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Abstract

We examine a simple estimator for the multivariate moving average model based on
vector autoregressive approximation. In �nite samples the estimator has a bias which is
low where roots of the determinantal equation are well away from the unit circle, and more
substantial where one or more roots have modulus near unity. We show that the represen-
tation estimated by this multivariate technique is consistent and asymptotically invertible.
This estimator has signi�cant computational advantages over Maximum Likelihood, and
more importantly may be more robust than ML to mis-speci�cation of the vector moving
average model. The estimation method is applied to a VMA model of wholesale and retail
inventories, using Canadian data on overall aggregate, non-durable and durable inventory
investment, and allows us to examine the propagation of shocks between the two classes
of inventory.

1Galbraith and Zinde-Walsh: Department of Economics, McGill University, 855 Sher-
brooke St. West, Montreal, QC, Canada H3A 2T7; Ullah: Department of Economics,
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1. Introduction.

Estimation techniques for vector moving average (VMA) models are in general ex-

tensions of the techniques used for the scalar case. Typically, algorithms are based on

the method of maximum likelihood (ML), approximate or exact (see Osborn, 1977), or

on iterative procedures based on long autoregressions; the latter may be used with ML

estimation to provide starting values (see, for example, L�utkepohl, 1993 for a discussion).

The main advantage of ML is asymptotic e�ciency in a correctly speci�ed model. How-

ever, the computational complexity and potential for non-convergence of ML may lead to

di�culties in employing these estimates in Monte Carlo studies; moreover, non-robustness

to mis-speci�cation may undermine its reliability. In the present study we examine an

estimator designed to provide better performance in these respects.

ARMA or vector ARMA processes often arise as nuisance elements in a model, where

simplicity, robustness and good �nite-sample performance are issues of greater concern than

asymptotic e�ciency. For the scalar case, a simple estimator based on an autoregressive

approximation to the MA process was examined in Galbraith and Zinde-Walsh (1994); for

an ARMA process a method is given in Galbraith and Zinde-Walsh (1997). In the MA

case, in addition to ease of calculation such methods exhibited small-sample performance

quite similar to that of ML estimator, unless one or more roots was close to the limits of

the invertibility region, and could improve upon the performance of ML in over-speci�ed

and, especially, in under-speci�ed models. L�utkepohl (1988) and L�utkepohl and Poskitt

(1991) use an analogous procedure to compute impulse response (MA) representations of

VAR processes, and obtain the asymptotic distribution. Alternative non-ML algorithms

for the scalar MA case include those of Durbin (1959) and Koreisha and Pukkila (1990).

This paper examines the simple estimator in the multivariate case, concentrating on

�nite-sample performance of the estimator when used to obtain coe�cients of an underlying

vector moving average process. We compare it with exact ML, in both correctly-speci�ed

and mis-speci�ed cases. We then use the estimator in an application in which we investigate

the propagation of shocks between wholesale and retail inventories, both overall aggregate

and divided into durable and non-durable goods, with Canadian data.

Section 2 provides the necessary de�nitions, introduces the estimator, and considers
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the asymptotic properties of the estimates. Simulation results, including the comparison

with ML, are presented in section 3, and section 4 presents the analysis of the inventory

investment data. Section 5 concludes.

2. The vector moving average estimator

2.1 Estimation algorithm

We consider an n-dimensional discrete-time multiple time series fXtg; with Xt =

(X1t;X2t; : : : ; Xnt)0 consisting of zero-mean, �nite-variance, stationary stochastic processes

with �nite fourth moments. The multiple time series follows a vector moving average

process of order q, that is,

Xt = A�0ut +A�1ut�1 + � � �+A�qut�q (t = 1; 2; : : : ; T ); (1)

where ut is an n-dimensional white-noise process with covariance matrix �, and where

A�0; A
�

1; : : : A
�

q are coe�cient matrices of dimension n�n; with A�0 of full rank; no roots of

the determinantal equation

jA�0m
q +A�1m

q�1 + � � �+A�q j = 0 (2)

are on the unit circle.

A moving average process has the property that its covariance structure is invariant

with respect to two classes of transformation:

(i) transformation by a non-singular n � n matrix W; so that vt = Wut; and Ci =

A�iW
�1; leading to the representation

Xt = C0vt + C1vt�1 + : : :+ Cqvt�q;

with E(vtv
0

t) =W�W 0: The roots of jC0m
q +C1m

q�1 + � � �+Cqj = 0 coincide with those

of (2);

(ii) the unique transformation of the representation (1) that replaces every root of

the determinantal equation (2) that is outside the unit circle by its inverse, yielding a

determinantal equation with all roots inside the unit circle (see, e.g., Hannan and Deistler

1988).
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We therefore consider, without further loss of generality, the process (1) to be such

that all roots of (2) are inside the unit circle.

Here we will choose a transformation matrix as in (i) above, denoted S; to yield a set

of orthogonalized innovations " = Su; where S is the Cholesky decomposition of ��1 (that

is, S0S = ��1), so that E("0t"t) = I: We have

Xt = A�0S
�1"t +A�1S

�1"t�1 + � � �+A�qS
�1"t�q; (t = 1; 2; : : : ; T ): (3)

Next de�ne Ai = A�0S
�1; i = 1; 2; and we obtain

Xt = A0"t +A1"t�1 + � � �+Aq"t�q; (t = 1; 2; : : : ; T ); (4)

Note that if � = I; then Ai = A�i :

In general, because of the invariance property, model (1) can be estimated only up to

transformations of types (i) and (ii). From this point on, we therefore consider models of

the type given in (4), and such that all roots of the corresponding determinantal equation

are inside the unit circle.

It follows from the determinantal condition (2), with all roots inside the unit circle,

that the multiple time series (1) or its transformation (4) can be expressed as an in�nite-

order VAR process. We examine the transformed process, which can be represented as

(see, for example, Fuller, 1976)

Xt =
1X

j=1

BjXt�j +B0"t; (5)

with coe�cient matrices given by

B0 = A0

B1 = A1

B2 = �B1A1 +A2

B3 = �B2A1 �B1A2 +A3

...

Bq = �Bq�1A1 �Bq�2A2 � � � � �B1Aq�1 +Aq;

Bj =

qX

i=1

�Bj�iAi; for j = q + 1; : : : :

(6)
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By a method analogous to that of Galbraith and Zinde-Walsh (1994), relations of this type

can be used to yield estimates of the moving average coe�cient matrices. By estimating

a VAR approximation to the system, we may deduce the VMA coe�cient matrices from

those of the VAR and the set of relations above.

The following algorithm is one method of using the information embodied in the VAR

approximation, and is similar to the method used by L�utkepohl (1988) and L�utkepohl and

Poskitt (1991) in impulse response estimation.2 Fit a VAR(p) model with p > q to the

sample by least squares; from the p estimated coe�cient matrices of dimension n � n of

the VAR representation Xt = B1Xt�1 + B2Xt�2 + � � � + BpXt�p + B0"t; estimate the q

moving average coe�cient matrices of dimension n�n by the following relations based on

(6):

A1 = B1

A2 = B1A1 +B2

A3 = B1A2 +B2A1 +B3

...

Aq = B1Aq�1 +B2Aq�2 + � � �+Bq�1A1 +Bq:

(7)

Finally, the estimated error covariance matrix provides an estimate of B0B
0

0; from

which an estimate of A0 can be obtained as the Cholesky decomposition.

Before examining the performance of this vector analogue of the simple estimator of

Galbraith and Zinde-Walsh (1994), we will summarize briey the results obtained there for

the scalar case. First, the simple estimator is biased; in the MA(1) case with parameter �;

for example, the estimator has an asymptotic bias toward zero which equals ��2p+1(1��2)
1��2p+2 ;

and thus declines monotonically with p. Second, the asymptotic mean squared error to

Op(T�1=2) is provided, and for the MA(1) case an explicit expression for it is given as a

function of �; T and p: Minimization of this part of the mean squared error over choices of

p leads to the conclusion that small values of p (around 1 to 3) perform best, by a small

margin, for moderate values of � (around 0.5 and less) even for quite large sample sizes.

2L�utkepohl (1988) does not orthogonalize the innovations, being concerned with asymp-

totic properties of the impulse responses, which are una�ected.
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However, for � near the unit circle, high values of p are needed to minimize the mean

squared error. For example, the optimal value of p is about 24 for � = :95 and T = 200;

small values of p result in quite large mean squared errors in this case.

In the next sections we comment on consistency and invertibility of the estimated

representations. We show that for �xed p the simple estimator has an asymptotic bias,

which declines exponentially if p is allowed to grow with T at an appropriate rate.

2.2 Consistency of the estimates

In order to discuss consistency we need notation to distinguish the coe�cients Bi of

the in�nite order system (5) from the coe�cients of the population analogue of the p-th

order least-squares VAR approximation. We will now refer to the former as Bi(1) and to

the latter as Bi(p): De�ne �i = E(XtXt�i); and set Bi = 0 if i > p; then the Bi(p) are the

solutions to the following system of Yule-Walker equations:

B1�0 +B2�
0

1 + � � � +Bq+1�
0

q = �1

B1�1 +B2�0 + � � � +Bq+1�0q�1 +Bq+2�0q = �2

...
... (8)

B1�q +B2�q�1 + � � � + B2q+1�0q = �q;

Bi�q +Bi+1�q�1 + � � � +Bq+i�0 + � � �+B2q+i�0q = 0; i = 2; : : : ; p:

As T !1 and for p of order o(T
1

3 ); it follows from Berk (1974) that the OLS estimates

(B̂1; : : : ; B̂p) of the VAR(p) coe�cients converge to the solutions Bi(p); i = 1; : : : ; p of (8);

that is, Bi(p) = plim(B̂i(p)): De�ne the asymptotic bias for order p as �Bi = Bi(p)�Bi(1);

and for estimated values, let �B̂i = B̂i(p) � Bi(1): Then �B = [�B1 : �B2 : : : : : �Bp]

solves the system

�B� = 
; (9)

where 
 is an np � n matrix of the form

2
664

1


2
...

p

3
775 with n � n sub-matrices 
1 = 
2 =
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� � � = 
p�2q = 0 and 
p�2q+1 = �Bp+1�
0

q; and so on. This representation follows from

comparing the Yule-Walker equations for the in�nite-order VAR in (5) with the equations

for the truncated VAR(p) in (8).

Each of the 
i can be expressed as a linear combination of at most 2q � 1 matrices

Bj ; j � p + 1: From the fact that the Bj are the coe�cient matrices of the in�nite

autoregressive representation of an invertible MA(q) process it follows that the elements

of Bj ; j � p + 1 decline in absolute value at an exponential rate as p!1; and therefore

also that the asymptotic bias �B = ��1
 declines to zero as p increases. Therefore, the

estimate Â1 di�ers from A1 by �B̂1 and so shares the distribution and asymptotic bias of

B̂1; similarly the estimate Â2 di�ers from A2 by B1�B̂1 +�B̂1A1 + (�B̂1)
2 +�B̂2 and

so has the same order of asymptotic bias as �B̂2; and so on. Since �B̂i ! 0 8i as T !1

with p!1 and p = o(T
1

3 ); consistency of the estimator of Ai follows.

2.3 Asymptotic invertibility of the estimated representations

The following proposition demonstrates that the estimated representation in also in-

vertible as T; p!1; whether or not the original process is invertible, as long as there are

no roots on the unit circle.

Proposition. Let the VMA(q) process Xt = A(L)"t (t = 1; 2; : : : T ) be such that

the determinantal equation jA0m
q + A1m

q�1 + � � � + Aqj = 0 has no roots on the unit

circle. Let Â(L) be a set of estimated lag polynomial matrices produced by the simple

estimator of a VMA(q) model, using a VAR approximation of order p. Then for su�ciently

large p; T; the VAR(p) representation of the process is stationary and the determinantal

equation jÂ0m
q+Â1m

q�1+� � �+Âqj = 0 has all roots within the unit circle (the estimated

representation is invertible) with probability arbitrarily close to 1.

Proof: If Xt satis�es the given determinantal condition, then there exists an invertible

VMA(q) process Yt = C(q)(L)�t with an identical autocovariance function (C(q)(L) =

A(L); Yt = Xt if the original process is invertible.) Being invertible, Yt has an in�nite

VAR representation of the form (5)-(6) based on (C(q)(L))
�1, which is well de�ned as a

mean square limit (see, e.g., Fuller, 1976; L�utkepohl, 1993) and which, since Yt must be

stationary, is stationary as well. Let this VAR representation be B1(L)Yt = ut: Consider

now LS estimation of the VAR(p) model B(p)(L)Xt = ut: The estimated lag polynomial
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matrices B̂i(p) will be identical to those estimated from a VAR(p) model of Yt; since

LS estimation uses only the autocovariances. By the consistency of the LS estimator,

B̂(p)(L)
p
! B1(L) = [C(q)(L)]

�1 where p; T ! 1 such that, for example, p = o(T
1

3 ):3

Hence the estimated process B̂(p)(L)Xt = ut will also be stationary for su�ciently large

p; T: Finally consider estimates of the coe�cient matrices Âi of an order{q model of Xt,

based on (7) and using the estimated matrices B̂i(p). Since the latter coe�cient matrices

approach those of B1(L) in probability as p; T ! 1; the corresponding solutions to (7)

converge as well, to those of C(q)(L): Since the process C(q)(L) is invertible, this estimated

process will also be invertible, with probability arbitrarily close to 1, for su�ciently large

p; T:

As examples, consider the two non-invertible VMA(1) processes (subscripted a and b)

described by the lag polynomial matrices A1;a =

�
1 �0:5

�0:5 1

�
and A1;b =

�
�1 1:75
1 �4

�

in (4). The roots of the determinantal equation (2) corresponding to the two processes

are (�1=2;�3=2) and (1=2; 9=2) respectively. In simulations of 5000 replications with

T = 200 and p = 8; we obtained average values of the estimated coe�cient matrices

(corresponding to invertible counterparts of the processes) of Ĉ1;a =

�
0:577 �0:082
�0:082 0:578

�

and Ĉ1;b =

�
�0:137 0:040
�0:715 �0:576

�
: The roots of the determinantal equations corresponding

to these estimated processes are (�0:496;�0:660) and (0:488; 0:225) respectively, and are

consistent estimates of the roots of the invertible counterparts, respectively (�1=2;�2=3)

and (1=2; 2=9):

Su�ciently large p ensures stationarity of the VAR(p) representation of the VMA(q)

process, by the consistency of the estimator. Again, a su�cient condition is that the order

p of the VAR approximation increase at the rate o(T
1

3 ) as T !1: A faster rate, close to

T
1

3 ; entails a loss of precision in the estimation of parameter matrices of the VAR(p) process

through the loss of degrees of freedom, but is o�set by the faster decline in asymptotic bias

(for given p) of the VMA estimates. A non-stationary estimated VAR(p) representation is

a signal that the process is not in fact VMA, or that p is too low.

3See L�utkepohl (1988).
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For practical purposes one needs some indication of appropriate small-sample orders p;

the following section provides some indication, by simulation, of appropriate p for moderate

sample size and order of VMA process.

3. Simulation results

In order to examine the performance of the simple VAR-based estimator we choose a

selection of processes yielding real and complex roots of the determinantal equation (2).

The processes are described in Table I, and the simulation results for VMA(1) and VMA(2)

cases appear in Tables II and III respectively; sample size is T = 200 in each case. In Table

IV we report results for mis-speci�ed models in which VMA(1) models are used for the

VMA(2) processes of Table I (cases v-viii). Note that all of the processes selected below

are invertible, and for each, A0 = I and � = I:

In each case we report both the root mean squared error for the estimates based on

(7), and the ratio of this RMSE to the corresponding RMSE from a Maximum Likelihood

estimator. We use an exact ML algorithm in which the Kalman Filter is used to generate

the likelihood function for the model case in state-space form (see for example L�utkepohl,

1993), followed by optimization using the Powell algorithm (Press et al., 1986). Because

we perform Monte Carlo simulation with ML, we need an optimization algorithm which

is very reliable in the sense of very rarely failing to converge to a solution; discarding

non-convergent cases could lead to systematic bias in the simulation results. The Powell

algorithm meets this requirement, and we were able to obtain 1000 (VMA(2) models) or

2000 (VMA(1) models) replications without the necessity of discarding any experiments.

In ML estimation, we treat � as known to be diagonal in order to optimize over only two

values in the covariance matrix.4

Consider the root mean squared errors (that is, MSE
1

2 ) of estimation for the VMA(1)

cases, in Table II. In parallel with the univariate case ( Galbraith and Zinde-Walsh 1994),

we see that the \optimal" value of p tends to be larger where roots are nearer the unit

circle (although biases again do decline monotonically in p); of course, the value of p which

4This represents a modest advantage to ML in that a valid restriction is imposed, saving

degrees of freedom.
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gives lowest RMSE may di�er for di�erent elements of the coe�cient matrix. A low value

of p performs relatively well in Case i, which has the smallest-modulus roots; in each

of cases ii{iv there are some parameters for which there is a substantial improvement in

moving from p = 4 to p = 8: It is also noteworthy that RMSE's of estimates from (7)

show little variation across parameters, and little sensitivity to p within this range.5 This

reects in part the fact that with p = 8 biases are low for any of these models, so that

the RMSE reects mainly the estimator's variance. Estimates of A0 (not reported in the

tables) produce similar root mean squared errors.

Relative to ML, we note that ML is generally superior (the indicated RMSE ratio ex-

ceeds unity), but that this is not always the case; in case ii, for example, ML gives superior

estimates of the (1,1) parameter, but (7) performs much better for the (2,2) parameter.

Note also the relatively high variability across parameters of the ratios, reecting relatively

high variability of Maximum Likelihood RMSE's across parameters.

Similar patterns arise in the VMA(2) cases, Table III a/b. For the �rst coe�cient

matrix, where roots are complex, p = 8 almost invariably produces gains relative to p =

4; for the second coe�cient matrix the two values produce similar results. Maximum

Likelihood produces lower RMSE in a majority (37/64) of cases, but ratios are generally

near unity, and there are cases of substantially better performance by (7) as well as by

ML. In general, RMSE's are higher than for the VMA(1) cases for given p; case viii, in

particular, indicates that for moderately large roots we may need more than eight lags to

minimize RMSE.

In Table IV we consider mis-speci�ed cases. Note that for the estimator based in (7),

the RMSE's are precisely the same as those for the �rst parameter matrix in a VMA(2)

model (Table IIIa), since this estimator has the property that estimates of parameters

to order q are una�ected by whether or not estimates at q + 1 are also calculated. We

therefore report only the RMSE ratio, as de�ned above. Here we see, as did Galbraith

and Zinde-Walsh (1994), that mis-speci�cation can a�ect ML badly; the RMSE for (7) is

5Results are very similar for p = 12 (not reported in these tables), with the exception
of Table IIIa, case viii, where a substantial improvement in RMSE is available in moving

from p = 8 to p = 12:
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superior in a large majority of cases, sometimes by a large margin.6

Finally, it is interesting to compare the results in case iv of Table II (in which the two

processes are in fact univariate) with the mean squared errors of comparable univariate

models (see Table 3a of Galbraith and Zinde-Walsh, 1994). In the univariate case the simple

estimator gives root mean squared errors of approximately 0.07 for MA parameters of 0.1

and 0.5, and approximately 0.08 for a parameter of 0.9 (T = 200; using p = 12). These

are very similar to the Table II-case iv (p = 8) results, suggesting that the sacri�ce which

follows from specifying a vector MA model for what are in fact independent univariate

processes may be negligible.7

6Comparison of the estimates from the �rst parameter matrix remains the correct com-
parison in these mis-speci�ed cases; second-order MA terms do not project onto �rst-order
terms, and so capturing �rst-order autocorrelation correctly is the best achievable with a

mis-speci�ed model of this type.
7As noted above, results for p = 12 are not reported in tables given here, but are in this

case very close to those for p = 8:
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Table I
Coe�cient matrices and roots of (2) for cases considered in Tables II and III

VMA(1) processes

Case A1 �1 �2
8

i

�
0:2 0:1
0:1 0:6

�
-0.176 -0.624

ii

�
0:8 0:2
�0:6 0:4

�
-0.6 � 0.283i mod=0.663

iii

�
�0:5 1:2
�0:8 0:4

�
0.05 � 0.870i mod=0.872

iv

�
0:8 0:0
0:0 0:4

�
-0.4 -0.8

VMA(2) processes

Case A1 A2 �1; �2 mod(�i) �3 �4

v

�
1:20 �0:443
0:20 0:80

� �
0:161 0:00
0:00 0:30

�
-0.565 � 0.298i mod=0.639 -0.701 -0.169

vi

�
1:20 0:00
0:00 0:80

� �
0:440 0:20
0:00 0:11

�
-0.6 � 0.283i mod=0.663 -0.624 -0.176

vii

�
0:80 0:00
1:21 0:30

� �
0:36 �0:40
0:284 0:360

�
0.05 � 0.870i mod=0.872 -0.8 -0.4

viii9
�
1:10 0:00
0:115 1:30

� �
0:90 1:00
�0:258 �0:13

�
-0.6 � 0.283i mod=0.663 -0.8 -0.4

8For complex-root processes this column contains the modulus.
9Some entries in the matrices of case VIII are rounded relative to the values necessary to

generate the indicated roots.
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Table II
Estimated Root-mean-squared errors of estimates of VMA(1) coe�cients10

T = 200; 10000 replications; 2000 replications for ML

Case i parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

RMSE: (7) 4 0.072 0.073 0.073 0.073

(7)/ML 4 1.00 1.03 1.26 1.14

RMSE: (7) 8 0.075 0.076 0.075 0.075

(7)/ML 8 1.04 1.07 1.29 1.17

Case ii parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

RMSE: (7) 4 0.073 0.071 0.076 0.084

(7)/ML 4 1.66 1.04 1.17 0.46

RMSE: (7) 8 0.075 0.076 0.075 0.076

(7)/ML 8 1.70 1.12 1.15 0.42

Case iii parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

RMSE: (7) 4 0.078 0.115 0.106 0.074

(7)/ML 4 1.70 1.00 0.91 1.28

RMSE: (7) 8 0.076 0.080 0.078 0.075

(7)/ML 8 1.65 0.70 0.67 1.29

Case iv parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

RMSE: (7) 4 0.094 0.076 0.070 0.072

(7)/ML 4 1.11 1.65 1.00 1.06

RMSE: (7) 8 0.076 0.076 0.075 0.075

(7)/ML 8 0.89 1.65 1.07 1.09

10The notation \RMSE: (7)" indicates the square root of the mean squared error of the

estimator based on equation (7); the notation \(7)/ML" indicates the ratio of this root

mean squared error to that of the exact ML estimator described in the text.
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Table IIIa
Estimated Root-mean-squared errors of estimates of VMA(2) coe�cients

First coe�cient matrix
T = 200; 10000 replications; 1000 replications for ML

Case v parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

RMSE: (7) 4 0.220 0.107 0.129 0.092

(7)/ML 4 0.80 1.27 1.28 1.15

RMSE: (7) 8 0.077 0.076 0.075 0.076

(7)/ML 8 0.28 0.90 0.74 0.95

Case vi parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

RMSE: (7) 4 0.134 0.086 0.071 0.075

(7)/ML 4 0.45 1.18 0.85 0.96

RMSE: (7) 8 0.077 0.076 0.075 0.076

(7)/ML 8 0.26 1.04 0.89 0.97

Case vii parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

RMSE: (7) 4 0.091 0.071 0.126 0.076

(7)/ML 4 1.34 1.04 2.14 1.36

RMSE: (7) 8 0.076 0.076 0.080 0.075

(7)/ML 8 1.12 1.12 1.36 1.34

Case viii parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

RMSE: (7) 4 0.461 0.453 0.332 0.361

(7)/ML 4 3.29 2.03 2.70 1.66

RMSE: (7) 8 0.160 0.117 0.110 0.100

(7)/ML 8 1.14 0.52 0.89 0.46
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Table IIIb
Estimated Root-mean-squared errors of estimates of VMA(2) coe�cients

Second coe�cient matrix
T = 200; 10000 replications; 1000 replications for ML

Case v parameter:
Quantity p A2[1,1] A2[1,2] A2[2,1] A2[2,2]

RMSE: (7) 4 0.115 0.121 0.085 0.096

(7)/ML 4 0.46 1.13 0.99 1.68

RMSE: (7) 8 0.118 0.123 0.096 0.096

(7)/ML 8 0.47 1.15 1.12 1.68

Case vi parameter:
Quantity p A2[1,1] A2[1,2] A2[2,1] A2[2,2]

RMSE: (7) 4 0.110 0.116 0.087 0.091

(7)/ML 4 0.57 1.61 1.05 1.30

RMSE: (7) 8 0.114 0.118 0.095 0.096

(7)/ML 8 0.59 1.64 1.14 1.37

Case vii parameter:
Quantity p A2[1,1] A2[1,2] A2[2,1] A2[2,2]

RMSE: (7) 4 0.087 0.117 0.112 0.129

(7)/ML 4 1.89 2.34 1.19 1.34

RMSE: (7) 8 0.094 0.098 0.119 0.120

(7)/ML 8 2.04 1.96 1.27 1.25

Case viii parameter:
Quantity p A2[1,1] A2[1,2] A2[2,1] A2[2,2]

RMSE: (7) 4 0.102 0.190 0.120 0.132

(7)/ML 4 0.55 0.57 0.83 0.52

RMSE: (7) 8 0.103 0.112 0.116 0.121

(7)/ML 8 0.56 0.34 0.81 0.47
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Table IV
Estimated Root-mean-squared errors in mis-speci�ed cases:

VMA(1) model parameters where processes are VMA(2)

T = 200; 10000 replications; 2000 replications for ML

Case v parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

(7)/ML 4 0.62 0.96 0.86 0.27

(7)/ML 8 0.64 1.00 0.88 0.28

Case vi parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

(7)/ML 4 0.24 0.39 0.81 1.17

(7)/ML 8 0.24 0.42 0.80 1.06

Case vii parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

(7)/ML 4 0.27 0.57 0.30 1.04

(7)/ML 8 0.27 0.40 0.22 1.06

Case viii parameter:
Quantity p A1[1,1] A1[1,2] A1[2,1] A1[2,2]

(7)/ML 4 0.13 0.17 0.28 0.24

(7)/ML 8 0.11 0.17 0.30 0.25
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4. An application to wholesale and retail inventories

In this section we apply the methods just described to estimate VMA models of the

bivariate system composed of aggregate Canadian inventory investments by wholesalers

and retailers respectively. The data are available in real terms, quarterly from 1981 through

1997, and are used in seasonally-adjusted form.11 Note that the available span of data

comprises only 68 observations. As Galbraith and Zinde-Walsh (1994) noted in univariate

MA cases, the asymptotic e�ciency of ML may not be realized in small samples, and lower

RMSE of estimation may be achieved with methods of the type used here.

Inventories are often considered to be well described by moving average processes

because the periodic resetting of inventories to optimal levels implies a bound on the

number of periods that shocks can a�ect inventory levels, and this point beyond which

autocorrelations are nil is characteristic of the moving average process. Moreover, by a

theorem of Granger and Morris (1976), the aggregation of a set of MA(qi) processes will

in general lead to an aggregate process which is MA(maxi(qi)), so that we expect the

same type of pattern to be visible in data which aggregate di�erent �rms and sectors.

We therefore expect MA models to provide adequate characterizations of each of the data

series just described (used below in de-meaned form).

The primary question that we investigate here is the propagation of shocks from

wholesalers' inventories to retailers' inventories, and vice versa. To do so, we begin with

a choice of order for the approximating autoregressions, followed by estimation of VMA

models of (i) aggregate investment in inventories, (ii) investment in inventories of durable

goods, (iii) investment in inventories of non-durable goods, by wholesalers and retailers

respectively. We therefore deal with three bivariate systems, using six data series in all.

For each of the three systems, we chose an autoregressive order of four. Only one of

the twelve F-transformed (for better �nite-sample properties) LM residual autocorrelation

11All series are available from CANSIM, and are given in constant 1992 dollars, seasonally
adjusted at annual rates; all refer to business investment in inventories. The series used are:
D15576, retail inventories, total; D15577, retail inventories, durable goods; D15579, retail
inventories, non-durable goods; D15581, wholesale inventories, total; D15582, wholesale
inventories, durable goods; D15583, wholesale inventories, non-durable goods. Between
the two, durable and non-durable goods make up the largest part, but not all, of the

aggregate �gure.
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tests in these AR models, against autocorrelation in lags 1{4 and 5{8, was signi�cant at the

5% level;12 the SIC criterion chose an AR order of four or less for all series except D15576,

for which the order chosen was �ve (with a value close to that for four). A still lower

order was not used because a number of the AR models showed substantial coe�cients at

lag 4, possibly an annual-inventory e�ect. The choice of a relatively modest order is also

consistent with the modest roots of the estimated moving-average representations, as we

see below, and is in keeping with the restricted sample size as well.

Table V reports the �rst two VMA coe�cient matrices derived from this fourth-

order bivariate VAR; recall that, by the estimation method above, estimates of VMA(1)

parameters are not a�ected by the presence or absence of VMA(2) or higher terms, and

so on. There are several interesting points and regularities.

First, the roots of the determinantal equations for the VMA(1) and VMA(2) repre-

sentations are quite small; these are not highly persistent series. Both retail and wholesale

inventory investments show similar degrees of persistence. However, the immediate trans-

mission of shocks is asymmetric: in the aggregate, the e�ect of a shock to retail inventory

investment is transmitted to wholesale inventories with a coe�cient of 0.47, whereas a

shock to wholesale inventories shows only an e�ect of 0.06 (with standard error of 0.13,

and so insigni�cantly di�erent from zero on this sample).13 That is, retailers appear able

to o�set inventory shocks to a substantial extent by changing orders from wholesalers;

wholesalers do not have reciprocal short-term ability to cause retailers to adjust to their

own shocks. This is compatible with the fact that the purchasing choice is made by re-

tailers in response to demand; nonetheless, there must be eventual adjustment to supply

factors communicated to retailers by wholesalers through price adjustments. We see this

at the two-quarter (six-month) lag, where in aggregate data the responses of retailers to

12These statistics ranged from a low of 0.71 (lags 5{8, aggregate data, retail, distributed

F(4;43)) to a high of 3.16 (lags 5{8, durables data, wholesale, also distributed F(4;43)). The

second-highest value was 2.41. The 5% critical value is approximately 2.6.
13For the �rst VMA parameter matrix, A1; standard errors are those of B1 and are obtained
from the VAR model variances; for the second matrix, A2; the coe�cients are transfor-
mations of those of B1 and B2; and approximate standard errors for each element are
obtained from the Jacobian of the transformation and the VAR variances and covariances,

restricting cross-equation covariances to zero.
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wholesalers' shocks, and vice versa, are now quite close at 0.24 and 0.28 respectively.

A similar pattern appears in durable goods inventory investment; the cross-e�ect from

wholesalers to retailers is again the only coe�cient insigni�cantly di�erent from zero among

the VMA(1) parameters. At the two-quarter lag, the two are much closer, at 0.20 and 0.35

respectively (in VMA(3) and VMA(4) representations, not reported in Table V, the cross-

e�ects are 0.33, 0.31 at three quarters and 0.12, 0.13 at four quarters). For non-durable

goods, by contrast, the cross-e�ects are similar at the one-quarter lag at 0.25 and 0.20; at

the two- and three- quarter lags, however, the e�ect of wholesalers' shocks on retailers is

very close to zero. Note however that the coe�cients in the models of non-durables are

smaller overall, indicating less persistence in non-durables inventories in general and less

scope for substantial cross-e�ects at longer lags. This observation would be consistent with

lower costs of adjustment of non-durables inventories.
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Table V

Estimated coe�cient matrices, inventory investment models

X1 : Retail; X2 : Wholesale

Aggregate inventories:
VMA(1) A1[1,1] A1[1,2] A1[2,1] A1[2,2]

coe�cient 0.39 0.06 0.47 0.37
(std error) 0.11 0.13 0.09 0.12

VMA(2) A2[1,1] A2[1,2] A2[2,1] A2[2,2]

coe�cient 0.25 0.24 0.28 0.16
(std error) 0.13 0.15 0.12 0.14

Durable goods inventories:
VMA(1) A1[1,1] A1[1,2] A1[2,1] A1[2,2]

coe�cient 0.45 -0.04 0.39 0.24
(std error) 0.12 0.12 0.11 0.11

VMA(2) A2[1,1] A2[1,2] A2[2,1] A2[2,2]

coe�cient 0.19 0.20 0.35 0.21
(std error) 0.14 0.14 0.13 0.13

Non-durable goods inventories:
VMA(1) A1[1,1] A1[1,2] A1[2,1] A1[2,2]

coe�cient 0.12 0.25 0.20 0.09
(std error) 0.10 0.13 0.09 0.12

VMA(2) A2[1,1] A2[1,2] A2[2,1] A2[2,2]

coe�cient 0.19 -0.02 0.13 0.23
(std error) 0.10 0.13 0.10 0.12
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5. Concluding remarks

A generalization of the results for the simple moving average estimator, obtained in

Galbraith and Zinde-Walsh (1994), shows that it is convenient for use with vector moving

average models, and exhibits very similar properties. The estimator is biased in �nite

samples; nonetheless, in cases where the moduli of roots are not too close to the unit

circle, the biases become small, and mean squared errors approach their minimum values

at moderate orders of approximating VAR. For sample sizes in the neighbourhood of 200, a

VAR of order 4 proves to be a reasonable choice in typical cases for estimation of VMA(1)

models, and VAR of order 8 for VMA(2) models. In choosing the order, there is a trade-o�

between a moderate loss of degrees of freedom (therefore e�ciency) if order is chosen too

high, versus poorer approximation (greater bias), particularly in models with roots near

the unit circle, if order is chosen too low. The algorithm comes close to achieving the

overall performance of ML in correctly-speci�ed models, and appears to be substantially

more robust to mis-speci�cation of the VMA model.

We apply the method to estimation of VMA models of quarterly time series of aggre-

gate inventory investment. The results suggest that, because the moving average roots are

far from the unit circle, low-order models are su�cient to characterize the data. Although

the time series is short, it is nonetheless possible to detect some asymmetry in short-term

responses of wholesalers' and retailers' inventories to shocks in the other sector.

ACKNOWLEDGEMENTS

The authors thank the Fonds pour la formation de chercheurs et l'aide �a la recherche

(Quebec) and the Social Sciences and Humanities Research Council of Canada for �nancial

support of this research, Jean-Marie Dufour for valuable comments, and two anonymous

referees for exceptionally careful reviews.

21



References

Berk, K.N. (1974) Consistent autoregressive spectral estimates. Annals of Statistics

2, 489{502.

Durbin, J. (1959) \E�cient estimation of parameters in moving-average models." Bio-

metrika 46, 306{16.

Fuller, W.A. (1976) Introduction to Statistical Time Series. Wiley, New York.

Galbraith, J.W. and V. Zinde-Walsh (1994) \A simple, non-iterative estimator for

moving average models." Biometrika 81, 143{155.

Galbraith, J.W. and V. Zinde-Walsh (1997) \On some simple, autoregression-based

estimation and identi�cation techniques for ARMA models." Biometrika 84, 685{696.

Granger, C.W.J. and R.J. Morris (1976) \Time series modelling and interpretation."

Journal of the Royal Statistical Society A, 139, 246{257.

Hannan, E.J. and M. Deistler (1988) The Statistical Theory of Linear Systems. Wiley,

New York.

Koreisha, S. and T. Pukkila (1990) \A generalized least squares approach for esti-

mation of autoregressive moving average models." Journal of Time Series Analysis 11,

139-151.

L�utkepohl, H. (1988) \Asymptotic distribution of the moving average coe�cients of

an estimated vector autoregressive process." Econometric Theory 4, 77-85.

L�utkepohl, H. and D.S. Poskitt (1991) \Estimating orthogonal impulse responses via

vector autoregressive models." Econometric Theory 7, 487-496.

L�utkepohl, H. (1993) Introduction to Multiple Time Series Analysis. (Revised ed.)

Springer-Verlag, Berlin.

Osborn, D.R. (1977) \Exact and approximate maximum likelihood estimators for

vector moving average processes." Journal of the Royal Statistical Society, B, 39, 114{18.

Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling (1986) Numerical

Recipes: the Art of Scienti�c Computing. Cambridge University Press, Cambridge.

22


