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INTRODUUCTION

The basic aim of this thesis is to extend the definition
of an n-dimensional vector measure so as to allow it to assume
infinite values., In the l-dimensional case, when one extends the
notion of a non-negative measure to that of a signed measure which
may assume negative values, it is necessary to assume that the
signed measure takes on at most one of the values (+ ») or (- =),
In a similar fashion it is shown that in order to successfully
extend the definition of a finite~valued n-dimensional measure,
it is necessary to suppose that the extended measure assumes at
most one infinite value.

In 1940, A. ILiapounoff [1] proved that the range of a
countably additive finite measure with values in a finite-
dimensional real vector space is closed and in the non-atomic
case, convex, In chapter 11, it is proved that a strongly
o-finite, non-atomic measure which takes on values in a compactification
of Euclidean n-space has a range which is convex but not necessarily
closed.

In a recent paper by Gould, [6], there is a discussion of
bounded and unbounded vector measures which take on values in Banach
spaces. However his generalization to unbounded measures is not
the direct generalization of the one-~dimensional case that is
considered here, In the present discussion we preserve countable
additivity over the given o—ring, which cannot be done with more

general measures.




CHAPTER 1

2. Preliminary Definitions

Let R be the space of real numbers and let E” be
Fuclidean n-space regarded as a normed n-dimensional vector
space. Since all norms on EY are equivalent, we shall employ
the Euclidean norm in all of the following without any loss of
generality.

We first construct a completion of E", Consider the
mapping

f:E? —— D" = { x € B HXH <1 }
given by h
f(x) = x/(|x] + 1).

This is the usual homeomorphism between E' and the set

{xeﬁnzuxndL

J

which is the interior of the unit disk, D®. Since the closure of

4 x € B0 ¢ xl| <1 }

is D" which is compact, D" is a compactification of the space E*
under the homeomorphism f.

The space T which we shall be considering is homeomorphic
to this compactification of E'. Tt can be expressed as the disjoint
union, T =ER0y Sn-', where S%7! 1s the set consisting of all

points in E! of unit norm. The points of S"”' will be identified



by writing them in the form ".=", where x is a unit vector. The
topology defined on T will be the homeomorphic image under f of
the usual topology on D%, This topolegy may be fully described
by giving a neighbourhood base for each point in T. The base for

a point x € E' is composed of sets of the form
Ve = 4 yeE tlx -yl <e }-, for e > 0.

For a point «= we take the neighbourhood base given by the sets
T(kye) =4 x €8x |l >k, || x/lx] - <] <e '}

where k,e are arbitrary positive numbers. We can easily see that

V(k,e) is homeomorphic to the open set

{201/ i) el <2, /el = e}

contained in the interior of D".
Thus we can easily extend the concept of convergence in

E" to T. By the expression " the sequence {xy} converges to «=,
Xp € E% m o= 1,2,3,... " which we write as

X «&* a5 m——> ® ,
we mean that for every neighbourhood V of «= there exists an integer
N > 0 such that

m >N implies x € V.

Now in terms of our basic neighbourhoods this states that for
all k¥ >0 and any ¢ > O there exists an integer N > O
such that

x, € V(k,e) forall m>N,



which implies that

e
and

bgl— = as m—— =,

Let X be the space on which our set functions are to be
defined and let S be a o-ring of subsets of X. Let y be a function
defined on the sets of S which takes on values in T. We shall
always assume that u is countably additive on sets of finite measure;

ie. if E€ S, [u(E)| < =, and if E = ngl E, where the
sets En are disjoint and |u(E,)| <« =n=1,2,3,... then

u(E) = EM(EH) or  lim %L/\,((En) = U(E).

n=
We shall also assume that M(®) = O where & denotes the empty set
and O 1s the null vector; and that the function u is strongly
o-finite, i.e. 1f E € S then there exists a sequence {En} of

disjoint measurable sets such that E is contained in the union

of the E_ and W}(En)ﬂ {» n=1,2,...

Conventions:
We shall make the following operational definitions for
using the symbol «=:

(]_a) LB F LW = Lo

(1) § (@) = o
n=1

(2) AMa=) = o=, where A € R, A DO

(3) oo + % = & s Wwhere x € o



3. Main Theorem

In this section we extend the definition of the measure
of a set to the case where the value of the measure is of the form
#», We then proceed to show that a measure can assume at most one

infinite value.

Definition 3,1

ILet E € S, We say that ((E) = «= if for every countable
disjoint decomposition of E into measurable sets, E = Uj By,

satisfying [W(E,)| { = =n=1,2,... we have:

N
f[fu(En) s> as N— = (3.1)
and N n= N
Vo) ) (B o4 a5 N s = (3.2)
n=1 ﬁ;i

Since M 1s strongly o~finite over S, each set with measure
«» has at least one such decomposition. If the 1limit in (3.2) does
not exist for some decomposition, the set function u will not be

a measure on S,

Lemma 3.2

Consider a seguence of vectors in En, {xn};=l, such that:
/gl —— >« a5 n— e (3.3)
and |z J[——->= as n——— e (3.h)

Let 2z be a fixed wvector.

Then (a) Hxn+ z|| ———— (3.5)



() = /%y + 2l——>1 (3.6)
(c) (xy+2) / Ix +2|l——u (3.7)
Proof :
(a) (3.5) follows from (3.L)
() | 1= Jrall/ ey + 2l | = | Ugrall = e D/ ey + 2] |
< e/l + 2

which can be made as small as we wish for

sufficiently large n since llx, + zl| RO
(c) Let € > 0 be given.

From (3.3) there exists N; such that || « = x/||x,l| || < ¢/3
whenever n > N, ,

from (3.6) there exists N, such that | 1 - Ilx[/ilx, + 2 | < ¢/3
whenever n > N, ,

from (3.5) there exists Ny such that |zl/[x, + 2l < e/3
whenever n > N, .

Let N = max {N,,N,,N.}; then

I o= Gy o+ 2/ + 2]l

I = Ge/llxgll) + G/ lixnll) =G/ Nprall) + (p/llmpval]) = [(xpre)/lxy+2f ] )
| % = =/l |+ =1 C] L/lxgll = 1/ lxg¥d 1)+ [2l/lixg + 2]

I = xp/llxgll |+ 11 = Nl + o2l |+ 2]/ ]y + ]

< €3+ ¢/3+¢/3 = ¢ for n > N

N

Thus (xp + 2) / [lx, + 2l——« as n—o |

Theorem 3.3
Suppose E and F are two disjoint measurable sets such that
WE) = «=, WF) =B, («#B). Then there exists a decomposition

of EU F into a countable union of disjoint measurable sets of finite



measure such that the limit in (3.2) does not exist and therefore
w is not a measure on S.

Proof:

Since (E) = «» and uis strongly o-finite, there exists

a decomposition of E into disjoint measurable sets, E = ﬁi En’
n=

such that |u(Ey)]| <= =n=1,2,3,... and the sequence {En}gz‘

satisfies (3.1) and (3.2). Similarly, F = ﬁl F, is such a decomposition
n=

of F, k .
Congsider the sequence of partial sums, 4 ) M(E) F s
Vs ‘k=N
i=N
where N is any fixed positive integer. In the hypothesis of lemma (3.2),

put K N-1
Xy = §m u(E;) and z = - > U(Ei) .

i=1 i=1
Then since {Ep}y satisfies (3.1) and (3.2) it follows that {Xk}£:1

satisfies (3.3) and (3.4). Since

N-1
Izl < ) JuED] <=
i=1
it follows from the conclusions of lemma 3,2 that
k
| >4 M(E; ) | —~ »» as k——>w (3.8)
and ki=N Kk
g u(Ei>/,!|>“,u<Ei> |— v i 25 ke (3.9)
1=N 1=N

Obviously the same result holds for F = ngl Fp .
Let z be an arbitrary vector in E®, In the hypothesis of

lemma 3.2, let



From (3.8) and (3.9) it follows that {Xk}k=N satisfies the hypothesis

of lemma 3.2 and therefore

{ 7 + (L(El) ,//| 7 + WE;) f——->« as k—- >« (3.10)
_ i;— ;N
and k
|z + § MWE) | ——= as k——o (3.11)
i=N
Again the same result holds for F = 61 Fpe
=

Suppose [« - Bl = 8 > O.
Select ¢ such that 0 { ¢ < &/2,

Since
n
) ) \u<E>u—M a5 m e
...1 __l

there exists N such that

PRV

i=1 i
Let n, be the first such N.

W(E| H .

snl\«'!z
I__l

n

Ieb z =Z;u(Ei)- Then |z < i |WED] < = Tous 1t
i= '

follows from the analogue of (3.10) for F = U F that there

)

exists M such that
. y{ ] 1
H B - ‘ X'U(Ei) + } u(r,) J/H >— U(E;) +
i= i=1 i=1 i
Let m; be the first such M.

l 3

W) || < e

[~ =

i

1

M-y
Suppose we have picked Ny eeesy ) My yeessMy » If Z = w (Fa)
1 k=1 ™ 9 M) —
1=

then (3.10) implies that there exists N > my, such that



g.

| M- N Mr-) N,
o “ “ - { > W(F) ¢ ) u(Eg) J/}] > W(Fy) + X W(EL) ] ” < e
‘ i: i=1 =) i

Let np be the first such N. Similarly we pick my.
Thus by this inductive process we have arranged the two
Sequences {En}n:l and {Fn}n=1 into a single sequence:
El,t-o,Enl,Fl,ooQ,le,Enl+ ‘,--.,EnZ,le_l,_ I,coo,sz,too
Rename these sets H,,H;,Hs,... while preserving the above order.

Then {Hn}n=l is a sequence of disjoint sets of finite measure whose

union is (E U F).

We first show that (E U F) cannot have finite measure.
From (3.5) of lemma 3.2 it follows that there exists an integer t,

such that

by
fu(F) + Vo )l o> 1.
i=1
Given bty,e..,t).1 there exists 1ty > ty_7 such that
k. by
1) w@E) + ) wED) > k.
i=1 i=1

Thus by induction we have a sequence of sets
Fl’El’""Etl’FzﬂEtl+l’""EtZ’FBS"'

which are measurable, disjoint, of finite measure, and whose union

is (E U F). If (B U F) had finite measure, any such decomposition

of (E U F) would necessarily be such that the norms of the sequence

of partial sums would be bounded. (This follows from the countable

additivity of'u on S and the definition of convergence in our space.)

Since this is not so for the decomposition we have developed, (EU F)

cannot have finite measure.

. Suppose WEUF) = v», for some y. Because of definition 3.1
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our decomposition J Hy, =EU F must satisfy condition (3.2)

N “x
fe. ) 'U(Hk)/H Y uE) | ——y as N (3.12)
k=1 k=1

Now if ||« - 9] € €, we musthave
IB=o = (==~ Cy=20l = [p=«l-1ly-«
>86—-¢€¢ > 2¢e=¢€ = €
Thus either [« =9 > e or || 8 -y | > e, Without loss of generality
we may suppose that [« — y|| =t > e . Choose A such that 0 A <t — e,

Now (3.12) implies that there exists N such that

n n
|7~ 7wy /1) w) || < aozor asw
k=1 k=1
Therefore
= - 1 2 :
<= T g /1Y ot = fmn =) /1Tl -]
k=1 k=1 k=1 k=
n 0
> oA = Y uemo /1Y Wl - |
k=1 k=1
>t-2 >e for n>N (3.13)

However from our construction of the sequence {Hn}nzl there exists

n, > N such that

. B i _ Ok M-
H -] >i‘u(Ei) + }; ngi)J//||>i#u(Ei)4-§f M(F1N|H < e
i1 i=1 i=1 i=1
S s
tee [l Touen /1) wan | < e (3.10)
i=1 i=1

0

where HS corregponds to Enk in the construction of {H_},_; and s >N.

The inequalities (3.13) and (3.1l;) contradict each other
n -

and therefore ) u(E) /| > ((Hg)| cannot tend to a limit as
k K1

W~
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n tends to infinity; that is, W(E U F) # = for any y. Thus we
cannot define the measure of (E U F) in such a way as to be consistent
with our previous definitions and therefore ( is not a measure on

the o-ring S.

Thus we have shown that in order for our set function u
to be defined on all sets of a o-ring S, it is necessary that
not take on distinct infinite values at disjoint measurable setis.
Therefore we shall subsequently eliminate this situation from our
considerations and assume that non-finite disjoint measurable sets

have identical measures.

Lemma 3.hL
Suppose E and F are measurable sets such that E is con-

tained in F. Then |[[u(F)|| < = implies [Ju(E)| { =.

Proof:
Suppose ((E) = y=, for some unit vector y. Then there
exists a decomposition of E, E = G Ens dinto a countable number
n=1

of disjoint measurable sets of finite measure such that the sequence
{En}nzl satisfies (3.1) and (3.2) (where "x" is replaced by "y").
Consider (F - E), a measurable set. Since (F - E)n E = &,
it follows from the assumptions made above that either |[w(F - E)|| < =
orfu(F - E) = v, In either case there exists a decomposition of
(F-E), F-E-= ngl Fn, into a countable number of disjoint
measurable sets of finite measure, ( In the case [[WF = E)|| { =
we take Fy =F -E and Fy =& 1 =2,3,... )
Following the same procedure as that used in the proof

of Theorem 3.3, we can find a sequence {nk}k:1 of positive integers
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such that
(1) ny <ng< ... < oy Koo

k T
(i1) | ) w(®y) + ) UWED >k k= 1,2,...
i=1 i=1

Thus we can define the sequence:

F1sErseeesBn sFasBn 4lseeesBnsees (3.15)
Evidently the sequence is composed of disjoint, measurable sets
of finite measure whose union is the set F.

Since F is of finite measure, the partial sums of the
sequence of measures of the sets in (3.15) must be bounded in norm.,
However, they are obviously not by the method of construction of
the sequence.

This contradiction proves that |[|W(E)| < =.

Lemma 3.5

Let E and F be two disjoint, measurable sets such that
WE) = WF) = «». Then WEU F) = «=.

By lemma 3.L, W(EU F) cannot be finite.

Suppose E U F = igl H; 1is any decomposition of (EU F)
into disjoint, measurable sets of finite measure. Let E; = EN Hy
and Fi = F N Hy i=1,2,4e. .+ Then {Ei}izl is a sequence of
disjoint, measurable sets such that:

(1) 0 B = y@EnH) - En(ym) - &

(ii) since EBj c Hy, [U(H)]| < = implies that [Ju(E;)l < =
1=1,25000 (by lemma 3.4) . We can make analagous statements about
{Fy};.1. Therefore, since W(E) = j(F) = «=, Definition 3.1 implies

that the sequences {Ei}izland {Fi}izl must both satisfy the conditions
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(3.1) and (3.2). We shall now show that {Hi}i:l satisfies (3.1)
and (3.2) which will complete the proof of the lemma.
(a) Let € > O be given.
Let C be the e—cone about the direction vector «; that is,
C is the cone based at the origin each of whose generators makes
an angle of ¢ with the vector «. Since C is a cone
x € C implies 2x € C forall x € E%, %A >0 (3.16)
Also C is convex, therefore

X,y € C implies Ax + iy € C; where A + n =1, 2A,n >0 (3.17)

Since {Ej};.; and {F;}, , both satisy condition (3.2),

t(F)/l

n n
Multiplying by | ) ((E,) | and | S—L&Fi) | respectively,
=1

there exists an integer N such that

u(F ) e c.

ll\\/ﬁb

n >N implies that E: E; )///H > (E4)]| € C and

u'|\/|5

1

i=1
and using (3.16) gives

n

Z AM(E;) €C and
i=1 i
Now (3.17) implies that

i\\/]{j

w(Fy) €cC, for n > N.
1

]

n n
(1/2) >. WE) + (1/2) >_ WFy) €c, fornxN.
1=1 i=1
9; n
Multiplying by 2//{| > W(ES) + ) WF;) | and using (3.16)
11 =1
o o n n
we have L Z;uﬂEi) + E_UKF ) /// > KE ) + } (Fl)H € C forn >N.
i=1 i=1 l=1

Now'LKHi) = U(Ey U Fy) = y(Ei) +AU(Fi)’ since E; and F; are disjoint



1.

sets of finite measure. Thus we have shown that

S- U (K, )//”|\ WH;) || ec  forn >N.

Since this is true for all ¢ > 0, we have

n n
) ) /1) ) | ek a5 n——e
=1 i=1
i.e. {H;}j.1 satisfies condition (3.2)
(b) n n n
Let up = > u(H > = } u(Fi) 3 no=1,2,...
i= 1 i= 1 :1

Since uy, = v, + Wp, U, lies in the plane determined by the vectors

v, and w . Let the angle between uy and v, be 6., and that between

u, and w, be €. Let € > O be given such that 0 { ¢ < n/3.
Now vp/llv |— >« wp/llwl~ -« as n-— o

and by part (a), w/iufi—-- « as n——— o, Thus there exists

an integer N > O such that n >N implies O < e {e 1 =1,2,

Then |fuy| = l|vg!| cos o7 + luyll cos ey
> (llvp)| + llwl|) cos ¢, since cos 6 increases as 6 decreases to O
> ([lvy] + lwy) (1/2), since 0< e < n/3 implies cos e > 1/2
This is true for all n >N, and since |lvy]|— — « and fuy|— -
as n—— =, Ywe have
n
;m u(H )il = HunH“_—“* ®» as n— -,

Thus {Hi}i:1 satisfies condition (3.1) and therefore (W(E U F) = xw.

Lemma 3.6
Suppose E and F are two disjoint, measurable sets such that
WE) = «= and JJW(F)| < . Then ((EU F) =

Proof:

If [|W(E U F)] < «, then , by lemma 3.L, [[WE)| < =.
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Therefore we must have w(E UF) = y», for some y. Suppose y # <.
Let E = Ul E, be any decomposition of E into disjoint
n=

measurable sets of finite measure. ILet Gy = E; U F. Then
luCe )l = Ju(E) + @I < JuE)] + JWE®] <=

Also let G, = E; forn=2,3,... . Then nUl G, = BEUF s
a decomposition of (E U F) into a countable number of disjoint,
measurable sets of finite measure,

Since Y(E U F) = y= by assumption, according to definition 3.1

we must have:

n
(1) | ) we) l— > as n— -
i=1
and
n n
a1 Vo) /1) W) [ —=y as n— e
i=1 =1
that is,
n
(i°) u(F) + \ WE) f——= as n——e
=
and
_ a . 1
(119) [u®) +) w®) ]/ IuE) + ) (@) —=7 a5 n e
' i=1 - i=1
Now, lemma 3.2 implies that
(1ii) || >”}L((Ei) | — > as n——
i=1
and
- n
(iv) > J(E; ) > WE) [ ==y as n—=

i=1
This contradicts the fact that u(E) = #4», Therefore w(EU F) =
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Corollary to Theorem 3.3

If E and F are measurable sebts such that,u(E) = £ and

u(F) = B, where X # B, then u is not a measure on the o-ring S.

We consider all possibilities for the measures of the dis-
joint sets ENF, E - F, and F - E; where u(E) = «» and y(F) = Be,
L # B
(a) Suppose Uu(E nNF) e, if

(1) |JwE - F)| <= , then

[WE)] = |uWENF) +WE-F)] < [WENTF) + [WE-F)| < =,
which gives a contradiction . Therefore (E — F) must have
infinite measure and similarly we can show that (F - E) has
infinite measure.
(ii) W(E = F) _ y», for some y, then lemma 3.6 implies

that u(E) = y». Therefore y = 4. However the same reasoning
applied to F gives the result that U(F - E) = Be. Thus (E - F)
and (F - E) are disjoint, measurable sets with different infinite
measures and Theorem 3.3 then implies that w is not a measure
on S.

(b) Suppose W(EN F) = we. If |WF - E)l| (= then W(F) = «=
by lemma 3.6 . This is a contradiction., Therefore W(F- E) =
for some y. If vy = &, then ((EN F) = WF - E) = 4= and from
lemma 3.5 ((F) = «=, giving a contradiction. Thus y # « and
therefore (F - E) and E are disjoint sets with different infinite
measures. Therefore Theorem 3,3 implies that (( is not a measure
on S. Similarly W(EN F) = B implies that W is not a measure
on S,

(c) Suppose W(ENTF) = yo, v # 4B, If JWE - F)|| < =, then
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WE) = y» by lemma 3.6 , giving a contradiction. Similarly
[W(F ~E)| =« If W(E~TF)=u(F ~E) = yo, then by lemma 3.5

W(E) = y» = u(F), giving a contradiction. However if U(E - F) = &=,

5 # v, then we have two disjoint sets, (En F) and (E - F), with
different infinite measures and therefore u is not a measure

on S. Similarly w(F - E) = &, 6 # y, implies that i is not
measure on S.

Thus the existence of two measurable sets with different
infinite measures always leads to the existence of two disjoint sets
with different infinite measures which according to Theorem 3.3,
implies that u is not a measure on S. This situation motivates

the definitions of the following paragraph.

L. Definition of Unbounded Vector Measures

In the previous paragraph we showed that to produce a con-
sistent definition of an unbounded vector measure on a o-ring S, the
range of the measure must contain only one infinite point. We shall
call a set function}u,defined on a o-ring S with values in the space T,
which is countably additive on sets of finite measure, strongly
o-finite, and which assumes one and only one infinite value (in the

sense of definition 3.1) an unbounded vector measure. We shall

usually denote its unique value by "«=", 1In the following we show
that our unbounded vector measure is a legitimate extension of the

usual finite-~valued vector measure.
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Lemma li.1

It follows from the definition of an unbounded vector
measure that when p is an unbounded vector measure lemmas 3.5 and
3.6 can be extended to the case where the two sets are not necessarily

disjoint.

Theorem .2

Let 1 be a strongly o-finite set function,defined on the
o-ring S, which assumes one and only one infinite value,namely ««.
If w 1s countably additive on sets of finite measure, then it is
countably additive on all the sets of S. Thus an unbounded vector
measure preserves bthe usual properties of a measure.

Let E = E, ,where E,E, € S n = 1,2,3,... and

ngl
EiﬂEJ-:cb,i;éj.
Let {Enk}k be the subsequence of {Ep}, consisting of
all sets of finite measure and put F = g Enge
Let {Eﬁt}t be the subsequence of {En}n consisting of
all sets of measure «~ and put G = % Emt . (Note that these subsequences
may in general be finite sequences.) Then E = F U G.
Suppose [[U(F)| { ». Since « is countably additive on

sets of finite measure we have

J(F) = ZU(Enk> (L.1a)
K

If (F) = «», then F = % Enk is a decomposition of F
into a sequence of disjoint measurable sets of finite measure.

Therefore

(1) |

lA(Enk) ] — > » as N— - o
k

i

1



19.

(11)

N
| Lk(El'lk)/ H 7LL<Enk) H — = X as N ——
k=1 k=1

i)

Thus from the definition of convergence in our space T we have

wW(F) = «= = >_;.L(Enk) (L.1b)
-
If F=E (i.e. G =) then (l.1la) and (L.1b) prove

the desired result. Now assume F # E. Then there exists at least

one "t" such that Ey c G c E. Lemma 3.4 now implies that
W(0) = o = () (1.2)

Now)u(F) is either finite or equal to x». In either case

w(@) + uW(F) = «=+ W(F) = (L.3)
Moreover
W(E) = o« = ) (u=) = >A:k!\(Emt) (L.b)
t £

(Both (L4.3) and (L.lL) make use of the operational definitions adopted
in paragraph 2.)

Using (L.1), (4.2), (L.3), and (L.L) we get

WEL) + ) W(Eyy) = >_<E>

% n

ﬂA(E) = L* = ‘&&F? +4(G) =

aling

which proves the theorem.
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CHAPTER 11

5. The Range of a Bounded Non-Atomic Vector Measure

In the following section we shall consider Halmos’? proof
[2] of the fact that the range of a non-atomic bounded vector measure
is convex. In paragraph six we extend these results to the case of

unbounded vector measures.

Definition 5.1

A subset A of E" is said to be convex if «£,8 € A imply
A+ (L=2A)B €A foramy h, O0< A <1l. (We shall later extend

this definition to T, the range space of our unbounded vector measures.)

Let S be a o-ring of subsets of an arbitrary space X and
let u be a bounded, countably additive function of the sets of S
with values in E™. Then u can be expressed in the form
U= (Uyeeesty),
an n-tuple of signed measures.

Throughout this paragraph we shall take "measure" to mean

"bounded vector measure in the above sense, unless otherwise stated.

Definition 5.2

The measure & = (lyyeess My) 1s said to be non-negative

if M(E) >0 forall E€S and i=1,.,.,n.

Definition 5.3

If ueo is a one-~dimensional measure, the total varlation,

WY(E), of yoon the set E € S is defined by:
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SE) = U(E) + u{E)
where
W(E) = sup {UF) : E > F € S}
and
LWJE) = —inf {p(F) : E>F €8S}

(Lh,...,(ig,'a*will denote the non-negative

|

In general if 11

measure (Mi,...,5).

Definition 5.4

The length | u*|

1]

W+ veo + U dis always a non-negative

numerical measure.

Definition 5.5

A measurable set E is an atom if u(E) # 0 and if for
every measurable set F c E either [(F) =0 or u(F) = u(E).
(. 1s non-atomic if none of its coordinates, (1 = 1ye0e,m)

has any atoms.

Definition 5.6

The measure y is absolutely continuous with respect to the
measure v, if

[V (E)| = 0 implies |UWXE)| =0 foramy E € S,

Definition 5.7

A measure y is semi-convex if every measmrable set E con-~

tains a measurable set F for which u(F) = u(E)/2.

Definition 5.8

For any measure U and any measurable set E we define K(i,E)

tc be the class of all real-valued measurable functions ¢ on E
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for which
(1) 0<¢(x) <1 for all x € E
and

(11) ulix e B2 g(x) <A) = W(E)  foramy 2, O <h <1,

Definition 5.9

A measure u is convex if for every measurable set F, the

class XK(u,E) is not empty.

Lemma 5.10
If u is a semi-convex measure and E is amny measurable set
then there exists a sequence {En}nzl of measurable subsets of E

such that for every k = 1,2,... and any k distinct positive integers

k
N),e..,Ty  We have ;4(Enl N eee N Enk) = (1/2 )U(E).

Lemma 5.11

A semi~convex measure ls convex.

Let  be a non-negative semi-convex measure., ILet E be
any measurable set and let {En}n:1 be a sequence of sets with the
property defined in lemma 5.10.

If x € Ex = lim inf E, then write ¢(x) = 0; otherwise

n—pw
write
#(x) = > ep(x)/28
n=1
where ¢, 1s the characteristic function of the set E,. Clearly

¢ 1is measurable and O < #(x) {1 for all x € E. Since
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n
{x 1 ¢(x) <A} = E U {x : 5‘ en(x)/Zl 4 X}
i=1 '
for any dyadically rational number N\ = k/2n, with n = 0,1,2,.,.

and k =1, 2,...,2" 3 it follows that

Wt s g(x) <)) = AuE)

for all such values of A. The fact that equality (5.1) is true
for all X, 0 <A <1, follows from the countable additivity of u.
The truth of the lemma in the general case follows from

the above by means of the device used in lemma 5.17.

Lemma 5,12

Let w be a non-negative convex measure and let E be amny
measurable set. If ¢ € K(LgE) and if v is a measure absolutely
continuous with respect to u, then v(ix : ¢(x) < \}) is a con-

tinuwous function of A, O <A <1,

Lemma 5.13

(5.1)

If u is a convex measure and E and F are any two measurable

sets, then for each A, O <€A <1, there exists a measurable set
C(\) with the following properties:

(i) c(o) = E c(1) = F

(i1) um(e(\)) = (1 = MM(E) + \(F)

(ii1) If u is also non-negative and if v is absolutely

contimuous with respect to w then vw(C(\)) is a continuous

function of 3.

Proaof:

Let ¢ and y be functions in K(J,E ~ F) and K(u,F - E)

respectively; write
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cA) = (ENF) U {x:¢x)<1l-A U fx :¥(x) {2}

Then (1) follows from the definition of C(3) and (iii) follows from

lemma 5,12, (ii) is proved by the following:

uWe)) = wWEnF) + ul{x : ¢(x) <1 =) +ulfx w(x) <A
= (ENTF)+ (1 -NWE=F) +r(F - E)
= (1 - 2uE) + auF).

Corollary 5.1l

The range of a convex measure is convex.

Lemma 5,15

If u = (U,eeeylpy) 1is non-negative and non-atomic and
if each w (1 < 1 <n) is absolutely continuous with respect to
its predecessor, ui., then u is convex.

Because of lemma 5.11, it suffices to prove that u is semi-
convex, In [3], lemmas 1 and 2, Halmos shows that the result holds
when n=1. (It is shown that a non-negative, non-atomic, numerical
measure defined on a o-ring of subsets of a measurable set X, assumes
all real values between O and u(X).)

Suppose now (in the case n > 1) that the (n ~ 1)-dimensional
measure W = (W,;eve,Un) is convex. It follows from the hypotheses
that the l~dimensional measure v' = Ky 1s absolutely continuous with
respect to it.

Let E € S. Then there exists a measurable set Eo c B
such that U'(Ee) = W(E)/2; write Fo =& - Eo. If V'(Eo) = V(E)/2

there is nothing to prove. Otherwise we may assume
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V(E.) < W(E)/2 and W(Fo) > W(E)/2

Then lemma 5.13 applied to ', V!, Eo, Fo in place of u, v, B, F
M2 2

yilelds the existence of a number A, O <A <1, such that

VIC(N) = N(E)/2

and
Wweh)) = (@ - uE) + adF)
= (1 = W(E)/2 + nllE)/2 = W(E)/2 .
Lemma 5.16
A non-atomic, non-negative vector measure is convex.
Proof:

If ws= (Lh,...,un) is the measure in question, write

n
/ .
uh = > LL‘} 1 = 1,...,1’1 L4

51
ﬂwntﬂ=(ub.n,dJ satisfies the conditions of lemma 5.15.
Therefore W'is convex.

Let L be the inverse of the linear transformation which

carries u into w's  Then the linearity of L and the semi-convexity

of W imply that w is semi~convex and hence convex.

Lemma 5.17

A non-atomic vector measure is convex,
Proof':

For each i =1,...,n there exists a measurable set Es
such that PQKE N Ei) >0 and u(E - E;) <0 for every E € S.

(The Hahn decomposition with respect to each u; respectively. )
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On each of the measurable subsets of any one of the 2" sets
of the form E.' N oo NE®™ (3 =0o0r1 i=1,...,n
where Ejl = Bs  and E; = X - E3) , each of the measures
Uyesesldy is of constant sign. Lemma 5.16 may now be applied to
the set function Meyyeense, = (+ U seestln) s Where the ambiguous
gign is chosen in each case so that Melyueesén is a non-negative

measure. The convexity of u and the disjointness of

€19ses3En
any two distinct sets of the form E1€1 N ees 0 E°" imply the

convexity of u.

Corollary 5.18

The range of a non-atomic, bounded, vector measure is convex.

6. Range of a Non-Atomic Unbounded Vector Measure

Let ji be a strongly o-finite unbounded vector measure as

defined in paragraph four.

Definition 6.1

An unbounded vector measure,li, defined on a o~ring S is
said to be non-atomic if

(1) W is non-atomic on measurable sets of finite measure.

(ii) M(E) = x=» for E € S implies that there exists a

measurable F c E such that 0 { [W(F)]| < =.

Definition 6,2

Let E be a subset of T, the compactification of E" defined
in paragraph 2, Now E can be written in the form E = E, U E, ,

where E, c E' and E, consists solely of the infinite points of
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E. We say that E is convex if:
(1) E, is a convex subset of E" .,
and (i1) if «= € E; then there exists t, > O and a vector B

such that («t + 8) € E for all t > t, .

Lemma 6.3

Let u be an unbounded vector measure which is strongly
o-finite and non-atomic, Let E and F be any two measurable sets
such that |[[WE)|| { = and [[W(F)| < ». Then for each X, 0 <A <1,
there exists a measurable set G{(\) such that

wen)) = auE) + (1 - uF) .

Proof:

(B < = and [JW(F)] (= dmply [U(EU F)]| <=,

Consider the o-ring, S, of all sets in S which are contained

in (EU F). Define fl on § by
a(a) = wu(a) for all G €S,

Then Q& is obviously countably additive.
Lemma 3.l implies that [[i(G)|| ¢ » for all G € S. (6.1)
Therefore the range of { is bounded; for otherwlse there would

exist a sequence, {En}njl, of disjoint S-measurable sets such that

!
| ) W) == a5 N

n=1
Then || ﬁl En)H = o« , contradicting (6.1).
n=

Thus W is a bounded, non-atomic vector measure and
Corollary 5,18 implies that U has convex range. Therefore for

any A, 0 < A <1, there exists an S-measurable set, G()), such that
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a(a(n)) = ANE) + (1 - N(F).
However from the definition of & and S we have:
wan)) = AWE) + (1 = auF).

Definition 6.4

A halfwcylinder on a set S contained in E" is defined
to be the set of all vectors of the form (x + «t), where x ¢ S,
t > 0, and « is a fixed direction. An open half-cylinder on a set

S contained in ET is the interior of the set defined above.

Lemma 6.5

Let A be an unbounded convex set in EY, Then there exists
some m~dimensional hyperplane, (1 <m < n), containing A such that
A contains a non~trivial open half-cylinder in the m~dimensional
space.

Proof:

(a) We first consider the case of E=. If A is one-dimensional
(ive. an unbounded line segment), the lemma is obviously true. Thus
we may suppose that the points of A are not collinear.

Since A is unbounded there exists a sequence, {x,}, of
points of A such that |[x,/|——— =. Consider the set y {xn/ I%nl }
which is contained in S1, the unit sphere in 2-space. Since S! is
compact there exists a subsequence {Xnk}k:l such that:

(1) ”XnkH“_'“"* ® g5 k—— (6.2)
and

(ii) Xy / ”XnkH'_”'—*'* as k= (6.3)

for some unit vector «,
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Let x,y be two points of A such that the straight line
Joining them does not have the direction «. Let H be the open half-
cylinder on the line segment (xy) which extends to infinity in
direction «.

Let 2z € H, Join xz, yz. OSuppose xz, yz make angles
€1y £p Trespectively with the direction vector «. Let C, and C,
be the two-dimensional cones with base points x and y respectively
all of whose generators make angles of ¢; and ¢, respectively with
the vector «,

Now (6.2) and (6.3) imply that C, and C, each contain all
but finitely many of the {xnk}k. Therefore there certainly exists
an integer k such that xp € (CL N Cy), X, # x,y. Clearly z is
contained in the triangle formed by Xy s X and y. However A is
convex, Therefore z € A and H is contained in A,

(b) The n-dimensional case follows in an entirely analagous
manner. Again we get a sequence of points of A, {xp},, satisfying
(6,2) and (6.3).

We consider the lowest dimensional hyperplane which con-
tains A and take this to be our space. Let this space have dimension m.

Since A is not contained in any (m - 1)-dimensional hyper—
plane, there exist m linearly independent points of A; ¥yi,ecesYm3
such that the direction vector < does not lie in the (m — 1)-dimensional
hyperplane determined by these points. Let H be the open half-
cylinder on base the simplex determined by the m verticesj yi,«..s¥m3
and extending to infinity in the direction <. We choose any z in H

and again consider the lines y,Z,...,ypz which make angles of
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€1svves€py respectively with the direction vector x. Let OCy,...,Cp
be cones with base points ¥i,e..,y, Trespectively whose generators
all make angles of €;,.4e56y Tespectively with «.

As before there exists an integer k such that
X € (C1 Nese N Cm). Then z is contained in the simplex spanned

by the points Xps F1seeesYy and therefore z € A because of the

convexity of A, Thus H is contained in A.

Theorem 6.5

The range of a non-atomic, unbounded vecltbor measure is
convex (in the sense of definition 6.2).

Let the range of the measure,p, be expressed in the form
E=FE, UE;, as in definition 6.2, Then lemma 6.3 implies that E;
is a convex subset of E",

Since « is an unbounded vector measure, there exists a
set G €S such that W(G) = = and thus E, = {4=}. Since M is
strongly o-finite this implies that E; is an unbounded convex
subset of E', Wow lemma 6.5 implies that E, contains an open half-
cylinder in some m—dimensional subspace of E" (m > 1) and thus,

a fortiori, a half-line of the form
B+ ot for all t > t, (t, fixed), and some B,y € E .

However, since the range of an unbounded vector measure can only
tend to infinity in one direction, namely <, we have v = <, which

gives the desired result.
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7. A Counter-Example

In [2], Halmos proves that the range of any bounded
vector measure is closed. In this paragraph, it is shown by means
of a counter-example that this conclusion is not necessarily true
in the case of unbounded vector measures. For convenience we give

the example in the complex plane.

Theorem 7.1
Let w be Lebesgue measure on the real line. Then the

range of the unbounded complex measure, V, given by
V(E) = / du o+ if [1/(1 + t®)] du
En (1,») En (1,=)
is not closed.

Note: The range of the measure, V, is indicated in the following

diagram.

Imaginary

m/////////

/4
Real Axis
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Proof:
| [1/(1 + )] dw = g/l < @
. (1:w)
and die = WE N (1,=)) which can be made as large

fE N (1L,=)

as we please for appropriate sets E. Therefore V(.) tends to infinity
in the direction of the positive real axis,

Suppose U(E N (L,»)) > 0. Since [1/(1 + t%)] > 0 every-
where on (1,»), therefore

[ [1/(1 + +%)] dw > O,

YE N (1,)
Thus V(.) assumes no values on the real axis other than the origin.

let (x,0), x > 0, be a given point on the real axis.

Now pu[(n, n +x)] = x n=1,2,3,...

and 0 < /A [1/(1 + t®)] dw < [1/(1 + n®)]x
“(n,n + x)
which can be made arbitrarily small for sufficlently large
values of n. Thus v(.) assumes values as close to any point on
the real axis as we please.
Therefore if x > O , the point (x,0) belongs to the
closure of the range of V(.) , but is not in the range itself.

Thus the range of vy 1is not a closed set.
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