;010), j* (o001013010), 7
"k = (10010;002), % = - (10010;010),
n = (010105102), p = (0’/1010;010), .
e =-(01000;100), e*- - (00010;100), /
h =-{00100;010), i = - (00100;000),
"~ m = (100013010), k*=  (01001;002),
"‘,53:\"* = - (010015010, q = - (01010;002),
r = (10101;002).

The following products of elementary multiplets are redundant
e with any‘ of j, k, 2, m and r;
;€% with any of j*, k*, I*, m and r;

g with any of &, 2*, m, p and qg;

h with any of k, k*, n, q and r;
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-

J with any of k’*, £*, n,p and q;

J* with any of k, 2, n, p and g; '

k with 2% and p; k* with £ and p; 2 with 2*, n and r;

¥* with n and r; mwith n; n with p and r; p with r; \

q with r, )
As for, the SU(G):J Sp(ﬁ) GF for pranchmg rules, (3.56) has not been derived
ana'lytma]]y, however it satisfies the d1mens1on/7and second order index check .
up to (including) SU(6) representations of the type (1]221) and a1l others
obtained through permutations of tl;e Tabels such as (22111), (21112) and so
on; also the SO(7) GF for tensors derived from it has been subjected to the

checks described in chapter IV.

/

.The SU(7)>s0(7) GF K(K‘,’ Kis Ks3 Ay,ih,, Aj) is obtained by
sut;stituting (3.56) into (3.55) which gives
K (Ku.KasKss Atahesha) = (1-K )70 0 (Ky »KyKs sKg K5 Ay sy )
After some tedious a]gebré (in order to obta)‘n a GF whose power series
expansion contains only positive temms) the answér is
K(Ks,Ks.Ksshu,ho As) =
{(1-K2) (1-K3) (1-K3 ) (1-Ks A2 ) (1-KEAD) (1-KsA3) (1-Kahy ) (1-KBAZ)D
| X {{(I-KaKsA;)(]~K§A%)(1-K2Kal\z)(1-K1K3K5A§j}-l{1+K§K§M!\2 .
+ KiK3A1A2+K1K3KsA2A% + KiK3KEMAS + KiK3KBA1A2A3 + KiK3KsAiAzK3
"+ KiK3KEMIA2A3) + {(1-4(%1\?)(1-'|<x|<31\z)U-KxKsl\§)(1--K3Ka|<s‘l\§)}.’1 ’
x {K1KsA3 + KiKsKfA1A3 + AxA3) + K K3KshyAzA3 + K1 K3KEATAS+ KEKEKIN 203
+ Kf'@‘(gﬂll\zl\a + K§K3K3A§A2A3} + {(1-KiKsA3)(1-K1 KaA2) (1-K;K3KsA3)
x (1-K3K2M3)} {K¥K3A1A2A§ + KiKsKBA A% + KiKsK3MaAZAS + KiK3IAZA3Z

(3.57)
+ K1K3K3A2A3 + KaKgK A1A2A3 + K K%KgA “' K'{K%K A;Azﬁg}

NIOTa— T L T o o
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3§ {01-K3AF) (1:KsKsA3 ) (1-KuKsKsAZ) (1-KBKEAR )Y TKn KoK2AiAS+KiK3KEALAZAL
+KKIKEAS + KiK3KEALAS + K2KaKIMAS + KiK3KEMAS + KIK3KEN,AS
+ KiK3K2MAoAS + KEKEKEAS + KaKKEA1A2AS + KIK3K3ALAS + KoK3KEADAS
+ KEKEKIARAS + KiKEKSARAAS + KEKSKEARA2AS + KEK3KEMA-AS)
+ {(1-K;,K5Az)(1-K1K3K5A§)(1-K%K§As)(LK%K%A%)}" K1 Ksk3A20E
+ K K3KEAZAZ + KiK3KBALAAS + KEKaKEMAZAZ + KEKEK3AZAZ
+ K KEKEALAZAS + KEKBKEAZAS + KZKZKUAAZAZ + KZKIKEAIAS
\ + KEKIKEAAZAS 4+ KIKEKIMAZAS + KiK3K§A1A2A3 + K§K3KiAZAS
’f KEK3KEAZAS + KPKIKEAZAY + KIK3KEA:AZAS)
+ {(1-K\KsA3 )(1 ~KyKsKgh3 ) (1-K2KEAYS ) (1-K3 KEE)} 'eK3 KsK3Az AY
+ K%K%KgAgA'; + K3KEIKEA L ALAY + KEKEKEN AoAS + KEKBKENAS

+ GEKIKIAAZAS + KEKSKIAAZAS 4 KEKEKIAZAL + KEKRKAAEAR (3.57)

3
R i BT ey
. 7

-
s [ .
Tk T o e ke T

FKIKEKEATASAY + KIKEKEAZAS + KIKBKEA3AS + KPKIKSAZAS
+ K%KSKSAgAg + KIKIKEA,AZAS + KIKYKEAAZAS)
+ {(1-K stz)(l KiKsho ) (1-K1KsKsAZ ) (1-KEKEAD)} {K,K MAz + KFKEAS
+ K3K3KEAD + KEKEKEAZAS + K=K2K3A,A2A= + Kik3k? K2A 303 + K?K’K"A;A;
+ KIK3KENAZASY + {(1- K3K5A1A%)(l K3A1) (1-Ki KsA% ) (T-K3KEAY )}
{KaKsAiA} + K%KsAIA% + K3KshiA A3 + KEK3ATAS + K3KshiAzAd
+ KKEKBAAS + KIKEARAY + KIKEAA-AS + KaK3KEARAS 4 Ky K3KEATAY
+ RiKIKZAZALAY + K3KEAZAAS + KiK3KEAIALAY + KiK3K3ARALAS ,
+ K KSKUATAS + KiK3K3AIAASD 4 {(1-KsKsA2 ) (1-K3AE) (1-KiKaKsAd )
x (u—n%ng:)}"{K,ng,Az + K3KEM1KoAS + KEKEAS + Ky KsKEA 1 A3 )
+ KiK3KsMAT + K3KEALAS + K3KEALARAS + KiK3KEAY + K3KEA,A3A%
+ KiK3KERAS + KiKIKBATAS + KIKIAEALAY + KiKIKEARALAY
o+ KsKsAiA’A, + K;K}K MAzAS + K;KiksA;AzAE}}




Finally substituting (3.57) into (3.54) gives the deéir:ed S0(7) GF‘ for
ten;ors in its enveloping algebra
6 (Ushi,Az,As) = K (U2,02,U505 5A2,45)
= ((1-U2)(1-0%) (1-U8) (1-Uy) (1-UAF) (1-02A3) (100 )
x (1-UMA2)} L0(1-UPA2) (1-UMAR) (14U5A, ) (1-USA2)Y
x {1+UCAZA, + UMM, + UPAAS + UP(ALAZ + MyAgA3)
+ U, 0,43 + UMUA3A,A33 + {(1-URAZ) (1-USA, ) (1U%A3)
x (1-USA3)Y" (U2 + US(LAZ + A;A3) + UPAuAoH
+ UAZA% + UM2MM00% + UMM ARAY 4 UPSARALAY)
+ {(1-U"A3) (1-U%, ) (1-USA3) (1-0%A3)Y
x {UA1A2A3 + U® MoA%e UMIAGAZAS + UP2ASAT
+ UMAZAT + UPSAAZAZ + U'SAZAY & U2TA1ASAY)
( + L0-UPAR)(1-U*A3) (1-USA3) (1-U%A))
| x- (USRS AT+ UP0(MAoAS + AS) + 2U11A A3 + UP2(A1AS +A203)
+ U (ArfaAg+ AS) + UPMM10AS + U5 (A48 + ATAS) + UPOARAS
+ UYTAZALAS + UPBARALAS + U'°A 0,A8)
+ {(1-U) (1-USA3)(1-USAS) (1-U%A3)Y
x {U7A2A% + UPAZAR + UM M A2A8 + UT2A00503
+ U (AZAT + MiABAY) + UM(AZAY + MAZAR) + UPEAZAS
| + UMTALAZAS + UMSAOAZAS & UMOA.AZAE + UZOAZAS + U2TASMS
+ V227808 + U“A:A A§H+ {(1-U*A3)(1-U%A3) (- U‘Az)
X (l-U“.A )Y {U“Am + UBAZAS + UM AA2A3
4 USAA005 + U'E (MAS + 2A3A3A8) + UP7(ABAS + MaAZAS)
+ UIS(ALA3AY + 2A3A5) + UPOAZAY + UZAZAS + U, AZNS
+ UM (00280 T1-USR ) (13D (1-008)Y

51

(3.58)

e




1
s -
Lb e R SRR L TR s B e s

ER R T 1

A3 AR, A IR D e 0 & Pk T o

TR

- Nn b e s vttt on s B peasins e arams s oS

52
4
x{UAihe + UPAS + U'2(A7 + AZAZ) + U'MiARAS + U AZAZ
C# U (MAZ 4 A1A2Ag)}+ {(1-U3AA%) (1-U*AF) (1-U*A3)
Yy X (1-u°A3)} {U3A1A3 + US(MAS + MAzAR) + UT(ARAY + A,Azns), )
+ UP(203AY + AZALA8) + UMOAZAY + UM (AZAY + 2A1A203) /
b UL2ARALAY + UPARALAY + UPSAZAS + U7ARAoAS) (3.58)

+ {(1-1131\,,)(1-\1"'1\%)(1-115113)(l-u*‘A';)}”1

x {U*A A%+ UP (AL A2A3+ AT) + U7A4A3

+ UB(MAS + AgAY +AA20%) ¢ UPAY 4 UPOAA3A% + UM PALA8
¢ UMZ(ABAY ¢ ARAGAR) + UMM (ARAAY + ARARAY)

b UMSALALAS + UYSALAA8))

3.4 A computer Qrbgram_ for the elementary multiplet method

‘ As di;cussed in appendix A, the elementary multiplet method consists
of fi n;h'ng a finite set of elementary factors and syzygies. Unfortunately
the problems are not always as éasy as the example given in the appendix;
actually the search for elementary multiplets and syzygies may turn out in |
certain cases to be quite a formidable problem. The GF's for tensors in the
enveloping algebra of ép(ﬁ) and SO(7), which wefé obtained following 'this
approach, are good examples. For instance in the case of SO0(7), we had to c
work out the GF of SU(6) > SO(7); this implied finding 25 elementary multiplets
arid 44 syzygies. What makes thesg problems difficult is that ihere is much ~
guess work involved (no selectioﬁ, rules are known); for example, ‘ou_r’choi‘ce
of a forbidden product of two elementary faétors at a Tow dimensional SU(6)
representation ('in the case of SU{6) >S0(7)) proved to be wrong only at the

(12211) representation whose dimensio_n is 672,000 and where there are over

&
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2600 possible products giving (12211); one must therefore keep track of all

possible products. /

/

We wrote a computer program that does most of the work leaving to

the user-the problem of guessing the right elementary factors and syzygies. '
The program could be used atithe very beginning of the search of e’lementa'ry
factors but usually those belonging to representations such as ()\1. 0, ..., 0),
(0,)\2, 0, ... 0){ cees (0,0, .ouy 7&) are easily work out by hand so that the o
res'ults are then f\e\cl in the; program as data along with the syz_ygiesl; we then

proceed to representations Qhére more then one Cartan label is different from

zero; the program gives a listing of all poss‘ible proﬁucfs for a given repre-

sentation (of SU(6) in the case of Su(6) > S0(7)), their composition (in

terms .of elementary factors), what subgroup (or subjoining) representation

a particular product gives, its,dimension and second order index, indicates

if the product is forbidden and finally at the end of the listing adds the
_dimension and second order in‘dex of/, all allowed products. If a particular
choice of syzygy turns out to be wrong, a new choice is made by changing only
one line of the program; if an extra e‘ler_nentary multiplet is needed to balance
diﬁlension and ¥ndex, one card is added to the data. The second order index
check is particularly .useful in problems as complex as the S0(6) and SO(7)

’ ones, since it :.nay happen that a choice of elementary multiplet and syzygy .

satisfies to total dimension but fails the index check.

R Ry TR,
RSN
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3.5 Other uses of the generating function for tensors in the enveloping
algebra of a group

~Apart from its primar}} purpose, that is to decampose the enveloping
algebra of a group G, these GF’s hawe other uses. MWe have seen that they
suggest a means of constructing these .tensors (a detailed discussion of this
topic is given in chapter V). Without thé denominator %actors which correspond
to Casimir invariants, and with U=1, it is a GF for the number.of states of
zero wgight in representations of G. MWe turn to the question of subgroup
scalars i/n the enveloping algebra of a group. Besides the Cas’imi r operators
of a group and subgroup, there are rg - BG - Ty R’H functionally independent
subgroup scalars, or missing label operators (twice the number'actual'ly needed
to resolve the-l;beﬂing prob1em72); a* Th’ QG’ nH are the order and rank
of group .and subgroup. The GF G (U; A 1\2, ... ) for tensors in the enveloping
algebra contains information about subgroup scalars. Substitute into G the
GR F(A1 > Ao ...) for subgroup scalars in representations of the agroup; there

results /the GF H{U) for subgroup sca%ars in the enveloping algebra. This

substitution is often very simple to make. ¥

As a first example consider SU(3)2S0(3); the GF for SO(3) scalars

in the SU(3) representations is ) ‘:‘

F (A A2) = {01-A2) (1-A3)} ©(3.59) )
obtained by settinggqual to zero the dummy which carries the SO(3) repre« Ef
sentation label in the {SU(S)D S0(3) branching ruTes GF given earlier in this
chapter. (3 59) states that each even-even representation, of SU(3) contains
one SO{3) scalar. Substitution of (3.59) into (3.28) means keeping the part
of (3.28) even in ‘Al and in A, and then setting AizAez 1. The result is

A

s




. by .keeping the part.even in A j',‘Azahd A ,a0d setting Ay« A;=h§=1‘ sthat for .
*SU(2) x U(1) scalars in the SO(5) enveloping algebra is found from (3.39) by

Sp(6)>SU(3) x U(1); the GF for subgroup scdlars is obtained from (3.53) by S
_ retaining the part even in A;, in A; and in As and setting AjzAs=Aaz 1. CoUy
| j :
R |

R A AT

et
55 n\
‘ 6 2 2 -1 3
H(U) = (1eU) {(1-U%) (1-U%) (1-U*)} - (3.60)
which agrees with the GF of Judd et a]}' when ‘their dummy variables D and P

5

|

t

13

i

, |
are set equal to U. o ' é
' i

> Similarly, _the GF for SU(3) scalars in the 62 enveloping algebra E

is obtained from (3.50) by setting A,= 0, Ay = 1;'that for SU(2) x SU(2) |
i

scalars in the SU(4) enveloping -algebra is obtained from (3.39) @& %

keeping the part even in A; and dn\ zandtsétgﬂng'}\,-—-'- As=1 ; that_for G, scalars *
in the SO(7) enve]opir;g algebra is obtained from (3.58) b‘y setting

A1zA2=0, As=1. The resulting GF's can be compared with the 6F’s or integrity
basis given, variously, byIQuesnez, kSharp3 apd Gaskell et a149. Many new '
GF for §ut;group 'scalars could be found in this way. Of particular interest,

because of its impor'tance in nuclear pﬁysics39; is the group-subgroup
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CHARTER 1V

TESTING THE RESULTS
L ~ -
J ‘ In chapter III we discussed two methods of obtaining the GF for

tensors in the enveloping algebra of a group. The first (working through a

o

/ <
subgroup) is an analytical derivation and constitutes a rigourous mathematical

{
s e i g O R AN ¥% vetax = ek . L L
@

\ proof; this approach was used for SU(3) and S0(5). The second approach,
which makes use of a larger group, involves finding a set of elementary
multiplets (the integrity basis) and relations among them (syzygies). It does
not constitute a proof since one is not sure that all elementary'multiplets
and relations have been found; in this case the result must be checked, In .

this chapter, we discuss several checks to which our results have been

PRI > D bt sy o g ST P T T e o

-

subjected. |

The number of labels needed to specify a particular temm in the :
enveloping algebra is r, the order (number of generators) of the group. 1

TR N

Subfracting 3 (r-2), the number uf interhal group labels we get & (r+2) as ‘,g

£ o

the number of ﬂmctionaﬂy independent elementary tensors I(z is the rank of .

the group); & (re2) is thus the (maximum) number. of denominator factors in ’
‘each term of the'GF; our GF's satisfy this requirement. | i
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{ K "o
- Okubo5 has proven the following results concerning the m/:mber of
linearly independent vector operafors and their degrees d in the enveloping
r' a]lgebras of Az, B, CR, D,o, and G, : Az has % vector operators with 1 <d < &;
s c& and Bx have 2 vector operators with d -2q + ) and 0 ¢ q € £-1; D.t has %
vector operators of which 2-1 have degrees 1,3,...,28-3 and one with degree

2-13 G2 has two vector operators ‘of degrees 1 {nd 5. Our results agree

with the 3bove. Our results also agree with (1.1) and (1.2).

1
One can also check if .the tensors enumerated in these GF’s have

the correct congruence number c. The congruence numbers for these groups
ar‘e73 (032 isn/‘t characterized by such a number)
ASU(2) s-cz Aa'mod 25 SU(3) :c= Ay 4+ 2 Az mod 3;

R , (8.1)
2U(4) s ez Ay +2 }\2!'+ 3 A3 mod 4; SO(B) : ¢ = A; mod 2; ‘

SO(7) : c= Az mod 23 Sp(6) : c = Ay + A3 mod 23

Ai being the Caortan labels. Now the congruence number of the adjoint repre-
sentation of these groups is according to (4.1) o |

SU(2) : c= O mod 2; 35(3) :C= Olmod 3

'SU(4) : c= Omod 4;-S0(5), SO(7), Sp(6) : c = © mod 2.

Consequently, since ¢ is additive in the tensor product of representations,

)

the Cartari labels of the tensors enumerated in these GF's must satisfy the

following rules :
SU(2) : X even;
SU(3) : A+ 22, = Omod 3; SU(4) : Ay + 222+ 323 = Omod 4;
SO(5) : A, even; SO(7) : As even; Sp(6) : Aj + As even.

~ Qur results agree with the above rules.
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We also checked if our GF’s satisfy Kostant®s theoren’!

concerning
the highest degree with which any tensor appears; as®stated in the introduction,
Kostant showed that the irighest degree of a A-tensor (modulo multiplying it
t;y Casimirns) is the sum of the coefficients of the simple roots in the .
highest weight of (A). Now the highest weight R (A) of anirreducible repre-

. sentation (A) may be written in terms of the highest weights §1 ‘of the ¢

fundamental irreducible representations of the group :

T o N

R R

A(A) = = AW (4.2)
i=1
where Ai are the Cartan labels. The highest weights ir_i for the algebras of
rank two and three are written in‘terms of their simple roots as follows’ *
DR o= 1 (26 k), W, = 1 (@4 208); : :

3, ( ! A2 ! 3 2 3 ' ' f\*r

ﬁ; B?:‘ ;11:514-&2. ﬁ2:1&1+ &z; ;
g Gz ;‘1 - Za; + 3&2; ;lz - al + 2&2;

: At Wy = _}: (‘3&,_+ 2 + &), W -1 (s + 25+ ),
N ﬁ3 =1 (a1 + 262 + 3a) \ (4.3) ‘

)

B3 \'l-t = &; + &2 + aa, WZ = .El + 2&é+2 Es 5. o
93 =1 (ay + 20, + 3a3); ) )
E R
£ C3: W-l :Oql-l-az {%Qa, W2:01+202+03,

x
w
1]

o+ 23, + 3as.
Ty

In terms of simple roots
2 ¥

R(A) = % 'c(x)i-u.‘
)m L




59

According to Kostant’s theorem, the highest degree D(A) of a A-tensor is
2 -
D(A) - I éi(x) . (4.5)
i=1 ) .
Therefore for any given algebra, we substitute the v’vi given 1in (4.3) into
(4.2) and read off the ci(k); we then obtain D(A) by means of (4.5). For
exaniple let us consider the algebra C3 which corresponds to the group
Sp(6); substituting (4.3) into (4.2) we get -

A(A) = A Wi+ A2 Wa + A3 Wa ,

= (Mthg#ra) 3n 4+ (A+2X0421) @2

+(?_\__1_ + A2 ¢+ 3 )&3) &3
2 3

which implies that for Sp(6)
Ci1 (X)
€3(2)

11

M+Azkhs, Co(A) = Art2hpt2hs, ) )
. (4.6)

1

.Z‘_L +)\z+_§A3:
2. 2

Insérting (4.6) into (4.5) gives us the highest degree D(A) at which a
A—tensor appears in the enveloping algebra of Sp(6) -
D(A) = 5 A+ 4 Ao+ 9 A3,
.2 ? X

The highest degree for each group is obtained in the same way

SU(3) = A+ Az, SO(5): %Ay-& 2 Aa,

GZ:3A1+5A2, Su(a) : .%A1+2Az+%lg, . ‘

Sp(6) : g_h-&‘%)\z-ﬁ%}‘;, SO(7) : 3 A + 52 + 3 As.

Keeping-only terms of highest degree for a given A-tensor, the GF for tensors'

in the enveloping algebra reduces to the following J




( ' ‘
SU(3) : 6 (Ushi,hp) = 1+UZAA, + U*AZAZ
(-0°k3 5 (T-0°A3

S0(5) : & (UsAs,Az)

n

1
(1-U%A;) (1-UPAYT)

6 ¢ € (Uihih) 1
(0% (107

SU(4) : 6 (Ushi,Ag

1

T-ULA) (-8 (4.8)
| 1+u51x’,1\s o USAAZ 4+ USRS
‘ :( [ 'UAI + “-U Aa, : ’
Sp(6) : 6 (Ushs,Az,As) = 1+ U'AAs
, : TITA7) (-0 A7) (T-0¥R3Y

N _S0(7) 1 G (Ushihz,hs) = ]

(7-07Ay) (T-UPA;) (1-UPA3)

By inspection we see that (4.8) does satisfy the highest degree given in

v A ves e

PR )

™ |-

o e S A A YEe vl

(4.7).' More formally we may obtain the formula for the highest degree by

~

taking the following residues

VL 30 e v

- R Xi-'l ' 21 R
Z {Res (n A, )6 (Us Ay ... 1\2) }.
A;.,- . ’Az ‘i:] B
: , oo ! , ' L. ‘ ‘ '
3 A simple example is 6, - / ‘ '
I Res - ll@“" Ve = P
: bz it ) o-usgt ) ' .
which checks with the result stated in 4.7, . o / “f\',}
i ’ Each GF is consistent with known GF’s ‘for subgroup scalars in the ;
E , P - R . . oo =,
o enveloping algebra. For example, let us consider'the chain SU(4)> Su(2) x :
( - SU{2). The integrity baie.js for- the branching tules of the above.chain of
. ; . ¢ . / .
5 | | |
. u..,..“m”“""” PO P 5 S R M — ’
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groups indicates that only SU(4) representations with even Cartan labéls

contains SU(2) x SU(Z) scalars; therefore,) retaining only such temms in

(3.39) and setting AjzA,=As=1 we get the GF for SU(2) x SU(2) scalars in

the enve]obing algebra of SU(4) : !

3 2 3 21
{(1-02) (1-U%) €1-U*) (1-U8)} x {1+U*+U5+3U8+207+20%+3y°

+ulo+ull+u15} . - o

where U carries the.degree in the generators as exponent. This GF agrees”
49 ‘
1

with that of Gaskell et a

and of Quesnez. Similar tests ha;le been done -

using the following chain of groups : G,2 su(3), GZD SU(2) x su(2), sp(6)>
- $p(4) x SU(2), SO(7)> 6.

Since the elementary multiplet method invalves a great deal of guessing,

- the above checks were often helpful in guiding our choices‘of the integrity

basis and syzygies; however, they constitute only partial tests. The most

conclusive check which we apply, is the reduction of the GF for tensors in

the enveloping algebra to the .corresponding GF for weights, to which the

P -

remaindér of this chapter is devoted.

A GF for tefisors may be reduced to that. for weights by substituting

the character genevator of the group; unfortunately the character generator

.is not known in general, so one must work through a chain of subgroups. One

must utilize a chain of groups of edual rank at each stage, otherwise infor-

" mation is lost.. For example, working through the chain SU(3)50(3)2U(1)
the GF for tensors based on a (10) tensor reduces to the following GF for

do

 weights

’,. L '] I
__— (1—u)l(130n)(1-m’?)

- (4.9)

|
v

.
i
R %" % ) DR L S
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Jhere U carries the degree and n the weight as exponent. However, this
cannot be considered a conclusive check since the GF based on a (01) tensor
vv‘uou]d also rednfce to (4.9). An appropriate chain would be

SU(3)> su(2) x u(1)u(1) x U(1)

in which c;a.ie, the GF's based on (10) and (01) tensors reduces respectively

e R I L

to
2 ] Z
; (Y-Uninz) (1-Unz ) (1-Unamy ) -
4 and - / L —r = - . .
» (1-Un3) (1-Uninz ) (1-Unz m2 ) !

We now proceed to the &eduction of thea GF*s of SU(4), Gy> Sp(6) and SO(7).
\ ’ -

For the group SU(4), we proceed through the following chain
SU(4) SU(3) x U(1)2 SU(2) x U(1) x U(1)o u(1) x u(1) x u(1).
The GF'for the branching rules of SU(4)2SU(3) x U(1) s>

, p 1
(1 -AnNma)U-Am? ){(1-A2N2n3) (1 “Aszjz )(1-A3n3) (17A3N2n31)

(4.10)

SN P R
" L]
—

where Aj,A;,As carry the SU(4) representation labels, Ny and N, those of

SU(3) and ns that of U(1). The first stage of reduction is done by substi-

tuting (4.10) into (3.39); this is done by ‘the following sum of residues

e 3

‘ a1 -1
J Fy (UiNi.N2,ms) = Z Res/ G(U; 1\1 .Az’Aa)Al e Aa i
' R Mhahs | (10 Nins)(1-87 ng )(1-ha Nand)

»
-

S SR =TS =T=T

(1-A2 Nins )(1-Ky n3)(1-As Nzns )
The calculation of residues is done with the following choice of nomms :
IUM’slNl-ld-lNz|<1,le 03‘7'!45 1, "A'g' and q |As] a littTe”:gRatgr then
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unity; the result is the GF for SU(B) X U(}) tensor's/ in the enveloping
algebra of SU(4)
. -3 -2 -1 -1
Fy (UsNy,N2.ma) = {(ns -Nina)(N2n3-Nins }(n3-Nzns )}
-2

-3 3. 2 -3 2 Sla2
x {G(Usns ,N2n,n3)Nzn3-G(Usns ,Nond,Nons INdns
-3 -2 -2 ¢ =3 -2 -1 -6
G(Usns sNins sn3)Nins +G(Uina ,Nins sN2ns JN;N2ns (4.11)

1

-1

G(U3N;n3,N2nF,n3)INiNn3+6G(UsN s, Nand ,Nons )N1N;n§
-2 :—2 -":'1 -2
G(UsNin3,Ning 2n3)NEn3-G(UsNyns,Nins ,N2ns INENana }

+

Making use of the GF (3.3) for the branching rules of SU(3)> Su(2) x U(1)
the reduction from SU(3) x U(1) to sU(2) x il(l) x U(1) is done through the

following sum of residues

F; (Us N3, n2, m) = I Res F (U N).;Nt m_)leNz
1021 (1-Ny Nsnz)(l-Nx N2 )(1"N2 Naf\z )

|

* , 1
X *-*-:.-r—;‘ N
) (1-N2 nz) .

where N3 carries the SU(2) label and n, that of U(1). The sum of residues
is done with the following choice of noms : [N3|<1,|n2| = 1 and ]le,lN.zl

slightly lar:ger then one; the result is
Fi (u; Ns’nzsna) (Na-ﬂg)(Na-n;a)}-;kF;(U;Nanz,Nan;I,ns)Ng
- F (Ustﬂzmzma)Nsnz -F (Umz ,Nal’lzl.l'la)Nsm;s ° (4.72)
+ Fy (Umz ;nf,ns)} . \
Finally in the last stage of reduction we make use of the SU(Z)D u(1) GF
M1-;23n:)(14ﬂan1)} . . ‘ (4.13)

The GFfor weights'is

u(uﬂhnﬂz-ha) = 2 Res Fﬂ (u Na:'ﬂzﬂ];)"! . (4.]4)

N U-Ns T\x)(]-N: m )

o TSI ke o Ry A m e o a b
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where n, carries thé U(1) label. With the following choice of norms

Ini] =1 and |Ns| slightly greater then unity, (4.14) reduces to

! —-l—

W(U3ris,nzoms) = (Hy-ns ) m Fz(U;ﬂx.ﬂz,ﬂa)'n;l Fz(Uiﬂ;i,nz»ﬂa)}. (4.15)
In principlé’an explicit expression for the weight GF W(U;ry,n2,ns) could be
obtained analytically by substituting (3.39) into (4.11), the ;wesu'lt into
(4.12) and finally that result ‘into (4.15), and after some algebra compare
the answer with the actual weight GF ‘ | \

W (U3nsunzons) = (1—Unmznz)(1-Unf'nzn3)(mn§2n3)(1 Ungns )
x (1- Umn;"nz")n U1 i na ) (-Unund) (- ) (- Um)(Hl)
x (1-Un; )(1 ~Uning )(7 Uﬂl ne )} . :
Each factor in (4.16) corresponds to a weight in the adjoint representation

(4.16)

of SU(4).. In practice, the algebra soon gets out of hand. We have written

a computer program which performs the substitutions numerically in double
pr'ecisi‘on (15 sigr'ﬁﬁcant figures) and compares fhe result with (4.16). In
table 1 we show- a sample of the results for random values of U,ny,nz,.ms; W
stands for the actual GF and W for the weitht GF obtained from the reduction
process. - (w—w ) (W ) x 100 is the .percentage of error. To check*the
efficacy of the numerical comparison, we made numerfcal changes in the'GF

being tested, such as altering by unity a coefficient or exponent; -such a
- i

| change jncre‘alses the relative error by many orders of magnitude. The effect Ty

of such minima) changes are shown in table II and III. Many.more were done.

.

. In the case of Gy, we proceed through the chain
| 6,2 SU(3)> SU(2) x V(1) u(1) x u(1).

R e e B W e e aaees v ..,w-.....m..-h.\‘. -, B VDI
——

e
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The substitution of the group-subgroup GF (3.15) for 62:>SU(3) in (3.50)
gives the GF for SU(3) tensors in the enveloping algebra of G2

i

-1
F (UsNi,N2) = {(NITNZ)(NP"])(NZ“])} x { ~G(U;N2 N1 NG
YR ,
+ G(U3N; N3Nz ININ2 + G(U3N2,N2 INZ -G(U3N2,NiN2INSN,

U carries the degree in the G, generators and Ni,N, the SU(3) representation

/ (4.17)

2

labels. The remainder of the reduction is done exactly the same way as that

of SU(4) with ns=1. The final answer is then compared with the actual 62

L

weight GF.
-1 -2 -1
W (Usmnz) = {(1-Unang)(1- Unl n2) (1-Unz ) (1- Un%)(l-Unlnz )
-1 =1 . N ‘ »
x(1-Um ni )(1—Un,n2)(1-um nz)(l Unf)(l-U) (4.18)

x (1- “Uny ) (1-Unams ) (1- Um\m? )}

Proceeding through the same numerica1 checks as in the case of SU(4), the

relative error A was of the order of 10~ 12

For Sp(6) the following chain is conveniént
sp(6)>Sp(4) x SU(2)2 SU(2) x U(1) x SU(2)3 U(1) x U(Y) x U(1). -
The GF for branching rules for Sp(6)> SP(4) x SU(2) is°2 ;

{(1-A1u1)(1-f1u,)(1-hznz)(1—Az>(1;As~1)(1—A,~zn,>}7f (8.19)
X {(1-AzN1Rs)  + AAsN, (I-Aanﬂz) } *

where A;,A;,As carry the Sp(6) labels,~N;, N, the Sp(4) labels and N, the
. SU(2) label (the dimension of the SU({Z) representation (V) is w1). The

substitution of (i.ig) into (3.53) gives the GF for Sp(4) x SU(2) tensors

o

'in the enveloping algebra of Sp(6) t. ‘ o

€ ey gt bR
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Fi (UsNp.N2,N3) = N, {(Mlz)(N;-Na)(N;-sz)(Nz-nlwa)fl
x {-N2Nz6(UsN1,Nz,N1 ) + NoNaNZ6 (U3Ng Nz ,Nals)
-NZNZG(UsNs N2 NaNs) + NaNs 6(UsNs,1,N1)}
+ N;N;{(Nz—N;Ng)(I-N,Ng)(Nl—NQ(N,-Nst)}ﬁd
X {NINs GUN Ml M) = HENGNS GU3N sN3Ns sNaNa)
- NN} G(U;Ng,NiNguNy) + NyNoN3 G(UsNs,NiNs,NoNs))
4 T(1N2) (N2 N3 ) (N2 -NaNa ) (1-NMa )3™ x {NE G(UsNs 1IN )
= NiNs G(UsNs,T,Nx) + NoN3 G(UsNs,T,NaNs) - NaN3Ns
X G(U3N1 sN2 ,N2Ns )}
+ NaNa{(1-N2) (Np=NE) (Np-NaNs ) Ny -Naly)} (4.20)
x (N2 GUNGNS T,N2) - N2 GTUSN: NaoNz M)} . ;
+ Ns {(I-Nz)(]-N;Ns)(l-N§)(N;-NzNa)}‘% ’ ”
x (N3 G(USN oN2,NaNa) - Np G(U3N3 »1,NaNs)}
& NaL(1-Ng ) (Na=Na) (Nu-NaNs ) (No-N2)Y
X {N2NE GUsNL N2 Ny ) = NE G(USNS,T,M )
& L(1-H) (Ny-Na) (N3 -Nas ) (1-N3)
x {NZN} G(U;Na,N2,NaN3) - NaN3 G(UsN5,1,N2N5)3,

The GF for branching Hules of Sp(4)> SU(2) x U(1) 155 } y

(('l"l‘hNn.T'ta)(1-'N1Nm:x)(H“:z"l%)("Nzl’l‘;z){1 . @ 21)
x [(1-N2) + NNE(T-NoNE) ) S U

where Ny carries the SU(2) label and n» the'yu(n label. Substituting (4.21)
“into (4.20). gives us the GF for SU(2) x U(1) x SU(2) tensors in the enveloping

)

algebra of Sp(6)

P R e
I N R L P
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> (UsNs,Ny,ns) = N§ {(1-113)(?‘4-113)(1 ~N ﬂ%)}
x {-n§ | (U Nuﬂs,ﬂas a) + nzN% Fy (U; Nma,Nn.,Na) .
(U Nuﬂs ma ,Na) - Nms F (U Nuna leuNS)}

x{n} F1q(u ]:T'I% Ns ) - ﬂa F1 (U ]»Tl3 »N3)}
+ {2(1+Nma)(1+Nms) (ns-na )}
-2 -2
3 {Ug F1 (‘U;-'l,'ﬂ%,ﬂa) = N3 F1 )(U;".l ,nS' sN3)}.

Finally, the GF for weights is obtained by substituting the SU(2)2 u(1)
GF (4.13) into (4.22) giving
N(U"rumz.ns) {ninz2 Fy{(Usn1,m2,ns) - n;lnz 7 (Um;l sM2,Ns)
-1 -1 -l -1 =1 (4"23)
- mnz Fz (U.m,nz ,na)+ mn K (U.m N2 »N3)} X
{(nz-nz ) (nrm )}
which must then be compared with the actual GF for wéights of Sp(6)
W (U,m,nz,ns) - {(1- Un:n%)(l Un%)(l ~Un; n3)(1- Unzna ) ,
x (1-Ung" ns ") (1-Uns )(1 Und) (1-Uns ) (1-Un2) (1-Unz ) (1-Uniznama)
-1 -1 -1

L]
x (1-Uninz na)(l -Uny nzna)(l Uny T\z na)(l Umnzns ) . (4.24)
xu-Umm na )(7'Un_1 ﬂzm )(T-Um nz Yla )(]'U) } .

Due to the complexity of "the Sp(6) GF, the numerical comparison between the

actual weight GF (4.24) and the one obtained from the reduction was done with

quadruple precision (33 significant figures); A was of the order 10 23.

For SO(7) e followed the chain
S0(7)> 50(6) ~ SU(4)= SU(3)-x U(1)> SU(2) X u(1) x U)o u(1) x U(1) x U(1)
The 50(7)>50(6) &F s -
{(1-A,N,)(1-A,)(1-A,n,)(1—A,u,)(1-n,u,u,)(Mzu,)} ' . (4.25)

iy . o
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where AjA;,A3 carry the SO(7) representation labels and N;, N, N; those of

SU(4). The substitution of (4.25) into (3.58) gives the GF for SU(4)

tensors in the enveloping algebra 6f SO(7) : T
F (UsNy Nz Ns) = E(]—Nz)le-NQ(Nz-NlNa)}-l

{N2NsNE 6 (U3N2,NiNg,Ny) - NiNZ G (U3N2,Nz,Np)

NMiNaN3 6 (U;Nz,N]xNg,Na\) + N3Ns G(U3Ny,N; ,N3)

"%

NiNs G (U31,N;N3,Ny) + NiNz G (U31,N5,N,)
N; N2 G (U31,N N3, Ng) - NzNg G (U;1,N2,N3)3

+

The remainder of the reductxon is done following that of SU(4).
answer Jis compared with the actual GF for weights
W (U,m,nz,na) {(1- Umnzna)(l ~Uny nant )(1 Unz n8)
X (1—Un§n§ M1- Unmz na )(] Unmi)(l Uﬂ:'\ni'»')(lhllnf)ﬂ U)3
1 A -

X (1- Uﬂx )(] Unmz )(1-Un1 Uz )(1 -Um Nz ns )“ Um nzns ) /

-1
x (1- Unmzna )(Hlnz s )(1 Unn?) (1-Undn, 2 ) x

(1-Unynz na)} . \
Numerical checks similar to that of Sp(6) were done giving a A of the
of 10783 '
¢ /
) .
% .

(4.26 )‘

The final

o1

a

order
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CHAPTER,V
. " CONSTRUCTION OF TENSORS;THEIR ACTION
ON DEGENERATE REPRESENTATIONS

o

5.1 A method of constructing tensors in the enveloping algebra of a group

As we mentioneg%%n chapter II, not only do the GF’s for tensors
in the enveloping algebra U of a grou;; G enumerate a basis for all fensors,
fzut they also’ su;;gést an 1ntegr1'ty basis from which all may be obtained
therefore reducing the ‘problem of consfructing tensors in U to that of
constructing a finite set of Tow degree ones. Now since there ‘is a one to
one correspondence (see section 3.1) between the basis for symmetric tensors
T (1) in U and the basis for tensors T()A) whose components are polynomials:
in the components of a tensor I‘A tha!; transforms by the adjoiint representation
of G (polynomial tensors) the prescription we follow to construct an irre-
ducible tensor T(A) in the eanloping‘algebra may be divided into three

steps : ‘ ) “

(1) Qonstruct the highest component (highest weight) of its
corresponding polynomial tgnsor F(A) (all other components
are obtained by cranking with the appropriate generators); -
this component will be the product of the highest components

of some' of the elementary tensors.
(2) S_wmetrize the expression with respect to order.

. v v o
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i . ‘ (3) In the symnetrwzed expression, substitute for the components §
‘ of I‘A the corresponding components of the vector operator -
; ‘ of degree one (the basic vector operator). g

2

] . .- Step-(1) assuues that one knows' the highest components of the elementary

po]ynomiah tensors; these are found by the f,pnowing preScription N

(l) Write the most general polynomial in the components of .

l ? ) o I‘A with the appropriate degree and weight (highest).

(2) Find the coeﬁficients by requiring that the generators which
corresvond to the simple roots annihilate the polynomial
© constructed in (1) It might happen that there is a compos ite Lo
' ‘ . -« tensor (a tensor which is the product of pouersﬂof the " A
- ‘ elenientar,y ones) of the same degree and transformation ‘ )

’ SN properties (that is, it transforms by the Same representation)
as the elementary one’ being determined; there might also be :
( ‘ ; .- two or more elementary tensors of. the same degree and transfor— ’ X
' 77T mation properties as the gne being determined; n all thse . |
S cases, the elementary tensor being detemined must'be chosem

' {its coefficients) such that it is Hnear’!y 1ndependent of
. nﬂ others mentioned above,

s
o

S0
»

4

)
bl

\ In what fol‘lous we consider the protﬂem of cmstrueting the elementary tensors
vy - for the groups S2(3) and S0(5)

(a)____(_)_ R B ﬁ
’ ‘The cmonents of rA (wh'lch 1s am octet) are shom in ﬁgure 2.

"Througlmut these celcnlations {for: 50(3) and: 50(5)) the conpment pf a tensor

‘ in.U-wil): be desigmted by the same symbo'l a8 tgm nf the oeiuponent of its _ =

: cornesponding polynmie‘l tensm‘ hu; with 2 Mser{pt “op"' m 'lnstance.g im |

'

the case of su(s). tne Mghest cwmmt nf-mm m U ce

,M e..‘;\-g v_:«

b,
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SU{3) group are based on Gel’fand aqd %eﬂ'in’s matrix g1ement575;1n their

notation the infinitesimal generators EW- of SU(3) are given by the following

where the Aw‘are the genérators of the U(3) group satisfying the Lie ‘

commutation relations '

[ uﬁl ““va uB uB Aav o , - (61) , | f'

with all indices assuming values from ] to 3. The non diagonal generatéors ‘ j
~are nepresentéd in figure 3. A particular realization of aie generai;ors is ",»\I;
the following ’ oy

By =8 ﬂgn‘} e | l:Z‘Z =N BE/+ g*an,,, J

N * . ‘ ‘
E23 = 6‘ 3;"" 4 ag;*’ E32 - cag"" g*a;*Q N

"Eqg 2 n'a;+_;*an,,, Egy = &3 + %3, (5.2) §
aﬂd~ ) «
By = Ay - L (gt Ay + Agg) . - B
| ’ / ‘ Kn::}:g
Eo ® Agp = 1 Uy + Ay + Agg) ’ }\
.
| Eygm Ayt 1A+ Ay ¢ Ag) ' i‘é"i
with :
A:I'l = n3n+ E*QE* + C*ac* . ‘ . 7
A22'= 53 + C*ac + n*a : oo T ‘
»A33= ca + 5*a£*+ n *3 a_— _ :m:\:— :
- - ' ool ! ENR .“ "”';’ ;

The vaﬁab’les m: E?ﬁnd n*. T g% m the bases of the’ ﬁmdmum %rre-’ f !
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.. these generators as differentia'l operators which are functions of the

* components of Tps Wwe have .

The: second step consists 1n ﬁngﬁng the coeffiﬁﬁg‘_"‘fv,;)f .

| kapmy E}z as gwen tn {5‘3), ue then gat h

b s e T e o o P 3 v - = TRUABI Aemiren ¥ e v

in figure 4. The action on the components of the’ octet rA by the penerators

E'tZ and E?_3 corresponding to the simple roots 1s best described by writing

¥
9

Eqp = 0By +VZ (83, + vi5) + kd,

’( R  (5.3)
Ero = ad,, + €3, +.1 (83 +°63 )**Vi (83+ 99 ) .o s
23 " A Vz- ) K - 5 e K (
t t : . ,

Now since Ey; =z Epy and E,3 = E3y we also have o ‘ /
> Ep = B3 +\/Z(sa +aav)+xa | L .
” Eqy = va + xa O | (53 + ka ) + 3 (93 + Ka ) " (5.4)

32 v ‘

’ v
°

He now turn to the problemof constructing the highest components
of the eTementary polynchial tensors that is, the highest componewts of (1,11),
(2,00), (2,11), (3,00), (3,30), §3,03). As an examplg, wm construct

.
5
K
L

the highest c'mnponent of the degree two . polynomial tensor (2,11).~i e., the -

e NI

“ degree two ectet,;we shall denﬁte its components in the same way as those of

the degree one octet (PA) but with a superscript "iZ)“”' for exanple its

highest’ component will be denoted a(z) and so0 on. Foﬂowing the pfre“scription
given at the beginning of. this section, we must fi rst construct the mét E ;
general second degree- polynomia] in tne components of PA with the necéssary -
weight (see figure 2)s this second degree pqunomia'f 1s°g o ‘
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i (33 ‘: VZ a]) av = ‘
so that “ ) | o
a.l & - 33
of2) may therefore be written '
| 0(2) - .ﬁ\,;;iaa +a, ab + a, By, : (5.6)
" We then apply E23 and require that E23 a(z) = 0; we then get
. ¢ 1 ' . ‘ )
i * |
1 i 82443 a, 1B = 0 .
~, : gl f |
E so that ' " ‘ oo
A A ‘ .
f ' Choosing a, = 1, we have ’ - -
- (2) ) - .
i ( a = V3 af+ad \E 8v . . (5.7)
i M1 other elementary polynomial Jtensors are found in a similar way; their _ l
. highest companents are . o S L ’
(L), ~ a . : . ,
v (2,00) ~ ol Be-ves16 416
i * ~ ) - - “E - ¥l
| _ & 2 2 L, »
(3,00) ~ V3 oox +V3gok - \BBWA -VBoex, . - ‘(5 ) B
’ R N | \ .
+.o.eA—BBn-60+2vee+%_e'» ) , L L
(3 30)h~ avd + \/hve - VZa? K~ VZB\’ ! o
, (3.03) - atet g -\Eaas B %
3 | . ) a~ f ) ‘ ;;;,i%;
Later in our d*lsCussion we: shall require the eighth cnmponent Tt HE
of (2,11), t.e., 3(2) 1n order to get - 0(2) e fibrst app'!y 532 has given o e
by (5.8 onal®) - \ . T e

Wi2) e @) Ve c - 7 vo. |
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B(z) may be obtained by the action of E 91 OD a(z)

B(Z) ]a‘Z -V_ 3 B85+ V6 ac+ Bo.

6(2) is obtamed by the action of E21 on v(z)

5(2) - l Ez'l ;)(2 hod V_j_ (Gh +: BK) - 25 9. ’
Vz,

Finally since

E32 8(2) - v—i 9(2) + \/_-,__-6(2)
: 2 2 X

we have ’

6 L2ve +ar -pc- 8%+ 0% (5.9)

As a final example we now proceéd to the construction of the highest component

. of the composite tensor (5,03]).’ This tensor is obtained by the stretched

tensor product of (2,00) with (3,03) so that the algebraic exprest.sqon for
the highest state of (5;03) is . \

(5,03),‘ - (M-*Brc-ve+%_6 +16) (ae+Bv-V2 oB8).
2

Once we know the algebraid expression of a polynomia'l tensor we

. must, in ;order to construct its corresponding tensor 1n the enveloping algebra,.

know the. components of the basic vector operator, 'i e., a P’ B ete. .
Fonow‘ing Bel* ‘fgnd and Zetlin’s matrix elements (the *“coefﬂcientﬁof lil3 has ‘\\

»

been choosen to be+ 1) we have .
12' Sop ‘V; “‘n Azz) .

Vé (“H“‘zz“’z Aas"‘op ® 532’

6. = Eyas B = Enqs '
op 13* Pop \%3 (5.10)

Mp = EZ]’

¥

.
¥
s
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We now proceed to construct a(z) . 1.e.; the highest component of

ey Ay el BN L, o et NI AT ol

e the second degree vector ‘operator fongwing the prescription given at ;he
beginning of this section. Symmetrizing (5.7) with respect to order and .
substifuting for the components of I‘A the' corresponding components of the

o Freprea

a

4 s

;o
basic vector operatpr we get /

. (2) | 98 L 0

With the help of (5.10), (s.n) may( be writtén In terms of the generators and

’

o after some manipu\ation we ﬁnally get - o L )

. & £rs An "V§523 512 W Eys "zz *v% B3 *33+\EE13 6.12)

P

| ) We now have an the necessary tools to give a smple derivitioﬁ ofaé
(: . tbe well known Geﬂ—Mann«-Okubo mass’ fomula76. The basic assmption 1s that ’

the mass operator My op consists of two tems, one of fwhicb is m Stf(3) scalar
"L while the second transforms like the efghth compment of an 5!!(3) octet%(and
therefore an su(z) X U(T) invariant) Our GF (3. 28) 1nfoms us tmt there. .
are enly two 1ihearly mdependent vector operators in the emtalwing a‘!gebm
of Su(3), one of whmh 1s degree one and the other _degm m. ﬂa- N

- v ) -

: therefore*h&ve‘ T o Do e

(2 . S L
. "op scalar + enp“" o °. . S A

. wheré 1 mm that Bp 204 vely: the m@‘
‘ the ve'ctor opentors o‘f mm ma i

aop and aﬁg’" 1n tam of isuspi

11
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so that in terms of differential operators (see (5.2))

8op = -\}6' (3 + &3 - Zd?§+ 2 5%y - ¥y, - R,

.

N R A
But the hypercharge operator Y op is

- /

Y, =1 (nd + £
3 By]

- *3 - - Fk - Tk
op £ 2 ;ag 2C at* gag* nan.,,)

so that

Qe
g =&

-\/3 * -
w3 Y | (5.18)

X ‘ ' ‘“%’9 ’
In the case of egz) it tums out to be easier to work with the

L " corresponding component e(zg of the polynomial tensor (2,11).° The polynomial

_ tensor C(z) correspondmg to the Casimir of degree two is (see (5. 8))

'("*) T- (2) -Bx-—ve+1 6.—4-]6,‘ ‘ '
. / - . 2 7
so tl;ap 9(2) as given by (5.9) may be written J (
‘ r oL
PN < : 8(2) e- 368 +10°+ C(z) o {(5.15)
. B 2 2’ . N X }
We have that : ~ : ﬂ ) §
R | 1\2,,-1<m.+1.1,)+10p S
S . where Iop is the isopin operator and ISop its third component; l+ and 1. are

et

"the SU(Z} raising and louering operators which m the Gel 'fandaZetHn notation !
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’ so that |
' T3op = L sop . S : (5.16)
The algebraic form of I3 is therefore o ' @
' =L 6§ » ;
. 'F3 2 5, .
. 's0 that the polynomial tensor I corresponding to Iop is o
2 . 1 8 - ve . | | (5.17)

. 0‘2) Qi\ien in (5.15) may  therefore be yv?riten
’ "9(2) = - 312+ %92+ 9(2)“ -

so that retuming to the operator formulation, we have J - :
P C2) . a2 aa 2 @ e I
o . eop = -3 Ignfﬁ%— Yop + (:op | ., (5.18)
L . Substitut‘ing (5.14) and (5.18) into (5.13) weget %
; ’ ’ Mp~3ca1ar+AYp+B(Y2 412)+c(2) . —

«

: whem A and B are arbitrary constants. Denoting the etgenva'me of H by

”

o M we have ‘j : - I
i . M= constant+ AY. + B{Yz - 41 (f1+1)} o ; - o
which is the desﬁ*éd fomula. This techniqug has the advantage nf requmﬂg

v Sim I

no coupling émfﬁcients, !tt cgu‘w be applied to qpy group.
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_(O,u), the generators may be represented by the following dlfferential

opérators - . B ' ,

1l

53 = %(nan + 939 - 535 - 636)/'

Taz 1 (ng, + E3, - 03, - 83,), _
SR AR ~ (5.19) -

{

. . f

S+ - nAa'i + 836 'y _ - Ea + 53“ [ ;

1 ! N ) 1 .‘ ] :
Ty Mgk B3 To: ea + sag. : * ) . %

e U= (22 (a0 - nay ), X (2)”” (aa - %0 o) " '

A
v

o= (2072 (0, + Aag), s (.'e)"z (xa + saA) ,

et

-
e 1w

where the variables n, £, 8, é and A are the basis of the fmdmnm frre-

S

ducible representation (01) of 50(5). they are shown in figure 7. The

T

' genarators S and V_ corresponding to the sﬂuple roots may be written as’

differential operators which are function of the components of the decuplet

I . . :
-7 K

Tp (see figure 5); we have

R O R R )
: .-(o—¢)36+v(a*a)+v2(aa v o3, -89 - 1)

K

Y et v a4 e s

‘ The cwpmgnts of the basic vector operator. (degree .one) whose comsponding
polynnmia! tensor is T, = (1.20). are as follows
-&. ¢°p.v2’ 53.\ : =5r"’op-‘ v, |

»:"'!;m ; W ' : \ . (5,
Yp = .\]E "+, op = “T++.%p -VZ T3’ Top = T T 6.2) - "
Cpp =1 U OP:L V. : S _—
ToNT Nz | . .
The alemntaw po'tynomm tensurs were given in chapter IH;, they nre LN ’; .>
i & 1

{‘lzo)’\ (2ﬁm)x (zf01)l\ (2.02). (3i20)i (4'DQOL Md ( .Z'” Th& a'tgebraic
fom of the Mgbast mmts of t:hese m‘lmial tensm are fomd
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following the prescription given at the beginning of this section;

e e R G AR BRSNS TR T T RS TR TR ST R

we get ‘
o (1520} ~ 8 : : " ’ )
(2,00) ~Bvr'-vAl+¢u+I;a-%_oz—%_xp2
(2,01), ~ao -ap+V2vu "-VZ B2
(2,02),, ~ Bu -z}; o?
' (3.20:))h 40 ",B' 2 viu- 20 - 2 gy* + 2/ Wa
(4,00) ~ ¢p*'0® - 2 oo - 2 udo? - 2 Avgo + 2 Bm? !
+ 2V2 ! ahdo + 22 -vguo ) TABY + V2 vamp

-2 A%80 - 2 £2Bp - 2 vimpu- 2 olmds o272 + A2 VP .
hY i , .

e

(5.22)

A i o Wi i Pl S, T NS

¢

?

-2 ovgd + 4 Bund )
(. " (4,21);, - BavA - Bulf +2 Baby + Booy - Bay? |
* -VZ Bvon + 2 Bip -vg, B2AY - a® + V2 vaty o S

- vzau

~ !

@
We conclude this section b{ recalling some interesting aspects of

-1

this method of constructing tensors in the envélop‘lng algebra U of a group : ~

(1) The problem of constructing any tensor in U'is reduced to
to that of constructing a finite set of low degree tensors
(the elementary tensors).

(2) Assuming‘ that ‘the matrix elements of the generators are ) B

~ known (they have been calculated for most groups of interest a
in physics), the construction of the elementary tensors are
done without making use of any coup’ﬁng coeffitient.
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5.2 The action of the tensors in the ‘epveloping algebra on the bases of
representations of the group

q " In this section we.shall often refer to the concept of linear
independence of tensors so that it is important at this point to make a

distinction between two definitions of linear independence.

A set of tensors is of course linearly %ndependent when no 1inear
combin,atiori of them vanishes identically unless the cloefficients'a'l'l vanish.
In one definition theé coefficients are nume;'ical constants. This is the
definition e h;d in mind when we said that the GF’s for tensors derived in
-chapter III gave a basis for all tensors in the enveloping algebra of simple
compact groups. In the other definition the coeff% cients are only required
to be group scalars. This is the definition Okubo used in his study of a
basis 1'ior' all vector operators in the enveloping algebra of simple Lie algebras
in any given irreducible representation, therefore making no distinction h

(he counts only one of them) between-two vector operators in the enveloping.

algebra which differ by some group scalar factor (that is,one of the vector

" operator is equa1 to the other when mu1tipHed by the group sca1 ar in question;

from now on when two operators differ by some group scalar factor we shall say
that these two operators are equal modulo multiplicatwn by a group scalar).
In what follows we shall be interested in keep/i‘ng track of all A-tensors in
the enveloping ‘algebra of a group which‘ remain linearly independent (according

.to the First definition of linear independence) when acting on the bases of

certain representations; keeping track of all x-te’nsors,‘even those whi‘ch are

equal modulo some group scalar, tums out to be important when one wants to

" “astal;lish asis for all subgroup scalars in the enveloping aigebra&, starting -

.
; s he 4
.
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from a GF for ténsors. When adopting the first definition of linear inde-

pendence, one must keep in mind in applying Kostant’s ru]e for the multiplicity

of a A-tensor.when acting on a representatwn (v) that th1s rule makes no
distinction between two tensors (i.e. coumts only one of them) which are equal
modulo multiplication by some group scalar; note that this scalar may (Casimir)
or may not be in the ;enve1op1ng algebra of the group. The same comment

applies to Okubo’s result given in (1.3). _Let us now return to the object

of ‘this secthic'pr‘l,;'thas‘ is, ‘the action of the tensors on the basis of a given

representation.

\

-

Given a GF for tensors.in the enveloping algebra of a group, can

one find 2 representation (v) acting on which any A-tensor or group of .

A—,tenso,r:s (tensors which have the same transformation properties) enumerated

in this GF, exist (are non zero) and are linearly independent ? l(ost:antz:i

has proven that such a reprg;entation exists and .that actually, there is an

1nf1nité nurhbér of them for any given A-tensor or grou}) of Astensors. However,
this isn’t true in all representations; he showed.that the multiplicity of a

A~tensor'when acting on a representation (v) is equal to the multiplicity

of (v) in the Clebsch-Gordan series of (%) x (0). which implies that the

multiplicity of a A-tensor may vary from one representation to another.
Consequently,1 certain tensors enumerated in these GF’s will no longer exist

(thetir components being‘ zerﬁ) or be linearly independent when acting on the

" basis of certain representations.

The problem addressed here, is that of finding the form into

which these GF's reduce when the ten‘;;r:gmér;e aci:ing on degenerate
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representations; by degener‘ate we mean representations for which one or more
Cartan labels vanish. In other words, we want to find GF’s giving a basis \
" for tensors in the enveloping algebra U of a group when acting on certain :

degenerate representations. We shall consider the groups SU(3) and SO(5).

We approach this problem in two ways which are more or 1e§S
complementary. - One consists (as sugge:sted by Moskinsky in a privateﬂ_conver- ’
sation) of constructingl the algebraic expression of the highest component of
Jow degree tensors in U (see for example (5.12)) and then substituting for
the generators a certain realization of them (differential operators) proper
to the representation on which they are acting (see (5.2) or (5.19)). When
6ne does this, certain relations appear among tensors (some vanish, others are

() ‘ seen to be no longer linearly independent) indicating to us which tensor;s
A should . be omitted from the GF; the relations among the components of these
tensors may be dnderstood in terms of certain identities among the generators,
identities which are no longér valid when these tensors are acting on most

general represenfations. Examples of such identities will be given later in

e AL ST SRR TR P B

our discussion. In: certain cases, the above technique (we shall refer to it
as the substitution technique) may give sufficient 1nfonnation to wr1( down
immediately the reduced form of the GF for tensors (this 1s the case of su(3)).
However, it may be difficult (if not impossible) to exclude possible higher

.order relations among tensors only by looking at low degree tensors, which

‘ "brings us to our second- approach. - e
A ) | |

Kostantgg’ru'le for the multiplicity of a A-tensor in a-representation

(v) suggests that one Yould use Speiseris technique to find that multfplircity.

%
1
L 3
L]
= «,‘\
mﬁuﬁ-« R i R
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It turns out that one can actua'l'ly write down, based on Speiser diagrams

and Kostant’s rule, a GF giving the multiplicity of all A tensors (as discussed .
. earlier, this GF doesn’t distinguish two tensors which are equal mgdulo

mu]tip;ication by a group scalar) in the ,énve'loping algebra of a group when

the tensors are acting on some-degenerate representation. Unfortunately, these

GF’s give us rio information on the degree of these tensoris; this is why Ehe

£1 rst approach (substitﬁti on technique) complements the second : tt gives us

Anformation on the degrees. We first consider SU(3). | .

/ U(3) on the (v,0) representation

! ‘ . .
Let us first establish a few facts. As we mentionned earlier, various
identities exist between genérators in given -irre&ucib]e representations.

( ! ; Sys! ematic ways of finding such identities have been developed by harioﬂs

j i . autljo}'s,, In what follows we give a few examp’les of such identities which .
will prove usefq] in our analysis. In general representationswe have that
fi3ft Ea3 by (5.23)
" as can be seen by actually substitut'l_ﬁg on each sille of the jnequality
(5.25) the realization of these generators given in (5.2'); we then get
(4 w0 (B + w0, + o) L
(83, + §*ag) (nay ; £424) - ‘ |

However, if ve restrict ourselves to SU(3) representations of the t_we (v,o)

{we drop the star vari ab'les). we then get ' - -
("at) (535).'-' (Eac) ‘(nag) f . ./j

so that we have the following identity

Eiahp =Eabpe - G.24) ..

* - ot L n * Y ' N
s [ P Ve, (R W ' - T
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Another identity is @ LV
One can also sﬁw that 1n general representaﬁ’tions

- : . Ejg P Epy Eppt Eqg : !
) . ]

but in representations of the type (0,v) we havg
=E

(5.26)

Ey3 Ayp = Ep3 Epp + Eqg,

" The identity (5.26) is a particular case of the following identity | !

: . . i
(AIN + sw ) AaB" = (I\]B + aus I) Aav' (5.27) 5
The identity (5.27) has been reported by many authorss’?’on’m ’32’78'79. i

\ . "Another fact is tha:c A” + Azz-!- A33 is an SU(3) scalar in all ;,

[5}

C) ‘ " representations, since in general we have

[Auv’ Myt hyp + A33] 3“5 ALt o, ‘\xz S9s Aus |

g } - - - i
- . ' 6 Ax\’ Glli, sz -6113 As\’ : 1 P
H 0’ . ’

and Ay + A22 + A, 33 15 not in the enveloping algebra of su(3).

! ‘ Let us now begin our analysis by considering ;he‘hig‘hest component

' of the (2,11) tensor given in (5.12) in a (v,0) representation, Based on the
identity (5.24), (i.'lZ)._may be written o S

(2) s *" : . 1
i all . 2 (A, F Aga) Byt V6 E A : K
: op F =1 "?z*} 3 st 2 R %

“or keeping only the degree Qi:m
N ) I |
- %op '\g/-,-—(AH'*A?ZT“A:%

. (s.28) -
. 5 ' . /
Therefore, the degree one (see 5.10) an\!\t:l:::?y@ors are equal | L1

k X % "~ modulo a group scalar not in the enveloping a and according to the
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A

'deﬁnjt*ion of linear independence we édopted, both of these tensors sblou]d
be included in the degenerate (reduced) GF. Had we adopted ﬁhlle second
definition, we would have omitted the second degree )ve’ctorAOperator from
the GF; this is what OKubo did as can be seen from the equation (1.3) in
which I;e predicts only one 1iriear1y independeqt vector operator when the

tensors are acting on representations of the type (v,0). ' * o

F

. Let us now consider the hig’hest component of the (3,03) tensor
aopérator. Given the highest component of its corresponding polynomial tensor
(see (5.8)) ,the highest component of the tensor operator is obtained’ following
the prescription given in sectwn 5.1.. Now we could proceed by direct
substitution and shéw that the highest componoent of (3,03) vanishes. However,
in order_to see h;m this (the vanishing of the (3;03) ,ténhsor) may be under-
stood in terms ol;" certain i‘dentitie‘s :among generato‘rs. the highest' camponent
o% (3,03) may be written, aftef some manipulat.ions where we made only use of

the commutation rules (5.1), as ‘foﬂq\;s 1 ) o

C (3080, w1 {EygEqgfay - Eygfaghyy) - (Eafagfys -

v
h.

Eogf1zton) + 2 (EygfiE 13 EpshyqEqa) - 2 Ep3Fq2F23
- EISAZZE??)} . S R (5.29)
"Now each parenthesis ( ) in £5.29) is equal to zero. due to\the, jdentities
(5.24) or (5.25), which means that the tensor (3,03) does not exist in the
. repr,esénta?:ion (v,0). In the.same way we could ,show that the tensor (3,30)

also \}anishes. ‘Therefore, these two teqsors should be excluded from the

,reduoed@ ; : , .
. D‘; - M L} . . ¥ N
! l . . , s o o

- ——
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v §

] )
Following the usual‘ procedure one can show that the Casimir operator of

"deg‘iree two, when acting on representations of the type (v,0) may be written
(2) " 2 - S

Cop” = (Ayithogthzg) + 1 (AyyhgpHhgs)™, .
which in the realization (5.2 ) is written

(m; : 2

Cop’ = (na_ + B3, + ga;) + _15 (3, + E3; + Ca¢)~ .
Now since the»e!genva'lue of the operator An + A22 + A33 is equal to.v we
therefore have\that the eigenvaliue of ng) is _} (y) (v+3) which 1s awell

known resul t80.

The -degree: three Casimir is -

op

P

/d”=%iﬁﬁ%f%ﬁ3*“N#%?%Q{*“Nﬁ%fﬁﬂo
v Finally, we have the following reldtionship
i {

B g @33 @) (3) g (22
ez g 6B o) o) -8 )

which informs us that the squaré of C‘()g) shbuld not appear in the degenerate
" (reduced) GF. ’ '

<

At this point we have sufficient information to write down a GF

L4

" giving a basis for all tensors in the enveloping.algebra of SU(3) in the
‘repre)sentation (v,0). It is‘ pretty clear in the Tight of the above results, '
- that a dnearly independent set of tensors consists of the stretched products

. (i,00)a. (1.11)9 where, a and\ b are non negative integers, except that

1314

a = 1, b= 0 is excluded; here (1,00) (Ay1+AyotAs3).  In terms of a Glf this

2 ] /
‘ 1 +ZU AIAL + _..._u..._r_ \ U. »:" . ‘ 5‘30)
(-U)O-tha) . (0=0), C

e bt AN

-
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(5.30) is also valid for representations (0,v). RS

&
" (b) S0(5)

We shall first consider the case when these tensors act on

?

representations ‘of the type (0,v). From the substitution technfquedwe get

4

the following relations :

2 '.
(4 21 )hop = 0. o

Where C,, C,, Cq and Cy are constants 4 0.

The' tensors (2,01);5 (4,00} (3,20)Op and (4,21), must therefore be
excl uded from the degenerate GF -

H

we now Show how one can use Spefser’s technique fo‘obta‘ln a GF —
giving the multiplicity of all tensors in the enveloping algebra of SO(5)
when the tensors are acting on represenﬂtat‘ions of the type (0,v); the reader
is referred to figure 8. According-te'Kostant’s. rule, the multiplicity of

a A-tensor whén acting on a representation (v) is equdl to the m , city .

of (M) in the Clebsch-Gordan serfes' of (A) x (v); following Speiser’s technique,

A

f;he multiplicity of (v) is obtainec‘l\'by centering the weight diaéram of (i)

on the point (referred to'as the origin) in.the dominant sector which corre-
sponds to (v); the multiplicity of '(v) 15_ then equal (after Weyl mffectim§)
to the number e'f.states at the origin. Now one can always‘'choose a ‘repre‘- »

senj:ation (v), forl' a given X-‘-_tensor, situated far enough from the boundaries .

. (poipt A _) so that the multiplicity of the A-tensor 1’s equal to the t;unber
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of statnes of ‘zero wei'g}lt\'in the representation (A) (no cancellation occurs
due to Weyl reﬂections\)‘. For the case of interest, i.e., representations 1
of the ;;ype (0,v) whose points 1ie on the boundary line (such as point B),
one ﬁan alwdys choose ‘a representatioh (v) high enough in weight space (we

are interested in the most general case) for any given A-tensor, such that '

- cancellations at the origin occur only through reflections from Weyl’s e

W'; such cancellations occur only if the (1) representation contains st tes
lying at point B"’, i.e., only if it contains SU(2) x SU(2) states with ha -
- integer values of S and T. Therefore, the muitiplicity of a A-tensor, when
acting on most general’ representations of the type (0,v) is equal to the
multiplicity of states. at tha origin of the (1) répresentation minus the nunbér
of SU(2) x SU(2) states with'half‘ integer valqgs of S and T contained in the
(’ representation (1). The GF giving the number of states of?ero weight for .
any (A} representation may.be obtained from the GF giving the branching rlles
of S0(5)> SU(2) x $U(2). which 155 | |
F (Auhaitaide) = ((-Maly) {T-AN) (1-8a) (1-05NNa)3 (5.32)
where one keeps only terms with even N] (5) and @ (1) and then put Nl s Ny = 1
to get finally ' .

1piits . . (5.33)
: | (1-A2)" (1-A2) (1-A3) o B

e

“he GF giving the number of states with half integer values of S and T {s
also obtained from (5 32) keeping only tems ‘odd in. N1 and. Nz ant then
putting N]-NZ.-:] we then get

1+ Ay R . - o.f
(-4)” O<ta) (-8) R o
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~ the type (0,v) is -

e e AT T s

96

R -9 K

-
v

Subtracting (5.34) from (5.33) we get the GF giving the multiplicity of

all A-tensors in the representation (0,v), that is
?

- 1 (5.35)
(1-Af) (1-A3) . .

In the case of SU(3) we had" found that two tensors could differ by some
group sgalar An‘+A22+A33 not cohtainedj in the enveloping Ma. For SO(5)

n;'s»uvch scalar exists in the case of representations of the type (v,0) (if
there wer;e, it .would imply that the monobmials of degree p in the four basis

states of the fundamental irreducible representation (1s0) of SO(5) could

t
contain group scalars; this isq/’,t thé case as shown by Sharp and Pieper'n). .

In_representations of th%ype (0,v) certain tensors could iq principle differ
by some group scalar nat irq»the enveloping algebra however in the light of

the above results (that is (5.3))and (5.35) ) this doesn’t occur, The
degenerate GF giving )a B_ésis for all tensors in thé enveloping aigebra of

SO( 5) when the tensors are acting on representations (most generaf ones) of

BN

v N -

6UihA) = 1, . | ' '(5.35)
(1-0%) (-uaf) (1-utAg) C .

<

[

In the case of Tepresentation of the type (v”,O) it can be shown that (3.36)

-~ reduces as follows ' ’ . ' ’ v

o
»

, 2 ., - ’
6(Uhhs) o — 12U ~ ' 37,

-

T (-02) (1-URF) (1-U2AR) T

P

~In chap IV we discussed pow one can.check the GF for tensors'by reducing it

to 3t cdrresponding' GF for weights; in the case were thbse tensor§’ are’

o o ) ¢ . P e
acting on degenerate representations,’we couldn®t think-of any such methods
- : 1Y , - U B ) .-

e

’ ‘, of testing the results. d L - ’ - G‘

. . . .
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¥ okbTER VI

"THE MISBING LABEL PROBLEM IN THE REDUCEION 50(5)2 S0(3)

r @
*
-~ . —
.
-

’

" ﬁ The geperal problem addressed in this chapter is that of providing

~a complete Tabelling of the basis states of an frreducible repreéentat‘lon
‘ Pl

(IR) of a Lie group G. In section one, we shall brieﬂy discuss possible

-I

approaches to this prob]em, in section two we will consider the particu'lak

case of S0(5)>S0(3) restricted to representations of the type (0,v).

|
1
'

‘é.l Géneral discussion of the mi‘ss‘ing\labeI problem

Depending on the nature of the physical problem under ‘study, onhe
ma }, ujant to classify the states of the sysftem according to a canonical or a7
“non-canonical chain of groups. We define as canonical a reduction of a
group G into a subgroup when the subgroup provides enough labels to spec1fy ’

the basis states of 6 uniquely. _ \\ \

~The problem of 1abeﬂing the states 1n a canon1ca1 way has been
comp‘lete'ly solved, at least in principle, for Lie groups: correspondmg to
B the Cartan algebras A,, By and D,. !Indeed, the Gel*fand-Tsetlin’> pattems‘
\_provides such a complete labelling; in this stheme, the labels are provided

by 'a ‘complete set of commuting operators ramely the Casimirs of the group

I ‘and subgroups (note that the Gel*fand labels are not eigenvalues of the

e e g it

w0

3
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~SU({2) basis has been solved by Ahmed and Sharp

; : 98
—
Casimirs but can be written as function of them). For example, the canonical
chain for the group SU(n) is

SU(n)> SU(n-1) x B(1)DSU(n-2) x U(1) x U(1)D..... OU() x ... x U(1),.

° L 3
n-1 times

When one classifies the states of a physical system according to
aﬁn%anonica] chain of groups, one faces a labelling problem since the
. {subgrogﬁ does not ;;rovide enough labels to specify uniquely the basis states.
Actually as sbown~by Peccia and Sharp7,2 given a semisimple group G and its
| semisimple subgroup H the number of missing labels n (1’r; the case of general
’ ‘represgntat%';)ns) .in the reduction GoH is— | V
R |
.where re, ., 2., £, are the order and rank of the group and subgroup. For
: instance In the ease of SU(3)> S0(3) there is orie missing label and two missing
1abe15/in the reduction SO(5)> SO0(3). The missing label problém has given

rise to many studies; the solutions propdsed may be divided into two classes.

One leads to analytical but non onhoéonal bases. | For example,
in the SU(3) shell modeTEHmt36 soTved the missing label problem by a
pmjecti;)n' téchnique; good SO(3) states are projected from certain intrinsic
states, and the missing Tabel is provided by the intrinsic state from which
the projection is made. FoUcwing a technique which parallels closely
_E114ot*s, the labelling problem in the i:ase of SU(4) states in a SU(2) x
%5 and also by 'D‘raagerm.
Another approach to the missing ;abe] problem which also leads to analytical

but non orthogonal states consists in defining highest states of subgroup .

RAEU e
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-mu'I:ip]ets in terms of products of elementary multiplets (the elementary \
permissible diagrams of Moshinsky and Devi); it is based on the observation
that all subgroup IR’s of all group IR’s may be defined by the stretched
products of powers of a finite set of elementary multiplets (they are also
called elementary factors and are the highest states of subgroup IR’s
be]ong:'ng to low-1ying IR’s of the group). The exponents of the power of
tha elementary multiplets supply the missing (as well as non missing) labels.
/TDS technique has been used in many occasions; SU(3)> 50(3)82, S0(5)> SU(2)49
and S}l(4)DSU(2) X SU(2)50 states have Vbeen defined in this manner. Our GF
(3.52) for SU(6)> Sp(6) branching rulés also defines sych states. In both

cases (projectior{ and elementary multiplet techniques) the missing labels

are fntegers.

~

In the other class of solutions the basis states of the representation

are common ¢igénfunctions of a complete set of commuting Hermitian operators

and therefore are ortﬁogonaj; as first poimted out by Racah83. the missing

label is not ﬁsua'l]y an integer. Given a chain of groups G? H“, the labels |
are provided by the Casimirs of the group and subgroup and the missing Tabel
operators. These missing label operators must satisfy the following requirements

‘K{ - (1) They must be hermitian (we want orthogonal states ,
and a missing label which is real).

. , (2) They must transform every space carrying an irreducible
representation of G into itself and therefore should be f
fn the enveloping algebra of the group.

v (3) Since they must commite with the Casimirs of H and also

. _sfnce all states within a representation of H must have .
@ S . the same eigenvalue, the missing label opetators must - . ...
be H-scalars. -




-y

)

. group in the case of general representations.

-and SU(4)o sSu(2) x SU(Z), in which there are.two missing.labels, have alse

' 100

(4) These operators must provide labels which are independent
of those provided by the other 1abelling pperators and
therefore should be functionally independent of them
(that is not expressible as a function of them only).

(5) If there is more then one missing label, these operators
must be constructed such that they mutually commute.

Therefore the missing label operators must be choseh amonglthe subgroup
scalars avéﬂable in the enveloping algebra of \the group, which leads us to
tﬁe problem of establishing a basis for all such scalars. The answer to this
problem depen&s on the type of representation one considers. A basis for
all subgroup scalars in the enveloping algebra of a group when thg scalars
are acting on general representations (that is, representations for which
no Cartan labels are zero), may no longer be vaiid if one restricts itself
to certain degenerate representations (one or more Cartan labels being zero).
This m'ay be understood (as we discussed for the case of group tensors) in
terms of certain identities among the generators, identities which are no
longer valid in general representations. Let us first discuss the problem

of establishing a basis for subgroup scalars in the ehiveloping algebra of a

It has been shown for an arbitrary semisimple group 6 af/d its

- semisimple “subgroup H that the H-scalars in the enveloping algebra of &

are finitely generated‘ that is, that all subgroup scalars may be expressed .

) aseo'lynomia'ls in a finite set of elementary scalars (integrity basis). —

3

Integrity bases have been given 1n all cases of one missing label and

maxima] ‘subgroups. Solut'ions in the case Gzn su(2) x su(2), 50(5)3 Su(2)

/ - !

{

S ey e N e SR 10 5 ey T SIS L
'

»

. : ' —‘
4, f
L -, . R (
B " L . i
! . . W R s, . g .
' ta e e honi bt . = rah -~ 4 o~




1 ST DIIIITEYTITE ™ o s« 1 i e

P .

*

PR AT N e Yt e

100

2,49

been proposed . Onﬁe the -integrity basis\is established, the basis for

all sdbgroup scalars mdy be presented in the fbnm of a GF (one may also

derive the GF and then read off the integrity basis). For examp1e,aphe
algebra of SU(3) decomposes under 30(3) into a rank one tensor L and a rank
two tensor.Q and the integrity basis for S0(3) scalars in the enveloping
algebra U of su(3) is L2, o2, ¢%, 120, L%? and 130 with (130%)? redundant.
The GF giving a basis for all SO(3) scalars in U is therefore equal to (the

83

integrity basis was first conjectured by Racah = but first proved hf Judd

et aI])
' 1133 / (6.1)
(1-19)(1-69)(1-03) (1-1%9) (1-1%%)

Once a basis have been established the next step is to choose among all these
scalars the misiing label operators. Here an important concept is that of func-

tional independence. An operator is said tobe functionally independent of a

- ~ set of operator i %no powers of 1t can be expressed as a>function of the elements

of thie set alone. This property is particularly importaﬁt for the tabelling
problem since we are 1odk1ng for independent labels. A necessary although
not sufficientacondition for a subgroup scalar to be functionally independent
of all other subgroup scalars in the enveloping algebra of the group, is that

it must be a member of the integrity basis; note that in the case of SU(3)> .

S0(3), although L303 is a member of the integritj basis it is not functionally

1n6epehdent of/all other subgroup scalars since its square may be expressed

as a linear combination of other subgroup scalars. Therefore when lTooking

for missing label operators, the simplest solution (thé one leading to the

s
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Towest degree scalars) is to choose them from the integrity basis. The
integrity basis will contain the Casimirs of the group and subgroup and also
the lowest degree missiné label operators available in the enveloping algebra.
A theorem of Peccia and Sharp states that for semisimple groups, in the

3

case of general representations, the number of functionally independent

waa W e T

T

missing Tabel operators available in the enveloping algebra is just twice
the number of labels actually missing. Let us summarize the situation :

given a semisimple group G and its semisimple subgroup H, techniques have
I8

been developed to establish an integrity basis for H-scalars in the enveloping

algebra of G and solutions were given for many group-subgroup combinations.

andet

This integrity basis contains twice as many missing label operators éﬁ there L.
- . aremissing labels and ‘provides the lowest degree missing label operators J
available in the enveloping algebra; it gives a complete description of these

s operatéfs that is : degree, multiplicity and composition. In the case of two

missing labels or more there is an added difficulty : one must construct out
ofi the 2n operators available n missing label operators-that mutually commute.

No general approach to this problem has ryét been developed.

i

Unfortunately, in the case of degenerate representations the
situation isn’t as c¢lear. No systematic approach to. find the integrity basis
in such caseé is known. However, some information may be obtained {if one
kgows the reduced form of the GF for group tensors in' the enveloping algebra
‘of the group; indeed, from the GF for group tensors a GF for subgroup scalars
may be obtained giving us the multiplicity and degrees (it gives no information
on their composition in terms of subgroup tensors) Ah}example of such a GF

& will be given in the next section.’

[
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Having discussed in some detail the missing label problem, let us
now consider the case of S0(5)> S0(3).

6.2 Missing iabeW problem for S0(5)> S0(3) restricted to representations
of the type (0,v)

B A

84,85

It is a well known fact that the states corresponding to the

quadrupole vibrations of the nucleus may be classified according to the

totally syﬁnetric irreducible representations of SU(5) in the chain

p— gy -

SU(5)> SO(5)> SO(3) with the embedding (1000)> (01)> (2). The labels are
pmlavidéd by the Casimirs of SU(S}, S0(5) and SO0(3) and thg third component
of angular:momentum. There is one missing Tabel at the level SO(5)>S0(3).
Actual'f_y a 'comp]ete solution to this problem has been given by Chacon et a]as;
(’:‘-,c, thgir 'approach consisted in defining the highest SO(3) states in all SO(5)
represgntations in 'terms of products of elementary multiplets (elementary per-
missible diagrams) thereby solving the missing 1abei problem and obtaining

analytical but non orthogonal states.

In wha't follows, we propose to solve this missing Tabel problem
in terms of a fifth labeiing operator whose eigenvalue will provide thé missing |
ylabel; we Shall calculate its eigenvalues and eigenvectors up to (including) - '

. the SO(5) representation (0,12) where a degeneracy 3 first appears.

Obviously one first wants to know the missing label operators
available in the enveloping algebra. An integrity basis for 50(3') scalars in
the enveloping algebra of SQ(S). in the case of general representations ,has been
gk'fven by Gaskell et a'lqg; although useful to establish an upper bound, such
( ' integrity basis is no lonﬁer valid for the case of interest. Some information f@

may be obtained 'since we know that the reduced form of the GF (3.36) is

i
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)
L) (-uAR) (1-utA3)Y (5.36)

..J The GF for the branching rules of S0(5)2 S0(3) has been given by Gaskell
et aiig.;\‘setting equal to zero the dummy variables which carry the SO0(3) %
represenfatiog Tabels in this GF, we obtain the fo]lmfing GF for SO(3) scalars
in S0(5) frreducible representations *V
(1+A8A3) {(1-A3) (1-A3) (1-ABAR))Y . (6.2)

- The GF for SO(3) scalars in the enveloping algebra of SO(5) when the scalars
are acting on representations of the type (0,v) is obtained by substituting
(6.23 in—t_(i .(5.36); we get 2 .
(+u ) ((-u%)y (1-u*)(1-uf)y, (6.3)
(6:3) ,’ informs us that the integrity bésis contains five subgroup scalars :
( ) two of degrée two which are the Casimirs of SO(5) and S0(3), one of degree
) nine wt}os; square is redundant and two of degree four and six whiéh are the
lowest degree missing label operators availab{e in the enveloping algebra

of S0(5).

. Here we would like to comment on a result of Vanden Berghe and De _
Meyér%; (6.3) :; anforms us that one can construct only three linearly 1ndependen£
~ (that is, one cannot be expressed as some linear combination of the other two -
~and Casimirs) SO(3) scalars of degree four in the enveloping algebra U of
S0(5) out of which only one will qualify as a m1ssi¥ng label operator. Vanden
Berghe and De Meyer claim that there areten S0(3) scalars of degree four in
.the enveloping algebra of S0(5) which are functionally independent of ‘the e
; Casimirs of S0(5) and 50(3) and therefore qua'ny as missing label operators.
Now assuming that these op\erators are good missing 'labelloperétnrs,‘ (6.3)
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info;-ms us that if we choose any one of them (we sha]i_dehote it X) the
other nine are expressible as some iinear combih\ation of X with the Casimirs
and their products and therefore, they do not provide labels ;nhich are
independent of the one provided by X. Moreover, the Glf proposed by Gaskell

et a1¥9

giving a basis for all SO(3) scalars in U when these scalar are

acting on general representatiqns informs us that one can actually construct
only seven linearly ‘independent degree four SQ(3). scalars in U, and this is
including the Casimirs and their products; therefore, when one restricts : o
oneself to degenerate represeﬁtations of 50(5—) the number of linearly independent:
degfee four 50(3\) seaiars jsy\a end (6.3) tell us that number {is actually '

equal to three.

Returning to our brobTem, we choose the simplest solution ,that is,

R

a degree four missif;g label ope,r;atorj». How do we construct it ? First we
know that the S0(5) algebra decomposes under 50(3) into a rank one tensor L

and a rank three tensor Q so that the degree four missing label operator can

22

be chosen between the following possibﬂities s QL QL Q L, Q or any

B 'l'i,near combination of them with the Casimirs. It tums out that QL qualifies

as a missing label operator and the proof is by direct verification that is,
it is sufficient to show 1:hat;~QL3 solves the first degeneracy that appears
(the first one is at the level (0,6)). We constructed QL3 in-the following -

“way : first coupling Q and one of the L's to give a j = 2 tensor and then

" doing the same thing forthe remaining two L tensors. Formally this may be

ﬁritten as follows \ .
. J=2
QuF? : z g L (30 uml 2m) _
';‘ , Vi He T . : (6.4)
{L L}m- - z Lul Lu2 (] ’1 U1 9“2! 2,‘“) ' I

B . H1l2 |
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where Qus (us ¢ -3,-2, ..., +3) and Lu (E-l, 0, +1) are the components
.of the tensors’Q and L. We then take the scalar product of the two j =
‘ _ tensor given in (6.4); following Racah'587 definition of scalar product the
missing label operator X is
. m .
X = f‘;‘ {(']) QUS Lm_us L]Jl L_m_ul(3;1,ua,m-ua|2,m) (6,5)
HiHa
x (1,10 5-m-y, | 2,-m)}
Time components L +1 and L1 may be written in terms of the generators of the
SO0(3) algebra L, and L.; we have )
Lyz-1 Lo,doyz 1L (6.6)
+1.- + 1 — .
: H V2
. The Clebsch-Gordan coefficients are easily calculated so that X may be
( ) - written as follows T )
“ X =Qglo [3L2'-5L¢2,— 1]+ . Gty [Bosi, o+ 1) -2]
v Via ’

2 Ay ol 3 2 :
-3 QL [t? - 5tg (Lee1) -2] %Vgo_zg+(Lo+r)(

;- - 2 3
J , \/5 L (L -1) 1\/ Q. +1\/5 Q.q L
‘ Q+2 3 + AT +3 j )
" where !.2 is the S0(3) Casimir. It is easily shown that X is hermitian. Once

we have found an operator statisfying all requirements the next step 1s to

——

-

e obtain its eigenvalue spectrum and eigenvectors. He intend to do this by
: actually diagonalizing X in some SO(5) ana]ytica'l basis; however, before
getting into the details.of the procedure let us bﬂeﬁy discuss another

method of obtaining the eigenvalues of X.

i

. A few years ago Hughes and Yadegarn

the SO(3) shift operators valid for any Lie group G which has. $0(3) as a -
7 - - B s

6.7)

gave an explicit formula for
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subgroup. Their shift operators are polynoﬁ.ﬂa'ls in the 'generators of S0(3)
and in the components of a rank j SO(3) tensor Q (for G =SU(3) § = 2; for

6 = SO(5) j = 3); these operators, denoted by Ot, K= =jy aves J, when
acting on SO(3) states with arbitrary m (eigenvalue of Ly the third component
of angular momentum) change the £ value.(where 2(%+1) is the eigenvalue of
the S0(3) Casimir Lz) by k without changing m. They are defined as follows

i ,
O & dp @ Ror T [yf () Ry 0T (w1 ]

where for u = 0, ... Jandk 2 0 ' : (6.}3)

X Q-rmrk):(z-m«»k):,]* f(j; % 24Kk ) -

W ~u-m m

and R+u = Q - L}: " The other shift operatorS*O;‘k (k>0) are obtained through
- + . N

-k
0" = - o Sy j
= ‘?k (z,m) Ry+ I *{ o (z.m) pt )’1"‘6;"' {2,-m)-
| uep - R
]
where - , ' ' :
€5 (i) = (s1)FH3Ek- A
W _ | .
x| (20+3-ke1)1034K) 1 (3-K)? (omep) t{(apm) 2 ] 0
(23)1(22-3-K) ! (24mip)! (2-mik) ! (2omk)! ST
Cx J K -»  4=k- ‘ S
’ ‘W o pem o M) R DO T S o
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The operator 0: has interesting properties_. It is an SO(3) scalar and is
hermitian; more(;ver, as shown by Hughes in mse where G '1s Su(3), Og

. e
qualifies as a missing label operator and if G is SO(5) it follows from

(6.8) that ’
0 = -g_ Qlo (32 - 512 - 1) - va' Q4 L, n? - 5Ly (L) -2}

3 QﬂL 02 - 8L (L) -2) + VB QL2 (L) (6.9)

wsquL (L, - 1+ Q) -q 02

where Q‘J are the components of the j=3 S0(3) tensor into which the SO(5)

algebra decomposes under SQ{3). Comparing (6.9) and (6.7) we see that

o ‘ | t
O =-2 V%——‘{ X (6.10) (

() . “ ‘so that 0!2 qualifies as a miséing label operator. Hughes‘z']6 has developed
‘ a method by which the eigenvalue of Og may be calculated without referring
to any explicit form of SO(5) basis states and therefore avoiding any'diagm N

] |

'\ . nalization procedure. His technique is based on the properties of the shift

operators and consists mainly in establishing relations between powers of
0 ~k Ork

k d products of shift. operators such as °£+k , Which are also S0(3)
scalars jthe weak point about this technique is that for degeneracies greater

than two the algebra becomes very laborious.
- &

o \ Vanden Berghe and De Megie\:r88 actually used this technique to find .
h 'the efgenvalues of O: (which they denoted Q\?J) for the ch‘ain?O(S);:SO(l!) up
to-(including) representation {0,7) which as a double degenefacy. They gave

the following closed formular for singu1ar eigenvalues (no degeneracy)

- Starting with the Mghest -g-values S0(3) representation - ,

)
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L -
% \ *
5 % 9y = 2VZ v(v+1) (2v+1) (4v+3) (v31)
’ 5
% o2 = ggV_Z_ v(2v-T) (4v2-5v-14) (v>2)
o Aipy3 = _2\61_2_ (4v-3) (2v3-v2-17w+1)  (v33)
! Y;2v-4 - ,_2\5{_2_ (v-1) (8v3-38v2-v-60) (v>4)
% 2y-5 = TM (8v*-42v3-7724258v-150) (y5)
é For the lowest 2-value : ' (6.11)
for v= 32 (z= 1,2,...)
J a\"’o = 0
36’3 :“sz .
3 u&;d = 47
( | P forvs3z+1(z=0,1;2...) © ]
k a\a,.,‘z"- ‘%vz (5v+9) (v>1) ? o
\“ : % 4 = -1v2  (3vi4) (vad)
: Toay g WZ (1) (v38)-
ayg= 6/Z (5v436) (v>4)
w{”f.”-_a -QE_Z. (150\)4-401) (v37)
‘fOI"\)53Z'~1 (2:1,2.-..) .
J
W 9= -g\/i (5v46) | (vs2)
“'\5;4"" 12VZ (3v+5) (va2)
o . ,
%?5 = -18/2 (Svf.ﬂ) _ (v>5/)d
a°'§= -Gﬁ (5v-21) L (va8) ﬁ ‘ . '\
o, 7= ,,5_\5/‘2_. (1500 +49) . (y;a) . DA
. . s ‘ . ' ;“. . . g S

- W




- B ATy ot e

110

These formulas wem¢riyéd for the case v<7 but the authors conjectured that
they were true for all v (our results confirms this at least up to (0,12));

as mentioned by them, the eigenvalues a9 of Oz Dfor all singular eigenvalues .
can .be written as 6/2-times an integer. 'The eigenvalue of 0: (more precisely
5 0\,’&) for&yf],sas given by these authors, is shown in table 1IV.

P .
Another method of obtaining the eigenvalue spectrum of 02 (we shall

use 0 instead of X given in (6.7)), which is the one e will follow, consists
in evaluating the matrix elements of Ok in some SO(5) analytical basis and
then diagonalizing Ok’ our approach follows closely that ‘of Judd et al] for
SU(3)>S0(3) (our calculations were under way when Vanden Berghe and De
. Meyer’s paper appeafed; in order to compare our results to thejirs we _
multiplied X by the appropriate factor). The analytical basis we shall use
are the §o(s)::su(2) x SU(2) basis states gas defined by Sharp and Piepern;
“i we adopt most of theiuxotation. In order to use to above basis states, we
must -express the components of the tensors Qeand L which compose Ok in terms
of generators suited for an SU(2) x SU(2) basis. Kpart from the generators
which compose the Cartan algebra that 15, 53 and T3, these generators are -

-

shown in figure 6.- We have the following commutation relatfons
[L, L_] 2Lo. [L+. u] = {(3 u)(3 +u+ + oyt Qu*l .

Let us set

L, = aTl + bv+ and Q. = 5,

. / ,
" where a and b are constants to be determined. From the above coiqnutatim

'”mles it is easily shown that a and b must satisfy the foﬂowing two equatims

) a? - b2

-

) g
21, at-afo-2 o




- The general SO(5)D SY(2) x SU(2) basis state is denoted 1aw; st; sata‘)‘whem

» the repr'e'sentations we are interested in, that is those of the type (0,v),

"summation over m since both SO(5)>5SU(2) x su(é) and SO(5)> SO(3) states

m
" Solving for a and b we get @ =+ 2, b = + V3 so that . ¢ 0
‘ 7 Lo=Tg+ 35 . - (6.13)- .
Choosing a = + 2*and b = + V3 we have that ° ' " o N . )
L, =2T, + VBV, Loz 2T +V3V. . . _
4 -

{ - . .
By making use of the comutation es of L_ with Qu it s easily shown that

‘Q+3=N{='—¥p+’ > +i=%‘v+ +Vg Ty s . _
. k 5 .

Qp=:3_ T, 1 _SpsQqy2-\B T 1 _ V., . (6.14) -
% R TR ,

“O_zs%z'u_, Qg= -5 . ° o . ,
A,V are the S0(5) representation Tabels and s, t those of SU(2) x SU(2). For

. & .
s=t and.o £ 5 g "/2 so that: the states ave’ denoted |Ov; ss; saty> (from

" ngy on, we shall drop the SO(5) labels). SO{5) sthites n a SO(3) basis will -
‘be denoted }E.ﬁn,a) where we shall denote the missing label by o. Expanding

the basis states |ss; s;t5> interms of |2, m, a} we get }

| S S5 Sg t3) - 22 CHEN My - E (6.15)
’u i : |
- where a, are some coefficients and e .
mty, Sy ‘being the eigenvalues-of Lo, Ty ar’ S;. The summation in (6.15)" U

runs over all g»m which occurs in the SO(5) representation (0,v). There is no o

are eigenvectors of L,. When 02 acts on both side of (6.15), we get

| s.sg’t3 Xp (555553:t3) Iss;s3t3> = l).fa azall,m,a) ' | (6.17)

) ' |




— , 2
112

where X (s,s,s3,t3) are matrix elements of Oz

the same_value ¢f m. There will be as many equ)ations (say w) of the type

between states of (0,v) with

(6.17) as there are |ss;sts) states satisfying (6.16) for a given m.
Substituting {6.15) in the left hand side of these w eéruat'l ons and comparing
the coefficients of the linearly independent states]f.m,a) we get the
following secular equation

IXm (535353’t3)' = Q'l = 0 » (60]8)

We have a %ecular equation for each value of m which occurs in
the (0,v) representation; the order of the secular equation increases,
in‘ general, when the absolute value of m decreases and is max1mum when m =0
or equivalently is equal to sthe number of SO(3) representations contained in
(B,v’): Now since the eigenva’lue o of Oz is independent of the m va?l'mskof

the state, weé can solve (6.18) in the case where m = 0 and get all eigenvalues
"

- |
.o at once. The prescription is therefore the following : for each SO(5)

IR (0,v) evaluate the matrix e]ementg of 0k between S0(5)> SU(2) x Su(2)

states withm = 0 and then diagonaHze it; since we only use m = 0 states it

I
is easily shown that the expression for Ok given in (6.9) simplifies to the

fonoumg L

o°_ 2\F [ gV’ Q4L V§ Lit Lk
vgq.'LLL+ V6 Q 2+ -\ Q+2L2 S (6.19)

- A

+ Q_3L+ -Q 3"3 .

' In order to compare our resul ts with, those of De Wnden Berghe

'. we have diagonalized the operator x(” defined as follows

/

!
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~ XM, a0y o (6.20)

'VZ( 593.97 / K-

*A¥though we both use the expression (6.9), there is some arbitrariness in
the definition of Qu as given by (6.14) which explains the factor - 420 ),

593.97
the other factor is (as they did) to obtain <integer values whenever

possible.

The diagonalization involves the solution of algebraic equations »
whose orders are equal to the degeneracies of the S0(3) representétion in
(0,v). Double, -threéfo'ld and fourfold degeneracies can be treated anal-
ytically, at least in principle, by solving quadeatic, cubic and quartic
equations. Cases of higher degeneracy.can be treated only numerically. We
wrote a oomputer program which performs all these calculations (that is,

Y

evaluation of matrix elements and diagonalization).. Matrix elements which

3

proved useful in writing ,the program are given in appendix C. Our results

are given in table V. Comparing table IV and V we see that our eigenvalues

correspond exactly to those given by De Meyer and Vanden Berghe. In table VI

we compare the values of, 5 OV,E for singular eigedvalues as predicted by
the formulas given in (6.11)-with those we obtained. A% the table
shows our values correspond to those conjectured; this was the case for all
representations considered. We also calculated the SO(5)250(3) eigenvectors
for vhich m = 0. These eigenvectors are 'ﬁ)ne linear combination of SO(5)>
-SU(2) x SU(Z) states with ty + 355 = 0; the coefficients are given in table

VII.

*
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CHAPTER VII
CONCLUSION

In this thesis we have established a basis fpr all tensors in the
enveloping algebra of simple compact groups of rank < 3 and have discussed
in detail for the groups SU(3) and SO(5) how this ba‘sis reduces when the.
tensors are acting on the bases of degenerate representations; we have sjrown
how this collapse of the GF for tensors may be understood in tems of certain
identitids among the generators andin connexion with the missing 1abe?} problem,

we showed how the GF for tensors and their reduced férms may be useful to

o e ST

obtain a GF for subgroup scalars in the enveloping algebra of a group. A new
function, the group-subgroup characteristic function, was introduced in
cﬁapter I11; it proved to be useful in transforming a GF for subgroup tensors

into a GF for éroup tensors.

e b 2 s i

m‘;ft of the techniques discussed in this thesis could in principle
be used for' higher rank groups; Ilrowever, the difficulty of application
' ' jncreases rapi'diy with the number of generators so that we suggest that one
" uses the computer whenever possible. In the next few paragraphs we shall

,point out some of the calculations that could be done by computer‘f

@ : | " When one calculates the GF for tensors in the enveloping algebra o
of a group, an important phase of the caiculation (depending on the method

/

» - s
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above ¥ program such as the one developed by A.C. Hearn

used) is that or the testing ot the results and, as we discussea in chapter
1V, this can be done analytically but for groups of rank > 3 the algéebra
would soon get out of hand. This reduction can be done quite easily by
computer and as shown in chapter IV, the test proved to be very efficient;

jt i$ suggested that for high rank groups one uses quadruple precision.

One can also use the computer in connexion with the élementary

multiplet >metnod; the program which we digcussed in chapter III proved to

be very useful, leaving to the user the problem of guessing the elementary
factors and syzygies; however, even with the usage of a program, it could be
difficult to choose tlhe right elementary multiplets and sysygies since for ~/
high rank groups there could be many.posﬁ»bi]ities. We suggesi: to divide

the prob]em by making use, whenever °?osmble of intermediate groups (including
'the subjoining of a group .to another). Usually the insertion of intermediate

groups reduces considerably the possibilities.

If one\chooses to construct a GF for tensors by making use gf.a -
subgroup (as we did for SU(3) and 50(5)) the major difficulty is 20 eliminate °

‘from the ﬁnal expression all negative terms that appear in the numerator. and

spurious factors such as (A+B) appearing in the denomipator, all these
unwanted terms being a consequence of the residue c¢alculations.Here again,

one can use a computer to reduce the GF to a useful form; this has been done

by Gaskell et-al. One could also use to eliminate the unwanted terms mentioned
89 called "Reduce 2",
which performs symbolic calculations; however, the usefulness of such a program

for large expressions remains to be proved.
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‘ 'lnéebmdent scalars; . these are the Casimirs of SU(3) and SO(3) both of

.o
- ._ﬁ,-m s - AT SRR e v s '

116

}
A final comment in connexion with the theorem of Peccia and Sharﬁ g
concerning the number of functionally independént missing- label operators !
available in the enveloping algebra of a group. The theorem states that there }
ére,fn the case of general representations of the group, twice as mény missing i ?
1abe1~ operators available as there is missing labels. Now in the case of f
S0(5)> S0(3) restricted to SO(5) representations of the type (0,v) we showed !
that there are two functionally independent missing label operators available. |
In the case of representations of the type (v,0), substituting (6.2) into K
(5.37) we get the following GF for SO(3) scalars in the enveloping algebra
of SO(5) )

1+U4 t v’ + 0° s
(1-0%)% (1=uty (1-18)

sp that here again we have twice as -many missing 1abel operators available - 1

(of degrees four and six) as there is missing labels {only one). The GF

for branéhing rules of SU{3)> SO(3) informs us that only SU(3) representations

B

with even Cartan labels contain S0(3) scalars so that keeping only terms with

even ers in A; and Az in (5.30) and then putting Ay = Az = 1 we get the

Bt adth e g =) o e

following GF for SO(3) scalars in the ;nveloping algebra of SU(3) in the

case of representations of the type (O,v)‘ and (v,0) )
1 + 03 - + 03 . !

(1=U0%) ('I-Uz) ]

]

This GF informs us that the integrity basis contains oﬁly two functionally

degree two. This was expected since there is no missing label, so that here

again the result agree with Peccta and Sharp’s- theorem. We conjecture

that this is the case for all groups, i.e., that their theorem remains valid

for all representations of a group. . .
\ . ' .
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APPENDIX A
' GENERATING FUNCTION TECHNIQUES

In this appendix we discuss certain GF techniques that have Seen
developed in the past few years. In section 1 we illustrate how a GF fbr
tensors may be obtajned from a GF for weights __In section 2 we discuss

- & generalization of this? ?pproach which makes use ofthe Weyl characteristic
function. . The elementary multiplet method which has proven very useful in
the evaluation of various types of GF’s is jiescribed in section 3. Finally,
in section 4 we briefly cover the problem of the coupling of two GF's and

the é,ubstitution of‘one into another.

Let us consider the prob'lem of finding a GF for SU(Z) ‘tensors based
onaj=1tensor I'. The weights associated with the three components of

T are w.,' =1, » Wy = 0 and Wy z-=1. The tensor products (2.2) are realized in”

weight space by the fo‘nowing GF for weights (in the fonowing ca1cu'lations
Y 1s not a Cartan label and J\ H '

= ] '
M (-0m) (1-0)(1-0n 1) (a1

where the exponents of U and n are respectively the degree in I' and the

+¥

. weight. ‘The GF for tensors belonging to the IR(A) (highest weight A, lowest
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A in (A.1) minus the coefficient

weight-X) is the coefficient C_, ‘of n
C,., of n' (the subtraction eliminates contributions from higher tensors).
This operation will be done in t&;o‘ steps : first extract from (A.1) the
coefficients of n-k and r1")‘7’l and then make the subtiraction. The coefficients
may be obtained by making use c:cf~ the' following well known result of the

theory of complex variables :

0 ‘a -1

"

ndn
= 2mi v az- -1 (A.2)

where the integration is done arouqd a circle centered on the origin of complex

space and a is an integer. Based on (A.2), we may write

-1,
C__ = 1 4] dn R
D gﬁ' ., B (A.3a)

(1-,n)(1-U)(1-un~")

) il A L
Coamy ® aln' é oy oy - (A.3b)
(1-Un) (1-U)(1-Un-1) ‘

 J !

The above approach impliesa power series expa}nsion for the various fractioéns
(1—-2)'1' on the right hand side of (A.3) and therefore impdses the “/fonowing
condition on the norms of the 7°s

' |z} <1 ) (A.4)
which in turn imposes certain restrictions on the norms of U and n. Condition |
(A.4) is satisfied if we choose [U[< 1 and integrate n about a unit circlue.
The GF for tensors belonging to the IR SA) is therefore

€y -Chy = 1 @' -0 dn __/
- 2mi -1
: L (1-Un) (1-0) (1-Un" )
= I Res ('LA-I = "A) (A.5)
T (1-un) (LU)(1-un Y

o A

bbrscn, £k i %

P
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where I Res represents the sum of residues of poles of the n variable
inside the unit circle. Our aim is to obtain a GF for all te‘nséf's (al1 A)
so that multiplying (A.5) by At (to keep track of the representations) and

summing over A we get the desired GF fori tensors

g A
6(UsA) = £ (C, -C, A
A0 A At
o 4§
= I I Resn (nk'l- qx) A;‘__ H (A.6)
- -}
A=0 (1-tn)(1-U) (1-tn™ )

the-sum over X is geometric and may be done immediately so that (A.6) becomes

ws

GUIA) = 3 Res, _(n~ )
. (1-un) (1-b) (1-Un" ) (T-nA)

the sum over residues is easily done so that we finally get

G(UsA) = 1 . ' (A.7)
(1-U % (1-UA)

(A.7) gives us a basis for all ‘irreducible SU(2) tensors whose components are

polynomials in the components of the SU(2) vector I'. U and A carry respectively

the degree in T and the representation label. G(U;A) may be interpreted in

terms of the following set of e]ement,éry tensors (u,A) where p stands for the
degree in T and A the representation label : (2,0) and (1,1) with no redundant
combination. We now turn to a generalization of this approach for all compact

semisimple groups.

B3

2. “How to use the Weyl characteristic function to obtain a gener-at:mg49

function for polynomial -tensors

The character x, of a representation (1) may be written

] ! l 7"
nG i N (wi)j ' o

- L B

;‘i"‘"a
gt

e
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where n‘1 carries the Jth component of the weight w; and Ni is the multiplicity
of wy in (3); & is the rank of the group. For example the character function
for the representation j = 1 (A=2) of SU(2) is

T Iy -2
X, = T+n +n ",

Hey]go has given an explicit formula for calaulating the character of any

representation of simple groups, namely

x (1) = g, By £ (18 n R, oRe g Ry (A.8)
TAGY S ' | i

where the sum is over the Weyl . reflections S and (-1)S is the determinant
of the matrix of S; (_.,)S is+ 1 1f S is a product of an even number of
‘'reflections and -1 if it s an odd number. R is a vector in %, dimensional
space defined by ' . 4

' R=R+eR (A.9)
where R is half the sum of the positive roots of G and W, is the highest
we1ght‘of the ébresentatim (x). & is therefore a linear combination of
_terms "nniﬂ1 whose expment.’s py depend linearly on the representation labels;
it is R:\own as the characteristic of the representation (1). A(n) is the -

characteristic of the scalar representation

afn) = &, = I (1) oS0, R o (R4 \ (A.10)
‘ s i

" . when plotted fn tg dimensional space, g, corresponds to a set of points

equidistant from the origin called a girdle, uniquely characterizing the
-representatim (1), i.e., each representation corresponds to a different
set of points and there is no overlap between the sets. For a given 'group,
the number of points N in a set is independent of the representation. The

c
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space is divided‘in N sectors, which are*called defining sectors, each term
of gA belonging to a different one. There is therefore a one to one ‘
correspondance between terms belonging to a sector and representations of
the group. The sector corresponding to the highest weights is called the
dominant sector. For every semisimple compact Lie group, suéh sectors may
be defined. The characteristic function for simple Lie algebras of rank

9]. For example,

two have been given by Behhends,Dreitlein, Fronsdal and Lee
using their results, but following Weyl’s convention concerning highest
weights and positive roots and choosing the n,, ny variables of weight space
such that the highest weights W] ans Wz of the two fundamental i?reducib]e
representations of SU(3) that is, (1,0) and (0,1), are reSpectively‘W] =

(1,1) and ﬁz = {(2,0), the characteristic function £A1A2 for SU(3) is

- -

E)‘l)\z = ~Th
(A.11)

+ nl(lz*l) nz‘(2K1*Az*3)_ nl(A1+Az+2) ne (A1-x2) + nl-(l‘*kz*z)rﬁ({‘"AZ)

I

For the scalar and octet representations we .get

N

~2 -6 6 "2, o 8 Y
Nz -N1 nz ¥+Nfnz . - ni+ m (AR.12)

=1 N2 + n%

tn

-1 -3 s -1, -3 ) -2
N1 M2+ MNz - N1 N2 + MN2 - N1 + M

"

€00

\
The girdles corresponding to £,, and £,, are shown in figure 9. In this

particular case, the space is divided in six sectors (the shaded areas
including border lines). The terms of €,, are represented by dots and those

of £,, by X’s.

=(Az+1) nz-(2A1+AZ+3) + nl(A1+1) n2(1142A2+3)~ nl‘(kl+1) nz(ll*2X2+3)
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Coming back to our original problem of transforming a weight GF
W(n) into the corresponding GF for tensors, and assuming that the weights
are those of complete IR, we may write

W(n) = § X)‘l""’)‘flg N, (A.13)
where x;‘ is the character of the IR(A); N, is essentially the multiplicity
of X in W(n), and may depend on ot\her dummy variables such. as U in (A.1).

Inserting (A.8) in (A.13) gives

Win) = I & N, . (A.14)
A A . \

Multiplying (A.14) by A we get
AW(n) = 'zi“ g, N - ) (A.15)

(A.15) suggests the following : the presence of a IR (A) in W(n) is indicated
by the presence of the corresponding g, in the product AM(n); based on the

preceeding discussion of the characteristic function, we see-that in order to .

identify ) in)A.w(n) we may Timit ourselves to any of the defim'n.g sectorf
(six in the case of SU(3)); i.e., look for terms in the product A.W(n)
belonging to a given sector (since other sectors give no new "im;ormtion).
Therefore the prescription for transforming W{n) into a GF for tensors 'is
(1) Choose a sector
(2) Multiply W(n) by A

(3) For éach term found in A.W(n) that belongs to the chosen
sector, replace it (keeping NA) by dummy variables that
carry the representation labels as exponents and drop all

other terms in ‘A.W(n). \
s /

The resulting expression is the desired GF for ténsors. Formally this is

done by the following sum 6f residues )

.
sy

-

- A
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6 -pi-1 6 A »
(M n, mo A ) a(n) W(n)} » (A.16)

% Res L i
LU D W % | j=1

£

where the Aj variables carry the representation labels as their exponents.
X Resn means the sum of residues.of poles of the variables n“""nls
inside circles of unit radius. The norm of all other variables are considered
smaller then unity; the temm Hn? belong to the chosen sector. The choice of
the sector conjugate to the dominant sector (see figure 9) usually simplifies
the calculations. If in principle all GF for tensors may be obtained from
the cornesponding GF for neights by the above method, in practice, the
calculations may soon become out of hand. ni)now discuss another approach.

3. How to construct a generating function for polynomial tensors us1ng the
elementary multiplet method

The problem of finding a basis for alf irreducible tensors obtained
from the products (2.2) may be looked at in terms of tho following reduction
problem

(ry - A T2 pzl,on : (A7)
\ where T(u,A) 15 an irreducib]e tensor of degree u in the coﬁbonents of T,
1 3 ° which transforms as (1) and whose multiplicity is CuA' Now if T is ann

dimensional group tensor, (r)* is a(mu-'l) dimensional reducible tensor;

9

but (n*u-l) is the dimension of the representation (u,0,...,0) of SU(n)
"which suggests that the reduction problem (A.17) is equivalent to that of

¢ . ffnéﬁng a GF for the branching} rules SU(n)> G restricted to the symmetric
rjexample if I' is a j=2 SU(2) tensor the chain

representations of SU(n). Fo
+ considered is SU(5)D SU(2) with the embedding (1000)>(4); (2.3) given in

=
i ‘%

chapter I, may therefore be viewed as a group-subgroup GF for, the chain

R ey S
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SU(S)DSU(Z) restricted t:o the representatidns (u,030,0) of SU(5) where U
carries the SU(S)‘ Tabel u as exponent and A that of SU(2) or as a GF for
. Su(2) tensors based on a 3 =2 tensor. The GF for b%‘anchijng rules may be
obtamed by a method which cons1sts, as discussed in chapter II, of finding
a fimte set of elementary factors and relations “among them. We now discuss

this method, that is,the e‘témentary‘multipﬂet?h‘gthod. .

. The elementary factors (elementary multiplets) and relations among
Ehem (syzygies) are\ foun*d by proceeding systematicaﬂy througvh the IR’s of
the grOUp The subgroup contents of low dimensional. representations of the
group Fan of;en be found in tab]e; like those of McKay and Pat:etr'ag2 -but
for-mgher representations, much guess work is involved. Dimension and second
order index checks guide the selection of e]ementary factors and syzygies;.
As an example let us cons1der the pr‘ob]em of obta1n1ng a group-—subgroup GF

for the cham GZDSU(3) For (10), we use McKay and Pater; s tables

v

. (10)3‘(1'0) + (01) + (00) ' S (A.18)
(A.18) implies the following elementary factdrs, ’ -
a = (10310), b = (10;01), ¢ = (10,00). ‘ (A.19)

We now consider (20). The SU(3) contents of (20) is also given in the tabless
but in order to illustrate the method we wﬂl‘ignore it. We first toake a]‘l

products of known e'lementary mu1t1p1ets (those of (a. 19)) that gwe (20) i.e.

a.a = (20i20), a.b (20 n), 4
a6 = (20;10), 'b.b = (20;02),~ (A.20)
b.c = (20;01), | c.c = (20;00).

[

In order to check if any products are forbidden or ;f any new elementary

mu1t%p1ets must be added to the list (A.19), we make a dimension and index

-0

o vty
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check (the second order index check being particularly useful in more

complicated problems). It turns out that all products (A.20) are necessary

-and sufficient which implies no new elementary muTtiplet and no syzygy.

We 'therefore have.
(20)D>(20) + (11) + (10) + (02) + (01) + (00).
We then proceed to @0). We have the following possible products

a.a.a = (30:30), a.a.b = (30521),

a.a.c = (30;20), a.b.c = (30;11), .o
a.blb = (30;12), a.c.c = (30;10),

b.b.b = (30;03), b.c.c = (30;01),

b.b.c = (30;02), c.c.c = (30500).

" A dimension and index checks reveals that no products are redundant and no

new elementary factors are needed so that
(30)D(30) + (21) + (20) + (12) + (10) + (03) + ('H) + (01)
.+ (02) + (00).

¢

“We could keep on, but we will assume that the elementary factors given in

(A.19) are sufficient for all (A,0) of G, and that no products are redundant.

. We now consider (01) .of Gy - From the tabiles we have that

(01)>(11) + (01) + (10). | .
Following the same procedure as above, we find that the following elementary

factors < }

= (01;11), e = (01;01), f= (01310) , C {A.21)
. |
with no redundant combinations are sufficient for all (0,A) of €,. We then

cons1der (H) and must n?w form all products of elementary factors that give

(H), these are \f . '
M , J“ . v .o

.
)
4 - v -
R . . -
R . « -
! . P
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a.d = (1L21), ae = (I, af = (11:20), i

| b
b.d = (11312), b.e = (11,02), b.f = (11511), * (A.22)
c.d = (1;11), ce = (11;01), c.f = (11;10).

If al1 products in (A.12) were allowed, we would have the following decomposition
(11)(21) +3(11) + (20) + {12) + (02) + (01) + (10). (A.23)
A dimenision check shows that the right hand side of (A.23) exceeds phe d%mension
by 8 which suggests that one of tbe following products be chosen as forbidden
a.e ,lb.f or c.d. At ehis point there is no rule of thumb and often use must
work on a tfia] and error basis. Let us consider each possibility and first
declare the producf a.e forbidden. We now consider (lé); the products
leading to (12) are
( a.f.d (12;31), wa.f.f o (12330), A : )
a.d.d = (12;32), c.e.e = {12;02), . KE
ce.f = (12311), c.e.d = (12312), I
Ccfd = (12;21), c.f.f = (12;20), ‘ '

u

/ c.d.d = (12;22), b.e.e  (12;03), ,
b.e.f = (1212), b.e.d = (12313), L ‘
b.fud = (12;22), b.f.f = (12;21), L _‘i;!j\i o .
b.dd = (12;23) S - ?f;i“: ' .
) a.e.e = (12312) forbidden Lo g ”Hﬁl N
a.e.f = (12;21) forbidden . o f“fi‘fffj o

a.e.d = (12;22) forbidden 4 o
where the forbidden products have been indicated. Therefore assuming no new

elementary multiplet and no new forbidden product, we have that |

|

3 (§§ ; (12)D(31) + (30) + (32) '+ (03) + 2(12)' + (13) + 2(22) ;;‘
£ 2(21) + (23) + (02) + (11) + (20). | {i
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‘finplly the choice c.d leads to

" Ny, N, those of SU(3). It is easily shown that
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A dimension and index check shows us that our assumption is correct. We

could proceed through higher representations but we will assume that the

set {a,b,c,d,e,f} of e]ementgry factors with the product a.e. forbidden is

complete, that is, there is a one to one correspondence between allowed

products of elementary factors of that set and SU(3) multiplets contained

in Gz representations, Similar considerations would lead us to the conclusion

that the choices b.f or c.d as redundant products are equally valid and

#hitroduces no new elementary factor. We therefore have the following set of

elementary factors {a,b,c,d,e,f} with a.e or b.f or c.d forbidden. The choice

a.e leads tb the following GF

-~

G1(A1-A2;N1»N2) = 1
(T-A1 ) (TnAzNiN2 ) (T-A3NZ ) (T-A2Ny )

X 1 + AN $
‘ [(]~A1N15 {T-A2N2) ]

choosing b.f we get . .

Gz(Al,Az;Nx.Nz) - 1 /
(1-A1) (1-A2NiN2 ) (T-AaN2 ) (1-AaN2 )

X 1 + AzNa e ‘
{(T-KN7) (T-A2Ny) *.

49

G3(Al ’AZ;NI’NZ) = 1

(F=AiNp) (T-A1Nz ) (1-AaNy ) (T-AoN2 )

X 1 +, AN N
[ h-h;; . “-AszNZ;J

where Ay,A; carry the G, representation labels as their exponents and

G] = GZ = 63 .

pa
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‘4, Substitution and coupling techhiques

129

In this simple example all choices of syz;gie; were equally good, but in more -
complicated problems it is often not the case. Depending on the choice we
make, we may have to introduce new elementary factors and forbidden products.
For instance we could have choosen b.f and c.d as forbidden and then introduce
a new elementary factor (11;11) in order to balance dimension and index, and
then proceed to higher representations to see if we héve a complete set of
elementary factors. Although no rule forbids such a choice, this could lead
us to a situation were we must constantly introduce new elementary factors and
forbidden products in order to balance d%mension and index; this/would not
prove that this particular choice is wrong, but would certainly suggest that
it is not the most efficient way of solving the problem. The set of elementary
factors is usually]notu:?que and leads to-different forms of GF’s although

all equivalent.

J
* This approach does not constitute a proof that we do have a complete

set and that all syzygies have been found so that the GF obtained by such a
method must be checked. The GF for tensors in the enveloping algebra of the
groups SU(4), Sp(6) and SO(7) have been found by the elementary multiplet

technique and ways of testing the results are discussed in chap IV.

It often occurs in this thesis that we must substitute one GF into
angther or couple two GF’s to obtain a third one; we shall now briefly discuss

these two procedures.

46

: ’ ’ ”n r ’ ' ’
Given two GF’s G](U ;Ax,...,A; ) and Gz(u ;AZ,....AK ) respectively /
G G

based on group G tensors I, and I,, our aim is to get a GF G3(U',U”;A1,...,A£G)

/ i

o
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based on P] and ra If the GF for the Clebsch-Gordan series '

7 ’ ]
C(Ax,...,Az ihM,.. An ,A;,...,Az )} is known, the answer is (26 is equal to

G G G -
the rank of G) -

f . -1 e =1 R
, G3(U U A ,...,AEG) =X ResA Al {G (U ,A; ’”"A‘Q‘G ) .
* , (A.24a)
N UIEY LI b /AU VY YUY YAV WU )
G G G
ZG . "1 R'G » "‘l - -
x 1 @) )™
j=1 j:] J
or )
G Uikseenshy ) = I Resp e 16 (US3hs,.00h, )
sVyll} 3000y “9fl]l g0 ey
3 T T g (A.24b)
x GZ(U”’A"I"..’AE ) c (’ -],--',Allnl; A‘:];o--sz‘.];Al"" th )
G G . G
RG -1 'Q'G G | | ) .
-X I (Af) It (AJ) } . J

!

j=1 j=1

where L Res  means the sum of residues of boTes of the variales A; and A;

. ¢ ‘ : :
inside circles of a certain radius. The radius of these circles and the
ﬁorms of the other variables (such as U'.U”,Aj) are chosen following arguments

similar to those which led to condition (A.4). There are several other ways

. of coupling G] and 62 which are actually a mixture of (A.24a) and (A.24b);

‘in those cases, only certain K; and A} of G{ and G2 are replaced by their
reciprocals, the others are replaced by their reciprocals in the GF for the
Clebsch-Gordan series. In any case, we use whichever is easier to evaluate.

N

ﬁxamples of such calculations are given in chapter III when evaIpating the

GF for tensqrs in the enveloping algebra of groups SU(3) and SO(5)..

*
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The procedure by which we substitute one GF into another has proven

very useful in testing certain results of this thesis; this technique may

serve mahy other purposes such as converting an integrity basis for group

tensors into the corresponding one for subgroup tensors. The problem of

interest to us is the following : given,two GF’s for branching rules,

4

" ’ 4 7
G](Al,...,l\ ”;A;,...,Az ’) for the chain or groups G”:)G and

L
IG G ]
GZ(AII,...,A,L ’;A,,...,Ay‘ ) for the chain G’.’DG we want to evaluate the GF
, G G "
G3(A'1 ,...,A'; JET TP ¥ )} for the branching rules of the chain GDG6.
G G

'63 is obtained by substituting G2 into 61; this is done by the following

residue calculations

/

” &” . 5 ” . ,_'l ‘_‘:l
63(A1,...,A2é,,A;,....AEG) -z Rels\, { 61(1\,,...,1\26&,11,, '"'A“e’)
Lo’ ' (A:253)
X Go(Mrseeeol, 3A1s..0nh, ) T (A) ) ,
2 g’ % a1
or ) '
.l o “ - o # P ¢
(Alyeeeshy 3Arseeeshy ) 2Z Res  { Gi{Ay,eeeshy, 3A1,..-)d
TR 2o VR o wyh ' (.25b)
x 1 3se oy ; I veory n . . L
2 e T

As in the case of (A.24), the norms of the variables are chc\,sen such that

G.‘ and G, on the right hand side of (A.25) be expandable in a power series.‘
Here again, 63 may be also obtained from a pﬁxtur‘e (in the sense-given above)
of (A.25a) and (A.25b). Examples of such substituons are given in chapter IV

where “we discuss methods of testing results.
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APPENDIX B
GROUP-SUBGROUP CHARACTERISTIC FUNCTION

bge define the group-subgroup characteristic function for the group-

subgroup GDOH as !
1 gl () = (MM T gt (8.1)
v

The symbols in (B.1) must now be defined.

c

AV is the mu]tith(:it_g of the H.representation v in the G represen-

&5

» Where (I\,) 5 is the ith component of the vector

T\); R+ ﬁv; ‘ : (B.2)
Ris half the sum of the positive roots of H, and W", is the highest weight
of. the representa\tion .

A= (1) .3
is Hex] ’s charscterictic(funct?m for the scalar repi*esen,tation of H; the sum

is over Weyl reflections S, and (--‘l)s is the determinant of the matrix of S.

Similarly A(n) is Weyl’s characteristic function fqr the scalar repre-

sentation of G in which (if necessary) a projection onto the weight space of

/

H has been effected by substituting for the variables in terms of the n

appropriate to H.

i
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The constructive definition (B.1) permits the evaluation of Eg(n)
for any representation A for which the branching multiplicities ¢y, are known.

In particular, for the scalar representation, ¢, = 8p,and

i) = AR7a’(n). ’ ' (5.4)

Dividing (B.1) by (B.4) we obtain <

H H W, ‘
§A(ﬂ)[50(n) = 5 c}\v"v' (8'5)
If one substitutes for the variab]eé"’n in terms of new variables N so that

W
n ¥ = N¥, the result is equation (3.2).

~ We now discuss some properties of the group-subgroup characteristic
function. First we sketch a proof thatssz(n) is a sum of monomials. wey193

shows tr/aat'the vectors SR for any compact Lie group are possible weights of

that group. After.projection onto the weightA space of a Subgroup, thgy will

be possible subgroup weights. From this it' can be shown that A(n) is a linear
combination of Weyl characteristic functions /t;v(n) of H, each of which is,

2
of course, divisible by A (n). Since A(n)/A"(n) is a sum of monomials, it

- follows from (B.1) that &;;f(n)/ is also a sum of monomials.

We can say something about the distribution of the terms of g:(n)
in weight space. From the form of (B.1) it is clear that they lie in dr
near the dominantl sactor of H weight space, the sector of highest weights of
H"representations (the terms of A/A’ are independent of A and cannot shift

93

them far). MWeyl’s”” characteristic function for the subgroup His

SRR IS I - (8.6)

}
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In terms of jt the character function is

Xy(n) = &, (n)jA"(n). (8.7)
The symbols are defined as in (B.2) and (B.3). There are similar equations

for the group G. From the additivity of the characters under the reduction

G to H.

X, (n) = 5 C)\\,x\,(/n). - "!(8-8)
and (B.6), (B.7) we obtain ‘

£, (n) = (4/87) I 6, - (8.9)

which incidentally suggests an efficient way of calculating branching rules

(just divide EA by A/A and retain the part of the quotient in the dominant

.sector of subgroup weight space). Now the humber of terms in 5A(") is fixed

(independent of A), and they all lie equidistant from the origin of weight
space, at least befo?e projeption onto H weight space; much cancellation

occurs between the terms on the right-hand side of (B.9). Now our group-

" subgroup characteristic functi (B.1) differs from (B.9)only in that it lacks
“

the sum over Weyl ref]ectxong/% inplicit in the definition (B.6)of gv(n)
Hence most of the cance]lq@jon in (B.9) pers1sts, since the parts of (B.9)

coming from different sectors (under Weyl reflections of H) cannot cancel

/ mutually except near the boundaries of the sectors, because of the small

shifts due to A/A”. We can conclude that the terms of Eg(n) are either temms
from Eh(") which prbjbct into the dominant H sebtor, or else 1lie on or near

the boundaries of the dominant H sector.

-
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APPENDIX C !

¢

MATRIX ELEMENTS OF SO(5)DSU(2) x SU(2) GENERATORS

Here we give formulas which proved useful in evaluating the matrix
elements of the missing label operator between SO(5)DSUf2) x SU(2) states
7
with m = 0; these were obtained following Sharp and Pieper’s genera&

0

formula for matrix elements. : ,{’

o <553 sgty [ Uo | sed seds sqed tyrd >

-' ' [(\H 2s +3) (v-2s) (s+'s3+1) (s+t3+})}

(25 + 2) (25 + 1)
<s s; sy tg [ U- | s-2 s-3; sged t3*i>
[(\u- 2s + 2) ‘v-—Zs +1) (s - 53) (s - t3)J

(2s + 1) (2 s)
<s 53 53 ty [ U+\| s+ sti; S3-d tg-i > ’ - S

o (v+25+3)(v-25)(s-53+1)(s-t3+1)}*‘_ (
= IR ER)) ] o

<s 5 53 ty | U, | s-% s-#; sy t3~§>

, We2s+2)(vV-25+¢1) (s+ 54) (s '+ %)T*
=T (Zs + 1) (2 3) J

TR -




] Al1 uther matrix elements are zero.
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<s 53 55ty | V- ] sed S+¥;59¢% o3>

[(v+25+3) (v-fs) (s+s3+1) (s—t3+1)]*

Zs+2) (Bs+ 1)
<s sisgty | V- | sob sods skt >

. |:(\>+25~~2)(v—25+1)(5-53)(s+t3)]i \’\

(2s + 1) (2s),

<Is 83 855ty | Y | sed s+ sg-d thd >

(vo2s+3) (v-25) (s-s5¢1) (s+tye1)|?
. (Zs+2) (25 + 1)

<s s; 53 t3"| Vi | s~ s-d5 sg-d tar >

[(v+25+2) (v-2s+1) (s+s3) (s-ta) L
T U @s e (2) a

s 5583 t3] 83 I‘VS s sgty > =8y -

<s s; 53t [ T3 lls tH 53(t3> =t3 ‘

<ssssqty| Ty |ss; 83ty ] 1> {s(s¢1) - ‘1_:3(1:3-1)} i
és s;.ss ta | T_. | ss3583%5 ¢1>: \v{s(s{-‘l) - ta(t341)<}_*

R EET S3 t3 | S, | ss; 53—1 t3>: {s(s+1) - s3(33~1)} i
< ssisgty| S| ss syl t3>e(s(s+1) - s3(s5+1)} t ‘

The subroutine which diagonalizes the missing label operator gives
N A
us the eigenvalues and their corresponding eigenvectors. The following formula

(which is inserted in the program) proves useful in determining the £-value
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m=0, LL_ plays the role of L
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of these eigenvectors (note that since we are working with states for which
)

L+ L- lS,S; 53,t3>

= [4 {s(s+1) - t3(t3-l)} < 3(v¢2s+3) (v-25) (s-s3+1) (s+t3+1)
+ e
(25+2) (2s+1)

3(v+25+2) (v-2s+1) (s+_s3) (s-t3)]1' $,S3 s3.t3>
+ (2s+1) (2s)

+ 2V3 [(ve2s5+3) (v-2s5) (s- s3+1) (s+t3ﬂ) {(s+}) (s+3/2) -(tyi) (t +3/2)} 4
[2s+2) (2s+1)

3

x| sed, seds spoh, t343/2 >

+2V3 [(v+zs+2) (v-25+¢1) (s+s3) (s-t3) {(s-4) (s+d) - (tg+h) (t3+3/2)}
L (2s+1) {2s)

x| s-1, s-}, sg-dp tg43/2 >

+2V3 [(v+25+3) (w-2s) (sesgrl) (s-tg+1) {s(seT) = (t5(t5-10} ¥
/ L . (25+¢2) {25+1)

X | s+}, s¢d; sgHd, t3-3/2 > -

+ Z\ﬁ' l-(v+25+2) (v-25+1) (s-s3) (s+t5-1) {s(s+'l) - ty(ts- 1)}
L - (2s+1) (25)° .

X | s;f. s=4; Syth, ty-32 >

B

+3 (v+25+3) (v-2s) - (s-s +1) (s+t3+l) (v#2s+4) (v-25 1) (s+s3+'l) (s-taol)]

- (2s+2) (zsn) (2st3) (25¢2)
L

X | se1, s+15 55, t3> .

(2s+1) (2s) (2s) (2s-1)

.+ 3 (\,+25+2) (v-2s+1) (s+s3) (s-t3) (ve2s+1) (v-25+2) (s~s3) (s+t3)J* /

L. . .
x| s-1, 515 53, t3 > Ce
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N
W W’ A(%) .
~2309.4840688B75199 -2309.484068875113 .37190300230352230-?1%
313042895500.4796 313042895500.4765 e10138635649556988D~11

1.055114959312798
-100.09929749270177
184.9379039252563
12014053151960406.
416,0048053711031
1.032619851988636
6206.3795445595122
~82547643.51478626
-1582553.091041461
~-2309.,484068875199
~«1516398347541531D~-13
~e3105453583625961D~-11
1514119215715013
2117247651688286D~11
1067052044827843D~06
~eB8695499688602893D~11
~11632862.03656917
1828.278360079416
~e¢3990720660610659D0-06
«49416569923757760-07
-«1227428317306038D-08
«2189230634819145D~-06
-1+055114959312798

L J
-
L

1.055114959312738
-100.0999749270186
184.9379039252960
1201.053151960351
416+0048053711025
1.032619851772765
6206.995445595216
~82547643.51478282
~-1582563.091041470
-2309.484068875113

-e1516398347592923D0-13

~«31054535836259450—-11
15.1411921571485%6
«21172476517445270~11
«1067052044831091D~-06
-+ 8695499688599503D-11
~11632862.03656920
1828.278360078226
~+3990720660608968D-06
«49416569923741970-07
~e1227428317306031D-08
«2189230634834007D0-06
1.055114959312738 .

«57241281631480500-11
~+315684567404593120-~-12
-e¢21500174193169560~10

«4515089236866764D~-11

«1366412554059324D~-12

«2090512130576292D-07
~+1509231883665873D~11

«41654041218809380-11
- S737F77630416737D~12

«3719030023035223D~-11
-«3389067503392475D-08

«e5137388957062386D-12

«1038424075961431D-10
~-+2656364703426607D-08
-«3044000215976704D-09

«38982276771772550-10

'—-26219527251998870—12

«6507083053189714D~10
+42367214241459480-10
«31947925959956230~10
«6317939820473566D-12
~.67889222414812840~-09
«5724128163148050D-11

oo

Table I. Numerical check for the SU(4) generating

. function (3.39).
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r * -
- N
’ ®
W W A(%)
54195.34685533947 «=2309:484068875113 ~2446.643026714471
313655132582.6574 313042895500.4765 «1958955437083288
1.055114959312798 1055114959312738 «5724128163148050D-11
~130.7503916532193 -100.09997492701856 30.61980459889975
-3783.996510877058 184,9379039252960 ~-2146.090298722953
"l1B6797721759425 -1201053151960351 —-1.186910852168222
438.8075162660938 416.004805371102S5 S«481357571014067
1.032619851988636 10326198%51772765 «2090512130576292D-07
6209.384346261750 6206.995445595216 «3848723085868070D~01
-119104732.8649652 -82547643.51478282 44.28604838808710
-1591986.283640401 -1582563.,091041470 +5954386685923198
54195.34685533947 -2309.484068875113 ~-2446.643026714471
-+10755094046875430-13 -e15163983475929230-13 -29,068B14977773306

-«3112263087842610D~11
15.14152800949274
«2020663063746160D-11

-eA4711358B860163867D-05

~e4599270726315955D~-11

~-11685110.76236847
1832.606225130771
~e3317189476360613D-06
~-.1000194551024831D-06
~+1233661669319536D0-08

-s55151961311969600-04

1.055114959312798

-¢3105453583625945D0~11
15.14119215714856
«e2117247651744527D0-11
«10670520448310910-06

-+ 8695499688599503D~-11

-11632862.,03656920

1828.278360078226

-¢3990720660608968D-06
«84941656992374197D~07

-« 12274283173060310~08
«2189230634834007D-06
1.055114959312738

22192756720811713
«22181367272588000-~02
~4.571245499723244
-45154303717364275
-47.10745913376354
«&4491476442771772
«2367180592981104
-16.87743246217530
-3 «4006426525147
S078383743978266
-R5292.39427514742
«57241281631480500-11

3\

Table I1. Checking tge“egficacy of the numerical check of table I.

The
unA“

te

rm U'A;A; in the numerator of (3.39) is changed to
A, .The same values of n,,n,sn, and U are used.

B it

th

A s B A et



- N
p .
1 N N /‘
r 4
W W A(%)
-12938.17911095308 -2309.484068875113 460.2194570346145
84924539935685065 3130428955008 765 43,50953362039250
1.055115410655322 10551146959312738 «4277662641724743D~-04
~121.6852455709903 ~100.0999749270186 21.56371233829898
2157594669207450 184.9379039252960 115966.,58983049246
1169,184250803378 1201.053151960351 ~2e553412224509551
~227.84665695456498 416.004805371102S -154,7701983277323 .
1.0325200437443956 1.032619851772765 «1859073602783352D~04
STORe 797167165739 62060995445595216 ~8.042510789720849
«-232225804.3373866 -82547643.51478282 181.3233600009418
-2060669.515724919 -1582563.091041470 30.21089189997543
-12938.17911095308 -2309.484068875113 460.2194570346145 -

~¢1467336500226262D~-10
~¢3421901346588707D0~-11
15.56748663420891
«3635805119685548D-11
-e4665483530030117D-04
«25761581619983500-09
-15345347.80111239
2095.236162839603
~e85641177601303050~06
_ —e31282754468889260-03
~+14160874071752200~08
+9873007R41234259D-04
1055115410655322

-«15163383475929230-13
~+«3105453583625945D~11
15.14119215714856
»2117247651744527D0-11
«1067052044831091D-06
~-«86954996885995030~11
-11632862.03656920
1828.278360078226
~+3930720660608968D~06
«4941656992374197D-07
-+12274283173060310~08
«2189230634834007D~-06
1.055114959312738

96664.5805309310%5
10.18684563925739
2.8154561772335310
71.72318583839811
-43823.11184473331
=3062.633838485325
31.91377799266058
14.601595062930684
114.6007823765709
~-633141,8019130784
15.37027353933466
44998.48201527135
«4277662641724743D~-04

Table I1I. Checking tpe, efficacy of the numerical check of table I.
The,term U'A; in the denominator of (3.39) is changed to

2
U'A,.The same values of n,,n,,n, and of U are used. - =
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35

+708.02
-783.02

1 -26
490
2065

2200

4914

. 1630

146

-250
330
355

-1451]

+1825.78
- 480.78

895

4325

~

4459

8680

~i

(0,7) as given by De Meyer and Vanden Berghe. ‘

) ;
\ v 1 2 3 4 5
g
/
0. : 0 /(‘,——-w—'"'\
2 14 -16 29 -31
3 -15
4 10 35 ~160 200
5 o 195 -345
6 T a0 280 -20
P 7 799
, I
_ 8 1140 915
" 10 2530
o .
@ - ) L3
N “‘-‘12 I
14 v
?
b /
Tab'le IV. Missing label up to SO(5) representation
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Er

T et e o ~ P

SO{5) IR’s
(0,0)
(0,1)
(0,2)
" (0,3)
(0,4)

(0:5)

R = Q 0 © Q@ ©

L 0
a .00
L 2
a 14.00 ?
L 2 4
a -16.00  110.00 “
t 0 3 4
o .00 -15.00 35,00
3 2 4 5.
a 29.00 -160.00 195.00
2 - 4 5
~-31.00 200.00 ~345.00
8 10
915.00 2530.00
0 . 3 4
.00 - ~-15.00 35.00
7 8 9
-26.00 490.00 2065.00

6
420.00

6
280.00

mﬁ
"'20-00

i

6
~783.02

10
2200.00

147

8

1140.00
;-

799.00

6
708.02

12

4914.00

Table V Missing lébel (a) spectrum for the reduction

50(5):>50§3) restricted to representations of

the type

0,v).The SO(3) representations are
denoted by 2(angular momentum).

:
%
N



®
(0,7)
(0,8)

| : (0,9)
(0,10)

()

g 2

o 44.00

L 8

a -480.78
L 12

o 4459.00
2 ‘2

o -46.00

L 8

o 1170.69
[ 1

‘a 2750.00
L 0

o .00

2 7

o -26.00
2 10

o -2025,90
14 '
a '7160.00
L 2

o 59.00

L 8

o ~-733.39
L 11

o -3461.57

i

4
-250.00

8

1825.78

14
8680.00

3
290.00

8
-2525.69

12

. 3724.00

3
"]5,00

8
490.00

11
335.00

5
13474.99

4
-340.00

8
2528.39

1
6246.57

Table V (continued)

5. 6
33%0.00  355.00
9 10
895.00  1630.00
5 6
~480.00  -95.00 _

o
9 10
-995.00  447.95
13 14
7975.00  8080.00
4 6
35.00 999.59
/
9 9
~4079.64  3084.64
12 12
731,09 2321.90
16 18
13514.99  22229.99
5 . 6
465.00  430.00
9 10
1210.00  1797.70
12 12
-548.94  5641.94
R T R R { L RS RN

148

7
-1451.00

1
4325.00

7
1249.00

10
3897.04

16
14279.99

6
-1074.59

10
2800.90

13
5935.00

7
-1901.00

10
-6272.69

13
2935.00

i
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i g s =g ———

O

©

-~

(0,11)

R “e

=

R .

e = 2 =

R = R Q@ 1 2 ¥ 8§ © 2 1 R © @ ®

14
12600.19

18
21279.99

2
-61.00

8
1430.05

1
3626.09

13
"1 6250 23

16 -
10505.82

22
47563.98

0
.00

7
-26.00

10
-2647.35
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4
380.00
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12
2356.13
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16
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12389.99
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-170.00

10
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19

' 32184.98
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’
-5100. 27
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9828.66

14
~-3494.74

17
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7 »
1699.00

10

297.90
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11210.23

16
20239.17

20

6

1292.37

10
3422.35

12
-13157.79

15
18515.99

18
30845.75

31954.98
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. Table VI.

kd /\
-
b
\
‘
N
B
¢
t 1o
€ s
. =
-7 'y
“
%
- - +
(RIS
‘
f
Sa

£ | o {our values) (5/(6V2)) w,,, 4 (De Meyer)
0 .00 .00
3 -15.00 15 |
~4_ | 35.00 35
19 2838999 28390
20 30359.98 \ 30360
12} ee3a.0 46635 ’ ’
22 46183.98 46184
24 66299.97 66300
: ‘

0

In this table we compare the singular
eigenvalues of (0,12) we obtaine
those conjectured by De Meyey and
Vanden Berghe.
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() - i s | "2

(0,v;s S, atl )

: . (000 0 0 ) 1(0) i
(0,1:0 0,0 ) 1 (2) 'y i
i °
, : |
(0,2;0 0 0 ; -,598 (2) -.802 (4) |
- 0 .0 .0 802 . %.508
- " (0,3;0 0 50 }' -.316 (0) .000 (3) -.701 (4) -,.640 (6) i
R T T .62 000 . ..357 . o8 ;
3/2 /2 ,-3/2 ; -.507 -.707- 437 -.228 - !
3/2 ,-1/2,3/2 -.507 707 437 -.228 |
. }
{ l * '
5 . “‘( Q _‘/’/ — - h )
’ " Tabig“‘\lll; Here are the eigenvectors corresponding to the:
c eigenvalues given in table Viin this tablewe - _
give the coefficients of the expansion of S0(5)> ‘ -
: @350(3) states (with m=0) in terms of SO(5)> SU({2)XSu(2)
states;these eigenvectors are read column wise and !
ST follow the order of the missing labels given in . L
RPN table,V.The first column gives the SU(2)JXSU(2) states
PRUREPRIRA. . and the other columns the coefficients.The angular -
j;_:a . , . momentum of the eigenvector is indicated in parenthesis. N *“'
C “'\Q: w' o ) u\', - i ¥ . . %2;;
. ;i . ‘ i
7 G0 ke
.o EE -,
K k e, s ‘ f a‘lx : _ /
‘{3:? PO . . - 1 .
Py n l; “ !,;. i - : .




T e x
R e L R

{0,vis

. {0;4;0
3/2

3/2
2

(oﬂai;?

3/2
) ig/z

Rt

(0,6;0
] .

i

(5

(3

’s‘a
0+ 0 ) 426
»0 s0 } -.684
s1/2] ,-3/2 419
9'1/2 ’3/2 g -4]9
0 L0 .000
-.514
-.687
'0299
-.299
~.291
50 .0 , ; ”n332
»0 »0 .545
212 ,-3/2 -.172
»=1/2 ,3/2 ; -.172
’0 ’0 “0493
»1/2  ,=3/2 ; .382
’"]/2 &3/2 ¢382
) .000
.000
‘.545
.645
.000
-0291
.291
»0 } .189
s0 -.340
»1/2 -3/2 .118
-1/2 , 3/2 ‘; 118
»0 .397
»1/2 -3/2 g -.418
,—1/2 -.418
> ; .382
»0 .149
a,'] 33 ) -382

(2)

(8)

(2)

(7)

(0)

Table VII.(continued)

-,251

.246 -
.329
. 329

(4)

-.813 -

t 367

-.447
.339
.339

-.445
.345
.345

-.661
-.242
.216
.216
.485
.296

.296°

.000
.000
.095
-.095
.000
-.337
337
.615
.000
-h6]5

(4)

(8)

(3)

153
) I
.000 (5) .701 (6)
.000 ".000
-.707 ., 357
707 -.357
.000 . -.505
.doo (5) -.380 (6)
.000 .208
.29 .453
-.291 , .453
.000 -.384
-.645 ok, 357
-645 -.357
-.47 (10)
-.634
~.321
-.321
-.421
-.145
-.145
.428 (4) -.081 (6)
-.580 .071
.144 .190
.144 .190
.233 -.244
.076 -.234
.076 -.234
-.416 -.285
-.161 .765 .
-.416 -,283




r
:

R (1 RV

(0,6) -

(0 7;0

3/2
3/2

5/2

7/2
7/2

»S

0 .
,0
»1/2
)"“/2
,0
»1/2
,-]/2
51

s0
""]
»1/2
»~1/2

st

. ’0 ;
,0
»~3/2
»3/2
0 )
»-3/2 )
)
i
|
)

,3/2

-3/2
»3/2

-‘ 283
. 285

1320
. -i320

.612
"0236
-.236
-.288
-.057

-.288

.607
.39
™y 085

| ;'.085

-. 341
"0343
-.343
-.087
"-313
~.087

.27

. 456

. 148
.148
.446
-.400
-.400
. 268
. 104
. 267
.000
. 000

(6) .000
.000

)

.416

o
»_.a72
.472
-.323
.000
.323

-.340
-.567
-.316
-.316
"-485
-.227

(10)

(12)

(v

-, 227 *.

"0038
~-.149
-‘038

(2)  .187
-.270
-,017
-.017

ot 272

122
122
~u 245
e 594
-.245

. 397

.397

M -
1 -
N
\
“

Table1VII.(coniinuéd)

(4)

\\ ]

.459
"1092
-.469

-.469 %

.044
.199
.199
0N
.493

(8)

.00

000 (5)

.000
.153
-.153
.000
-.414

4147

553
.000
"'0553
.000

.000 -

154

.000 (9)
.000
.564

 -.564

.000
405
-.405
135
.000
-.135

442 (6)
-.473
-]44
144
-.135
218
218
-.314
.244
"'43]4
-.291

‘-291 LI
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= et st ot iy - < NG

:(:)‘

* (0,\);5 »S

(0,7)

N

4«

/
« R
(0,850 ,0 »0 ;
1 ,0 »0
‘ 3/2 ,1/2 ,-3/2 ;
3/2 ,-1/2 ,3/2
2 ,0 ,0 )
E . 5/2 ;'1/2 ;3/2 )
3 :] "‘3 )
| : 3 ,0 0 )
j 3,21 ,3 )
[ 7/2 31/2 3’3/2
: 27/2 »-1/2 ,3/2
‘ 4 ,1 ;"3
; 24 0,0 ;

O |

-

@
-

-

-
°

-

.000
.000
129
129
.000
.229
.229
.207
.000
.207
.623
.623

.502
.043

-419
419

(7)

(10)

154
001 .

.001
.058
.438
4%
.294
.294

.229
.388
.087
.087
.436
. 242
.242
.089

'Table VII. (continued)

v

(2)

.153 (8)
= 087
-.313
-.313

.236

.295

. 295

.334
-.356

.334
-.312
-.312

.000 (11)

.000

.483
-.483
.000
.454
.454
. 206
.000
. 206
.135
.135

'4236—(—4)
. 355
.142
.142
211
.273
.273
-199
.380
199
.331
.331
-.245
-.148
.245

»

-.207
116

(8)

-.308

-.308
.587

147
~.371

177
"-37]
-.176
-.176

.548
.474
021
,021
-.168
-.307
-.301

-.406
-01]’6
-.196
-.196

.000
.000
-.090
.090
.000
.250
.250
.185
.000
.185
-.352
.352
521
.000
-.521

147

N

(12)

N "0116 I

(5)

.000
.000
-.476
476
.000
& .25
' -,265
.331
.000
.331
.306
-.306

.278
.499
.297
.297
.507
.280
.280
.063
. 251
.063
.083
.083

.297
-.359
~.045
-.045

.202

.218

.278
-.315
-0398
-.315
-.035
-.035

.308

.186

.308

185

(9)

(14)

(6)

[ o
FE &
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.000 (7)
IOOO
-.179
Jd79
.000
.378
'0378
- 0475
.000
© .475
A77
o =77
- =.261

e

e ..226 (10)

ST 067

S 30
391
“ t , -.145 .
A -.250

L -250

-.330
.022

-.330
152
152
. 028
.477
.028 .

.000 (13)
.000
.408
-.408
.000
.462
"’.462
.249
- .000
~-.249
224
"t224
.088
.000
"'088

“Table V11.({continyed)

.410 (8)

- -,331

.178
.178
-.400
.190
.190

- -.180

.352
-.180

-.063
-.063
-.320
-.159.
-.320

.149 (10)
“.0440
284
.284
-.485
110
110
.400
-.356
.400
137
137
187
.039
187

.489/ (14)
513 ’
.098
.098
".007 i
-.218|
-.218
-.116
~.398
~-. 116
-.276
-.276
-0074
"c]89 '
-.074

-.025 (8)
.020
.085
.085

"0078

-.114

-.114

-.178
.202

-.178
.197
197
.354

-.720
. 354

.000 (11)

0000‘.
-.494

.494

.000

.076

) -0076

263
.000
-.263
. 366
-n366
.219
.000
-.219

-.230
-433
.272
.272
~.500
bt 308
-.308
-.083
-.327
-.083
-.149
-.149
-.029
-.078
-.029

(16)

LI B |

166

.000 (9)
. 000 '
.222
-.222
.000
-.274 .
274
- 33]
.000
.331
.401
-. 401
.323
.000
-.324

.519 (12)
167
.339
.339
.231
.155
".]55
.002
.251
.002
.300
.300
.109
.325
.109
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ot, )
’0 } 0135
s "-238
3‘3/2 g .056
23/2 : .056
»0 .294
=32 ) -.77
)
’O ; --227
»3 ) .073
3'3/2 ) . -332
)
»0 § -.204
»3 -.338
»-9/2 ; .319
»—3/2 .085
»3/2 ) .085
9/2 ) .39
[ -0075
.099
.059
.059
-.118
-.160
-.160
.g?O
\ .319
4 .090
.070
.070
 -.055
- -0568
-.055
-.316,
" .363
.363
-.310

Table VII. (continued)

(0)

(6)

.000
.000
-.032
032
*» .000
102
-.102
-.083
.000
.083
-.189
.189
.385
.000
-.385
-.544
-.049
.049
.544

.000
.000
-.155
155
.000
. 360
-.360
-.226
.000
.226
-.323
.323
.222
.000
-.222
.376
..034
~-.034
-.376

(3)

(7)

. 307
475

‘097

-.097
-.422

| ¢

-

.185
185
.043
.134
.043
.021
.021
.181
.109
. 181
.383
.102
.102
.383

. 365

-.358

.047
.047
.007

- .333

.333

.307 .

.072
.307
115
115
122
.245
122
15
.296
.296
15

(4)

(8)

157

-.176 (6)
231
-.141
-i]4-[
-.012
217
217
197
-.518
-, 197
.349
.349
~.053
-.075
-.053
-.297

. -.043

-.043
~.297

.000 (9)
.000 .
.054

, -.054 ..

.000
'-089
.089
-.129
.000
.129
.204
-.204
213
.000
-.213
134
-.606
.606
-.134




.000 (9)
D e .000
-.181
181
.000
.299
: -,299
- N -.414
P .000
414
.310
"'03]0
-,287.
L -000
LT - .28
’ ' i ) -0177 <
Lo e -.006
o RS . .006
S I 17
© - LT .108 (12)
" v ) -.007
o | ’ . . X . ; 0253
¥ ’ . N " , 4 : 1253
T o i - ; "':374
. S " ' . ' .]02
o . .- ' fir e C 0102
! N ' R o7 ." - 1402
| - , — -0436’/
. 402
: . o4
/ . 0074_
’ .269
. -.089
. .269
| L .076
' .085
. .085
N .076

'S
Table VII. (continued)

L

158

-.357 (10) -.053 (10) . .000 (11)

. 202
~.221
~-. 221

.525
“-]2]
-.121

. 065
-.229

065
-.105
-.105

.319
-. 086

.319

147 .

.213

.213

. 147

.288 (12)
-.019
-.426
~.426

.035

. 145

. 145

.283

.164

. 283

.039

.039

.042
-.406

.042

.012
-.281
-.281

012

.030
.163
.163
-.106
-.172
-.172

-,288 -

.183

~.288

.24
.24
.353
-.344
.353
.162
~.262
-.262
.162

.000
*.000
-.484

.484

.000

-.076

.076

(13)

170

.000
-.170
.332
-.332
.299
.000
-.299
.070
.164
-.164
-.070

.000
‘5295
.295
.000
.243
-.243
.392
.000
-.392
-,173
173

' ’0255
.000
.255
-.090
-.313
313

- .090

-.517
-.270
.248
.248
.225
. 245
L 245

.059 -

-.054
.059
-.203
e 203
-.123
-.392
~-.123
~s 024
~.210
e 21 0
-.024

4

3

1]
R R —




L

> (0,10,0

~

1
3/2

2
5/2
572
3

3
3
/2
1/2
4
4

§4

972
9/2
9/2
9/2

5
(5

§3/2 \

‘ 0.

»1/2
"‘1/2
»0
,"]
»3/2
s1/2
3”1/2
9’3/2
31

0

"‘]

.288
172
.288
.197
.053
-.053
197
.000
.000
.000

Table VII. (continued)

-~

oy

3

-.374
~. 245

© -.245

-0475
-.317
-.317
-.096

-.376 .

-.096
™ 205
-.205
~.056
-.148
-.056
-.006
-.047
-.047

-.006

~-.434
.000
.434
445
.040
-.040
-. 445
.000

.000 -
.000

.191 (18)

| S B B |

.320 (6)
[441

.108
*.108
.247
.136
.136
.035
.185
.035
.201
.201
.247
.098
.247
267
214 -
.214
.267
.195
.150
.195.




 m———————

.000 (7)
'ooo
=, 060
.060 -
, .000"
S .148
Lo : -.148
ST o -.036
S . R .000
. ; ‘. " .036
Y ‘ -.225
o g / 0225
: .039
- .000
-.039
.206
.376
-.376
L g -. 206
U ., T . -.488
T .00D
o .488

LT . -.396(10)
e .304
T . .019 .
.019
.199
~.298
-.298
.272

- -.145

- , .272

L .006

.006

.033

.377

, .033

y , -.067

v -,048

~.048

-.067

'A’
<~
-
b
; QO
~—

S - -.288

R ' ~.200
7 "o288

* Table VII. (continued)

. 166
.109
.109
.129
.283
.283
.134
.326
.134
. 166
. 166
.029
.379
.029
.336
.052

| I T N R NS B |

. 336
. 260,
.20

‘560
.007
.006
.033
,033
.025
.048
.048
.096
.063
.096
.093
.093
179
.185
179
114

-.169
114
-, 391
.683
-.39

-

- &
s

.052 .

(10)

.169

-

-

] 1

t 1

A

160 :

J150 (8)  -.122 (8) .000 (9)

136 .000

.138 .201

. 138 -.200

.088 _ 000

.186 -.387

.186 .387

.207 237 o

.470 .000 {

.207 -,237 ‘

277 164

277 -,164

.076 -.018

.207 .000

.076 .018

.362 -.362

.139 161

.139 -.161

.362 .362

.119 -.265 °

.092 .000

.19 265,

.000 (11)  .000 (11)

.000 .000

.107 .169

.107 -.169

.000 .000 -

.136 -215 ¢

.136 .215

.232 .369

.000 .000

.232 -.369

.226 =31

.226 .371

.307 .251

.000 .000

.307 -, 251

.204 258 -

.364 -.084

. 364 .084

.204 -.258

3N R V7

.000 .000

.31 -2 ———




AC T ot i i o

fans P N

o : - -.236

(0,10) .088 (12).
ﬁ ~.03]
.236

e,
]

103

i .185
- .185
A . 354
. A -.0N
Ty R - .354

-
¥

o=192

-.192
R -.286
S .039
P ~-.286
-.186
114
114
» 186
. =03
.453
.036
.339 (14)
.046
417
=LAl
056 -
.021
.021
21
.216
211
.167
0167
‘ 121
o .200 '
121
-.036
.266
o . 266
-0036
.095
.330

t 18

‘"*W*“iwge T L0957

. Jable ¥II. (continued)

/
TN
.y
! 161 g

.298 (12) .000 (13) ~-.078 (14)
-.105 ".000. -.011

. 256 . 346 -.219

. 256 ~.346 -.219
~-.544 .000 .279

.073 - 171 -.105 -.

.073 A7 =105

.029 --,397 -.388

.023 .000 .443

.029 .397 -.388

.154 -.006 -.029

.154 .006 -.029
-.246 107 -.316

2N .000 .189
-.246 ~-.107 -.316
~-.194 .081 -.128
-.114 .341 -.076
-. 14 -.347 -.076
-.194 -.081 -.128
-.228 244 -.102
-. 17 .000 -.020
-.228 . -.244 -.1Q§%

.000 (15) +.503 (16) .00 (17) -

.000 .349 .000

.459 -.161 .289
-.459 -.161 -.289

.000 -.170 000

. 189 -.278 415
-.189 -.278 -.415
-.077  -.101 . 271

.000 -.099 .000

.077 -.101 -, 2N
~.249 v ,073 .327

2249 .073 -.327
-.310 .093 212

.000 336 .000

.310 .093 -.212
-.105 .030 .049
-.246 .280 123

. 246 .280 -.123

. 105 - . 030 s 049
-.137 .092 .051

.000 21 000

. 137 .092 -.051 T
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(01150
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L Yor2
. T (92
T (92
(5
(5
(5
(1172
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(2
(172

0
0
172
»~1/2
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-.175 (2)
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-.052
-.052
-.360
.150
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.-.041
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-.041
-.267
-.267

.146
-.110
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-.057

.258

.258
-.057
~.258
-.199
-.258

.188

.087

.087-

.188

' Table VII. {(continued)
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-.174 (4)
.278
-.075
-.075
-.263
.185
.185
-.079
.050
-.079
-.176
-.17%6
189 -
.315
.189
-.135
-.312
-.312

‘ --]35 -

, 261
.202
.261

l "0190

-0088
-.088
"0190

.000
_-.039
.039
.000

.13

-.113
-.062
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-, 221
.000
-.221
-.129
.195
-.195
.129
-,390
.000
-.390
426
.066
-.066
-.426
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-.012
-.012
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-.036
=.036
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.146
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-.289
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.139
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(0,11) 000 (7)  .292 (8)  .026 (8)  .000 (9)

. " 000 =~ -.353 -.032 .000
-.074 128 -.042 -.115 1
078 128 -.042 115 4

.000 052 . - .046 .000 ;
.188 =135 .098 .244 ;
-.188  -.13 .098 -.244 |
- -.145 .058 -.005 -.044
.000 . .827 -.137 .000
.145 .058 -.005 .044
\ -.222 -.242 -.097 -.275
.22 -2 -.007 .275
, . o .381 .159 -.062 - '-.050 ,
O - S o 0 - -2 2N . .000 i
~ : " w381 © 159 -.062 .050 a
CLo..38 - -143 .62 312
, \ -.142 149 078 .321
o | .142 U9 .078 -.321
. e .38 =143 162 -.312
L .208 . .097 .029 -.135
. . ~,000 ..085 -.550  .000
St et -.208 097 .029 135
T -.227 -.304 © -.367 -.354
R -.035 5 .330 ~.055
BT AP <L -5 .330 .055
e T 227 -.308 -.367. .354
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. Table VII. (continued)
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.083 (10) ~ .222 (10) .000 (11)
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.129 -.142 -.225
.129 -.142 .225
-7 .060 .000
-.154 .350 .358
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- .M -.159 -. 246
.345 -9 .000
2m 7 -.159 .244
-.222 -.161 .020
-.222 -.161 -.020
-127 -.029 -.080
L35 - 7 .03 .000
SRR VY -.029 1,080
IR 1! .314 .276
‘ 198 S A% -.2n
-, 198, .7 .135 2N
374 L314 -.276
.002 -.05 182
" .063 .28 .000
1002 -.105 -.182
.189 -.041 .268
L .0 -.289 032,
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-.021
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.076

-.076

165

(m)




5 -

.010

. o .074
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.34
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-.178
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- (0,v 3s Sy oty )
x”/ (0,12,0 ",0 ,0 }
El ,0 ,0 -.184
32 ,1/2 ,-3/2) .033
(2 ,-1/2 ,3/2 ) .033
2 0  ,0 ) .23
5/2 ,1/2 ""3/2 -010]
512  ,-}/2—3/2 -.101
3 ’1 ™~ '029
E 0,0 g -.225
AN T a=1 43 .029
§y2 ; .~3/2 ) .202
/2 ,-1/2 ,3/2-) .202
(4 o1 -3 ) -.121
(4 0,0 )} .09
(4 -1 5,3 ) -2
(/2  ,3/2 ,29/2 ) .053
(9/2 ,]/2 "’3/2) "-24]
L (972 ,-1/2 ,3/2 ) -.24]
(9/2 ,-3/2 ,9/2 ) .053
(5 ' ,-3 ) .289
5 ,0 ,0 ) .223
5 -1 ,3 ) .289
/2 ,3/2 ,-9/2 ) -.29]
e ,1/2 ,-3/2) -.135
/2 ,-1/2 ,3/2 ) -.135
/2 ,-3/2 ,9/2 ) -.291
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6 )] -3 ) .060
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(6 =1 L3 ; .060
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.000 (3)
* 000
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"~ .106
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. 255
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.255
.385
.060
.060
.385
.492
.053
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. 156
-.037
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037

-.192
-.192

L 071
-.054
.07

-.010
.046
.046

-.010
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*,.057

- 073
-.216

-. 100

-.100
-.216
.354
.075
. 051
.075
. 354

.239 (4)

170

-.066 (6)
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.022
.022
-.107
~.069
-.069
.038
.163
.038
.098 .
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-.115
-.335
-.115
.045
.070
©.070
.045
.060

. 381
.060
.040
~-. 386
-.386
.040
-.307
.202°
.197

-.307
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127 (6)
-.188
.074
.074
.123
-.161
~.161
.084
125
.084
.088
.088
-.173
-.404
’¢l73
.138
.374
374
.138
.192
179

.192
.038

.019
.019
-.038
293
7,038
.020
.038
.293
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Table Vil (continued)
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%000 (7)

000
.073
. 073
.000
.193
.193

©.099

.000
.099
.290
.290

-.27727

.000
.277
131
.199
.199
.131
271
.000 .
.27
.068
.010
.010
.068
.388

"u04]

.000
.041
.388

4
-.295 (8) " .000 (9)
.379 .000
-.019 -.079
-.019 .079
~.205 ..000
-.060 .178
-. 060 -.178
.074 -. 150
-.013 .000
.074 .150
.248 -. 144
.248 .144
-.307 .309
.097 .000
-.307 -.309
.208 . -.306
-.052 -.242
-.052 .242
208 - .306
9 .315
-.123 - 000 .
.19 -.315
-.065 -.179
.229 -.035
.229 .035
- . 065 179
-.124 . -.19
-.198 -.oN
-.173 .000
-.98 0 LN
~.124 .196 -
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(0,12), : . .000 (9) °~ -.243 (10) -.060 (10) .000 (V1)
S , ~.000 .254 .062 .000 :
’ .033 -.151 .088 -.164
k -.033 -.151 .088 .164
o , . ‘ .000 ©L091 -.066 .000 -
foo, L .. .. =.075 .156 -.187 .300
LT : - .075 .156 -.187 -.300
v . .- =012 -.094 .005 *  -.048
. L .000 -.509 .185 .000
o o - .012 -.094 .005 .048
: " ., .18 .203 160 -.225
~ o -.118 .203 .160 .225
: - .. 061 -.052 129 -.132
.000 .108 -.263 .000
) .. -.061 -.052° . .129 132
©-.100 .051 -. 240 .350
- ' . =220 .017 -.174 141
A , .220 . .017 -.174 -.141
2 , .100 .051 -.240 -.350
| .003" -.238 -.054 .039
® .000 .038 .389 .000
.003 -.238 -.054 -.039
. .158 .247 .287 -.232
.387 -.108 .043 .159
- . -.387 -.108 .043 -.159
' © 2158 .247 . 287 .232
- 173 .183 213 -.127
, -.461 .153 -.205 -.27N
s .000 .129 -.195 000
o .461 153 . -.205 .27
. -.173 .183 213 - 127
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(0,12)

3 -.209

... -.149

‘ . : - -:149
‘ . . R "'a055

* - .353
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-.175
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-.065
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-.074
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Table VII. (continued)
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-.086 (12)

041
~.114
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.12
119
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-.208
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~-.401
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-.239
.046
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-.102
-.055
-.048
-.055
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.013
.013

-.008

-.019

-.019
-.047
.020
-.047
.038
038

.087 -

-.057
.087
.081

-.077

-.077
.081

-.175
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~-.175

-.144

.149
.149
-.144

-.062
.4n

-.653
411

-.062
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.000
-.232
.232
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.299
~.299
-.253
.000
.253
170
-.170
~-.109
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.000
-.055
.326
-.073
073"
-.326
112
«151
000
-.151
-112"

.




- I8 ;
i ; .
O \ | . 174
S L By , -
(0,12) : © . .000 {13)  .378 (14) -.032 (14) ~ .000 (15)
, . 000 - 147 .012 .000 A
| L L 08T .090 119 129 \
5 . : . -.047 090 . .119 =129 :
’ i ©.000 -,453 -.051 000
S ‘ -. 061 ©.145 -.106 .- -.087
. . -06] .145 -.106 .087
-.135 =81 -, 260 .. 301
.000 © 138 .061 . 000
, T a3 281 -. 260 -. 301
Y ; S , .109 .21 .138 ~.385 :
. O . =109 211 ° 138 .345 -
. _.200 -.133 . 282 .188
o ©.,000 -.048 -.084 .000
© -.200 -.133 .282 -.188
.186 -.084 . 262 .321
-.19 -.135 . -.145 ~.263
.196 -.135 -.145 . 263
-.18 . ~ -.084 . 262 ~.321
- -.281 " .103 -.244 ° .125
(" : 000 - 268 -046 000
; ‘ ' - .281 .103 -.244 ~.125
- - 250 .166 -.205 .189
I L340 112 .089 ~.038
. -. 340 112 .089 .038 1
.250 - 166 - -.205 -.186  + g
-.086 .047 -.058 .045 ]
294,231 -.086 .058 ;
. 000 168 .426 .000 '
-.294 .231 -.086 -.058
i ,08 - 047 - -.058 . ~.045
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' (0,12) yo 000 (15) .17 (16) -.191 (16)  .000 (17)
| .000 - .002 .003 .000
- [ «~ . . 208 -.340 -.278 1393
', o . g ¥, 208 -. 340 -.278 -.393
o . ‘ .000 .034 .424 .000
- 147 .107 -.060 . .010
RS .101 -.060 -.010
~. 365 .356 =171 -.303
.000 _ — .091 .298 .000
. 365 . 356 -7 .303
- .098 .013 -.074 " 172
-.098 .013 -.074 172
. o, 207 -. 056 .077 -.161
.000 -.160 -.236 .000
-. 247 -.056 2077 .161
.247 -.114 172 L.017
.036 -.162 -.098 " .155
, -.036 -.162 -.098 -.155
- oo =287 -4 172 017
; ﬂ -.036 -.184 .259 .255
e .000 -+ .184 -.162 .000
. .03 -.184 :259 -.255
-.027 -.114 .205 .135
-.325 .229 .105 .251
.325 .229 .105 -.251.
.027 -. 114 .205 -.135
-.006 -.023 .042 024
A v -.250 .062 - 147 .163
, S .000 .325 .072 ©  .000
. . 250 .062 - .147 -.163
. : .006 -.023 .042 -.024
| .
.. Table VII. (continued) i
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.04z (18)
.020 .
, 155
( « _.1585
:\ . ’ T "'~]48'
" . ' .108
.108
.333
L -.359
o _ b .Y oo .333
T e e . ..t o .000
L : : a © o .000
. .347
' -.332
. 347
N s - 0195
7 ~ " .006
. ’ _— .006
| .195
[ 0208
- =,099
o .208
. 106
.041
.041
.106
: 017 -
- .053
. .009
.053
017

- Table VII. (contiﬁued)‘
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.402 (18) - .000 (19)°
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'0136
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.000
. 387

. -. 387
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.314
-.314
.070
.000
~.070
] 048
.048
~-. 209
. 000
. 209
~.18
-, 267
. 267
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-.273
.000
.273

- -.104

-.156
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.104

-.014

-.082
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.014

.453
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-.016
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.016
.004
.229
.229
1133
.234
1133
141
141
.016
.079
.016
.013
.199
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013
1138
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.138
.043
.224
.224
.043
.005
.069
.13
.069
.005
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