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1. 

INTR.ODTJC TION 

The basic aim of this thesis is to extend the definition 

of an n-dimensional vector measure so as to allow it to assume 

infinite values. the 1-dimensional case, when one extends the 

notion of a non-negative measure to that of a signed measure which 

may assume negative values, it is necessa~ to assume that the 

signed measure takes on at most one of the values (+ oo) or(- œ). 

In a similar fashion it is shawn that in arder to successfully 

extend the definition of a finite-valued n-dimensional measure, 

it necessary to suppose that the extended measure assumes at 

most one infinite value. 

In 1940, A. Liapounoff [1] proved that the range of a 

countably additive finite measure with values a finite-

dimensional real vector space is closed and in the non-atomic 

case, convex. In chapter 11, it is proved that a strongly 

cr-finite, non-atomic measure which takes on values in a compactification 

of Euclidean n-space has a range which is convex but not necessarily 

closed. 

In a recent paper by Gould, [6], there is a discussion of 

bounded and unbounded vector measures which take on values in Banach 

spaces. However his generalization to unbounded measures is not 

the direct generalization of the one-dimensional case that 

considered here. In the present discussion we preserve countable 

additivity over the given cr-ring, which cannat be done with more 

general measures. 

-----------····----·····---····--



2. 

CHAPTE.li. 1 

2. PreliminaEY Definitions 

Let R be the space of real numbers and let En be 

Euclidean n-space regarded as a normed n-dimensional vector 

space. Since all norms on ~ are equivalent, we shall employ 

the Euclidean norm in all of the following without any loss of 

generality. 

We first construct a completion of~. Consider the 

mapping 

f n r 
--------+ D =:: ~ x E En l[xil ~ 1 ~ 

',. ) 

given by 

f(x) = x/( 1/x[[ + l). 

This is the usual homeomorphism between En and the set 

[/x/! < 1 ~ 
.; 

which is the interior of the unit àisk, Dn. Since the closure of 

![xl[ < 1 } 
_, 

is Dn which is compact, Dn is a compactification of the space E? 

under the homeomorphism f. 

The space T vJhich we shall be considering is homeomorphic 

to this compactification of En. It can be expressed as the disjoint 

union, n~t 1 • T = En u s ' where sn- ~s set consisting of all 

points in En of unit norm. The points of sn-L will be identified 
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by writing them in the form 11 .,zoo11 , where .,z is a unit vector. The 

topology defined on T will be the homeomorphic image under f of 

the usual topology on Dn. This topology may be fully described 

by giving a neighbourhood base for each point in T. The base for 

a point x E EP is composed of sets of the form 

- Yll ( E ~ , for E ) O. 

For a point .,zoo we take the neighbourhood base given by the sets 

V(k, E) = ~· x E Eil : llx!l ) k, Il x/llxll - ..< Il < E ~ 

where k,E are arbitrary positive numbers. We can easily see that 

V(k,E) is homeomorphic to the open set 

~ x : k/(1 + k) < llxll < 1, Il x/1lxll - <>< Il ( E ~ 
1 

contained in the interior of Dn. 

Thus we can easily extend the concept of convergence in 

~ to T. By the expression 11 the sequence {xmJ converges to ..zoo, 

xm E En, m = 1,2,3, ••• 11 which we write as 

:xm--~ .,zoo as m --~ oo , 

we mean that for every neighbourhood V of .,zoo there exists an integer 

N ) 0 such that 

m ) N implies Xm E V. 

Now in terms of our basic neighbourhoods this states that for 

k ) 0 and any E ) 0 there exists an integer N ) 0 

such that 

~ E V(k,E) for all m) N , 



which implies that 

and 

X be the space on which our set functions are to be 

defined and let S be a o-ring of subsets of X. Let u be a function 

defined on the sets of S which takes on values in T. We shall 

always assume that u is countably additive on sets of finite measure; 

i.e. if E E S, 1/u(E)// < oo, and if E 

sets En are disjoint and :/,«(En)li < oo 

or 

00 

U E where the 
n=l n 

2,3, ••• th en 

We shall also assume that~(~) = 0 where ~denotes the empty set 

and 0 is the null vector; and that the function~ is strongly 

o-finite, i.e. if E E S then there exists a sequence {En} of 

disjoint measurable sets such that E is contained in the union 

of the En and 1/,u(~)!) < oo n = 1,2, •.. 

Conventions: 

We shall make the following operational definitions for 

using the symbol ~oo: 

(la) ..1._oo + ~oo .,t,.oo 

(lb) ) (...(oo) = ..(00 

-' 

n=l 

(2) ll.(..<.oo) = ..(00 ' where À E R, À> 0 

(3) ...(00 + x ..(00 ' where x E Ef 
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3. Main Theorem 

In this section we extend the definition of the measure 

of a set to the case where the value of the measure is of the form 

~oo. We then proceed to show that a measure can assume at most one 

infini te value. 

Definition 3.1 

Let E E S. We say that J..L(E) = ~oo if for every countable 
00 

disjoint decomposition of E into measurable sets, E = nUl En, 

satisfying lfp(~)[/ < oo n=l,2,... we have: 

and 

N 

:r f /J, (~) :1----+ oo as N -- oo 

~=l 
N N 

) P (~)//1) )1 (~) If----+~ as N-----+ oo 

n=l n=l 

Since ~ is strongly cr-finite over S, each set with measure 

~oo has at least one such decomposition. If the limit in (3.2) does 

not exist for sorne decomposition, the set function ~ will not be 

a measure on S. 

Lemma 3.2 

Considera sequence of vectors in En, {xn}~=l' such that: 

and Il~ 11---- -+ 00 as n ----------------+ m 

Let z be a fixed vector. 

Th en (a) fix + zil --~ oo 
n 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3 .5) 
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(b) 1/xnll/il~ -l zl 1 

(c) (~ + z) / !lx + z11---+ 
n 

Proof: 

(a) (3.5) follows from (3.4) 

(3 .6) 

(J. 7) 

(b) 1, 1- ilxnll/llxn + z'l 1 1 C:lxn+z!/- !/xni/)/1J,xn + zl/ j, 

.,;; /1 z!l/,/~ + z!J 

which can be made as small as we wish for 

sufficiently large n since !!~ + z oo 

(c) Let e ) 0 be given. 

From (3.3) there exists Nl such that l/ .1.- xn//lxn/1 1/ ( E/3 

whenever n ) Nl , 

from (3.6) there exists N 2 such that 1 1- 1/~1//llxn + ~ ( E/3 

whenever n ) N2 , 

from (3.5) there exists N3 such that il zi!/1/~ + z1
1 < E/3 

whenever n ) N3 • 

1/ ~ - <xn + z )/llxn + zll Il 

= Il .1. - CJS!IIxnll) + (Xn//lxnll) -(~/liXn+zij,) + (XnfiiXn+zll) - [ <xn +z )/ll~+zi/ J 11 

.<; lj .1. - xnfllxn// 1/ + llxn!/ ( 1 1/1/Xnfl - 1/IIXn+zlj 1) + [:j zljji~'Xn + z/1 

= Il ~ - xnf/lxnll Il + /1 1 - 1/xnl//1/~ + zl/ 1 + 1/z/1///xn + zi/ 

< E/3 + e/3 + e/3 E for n ) N 

Thus Cxn + z) / 1/~ + z ·~-_,.. .1. as n---T co 

Theorem 3.3 

Suppose E and F are two disjoint measurable such that 

.L<-( = .;zooJ J-J.(F) = ~oo, (~ f p). Then there exists a decomposition 

of EU F into a countable union of disjoint measurable sets of finite 



measure such that the in (3.2) does not and therefore 

u is not a measure on S. 

Proof: 

Since u_(E) -<"" and l.i. is strongly , there exists 
00 

a decomposition of E into disjoint measurable , E = U E , 
n=l n 

such that l/u(En)i/ < oo n = 1,2,3, ••• and the sequence {~};~, 

"" satisfies (3.1) and (3.2). Similarly, F = U 
n=l 

is such a decomposition 

of F. 
k 

Consider the sequence of partial sums, { ·-
i=N 

' co 

JA(Ei) ~ 
'k=N 

where N is any fixed positive integer. In the hypothesis of lemma (3.2), 

put 
k 

u ( ) and z = -

Then since {En}n (3.1) and (3.2) it follows that {xk}k~: 1 

satisfies (3.3) and (3.4). Since 

and 

follows from the conclusions of lemma 3.2 that 

k 

,l 
-

i=N 
k k 

-~ U(Ei) /Il u(Ei) H -- -~ .,z as k--->- co 

i=N 
co 

Obviously the same holds for F = n~l 

Let z be an arbitra~J vector in En. 

lemma 3.2, let k 

= ) p(Ei) 

i=N 

the hypothesis of 

(3.8) 

(3.9) 
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«> 

From (3.8) and (3.9) it follows that {xk}k=N satisfies the hypothesis 

of lemma 3.2 and therefore 

,-
z 

and 

A gain 

Sin ce 

the re 

Let 

k k 

)" -,;il + u(Ei) z + U(Ei) !/.----+ ..( as 

i=N i=N 

k 

n z + r JJ.(Ei) il·---+"" as k··-­

i=N 
"" same result holds for F = U F • 

n=l n 
Suppose !jo( - ~Il = 6 ) O. 

Select E. such that 0 < E. ( ô/2. 

n n 

u(E.)/ 1
/ U(Ei)l/ ,( as n 

' ~ 

i=l i=l 
exists N such that 

N 

u(Ei) /il 
N 

lt ..( -
,-

) Il Il 1 J-,t( < / E: • 

i=l i=l 
be the first such N. 

n 
Let z = fl- u(Ei). Then 'Jz Il ;;;: 

L.,_. 

i=l ' co 

k ,, -+ «> 

co 

follows from the analogue of (3.10) for F = U F that there 
nq n 

exists M such that 

M M 

(3.10) 

(3.11) 

n 

Il [3 - [ ) u(Ei) + u( 
'---

) J/11 U(Ei) + )' 
1
lt(Fi) il Il ( E.. 

i=l i=l i=l i=l 
Let m1 be the first such M. 

Suppose we have picked nv .... ,nk-l ;mv ••• ,mk-l • If z = p. ( F~) 

then (3.10) implies that there exists N ) nk-l such that 



1r ~- 1 
m..;-J N 

J/11 
mK-1 N 

) H(F.) + u(E1 ) ) u( ) + U( ) Il Il < 1. 

i=l i=l 

Let nk be the first such N. Similarly we pick mk. 

Thus by this inductive process we have arranged the two 
00 00 

sequences [En}n=l and {Fn}n=l into a single sequence: 

Rename these sets ,H2 ,H3 , ••• while preserving the above arder. 
00 

Then {Hn}n=l a sequence of disjoint sets of finite measure whose 

union is (E ;J F). 

We first show that (E U F) cannat have finite measure. 

From (3.5) of lemma 3.2 it follows that there exists an integer t 1 

such that tl 
! 1 lJ ( F 1 ) + )' ü ( Ei ) 11! ) 1 • 

Given tv ••• , tk-1 
k 

!1· )' 

i=l 

i=l 

there exists tk ) tk-l such that 

~k 
u(Fi) + ) ,U(Ei) 1~ ) k • 

'-- r 

i=l 
Thus by induction we have a sequence of sets 

, ••• ,Et ,F3, ••• 
2 

which are measurable, disjoint, of finite measure, and whose union 

is (E U F). If (E! U F) had finite measure, a~ such decomposition 

of (E U F) would necessarily be such that the norms of the sequence 

of partial sums would be bounded. (This follows from the countable 

E 

additivity of .u on S and the definition of convergence in our space.) 

Since this not sa for the decomposition we have developed, (EU F) 

cannat have finite measure. 

Suppose v.(E U F) = )"", for sorne y. Because of definition 3.1 
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our decomposition Ü = E U F must satisfy condition (3.2) 
n=1 

N N 
i.e. L u(Hk) 1 !1 ~ u(Hk) ,, ~-+ y as N ------+ (3.12) 

k=1 k=1 

Now Il-< - Yll ~ E, we must have 

iiJ3- il = II<J3- ,.;()-(y- .,z)ll ~ IIJ3- ,.;(Il- llr- c/(11 
~ 6 - E ) 2€ - E = E 

Thus either lj.,z -yjj ) E. or Il p - y /1 ) e.. Without 1oss of genera1ity 

we may suppose that l/.,z - yjj = t ) E • Choose À. such that 0 < À. < t - E· 

Now (3.12) imp1ies that there exists N such that 

n n 

Il Y- [ u(Hk) / !1 ~· p(Hk) Il jj < À. for n > N. 
k=1 k=l 

Therefore 

n n n n 

Il .,.( - U(Hk) 1 Il )~ p(Hk) Il Il = [j (.,z - y) - [ _') u(Hk) / Il }pCHk) Il - y J jj 

k=1 k=1 k=1 k=l 
n n 

# l/.,z - ~1 - Il L u(Hk) / Il )~ .u(Hk)lj - y Il 
k=1 k=1 

) t - À. ) E for n ) N (3.13) 

""' However from our construction of the sequence {Hn}n=l there exists 

nk ) N such that 

mk:-1 nK mr,-1 

+ L (A(F i) _:/ 11 ~· .. U(Ei) + r L(( 11 11 < E 

i=1 i=1 i=1 i=1 
s s 

i.e. Il~- ) U(Hi) /Il I u(Hi)ll IJ < 6 (3.14) 
i::1 

<X> 

where H
8 

corresponds to Enk in the construction of {Hn}n=1 and s ) N. 

The inequalities (3.13) and (3.14) contradict each other 

and therefore 
n 

) p(Hk) / il 
k~ 

n 

cannet tend to a limit as 

k=l 
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n tends to infinity; that is, u.(E U F) f y:o for any y. Thus we 

cannat define the measure of (E U F) in such a way as to be consistent 

wi th our previous definitions and therefore l( is not a measure on 

the Œ-ring S. 

Thus we have shown that in arder for our functicn .u 

to be defined on all of a cr-ring S, it is necessary that u 

not take on distinct infinite values at disjoint measurable • 

Therefore we shall subsequently eliminate this situation from our 

considerations and assume that non-finite disjoint measurable sets 

have identical measures. 

Lernma 3.4 

Suppose E and F are measurable sets such that E is con-

tained in F. Then ll_t4(F),J <<X> 1 U-(E) Il < "'• 
Proof: 

Suppose u(E) = ~' for sorne unit vector y. Then there 

exists a decomposition of E, E En, into a countable number 

<X> 

{En}n=l satisfies (3.1) and (3.2) (where n..< 11 is replaced by "yn). 

Consider (F- E), a measurable set. Since (F- n E = <P, 

it follows from the assumptions made above that either Jlu.(F - E) JI < = 

or u(F - E) = ~· In either case there exists a decomposition of 

( F - E), into a countable number of disjoint 

measurable sets of fini te measure. ( In the case !1 Lt(F - E)il < <X> 

we take = F - E and Fi = <P i::::: 2,3, ••• 

Following the same procedure as that used in the proof 
00 

of Theorem 3.3, we can find a sequence {nk}k=l of positive integers 
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such that 

(i) n1 < nz < ••• < nk ( ••• 

k nK 
(ii) Il ) u( ) + ) .p(Ei) 1/~ > k 

/_J --
k 1,2, ••• 

i=l i=l 

Thus we can define the sequence: 

(3.15) 

Evidently the sequence is composed of disjoint, measurable sets 

of finite measure whose union the set F. 

Since F is of finite measure, the partial sums of the 

sequence of measures of the sets in (3.15) must be bounded in norm. 

However, they are obviously not by the method of construction of 

the sequence. 

This contradiction proves that II~(E)!j ( "'• 

Lemma 3.5 

Let E and F be two disjoint, measurable sets such that 

.u(E) = ,u(F) = <>(00 • Then ,dE !J F) = ~oo. 

Proof: 

By lemma 3. 4, .llC E U F) cannat be fini te. 

Suppose 
00 

E U F = U n· 
i=l ]_ 

is any decomposition of (E U F) 

into disjoint, measurable sets of finite measure. Let Ei = E n 
""' and Fi= F n Hi i = 1,2, ••• Then {Ei}i=l is a sequence of 

disjoint, measurable such that: 

(i) rj E· 
i=l ]_ 

i = 1,2, ••• (by lemma 3.4) • We can make analagous statements about 

Therefore, since ,U.(E) = p..(F) = ./..go' Definition ).1 implies 
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(3.1) and (3.2). We shall now show that i=l sa tisfies (3 .1) 

and (3.2) which will complete the proof of the lemma. 

(a) Let E ) 0 be given. 

Let C be the E-cone about the direction vector ~; that is, 

C is the cone based at the origin each of whose generators makes 

an angle of E with the vector ~. Since C is a cone 

x E C implies ).x 'E C for all x E Efl, À ) 0 (3.16) 

Also C is convex, therefore 

x,y 'E C implies 7\X. + rry E C; where )... + n = À,TI ) 0 (3.17) 

Since {Ei}i:l and {Fi}i:l both satisy condition (3.2), 

there exists an integer N such that 

n n 

implies that )_ ,u(Ei) /Il L U(Ei) Il 'E C and 
i=l 

n n 

n ;;;,. N )iFi) 1 IlL Ll(Fi)ll E c. 
. i=l 

n n 

Multiplying by Il )p(Ei) !1 and '1 dFi) !1 respectively, 
i=l 

and using (3.16) gives 

n 

u( ) E C and ) u(Fi) E C , for n ;;;,. N. 
' 1 

i=l i;-1 

Now (3.17) implies that 

n n 

(1/2) /i-.C + (1/2) U(Fi) E C 
' 

for n ~ N. 
-

i=l i=l 
n n 

Mul tiplying by 2 j Il f .. l\(Ei) + .U(Fi) Il and using (3.16) 
L_.. 

i=l i=l 

n n l/ Il tt(Ei) + 
i=l i=l i=l i=l 

n n 

,u<Ei) + ,L.u<F i) we have 

Now u(Hi) = .u.(Ei U Fi) = .I.A(Ei) + ,u(Fi), since Ei and Fi are disjoint 



sets of finite measure. Thus we have shown that 

n n r U(Hi) 1 i! _ J,t(Hi) Il E C for n ;;;;,. N. 

i=l i~l 

Since this is true for all E ) 0, we have 

n n 

Il ( H . ) / '1 ) i L ( H · ) :1 ~-- ~-~ .!.. 
,, l ' ' l ' 

~-- 1 :_ ' 
i=l i=l 

as n--·-+ 

co 
i.e. {Hi}i=l satisfies condition (3.2) 

(b) n n n 
Let Un ) u(Hi), v = r _u(Ei), wn = ;-.~(Fi) ; n =1,2, ••• n ,___, 

i=l i=l i=l 

Since un = vn + wn, un lies in the plane determined by the vectors 

vn and wn. Let the angle between un and vn be e;, and that between 

Un and wn be e;. Let E ) 0 be given such that 0 ( E < n/J. 

Now vn/lv n1j---+ .1.., wnf!/wn1
/ ~ _,.. .,~., as n ____ _,.. <X>; 

and by part (a), unfii'unll~- ~4 .1.. as n--~-4 co. there exists 

an integer N ) 0 such that n;;;;,. N implies 0~ ei < E i = 1,2. 

Th en //un!/ = 1/vnll cos e~ + 1/wn/1 cos 
n 

€2 

;;;;,. (1/vnl/ + 1/wnl/) COS E, sin ce cos e as e decreases to 

> (1/vnl/ + //wni/) (1/2), sin ce 

This is true for all n > N, and sipce 1/vn 1
/ 

as n ---+ m, we have 

n 

Il 
i=l 

0 < E < n/3 cos 

~oo. 

Thus {Hi}i:l satisfies condition (3.1) and therefore u.(E U F) = ..(<X>. 

Lemma 6 

Suppose E and F are two disjoint, measurable such 

z._( E) = .1..00 and 1/ U ( F) 1/ < m. Th en U ( E U F) = ..<w. 

Proof: 

If 1/u(E U F),/1 < oo, then , by lemma J.4, 1/.u(E)I/ < oo. 

E ) l/2 

0 



Therefore we must have L~(E ) = "~""' for sorne y. Suppose y f ..<.. 

Let E = ô En be any decomposition of E into disjoint 
n=l 

measurable sets of finite measure. Let G1 = E1 U F. Then 

Also let Gn =En for n = 2,3, ••• Then U Gn = E U F is 
n=l 

a decomposition of (E U F) into a countable number of disjoint, 

measurable sets of finite measure. 

Since u(E U F) = yoo by assumption, according to definition 3.1 

we must have: 
n 

(i) Il 
i=l 

and 

( 

that ' 

and 

u.(G.) 11---+ oo as n ----+ oo 
.· 1 

n 

L\( G.) Il --+ )' . 1 
as 

i=l 

n 

n n 

(ii") 1-u(F) + ). u(Ei) J / llü(F) + )' u( )!l 
i=l i=l 

n-- oo 

~ i as n ---> <:<> 

Now, lemma 3.2 implies that 

n 

(iii) Il ( ) 1 ll .1 -+ oo as n -------+ 

i=l 
and 

n n 

(iv) ,M.(Ei) /il, J u(Ei) /1------'? y as n-----+- oo 

This contradicts the fact that L,(E) = ..;<.00 • Therefore _,,( E U F) = ..<.00
• 
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Corollary to Theorem 3.3 

If E and F are measurable sets such that ~l(E) = d'..<» and 

.u(F) = p<», where ""1 p, then u is not a measure on the o-ring S. 

Proof: 

We consider possibilities for the measures of the dis-

joint sets En F, E- F, and F-E; where,u(E) = d'..00 and ,L{(F) = poo, 

d'.. 1 f3. 

(a) Suppose 1/u(E n F),/ <"" , 
(i) 

ll,u(E):/ = 

which 

I/4(E - F)1/ ( oo , then 

/,u(E n F) + ,ü(E - F)!/ 

a contradiction • Therefore (E- F) must have 

infinite measure and similarly we can show that (F - E) has 

infinite measure. 

(ii) t~(E- F) = -y«>, for some y, then lemma 3.6 implies 

< 00 ' 

that ,~;.(E) = "'r"• Therefore y = d'... However the same reasoning 

applied to F gives the result that ,u(F - E) = ~""· Thus (E - F) 

and (F - E) are disjoint, measurable sets with different infinite 

measures and Theorem 3.3 then implies that u is not a measure 

on S. 

(b) Suppose ,U(E n F) d'..00 • If ,i.U(F - E)l/ ( oo then ,L~(F) = -<"' 

by lemma 3.6 This is a contradiction. Therefore u.(F- E) !"" 

for some y. If y = d'.., then ll E n F) = v{F - E) = .,t.,oo and from 

lemma 3.5 u(F) = d'.."', giving a contradiction. Thus y 1 "" and 

therefore (F - E) and E are disjoint sets with different infinite 

measures. Therefore Theorem 3.3 implies that .L\ is not a measure 

on S. Similarly u(E n F) = p"" implies that u. is not a measure 

on s .. 

( c) Suppose l,)..(E n F) !ju.(E - F)!/ ( oo, then 



t(E) = Y"" by lenuna 3.6 , giving a contradiction. Similarly 

li.u(F - E)!l = oo. If u(E - F) = ,u(F - E) yoo, then by lemma 3.5 

u( E) = !""' = ,u(F), a contradiction. However if ~(E - F) 

ô -f y, then we have two disjoint sets, (E n F) and (E - F), with 

different measures and therefore u is not a measure 

on s. Similarly u(F - E) 
1 

&x>, 6 f y, implies that p. is not 

measure on S. 

Thus the existence of two measurable sets with different 

infinite measures always leads to the existence of two disjoint sets 

with different measures which according to Theorem 3.3, 

implies tha t ,Li. not a measure on S. situation motivates 

the definitions of the following paragraph. 

4. Definition of Unbounded Vector Measures 

In the previous paragraph we showed that to produce a con-

sistent definition of an unbounded vector measure on a o-ring s, the 

range of the measure contain only one infinite point. We shall 

call a set function u,defined on a o-ring S with values in the space T, 

which is countably additive on sets of finite measure, strongly 

o-finite, and which assumes one and only one infinite value (in the 

sense of definition 3 ) an unbounded vector measure. We shall 

usually denote its unique value by 11 c(ttJ 11 • In the following we show 

usual finite-valued vector measure. 
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Lemma 4.1 

It follows from the definition of an unbounded vector 

measure that when ~ is an unbounded vector measure lemmas 3.5 and 

3.6 can be extended to the case where the two sets are not necessarily 

disjoint. 

Theorem 4.2 

Let u be a strong1y o-finite set function, defined on the 

a-ring ~which assumes one and only one infinite value,name1y ~""• 

Ifu is countab1y additive on sets of finite measure, then it is 

countably additive on all the sets of S. Thus an unbo1mded vector 

measure preserves the usual properties of a measure. 

Proof: 
00 

Let E n~l En ,where E,En ES n = 1,2,3, ••• and 

Ei n Ej = ~, if j. 

Let {Enk}k be the subsequence of \En}n consisting of 

a11 sets of finite measure and put F ~ 

Let {Emt}t be the subsequence of fEn}n consisting of 

all sets of measure ~oo and put G = ~ ~t • (Note that these subsequences 

may in general be finite sequences.) Then E = FU G. 

Suppose lltt(F) 1
1 < oo. Since n is countably additive on 

sets of finite measure we have 

p(F) = )u(En ) 
- k 

(4.1a) 

k 

li ,t~(F) = ~oo, then F = is a decomposition of F 

into a sequence of disjoint measurable sets of finite measure. 

Therefore 
N 

(i) 1 
Il as N 



19. 

N N 

(ii) )~c~(Enk) /Il )_u(Enk) !i ·-·-+ ..< as N --+ oo 
k=1 k=l 

Thus from the definition of convergence in our space T we have 

.ü(F) = ..zoo = .ttCEnk) (4.1b) 

k 

If F = E (i.e. G = ~) then (4.1a) and (4.1b) prove 

the desired resu1t. Now assume F f E. Then there exists at 1east 

one 11 t 11 such that Emt c G c E. Lemma 3.4 now implies that 

u(G) ~ = ,u(E) (4.2) 

Now ,u(F) is either finite or equa1 to ~oo. In either case 

(4.3) 

Moreover 

l\(G) = ..(OO = f (_,(oo) = \.\(Emt) ( 4.4) 
t t 

(Bath (4.3) and (4.4) make use of the operationa1 definitions adopted 

in paragraph 2. ) 

Using (4.1), (4.2), (4.3), and (4.4) we get 

,H( Enk) + u(Emt) = tt( ) 

k t n 

which proves the theorem. 
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CHAPTER 11 

5. The Range of a Bounded Non-Atomic Vector Measure 

In the follawing section we shall consider Halmos' proof 

[2] of the fact that the range of a non-atomic bounded vector measure 

is convex. In paragraph six we extend these results to the case of 

unbounded vector measures. 

Definition 5.1 

A subset A of En is said to be convex if ~,~ E A ~ply 

~~ + (1 - ~)~ E A for any ~, 0 ~ ~ ~ 1. (We shall later extend 

this definition to T, the range space of our unbounded vector measures.) 

Let S be a Œ-ring of subsets of an arbitra~ space X and 

let u be a bounded, countably additive function of the sets of S 

with values in En. Then ~ can be expressed in the form 

Jl = ( U1 , • • • , ,Un) ' 

an n-tuple of signed measures. 

l'hroughout this paragraph we shall take "measure 11 to mean 

11 bounded vector measure" in the above sense, unless otherwise stated. 

Definition 5.2 

The measure ,M = ( M" ••• , )10 ) is said to be non-negative 

if y~(E) ~ 0 for all E ES and i l, ••• ,n. 

Definition 5.3 

If Uo is a one-dimensional measure, the total variation, 

,u!(E), of J.l.o on the set E E S is defined by: 
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IJ.~(E) = ~E) + ülE) 

where 

u'~(E) sup { ,Uo( F) E ::> F E S} 

and 

J.iJ.E) = - inf {.uo(F) : E ::>FE S} 

In general if ,ll = ( )J 1, ••• , Un), u*will denote the non-negative 

measure ( ~l7, ••• , ,u.~l) • 

Definition 5.4 

The length 

numerical measure. 

Definition 5.5 

• •"'+ )\./\\ ... always a non-negative 

A measurable set E is an atom if p. (E) f 0 and if for 

every measurable set F c E either p(F) == 0 or u(F) = u.(E). 

Ll non-a tomic if none of i ts coordina tes, Ll~ ( i = 1, ••• , ri) 

has any atoms. 

Definition 5.6 

The measure u is absolute~ continuous with respect to the 

measure v, if 

/ v"'(E) /: = 0 implies l,u~(E) / = 0 for any E E S. 

Definition 5.7 

A measure u is semi-convex if every measarable set E con-

tains a measurable set F for which ~(F) u(E)/2. 

Defini ti on 5. 8 

For any measure u and any measurable set E we define K(u,E) 

to be the class of all real-valued measurable functions ~ on E 
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for which 

(i) 0 ,;;; c/.J(X) < l for all x E E 

and 

(ii) p( {x E E : c/.J(x) < À}) = Àll(E) for arry À, 0 ~ À ,;;; 1. 

Definition 5.9 

A measure ~ is convex if for every measurab1e set E, the 

c1ass K(u,E) is not empty. 

Lemma 5.10 

If M a semi-convex measure and E is any measurable set 

then there exists a sequence {En of measurab1e subsets of E 

such that for every k = 1,2, ••• and arry k distinct positive integers 
k 

••• l Enk) = (l/2 )J,J-(E). 

Lemma 5.11 

A semi-convex measure is convex. 

Prooft 

Let ~ be a non-negative semi-convex measure. Let E be 

any measurable set and let '" {En}n=l be a sequence of sets with the 

property defined in 1emma 5.10. 

x E E.- = 1im inf Eu then write c/.J(x) = 0; otherwise 
n-a> 

write 

cjJ(x) = 

n=1 

where En is the characteristic function of the set En• Clear1y 

cP is measurab1e and 0 ,;;; cjJ(x) ( 1 for x E E. 
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n 

{x : cjJ(x) < À.} = E• U ix : L 
i=l 

for any dyadically rational number À= k/2n, with n = 0,1,2, ••• 

and k 
n 

1, 2, ••• ,2 ; it follows that 

.u ({x : cjJ(x) < À.}) = ÀfA(E) 

for all such values of À.. The fact that equality (5.1) is true 

for all À, 0 ~ À. ~ 1, follows from the countable additivity of r· 
The truth of the lemma in the general case follows from 

the above by means of the deviee used in lemma 5.1?. 

Lemma 5.12 

Let u be a non-negative convex measure and let E be any 

measurable set. r:p E K(u.,E) and if ~ is a measure absolutely 

continuous with respect to ,u, then ...,;·({x : c~>(x) <À}) a con-

tinuous function of ~, 0 ~ À. ~ 1. 

Lemma 5.13 

(5 .1) 

If .u is a convex measure and E and F are any two measurable 

sets, then for each À, 0 ~À. ~ 1, there exists a measurable set 

C(~) with the following properties: 

(i) C(O) = E C(l) = F 

(ii) .u(c(À.)) = (1 - À.),U(E) + À.U(F) 

(iii) If ~ is also non-negative and if~ is absolutely 

continuous with respect to ~ then v(C(À)) a continuons 

function of À· 

Proof: 

Let rp and '+' be functions in K(p,E - F) and K(u.:>F - E) 

respectively; write 
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C()J = (E n F) U {x : <P(x) < 1 - Id U l(x : 'f'(x) ( ~} 

Then (i) fol1ows from the definition of C(À) and (iii) fo11ows from 

1emma 5.12. (ii) is proved by the following: 

,u(C()._)) = .u(EnF)+u.({x: <P(x)<1-h.})+Jl({x:Y(x)<À}) 

= .u.(E n F) + (1 - f.Ju(E - F) + À~J-(F - E) 

= (1 - À)U(E) + 1-cu(F). 

Corol1arz 5.14 

Tne range of a convex measure is convex. 

Lemma 5.15 

If u. = ( u,, .... , U 0 ) is non-negative and non-atomic and 

if each ~~(1 < i ~ n) is absolutely continuous with respect to 

i ts predecessor, .ut.1 , then u. 

Proof: 

convex. 

Because of lemma 5.11, it suffices to prove that u is semi­

convex. In [3], 1emmas 1 and 2, Ha1mos shows that the resu1t ho1ds 

when n=1. (It is shawn that a non-negative, non-atomic, numerica1 

measure defined on a cr-ring of subsets of a measurab1e set X, assumes 

all real values between 0 and ~(X).) 

Suppose now (in the case n ) 1) that the (n - 1)-dimensional 

measure ~'= (u., ••• ,un-•) is convex. It follows from the hypotheses 

that the 1-dimensional measure v' = )-An is absolutely continuous with 

respect to it. 

Let E E S. Then there exists a measurable set Eo c E 

such that ,u1(E0 ) = .u'(E)/2; write F0 = E- Eo. v1 (E0 ) = li
1(E)/2 

there is nothing to prove. Otherwise we may assume 



·i(Eo) < -/(E)/2 and /(Fo) ) v'(E)/2 

5 1 1 Then lemma .13 applied to u, \i, Eo, Fo in place of u, ~, E, F 

yie1ds the existence of a number À, 0 ~ À ~ such that 

and 

U'(C(À)) = (1-7-Ju'(Eo) +)...ufFo) 

= (1 - À)il(E)/2 + ÀUXE)/2 = .L((E)/2 • 

Lemma 5.16 
A non-atomic, non-negative vector measure is convex. 

Proof: 

If u = ( U 1, ••• , Un) is the measure in question, write 

n 
1 . u~.. = i = 1, ••• ,n • 

j=i 
Then Ll1 = ( u~, •.• , u:,) satisfies the conditions of lemma 5.15. 
Therefore u'is convex. 

Let 1 be the inverse of the 1inear transformation which 

. . t 1 carrles u. lD o u • Then the linearity of 1 and the semi-convexity 

of .té imply that .u is semi-convex and hence convex. 

Lemma 5.17 
A non-atomic vector measure is convex. 

Proof: 

For each i = 1, ••• ,n there exists a measurable Ei 

such that ,\...L;_(E n E1 ) ~ 0 and u,(E- E1) ,ç 0 for every E ES. 

(The Hahn decomposition with respect to each Uè respectively.) 
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On each of the measurab1e subsets of any one of the 2n sets 

of the form El n En En (Ei = 0 or 1 i = E1 n ... ••• ,n 

where E/ E· 
J 

and Ej=X-Ej) ' 
each of the measures 

u 1, •• ",.Un of constant sign. Lemma 5.16 may now be app1ied to 

the set function JJ.Ev ••• , En = (± U1, ••• ,± ltt~), where the ambiguous 

s is chosen in each case so that ~ 
'" • •' En 

is a non-negative 

measure. The convexity of ~E c and the disjointness of 
· l, .... ,._n 

any two distinct sets of the form El E1. n ••• n En e:" imp1y the 

convexity of .u. 

Coro11ary 5.18 

The range of a non-atomic, bounded, vector measure convex. 

6. Range of a Non-Atomic Unbounded Vector Measure 

Let~ be a strong1y o-finite unbounded vector measure as 

defined in paragraph four. 

Definition 6.1 

An unbounded vector measure ,).J, defined on a cr-ring S is 

said to be non-atomic 

(i) u is non-atomic on measurable sets of finite measure. 

(ii) .u(E) = <><.(7J for E E S imp1ies that there exists a 

measurable F c E such that 0 < IJ.u(F)II < ro. 

Definition 6.2 

Let E be a subset of T, the compactification of En defined 

in paragraph 2. Now E can be written in the form E = E1 U E2 , 

where consists so1e1y of the infinite points of 



E. We say that E convex 

( E1 is a convex subset of En • 

and (ii) then there exists t 0 ) 0 and a vector ~ 

such that (~t + ~) E E for 

Lemma 6.3 

Let M be an unbounded vector measure which is strongly 

o-finite and non-atomic. Let E and F be any two measurable sets 

such that llf...t(E)/1 ( œ and i/M.(F))I ( =. Then for each À, 0 ~À ~ 1, 

there exists a measurable set G(À) such that 

u( G(À)) = t..u(E) + (1 - À)V.(F) • 

Prooft 

111-l(E)II ( (Xl and //.U(F)/1 ( a:. imply //U(E U F)l/ < "'• 
Consider the a-ring, s, of all sets in S which are contained 

in (E u F). Define ,a on S by 

u(G) = ,u(G) for GE S • 

Then u is obviously countably additive. 

Lemma 3 .. 4 implies that /ljJ.(G),/ ( m for all GE s. (6.1) 

Therefore the range of ,P is bounded; for otherwise there would 

exista sequence, {En}n:1 , of disjoint S-measurable 

N 

Il \__, .ŒC ) 11-··-----l- (Xl as N---+ œ • 
__ J 

n=1 
Then I/,GCnQ

1 
)!J = oo , contradicting (6.1). 

sets such that 

Thus II is a bounded, non-atomic vector measure and 

Coro1lary 5.18 implies that TJ.. has convex range. Therefore for 

any 1, 0 ~À~ 1, there exists an S-measurable set, G(À), such that 
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U ( G( r.J ) :::: À Ç~ E) + ( 1 - À )Ci.( F) • 

Hawever from the definition Cl and S we have: 

L\, ( G( À) ) == À ü( E) + ( 1 - ),.)u( F) • 

Definition 6.4 

A half-~linder on a set S contained in En is defined 

ta be the set of all vectors of the form (x+ ~t), where x ES, 

t ~ o, and ~ is a fixed direction. An open half-~linder on a 

S contained in En is the interior of the set defined above. 

Lemma 6.5 

Let A be an unbounded convex set in W.. Then there 

sorne m-dimensional lzyperplane, (1 .;;; m ,;;; n), containing A such that 

A contains a non-trivial open half-cylinder in the m-dimensional 

space .. 

Proof: 

(a) We first consider the case of E2 • If A is one-dimensional 

(i.e. an unbounded line segment), the lemma is obviously true. Thus 

we may suppose that the points of A are not collinear. 

Since A is unbounded there exists a sequence, {Xn}, of 

points of A such that IIXnll -----?> ""• Gonsider the set ~ {xn/llxnll} 

which is contained in S 1 , the unit sphere in 2-space. Sin ce 
1 

compact there exists a subsequence Ixnk}k:l such that: 

(6.2) 
and 

-l- ~ as k ·-- -r "" (6.3) 

for seme unit vector ~. 
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Let x,y be two points of A such that the straight line 

j them does not have the direction .,z. Let H be the open half-

cylinder on the 

direction .,z. 

segment (xy) which extends ta infinity in 

z 'EH. Join xz, yz. Suppose xz, yz make 

E1 , respectively with the direction vector ~. Let C1 and C2 

be the two-dimensional canes with base points x and y respectively 

all of whose generators make angles of El and €z respectively with 

the vector .,z. 

Now (6.2) and (6.3) imply that C1 and C2 each contain all 

but many of the {xnk}k. Therefore there certainly 

an k such that xnk E (CL n C2 ), Xnk f x,y. z is 

contained the formed by xnk' x, and y. However A 

convex. Therefore z E A and H is contained in A. 

(b) n-dimensional case follows in an entirely ~·~~~c.5v 

manner. we get a sequence of points of A, {xn}n, 

(6.2) and (6.3). 

We consider the lowest dimensional hyperplane which con­

tains A and take this to be our space. Let this space have dimension m. 

Since A is not contained in any (m - 1)-dimensional 

, there exist m linearly independant points of A; , ••• ,yrn; 

such that the direction vector .,z does not lie in the (m - 1)-dimensional 

hyperplane determined by these points. Let H be the open half-

on base the simplex determined by them vertices; y 1 , ••• ,ym; 

and extending ta infinity in the direction .,z. We choose any z H 

and consider the lines y1 z, ••• ,ymz which make angles of 
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E1 , ••• ,~ respectively with the direction vector ~. Let C~, ••• ,cm 

be cones with base points y1 , ••• ,ym respectively whose generators 

all make angles of E~, ••• ,Em respectively with ~. 

As before there exists an integer k such that 

xk E (C~ n •.. n Cm). Then z is contained in the simplex spanned 

by the points xk' y 1 , ••• ,ym and therefore z E A because of the 

convexi ty of A. Thus H contained in A. 

Theorem 6.5 

The range of a non-atomic, unbounded vector measure is 

convex (in the sense of definition 6.2). 

Proof: 

Let the range of the measure, ·""' be expressed in the form 

E E1 U E2 as in definition 6.2. Then lemma 6.3 implies that ~ 

n is a convex subset of E • 

Sin ce "-( is an unbounded vector measure, the re exists a 

set G if S such that .u(G) = .,~.,rn and thus = {~rn}. Since M is 

strongly cr-finite this implies that ~ is an unbounded convex 

subset of EP. Now lemma 6.5 implies that E~ contains an open half­

cylinder in sorne m-dimensional subspace of En (rn ~ 1) and thus, 

a fortiori, a half-line of the form 

~ + yt for all t ~ t 0 (t 0 fixed), and sorne n 
~,y E E • 

However, since the range of an unbounded vector measure can only 

tend to infinity in one direction, namely ~, we have y = ~, which 

gives the desired result. 
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7. A Counter-Example 

In [2], Halmos proves that the range of any bounded 

vector measure is closed. In this paragraph, it is shawn by means 

of a counter-example that this conclusion not necessarily true 

in the case of unbounded vector measures. For convenience we give 

the example in the complex plane. 

Theorem 7.1 

Let u be Lebesgue measure on the line. Then the 

range of the unbounded complex measure, 'V, given by 

\(E) r du 
JE n (1,.,) 

+ [1/(l + ) ] dU-

is not closed. 

Note: The range of the measure, \, is indicated in the following 

dia gram. 

Imaginary 
Axis 

rr/4~----------------~==~~==~ 

1 
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Proof: 

r [1/(l + t 2
)] du. = n/4 < 00 

" (l,oo) 

and ( d).J. = u(E n (l,oo)) which can be made as large 
JE () (l,oo) 

as we please for appropria te sets E. Therefore \i ( • ) tends to infini ty 

in the direction of the positive real axis. 

Suppose ,U(E () (l,oo)) ) O. Since [l/(1 + t 2
)]) 0 eve~-

where on (l,oo), therefore 

r [ 1/ < 1 + t 2
) ] d!--1- > o .. 

"E () (l,oo) 

Thus ~(.) assumes no values on the real axis other than the origin. 

Let (x,o), x) 0, be a given point on the real axis. 

N ow }1- [ ( n, n + x) ] = x n = 1,2,3, ••• 

and 0 < [ 1/ ( 1 + t 2
) ] d\A. ~ [ 1/ ( 1 + n 2 ) ] x 

(n,n + x) 

which can be made arbitrarily small for sufficiently large 

values of n. Thus v(.) assumes values as close to any point on 

the real axis as we please. 

Therefore if x ) 0 , the point (x,O) belongs to the 

closure of the range of V(.) , but is not in the range itself. 

Thus the range of -y is not a closed set. 
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