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Abstract

We propose an analytic center cutting plane algorithm for semidefinite

programming (SDP). Reformulation of the dual problem of SDP into an

eigenvalue optimization, when the trace of any feasible primaI matrix is a

positive constant, is weIl known. We transform the eigenvalue optimization

problem into a convex feasibility problem. The problem of interest seeks a

feasible point in a bounded convex set, which contains a full dimensional baIl

with E(< 1) radius and is contained in a compact convex set deseribed by

matrix inequalities, known as the set of loealization. At eaeh iteration, an

approximate analytic center of the set of loealization is computed. If this

point is not in the solution set, an oracle is ealled to return a p-dimensional

semidefinite eut. The set of localization then, is updated by adding the

semidefinite eut through the center. We prove that the analytie center is

recovered aI'ter adding a p-dimensional semidefinite eut in O(p log(p + 1))

damped Newton's iteration and that the ACCPM with semidefinite cuts is

a fully polynomial approximation seheme. We report the numerieal result of

our algorithm when applied to the semidefinite relaxation of the Max-Cut

problem.
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Résumé

Nous proposons une méthode de centre analytique par plan coupé pour

la programmation semi-définie (SDP). La formulation du problème dual du

SDP en un problème d'optimisation de valeur propre, lorsque la trace de

toute matrice primale réalisable est une constante positive, est bien con­

nue. Nous transformons le problème d'optimisation de valeur propre en un

problème de faisabilité convexe. Le problème en question cherche un point

réalisable dans un ensemble convexe borné, lequel contient une sphère de

pleine dimension avec un rayon de E(< 1), et est contenu dans un ensem­

ble convexe compact décrit par des inégalités de matrices, appelé ensemble

de localisation. À chaque itération, un centre analytique approximatif de

l'ensemble de localisation est calculé. Si ce point n'est pas dans l'ensemble

de solution, un oracle est appelé, lequel retourne une coupe semi-définie

de dimension p. L'ensemble de localisation est par la suite mis à jour en

ajoutant au centre la coupe semi-définie. Nous démontrons que le centre

analytique est reconstitué en O(plog(p + 1)) itérations de Newton suite à

l'addition d'une coupe semi-définie de dimension p. Ns démontrons aussi que

la méthode de centre analytique par plan coupé avee des coupes semi-définies

est une stratégie d'approximation pleinement polynomiale. Nous rapportons

les résultats numériques de notre algorithme appliqué à la relaxation semi­

définie du problème Max-eut.
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Chapter 1

Introduction

Semidefinite Programming (SDP) is an extension of linear programming

where vector variable is replaced by matrix variable and nonnegativity con­

straint is replaced by positive semidefiniteness. Semidefinite Programming

can also be studied as a convex optimization problem as the objective func­

tion is linear and the constraints form a convex feasible set. TheoreticaI

properties of SDP, as a convex optimization problem have attracted the re­

searchers' attention for the past few decades [7], [10], [51], [12], [5], and [27].

However, efficient algorithms for semidefinite programs were developed

at the end of 1980s, following the development of interior point algorithms

for Iinear programming. The first polynomial time algorithm was proposed

by Nesterov and Nemirovsky [42, 43, 44]. Their algorithm is based on a self­

concordant barrier function. They proved that interior point methods for

linear programming can be extended to aIl convex optimization probIems.

Independently, Alizadeh [1] extended the potential reduction algorithm from

Iinear programming to SDP.

The algorithms proposed by Nesterov and Nemirovski and by Alizadeh

were applicable to onIy primaI (or only dual) problem. The extension of
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efficient primaI-dual aIgorithms such as path-following methods, from linear

programming to SDP, took the researchers a few years. The first extension

of the Newton direction in primaI-dual algorithms for SDP was proposed

by Alizadeh, Haeberly and Overton [2], and independently by Helmberg,

Rendl, Vanderbei, and Wolkowicz [24], Kojima, Shindoh and Hara [28] and

Monteiro [40]. A different direction was later introduced by Nesterov and

Todd [45, 46]. For a survey on the primaI-dual search directions, see Van­

denberghe and Boyd [58] and for the references on the complexity of these

algorithms see [3], [4]. For a comprehensive reference of the theOl-Y, algorithms

and applications of SDP see Wolkowicz, SaigaI and Vandenberghe [60].

Efficient algorithms and applications in areas such as control theory,

statistics, probabiIity, combinatorial optimization, structural design, and

nonconvex quadratic optimization made SDP the topic of concentrated re­

search in 1990s. The most efficient interior point algorithms for semidef­

inite programs as for linear programs are the primaI-dual methods. The

first strong numerical result based on these methods, was reported in 1996

in [24]. The result of this paper was very encouraging for many practical

problems. However, semidefinite relaxations arising from combinatorial ap­

plications were still out of reach. Part of the reason for this incapability was

that due to the nature of the combinatorial optimization, the semidefinite

relaxation on these problems is of large size and often has a sparse structure

and the primaI-dual algorithm does not exploit this sparsity. On the other

hand at each iteration of the interior point algorithms, a Cholesky factor­

ization of a dense matrix, known as the Gram matrix, has to be computed.

Benson, Ye and Zhang [8] propose a dual scaling algorithm for the problems

with rank one matrix coefficients. In their algorithm, they keep the sparsity

of the problem throughout of the algorithm, but they still need to compute

the Gram matrix at each iteration.
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Helmberg and Rendl [23] reformulate the dual problem of semidefinite

program as an eigenvalue optimization problem and apply a spectral bundle

method as a nonsmooth optimization technique to solve it. Their algorithm

is, by far, the most efficient one for large-seale SDP [22]. However, they

don't report any theoretical complexity bound on the number of iterations

of their algorithm. Another interior point cutting plane algorithm for the

maxeut problem based on a linear programming approach is discussed in

Krishnan and Mitchell [30] and Krishnan [29]. Other references in interior

point cutting plane algorithm are [20, 37, 38 .'39].

An alternative technique for nonsmooth optimization is the analytic cen­

ter cutting plane method (ACCPM). This method was introduced by Son­

nevend [53], Ye [61] and Goffin, Haurie and Vial [15]. ACCPM has been

successfully implemented in a wide variety of applications, as for instance in

[14] and [19]. The complexity of the method has been analyzed in case of

single cuts by Atkinson and Vaidya [6], Nesterov [41] and Goffin, Luo and

Ye [16], in the case of multiple cuts by Ye [63] and Goffin and Vial [18], and

in the case of quadratic cuts by Luo and Sun [33], Lüthi and Büeler [34] and

Sharifi Mokhtarian and Goffin [52].

For the purpose of proving complexity results, ACCPM is more clearly

described in the context of a convex feasibility problem: find a point in

a bounded convex set D*, with a nonempty interior. The solution set D*

is assumed to contain a baIl Né, with radius c < 1 and is contained in a

compact convex set describeel by matrix inequalities. At each iteration the

analytic center of the set of localization is computeel and a separation oracle

is calleel: the oracle determines if either the center is in D*, thus solving the

problem, or returns a cut which cuts off the current point and contains the

solution set. A special updating step is then needed to get as close as possible

to the next analytic center, as first suggested by Mitchell and Todd [36].
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ACCPM is well developed for linear and quadratic programming. In this

thesis we employ, for the first time, a nonpolyhedral model into the ACCPM.

vVe transform the eigenvalue min-max problem arising from semidefinite pro­

gram into a convex feasibility problem and propose the analytic center cutting

surface algorithm with semidefinite cuts to solve this problem. A semidef­

inite eut contains as special cases, single and multiple linear cuts, as well

as quadratic cuts. At each step of the algorithm, an oracle returns a p­

dimensional sprnic1efinite eut. We adcl the cut at the center. and clerive the

optimal v.pdating dirEction by maximizing the "log clet" of the nc\v slack ma­

trix. The optimal updating direction is used to obtain an interior point of

the updated set of localization as an initial point to compute the next an­

alytic center. This is an extension of the direction obtained by Goffin and

Vial [18] for the multiple linear cuts to the semidefinite cuts. For alternative

approaches to solving determinant maximization problems see [56, 59].

The restoration procedure is discussed in detai1. We prove that the num­

ber of Newton steps needed to recover the analytic center from the interior

point obtained by the optimal updating direction is of order of plog(p + 1).

We call this interior point, a warm stan. Moreover, we show that the analytic

center cutting plane algorithm stops with a point in the solution set when

the dimension of the accumulated block diagonal eut matrix reaches to the

bound of O*(P~axm3 //12[2), where Pmax is the maximum dimension of the cut

matrices and /1, > 0 is a condition number of the field of cuts. Furthermore,

we prove that the Newton method finds the optimal updating direction in

O (
PIOg-4+10gl.). . h j3' h N d dat most (3-1~g(Hf3)/1: IteratlOns, w ere IS t e ewton ecrement an

* (l-O)/Ô de' . . t t l th 1[ = (HO)(Hn) an IS a posItIve cons an ess an .

From the application point ofview, our algorithm can be applied to a large

class of semidefinite programs. More precisely, the semidefinite problems in

which the trace of any feasible primaI matrix is constant. We see that many
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semidefinite relaxations arising from the combinatorial optimization possess

this property. In particular, we apply our algorithm to the Max-Cut problem.

Vve develop the ACCPM algorithm in primaI and dual settings and discuss

the implementation issues for shallow and deep cuts in both cases. Our

numerical results are created using the primaI algorithm.

It is important to notice that, the main intention of this thesis is not to

develop an algorithm for large-scale semidefinite programs. It is rather, the

extension of the ACCPM by means of the semidefinite cuts for the convex fea­

sibility problem. Nevertheless, we illustrate that ACCPM with semidefinite

cuts efficiently solves moderate-size semidefinite programs. To the best of our

knowledge, this algorithm is the second nonsmooth approach to semidefinite

programs after the Bundle method [23]. The advantage of the algorithm

developed here over the Bundle method is however, its strong theoretical

background and complexity results. Independent of our work in this thesis,

very recently, there has been sorne interests in semidefinite feasibility prob­

lem [54, 57, 9]. However, their setting is different and they target different

applications.

The thesis is organized as follows: In Chapter 2 we introduce the pri­

maI and dual problems of semidefinite programming and state the duality

theorems. We also define the max-eut problem and derive the semidefinite

relaxation on this problem. Chapter 3 is devoted to the most important

properties of the analytic center of a convex set of linear matrix inequal­

ities. This includes the primaI, dual and primaI-dual potential functions,

the optimality conditions for the exact and approximate analytic center and

primaI and dual algorithms for the computation of the analytic center. We

introduce the convex feasibility problem and semidefinite cuts in Chapter 4,

and derive the optimal updating direction to restore the analytie center after

adding a semidefinite eut. In Section 4.3 we present the ACCPM algorithm
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and in Section 4.4 we derive the complexity of our algorithm. We also derive

an upper bound on the number of damped Newton steps to compute the

optimal updating direction. Chapter 5 deals with the applications. Vve re­

formulate the dual problem of SDP into an eigenvalue optimization problem

and then reduce the optimization problem to a feasibility problem. Vve define

the weighted analytic center in Section 5.3. PrimaI and dual directions for

computing the weighted analytic center are derived in Sections 5.4 and 5.5.

Vve also discuss the implementations of primaI and dual algorithms when the

set of localizatioll is composee! of both linear and semidefinite cuts and

case of the deep cuts. Our numerical results for a number of random graphs

generated by graph generator "Rudy" are presented in Section 5.7. vVe also

discuss the computational difficulties for both primaI and dual algorithms.

6



Chapter 2

Preliminaries

In this chapter we provide sorne basic facts that are fundamental for this the­

sis. We introduce the standard formulations of primaI and dual semidefinite

program and state basic definitions of the analytic center of a compact set

of matrix inequalities. We begin by introducing our notations:

Lower case letters are used to show vectors and upper case letters are

used for matrices. l and In are identity matrices of appropriate size or of

size n. The i th column of lis shown by ei, and Diag(ei) is a diagonal matrix

with ei on its main diagonal.

We refer to the space of n x n symmetric matrices by sn, positive semidef­

inite matrices by s~, and positive definite matrices by s~+. We denote the

lh eigenvalue of a symmetric matrix A, by Àj(A) in decreasing order.

For square matrix A, tr(A) is the trace of A, diag(A) is a column vector

made up of the diagonal elements of A, the Frobenius-norm of A is defined

via
n

IIAI12 = trAT A = L::(Àj(AT A)),
j=1

and if A is symmetric, the oo-norm of A is defined by

IIAlloo = max IÀj(A)I, j = 1, ... , n.

7



The operator "@" indicates the inner product of two matrices:

"Vith the abuse of notation we indicate the component-wise product of two

vectors x and s by

(

Xl81 )

X8 = .. : 1 :1:,8 E Rn,

:.tnS n

and the component-wise inverse of vector :c E Rn by

(

XI.l )-1 .
X = : .

-1Xn

For symmetric matrices Ai, i = 1, ... , m, we define the m-vector a~ by

(2.1)

This vector is denoted by b~ when we deal with symmetric matrices Bi'

The L6wner partial order on the symmetric matrices is defined by A t B

(A >-- B) if A - B E S~ (A - B E S~+).

2.1 Semidefinite Programming

Semidefinite programming (SDP) is an extension of linear programming

where vector variable is replaced by matrix variable and nonnegativity con­

straint is replaced by positive semidefiniteness. The primaI problem of SDP

can be expressed in the form

8



(2.2)

max G@X

s.t.

Ai @)( = bi , i = 1, ... , m

X C::: 0,

where X E sn is the matrix variable and n x n real matrices A and Gand

veetor b E Rm are the parameters of the problem. Without loss of generality

WE' assume that Ai E sn and G E S~. Note that if G is not syrnmetrie, sinee

matrix X is symmetrie then G @ X = GT
@ X, and thus C can be replaced

by ~ (C + CT). The same argument holds for matrices Ai.

Let A be a lînear operator from sn to m-veetor Rm defined by

AX= (2.3)

for any symmetric matrix X. Then problem (2.2) can be rewritten via

max CoX

s.t.
(2.4)

AX=b

XC::: 0,

Corresponding to the primaI problem, the dual problem is defined as the

minimization of a linear function over a convex set of matrix inequalities:

min bTy

s.t. (2.5)

ATyc:::C,

where AT : Rm --+ sn is the adjoint operator of A, defined by

m

ATy = I: yjAj .
j=l

(2.6)

9



Using the slack matrix S the dual problem can be written as

mm bTy

s.t.
(2.7)

The duality gap of the objective values at a dual feasible solution (y, S)

and a primaI feasible solution X is

17y-C@X (AXfy-C@X

(ATy-C)@X

S@X

> o.
The strong duality theorem in SDP is weaker than that of in linear programs.

In other words, a Slater's condition is needed in order to guarantee a zero

duality gap at the optimal solution.

Theorem 1 (Strong Duality Theorem) S* @ X* = 0 if the primaI prob­

lem (2.4) is strictly feasible, i.e., there exists X >-- 0 such that AX = b, or the

dual problem (2.7) is strictly feasible, i. e., there exists y such that ATy >- C.

If both conditions satisfy then the optimal solution is bounded.

Proof. See Alizadeh [1] 11II1

Without strict feasibility assumption the duality gap at the optimal so­

lution may not be zero. We illustrate this by modifying an example of Van­

denberghe and Boyd [58].

Example 2 Consider problem (2.4), with m = 2, n = 3, bT = (1,0), C33 =

-1 and the coefficient matrix C is zero elsewhere,

Al = (~ ~ ~), A2 = (~ ~ ~).
o 0 l 0 0 0

10



Fmm the constmint Al @ X = bl , we have 2x12 + X33 = 1 and from constmint

A2 @ X = b2 , we get X22 = 0 and since X is a positive semidefinite matrix the

entire row and coramn 2 must be zero. Therefore the problem is reduced to:

max -X33
s.t.

(

Xll 0 X13)
000

:r:13 0 1

>-0

~ 0,

This pmblem is feasible but not strictly feasible and the optimal objective

value is z; = -1. The dual problem for this example as defined in (2.5) is

as follows:

mm YI

s.t.

( :1 ~~ ~ )
o 0 YI + 1

this problem is feasible for any YI = 0 and Y2 2: 0 but not strictly feasible.

The dual optimal objective value is z;t = O. Thus z; "# z;t or, the duality gap

77 is not zero.

The following theorem provides the optimality conditions for semidefinite

programming:

Theorem 3 (Complementary Slackness) Assume that one of the primal

or dual problems is strictly feasible. Then primal and dual feasible points X*

and (y*, S*) are optimal if and only if

X*S* = o.

Proof. See Alizadeh [1]. II
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2.2 Maximum eut Problem

Applications of semidefinite programming in combinatorial optimization and

nonconvex quadratie optimization problems have been developed in the past

few years. In what follows we study semidefinite relaxations for Max-Cut

Problem. The material of this section is mostly selected from Helmberg [21].

Semidefinite relaxation for the Maximum eut (Max-Cut) problem gives

the tightest bounel on the optimal objective value amongst that of other

relaxations. Here we briefly review the derivation of this relaxation and its

approximation result derived by Goemans and vVilliamson [13].

Max-Cut problem is one of the standard NP-hard problems and is defined

as follows. Let G(V, E) be an undirected weighted graph without loop or

multiple edges. Let IVI = n and lEI = m. The goal is to divide the node set

V into two sets Sand V\S such that the total weight of edges that connect

these two sets is maximized:

max
sçv L Wij'

iES,j,/:S

The quadratic formulation of the problem is

(2.8)

Where Wij is the weight associated with edge ij and Xi = 1, where i E Sand

Xi = -1 otherwise.

Formulation of the max-eut problem can be improved using the Laplace

Matrix of the graph G. Let C = lL, where L = Diag(Ae) - A and A is the

weighted adjacency matrix, then problem (2.8) can be reformulated as

max xTCx

S.t. (2.9)

XE{-l,lr·

12



Now let C be the convex hull of {:rxT : x E {-1, 1r}. Since the extreme

points of C are in {-1,I}n, problem (2.9) can be written as follows:

max CoX

s.t. (2.10)

X EC.

For any matrix C, an optimal extreme point solution of problem (2.10) 1S

an optimal solution of problem (2.9). This problem would be a linear pro­

gramming problem if we had an explicit description of the cut polytope C.

However, unfortunately for NP-hard problems, there is almost no hope of

finding a good description. Although we do not have C explicitly but a tight

upper bound can be found by an approximation of the cut polytope. Lau­

rent and Poljak [31] proved that the following formulation is equivalent to

the max-cut problem (2.10):

max CoX

s.t.

diag(X) = e

X è::: 0

rank(X) = 1.

(2.11)

Removing the rank constraint we come up with a semidefinite relaxation

for the max-eut problem:

max CoX

s.t.

diag(X) = e

Xè:::O.

(2.12)

Using random hyperplane rounding scheme, Goemans and Williamson [13]

obtain the following result:

13



Let G(V, E) be an undireeted graph with nonnegative edge weights and

let m* be the optimal objective value of problem (2.9). Then for any feasible

solution of (2.12),

m* 2:: aG @ X,

with a > 0.87856. In particular, for the optimal matrix X*,

aG @ X* :::; m * :::; G @ X *.

Moreover, Delorme and Poljak [11] prove that the senüdefinite relaxation of

the max-eut problem is asymptotically optimal for a large class of random

graphs.

14



Chapter 3

The Analytic Center of Linear

Matrix Inequalities

In this chapter we review the definition of the analytic center for linear matrix

inequalities and introduce primaI, dual and primaI-dual barrier functions to

derive the optimality conditions for the analytic center. We present two

algorithms for computing an approximate analytic center of a convex compact

set described by matrix inequalities based on primaI and dual settings.

The chapter is organized as follows: Section 3.1 defines the exact analytic

center and derives its optimality conditions based on primaI, dual and prima­

dual parameterization. In Section 3.2 we introduce an approximate analytic

center and establish lower and upper bounds on the potential functions at an

approximate center. We also define the Dikin's ellipsoids in primaI and dual

spaces. Section 3.3 is devoted to the primaI algorithm for computation of an

approximate center, and finally in Section 3.4 we present the dual algorithm

for computing an approximate analytic center.

15



3.1 The Analytic Center: Optimality Condi­

tions

Before we begin we state a very important lemma which plays a key role in

the analysis of the interior point methods.

Lemma 4 For a symmetric matrix X we have,

log clet X :S l @ (X - 1).

and 'if IIXllce' < L then,

. IIX - 1W
log det X 2: l @ (X - 1) - 2(1 _ IIX _ 11/00)'

Proof. See Alizadeh [1]. 11III

3.1.1 Dual parameterization

Consider the following set:

where AT is the operator defined by (2.6) and C E Sn' We assume that nD

is a convex compact set and contains a strictly feasible point. That is

0,'1 = {y E Rm : C - ATy >- O},

is nonempty. Given a point y in n'D, the dual potential function is defined

Via

cPD(Y) 10gdet(C - ATy)-l

logdet 8-1

16



The minimizer of the dual potential function is called the analytic center:

(3.1 )

Since cPD (y) is strictly convex on f21, the analytic center is weB defined

and unique. Abusing notation somewhat, we also denote the dual potential

function by cPD (S) .

For small symmetric matrix dS, the second order expansion of log det S-l

lS:

log clet(S + dS) l =

log det S-l - trS-ldS + ltrS- 1(dS)S-1(dS) + o(lldSW). (:3.2)

Now the first optimality conditions of problem (3.1) can be derived by setting

V cPD(S) = O. That is

trA i S-l = 0, i = l, ... , m,

or

Ai e S-l = 0, i = 1, ... , m.

Let X = S-1, then ya is the analytic center of f2D iff there exist matrices

sa >- 0 and xa >- 0 such that

Axa

ATya + sa

xasa

3.1.2 PrimaI parameterization

o
C

1

(3.3)

The analytic center can also be derived using the primaI potential function.

Let

f2 p = {X E sn :AX = 0, X è:: O},
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and define the algebraic interior of ftp by

ft~ = {X E sn :AX = D,X >- a}.

Suppose that ft'? is nonempty. vVe show that the minimizer of the prùnal

potential jv.nction

cjJp(X) = C @X -logdetX,

over ft p satisfies the optimality conditions (3.3).

We are interested in solving the following convex optimization problern:

mm C @X - log det X

s.t.

AX=O

X >-- O.

The first order optimality conditions for this problem read

C - X-1 - ATy = 0,

letting X-1 = S, (3.3) is immediate.

3.1.3 PrimaI-Dual parameterization

(3.4)

cjJPD(X, S)

The analytic center can alternatively be characterized as the minimizer of

the primal-dual potential jv.nction:

cjJp(X) + cjJD(S)

C @ X - log det X - log det S,

over ftPD = ft p x ftD. Let us show that (3.3) is the optimality condition for

this minimization problem. First observe that

C @ X a -logdetXaSa

X a
@ sa -logdetXaSa

tr l - log det l

n.

18



(3.5)

On the other hand from Lemma 4

cPPD(X, S) > X @ S - tr(XS - I)

trXS - trXS + trJ

n,

for aIl (X,S) E 0.PD , with equality iff XS = J. Thus (xa,ya, sa) is the

(unique) minimizer of cPPD(X, S).

3.2 Approximate Analytic Centers

In practice, however, computation of the exact analytic center is impossible

due ta the round-off error. Approximate analytic centers are defined for com­

putational reasons. A B-approximate analytic center is denoted by (X, y, S)
and defined via

AX 0

ATy+S C

IIXS - Jll < B < 1.

The next lemma provides lower and upper bounds on the potential func­

tions at a B-approximate center.

Lemma 5 Let (X, y, S) be a O-approximate center. Then

1. cPp(xa) :::;; cPp(X) :::;; cPp(xa) + 2d~B)

2. cPD(sa) :::;; <PD(S) :::;; cPD(sa) + 2(f~B)

, - - B2
3. n:::;; <PPD(X, S) :::;; n + 1-8

Proof. The left-hand side inequalities are trivial. We prove the upper

bounds. From Lemma 4

cPPD(X, S) < X @ S - J @ (XS - I) + 2(1"~tlfx-sJ~2JII)
02

< n + 2(1 _ 0)'
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and therefore

or

(q)p(X) - q)p(Xa)) + (q)D(S) - q)D(sa)) :s 2(le~ e)'

Since (Xa,ya, sa) is the analytic center, then

and

Thus,

and
- rP

q)D(S) - q)D(sa) :s 2(1 - er
Summing up the two inequalities, proves the upper bound in (3). Il

Computational algorithms for the analytic center of a polytope have been

devised in primaI, dual, and primaI-dual settings based on Newton method.

These algorithms can be extended to compute the analytic center of a con­

vex body described by matrix inequalities [58]. In the next two sections we

discuss the extension of the primaI and the dual algorithms to compute an

approximate analytic center. We refer the reader to [62, chapter 3] for a com­

prehensive analysis of the computational algorithms for the analytic center

in the linear case. Before we start we define the Dikin ellipsoid:

3.2.1 Dikin ellipsoid

Let i) E D'V and Sbe its slack matrix. A coordinate-aligned ellipsoid centered

at i), and contained in the interior of DD, i.e., the set
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is called the dual Dikin ellipsoid. Similarly, we can define the Dikin ellipsoid

for the primaI feasihle set. Let X >- 0 he in Op. Then, the primaI Dikin

ellipsoid centered at X is

3.3 PrimaI Aigorithm

In this section we derive the Newton direction to solve problern (3.4) from a

strictly primai feasihle rnatrix. Let X E n'P, for srnall syrnmetric rnatrix dX

one has,

cPp(X + dX) C. (X + dX) + Iogdet(X + dX)-l

~ cPp(X) + (C - X- 1). (dX) + ~trX- 1(dX)X-1(dX).

We minimize cPp(X + dX) over the feasihle directions dX = (dXf:

mm (C - X-1). (dX) + ~(dX)X-1. X- 1(dX)

S.t. (3.6)

A(dX) = O.

Notice that the constraint A(dX) = 0 guarantees the feasibility of the up­

dated matrix X+ = X + dX. The first order optimality conditions for prob­

lem (3.6) can be stated as

(3.7)

By multiplying X from the right side and from the 1eft side to (3.7) and then

applying the operator A, with the feasibi1ity of X and dX one has,

A(X(AT y)X) = A(XCX),
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or

(3.8)

where A p : sn -+ !Rm is a linear operator and A~ : !Rm -+ sn is its adjoint

operator, defined via

m

1AT 'Ii\' v.5 JI v.5ane py = L.-.. Yi..'"'\. .iii J '1. ,

i=l

and Cp = X 5CX 5
. Note that (ApA~) E sm with (ApA~ = b·A)(AjX.

We assume that matrices Ai are linearly independent and therefore ApA~ >­
O.

From (3.8) (we denote Y by y(X) as it is a function of X)

and in view of (3.7) we have

dX = X - XS(X)X,

where

S(X) = C - ATy(X).

3.3.1 Projection of dX on to the null space of A

(3.9)

(3.10)

(3.11)

A feasible direction dX is a symmetric matrix such that AdX = O. This

condition may not be satisfied after computing dX due to the computational

round-off errar. We therefore project the direction dX on to the null space

of A at each iteration:

From (3.10) we have
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Let PAp (clX) be the projection of dX on to the null space of A p, and PÂ(dX)

be the projection of dX on to the null space of A. Then

and thus

X·5p Âp (dX)X·5

dX - X 5(A~(ApA~)-lAdX) X· 5

NOv\! let

Thus

dX - X·5A~qX·5

dX - XATqX.

or
m

PA(clX) = dX - L;qi(XAiX).
i=l

Note that APA(dX) = o.

Observe that

(3.12)

X-·5(dX)X-·,5 A~y - Cp + 1

A~(ApA~)-lApCp - Cp + 1

- (I - A~(ApA~)-lA p) (Cp - 1)

-PAp(CP - 1),

(3.13)

(3.14)

where PAp(CP - 1) is the projection of (Cp - 1) on the null space of A p.

Therefore, the primai direction can alternatively be stated via
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This observation can be also seen from (3.13):

since X-· 5(dX)X- 5 is in the null space of A p and A~y is in the range of

A~ and this decomposition is unique, then X-· 5(dX)X-·5 is the projection

of 1 - Cp on the ml1l space of A p.

The following lemma shows that the slack matrix S(X) can be charac­

terized as a least square problem:

Lemma 6 Let X E np. Then the dual solution S(X) is the minimize'r of

the following least square problem:

mm IIX·5SX·5 - III
s.t. (3.15)

ATy+ S = C

Proof.

IIX·5SX·5
- 111 2

trXSXS - 2trXS + trI

trX (C - ATy)X (C - ATy) - 2trX (C - ATy) + n

tr (X·5(C - A TY)X·5)2 - 2trX·5(C - A Ty)X·5+ n

tr(Cp - A~y)2 - 2tr(Cp - A~y) + n

trC~ - 2Cp @ A~y + A~y @ A~y - 2trCp + 2trA~y + n

trC~ - 2trCp - 2yTApCp + yT(ApA~)y + 2trA~y + n.

The first order optimality conditions read

The proof follows from the fact that Apl = AX = O. Il
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Let P(X) be the optimal objective value of problem (3.15):

P(X) := X· 5S(X)X·5
- l,

and define the primai measure of proximity

17p(.X) = IIP(X)II·

Observe that

P(X) X 5(C - ATy(X))X·5
- 1

X· 5 (C - X-I)X' S - X· 5ATy(X)X's

X··5(C - X- I )X·5
- A~y(X)

(I - A~(ApA~)-IAp) X· 5(C - X- I )X··5

PAp X· 5(C - X- I )X·5

PAp(CP - I)

(3.16)

The following lemma shows the strict feasibility of the primaI direction

and the rate of convergence when IIP(X)II < 1.

Lemma 7 If 17p(X) :::; CIO < 1, then,

Proof.

X+ X +dX

X - X· 5PAp (CP - I)X· 5

X - X· 5p(X)X·5

X· 5(I - P(X))X· 5
,
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and sinee IIP(X)II < 1, then max l'xj(P(X))1 < 1 and therefore 1-P(X) >- 0,

i.e., X+ >- O. To prove the rate of convergence, first observe that from

Lemma 3.15

IIP(X+)II II(X+)·.5S(X+)(X+)·5 - III
< IICX+)·5S(X)(X+)·5 - III. (3.17)

On the other hand,

dX = -X.5P(X)X.5 = X XS(X)X, (3.18)

and thus X+ = 2X - XS(X)X. Now from (3.17) and (3.18): (in what

follows we denote S(X) by S)

IIP(X+)II 2 < 11S'5X+ S.5 - 111 2

IIS'·5(2X - XSX)S'5 - 111 2

Il (S'.5XS'5 - 1)211 2

tr(S'5X S'5 - 1)4

I:('xj(S'5X S'5) - 1)4

< (I:('xj(S'.5X S·5) _ 1)2)2

(11S'5XS'5 - Iln
2

IIP(X)11 4
.

The proof now follows. II1II

Lemma (7) guarantees quadratic convergence within the primaI Dikin

ellipsoid. We now derive the complexity of the primaI algorithm:

3.3.2 Complexity of PrimaI Algorithm

Let a strict feasible matrix X with IIP(X)II ~ l is avaiIabIe. We apply a step

size 0:' < 1 to reduce the primaI potential function by a constant amount at
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(3.19)

each iteration. Let d'X = X+ - X be the primaI direction with step size oc,

and consider the reductiol1 in the potential function when Tjp(X) 2: 1:

C @ X+ - C @ X - log det X+ + log det X

C @ (X+ - X) -logdetX- 1X+

< C @ d'X - X- 1 @ d'X IIX-
1
(d'X)W

+ 2(1 -IIX-1(d'X)11)
')

< (C A- 1) d'A oc~
- ./ @ . ..' + 2(1 - cv) .

From lemma (4) the last two inequalities are true if Il 1(ct X) Il :s; oc < 1.

The best bound can be found by minimizing (3.19) over the feasible directions

d'X:

mm (C-X- 1 )@d'X

s.t.

A(d'X) = 0

IIX-·5 (d'X)X-·5
11 :s; a < 1.

(3.20)

We employa transformation technique to solve this problem. The idea is to

transform problem (3.20) to an equivalent problem where the identity matrix

l is feasible. To this end we define a new variable X' := X-· 5X+X-· 5 and

observe that the constraints can be written in terms of the new variable as

fol1ows,

and,

and the objective function,

(C - X- 1) @d'X X· 5 ( C - X- 1 )X·5
@ X-· 5 (d' X)X-· 5

(Cp - 1) @ (X' - 1).
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Therefore the transformed problem can be expressed as,

mm (Cp - I) @ (X' - I)

s.t.

Ap(X' - I) = 0,

IIX' - III :::; a < 1.

(3.21)

The optimal solution to problem (3.21) can be computed from the identity

matrix J. The direction towards the optimality must be on the mIll space of

A p and of the opposite direction of Cp - Jin order to minimize the problem.

Thus,

where,

Consequently,

and

(Cp - I) @ (X' - I)

IIP~)IIIIP(X)112
-ooIlP(X)II·

Therefore in view of (3.19) we have,

002

< -ooIIP(X)11 + 2(1 - a)

002
< - a + --:-----,-

2(1 - a)
J.

This shows that by taking the step size a when the iteration is outside the

Dikin ellipsoid the potential function is reduced by 15 > 0 at each step.
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<pp(X + DidX)

Therefore after a finite number of iterations, IIP(X)II satisfies the desired

condition « 1) and then by taking the pure Newton's steps the algorithm

quadratically converges to the analytic center. The compIexity of the primaI

aigorithm can be obtained from the fact that the primaI potentiai function

at the analytic center is a Iower bound for <pp(X). This implies that after at

most

Newton steps the algorithm stops with an approximate analytic center.

In practice, however, we find the step size by a line search method ta get

as close as possible to the Dikin ellipsoid. vVe now describe this procedure:

Suppose that the primaI direction dX is obtained by (3.10). We want to

find the step size Ct sneh that <pp(X + adX) is minimized. Observe that

C @ (X + adX) + 10gdet(X + adX)-l
n

C @ X + DiC @ dX -logdet X -:2: 10g(1 + DiÀj ),

j=l

where Àj are the eigenvalues of symmetric matrix X-· 5dXX-· 5 . Now by

taking the differential with respect to Di and setting it to zero, one has

n À.
C @ dX - :2: J O.

j=l 1 + DiÀj

We solve the above equation by a line search. The initial interval is set such

that

X+ = X + DidX = X· 5 (I + DiX-·5dXX-· 5
) X· 5 >- O.

Note that, if DiÀmin (X-· 5dXX-· 5 ) > -1, then X + Cl.dX >- O. Thus

Âmin (X-· 5dXX-·5) < 0, we choose

-1
CI. < Àmin (X-..5dXX-.5)

Otherwise, any Di > 0 would serve our goal.
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3.3.3 PrimaI Aigorithm

The algorithm can be summarized as follows:

Aigorithm 1 (PrimaI Aigorithm) G1:ven XO >- 0, E > 0, and 0 < 0: <
.075, set k=O.

Step 1. Compute y(Xk) j'rom (3.9) and S(Xk) from (3.11)

Step 2. Compute pnmal direction dX from (3.10)

Step 3. Cmnpute the pTDject'ion of clX on to the Twll space of A by (3.

Step 4. Compute P(Xk) from (3.16) and the measure of proxim'ity 'TJp(Xk) =

IIP(Xk)ll,

Step 5. If 'TJp(X k) < 0.75 take the pure Newton's directions and set Xk+l =

Xk+dX

Step 6. If 'TJp(Xk) 2: 0.75, compute the step size a and set Xk+l = X k +

adX,

Step 7. If rPp(Xk+ 1
) - rPp(Xk ) < E go to step 8,

Step 8. Set k = k + 1 and retUTn to step 1.

Step 9. Update y(X) and S(X) and stop.

3.4 Dual Algorithm

In this section we discuss the dual algorithm for solving problem (3.1). Recall

that
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and D'D is the strict feasible points of DD. Let y E D'D and dy (and dS = dST
)

be the dual direction. Consider the quadratic approximation of cPD(S):

cPD(S + dS) logdet(S + dS)-l
1

~ logdetS-1
- t'l'S-ldS + 2trS- 1(dS)S-1(dS).

By feasibility of dy one has:

AT(y + dy) + (S + dS) = C

or,

ATdy+dS = 0

Therefore,

where AD : sn -+ ~m is a linear operator and Ab : ~m -+ sn is its adjoint

operator, defined via

Note that (ADAb) E sm with (ADAb)ij = trAiS-1AjS-1. Since Ai are

linearly independent, then ADAb >-- O.

Note that,

~trS-l(_ATdy)S-l( _ATdy)
2

~tr (~dYiS-lAi) (~dYjS-] A,)
lL: dYidyjtr (S-l AiS-1A j )

~,J

1 T T
2dy (AvAv )dy.
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By minimizing the quadratic approximation of <PD (y)

(3.22)

one has

(3.23)

and

(3.24)

Now let

(3.25)

The following lemma shows that X(S) is a solution of a least square problem:

Lemma 8 Let y E D'D and let S be the stack matrix. Then the primal

solution X(S) of the analytic center is the min'irnizer of the following least

square problem:

mm 115-5XS· 5
- III

s.t. (3.26)

AX=O

Proof. The objective function can be written as,

tr(SXSX - 2SX + I)

tr(SXSX) - 2trSX + 17,

The KKT condition for this problem is

2SXS - 2S - ATV = 0, (3.27)

where v E Rm. By multiplying the matrix S-l from the right side and from

the 1eft side to equation (3.27) and then applying the operator A and noting

that AX = 0, we have:
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or

V -2(Av A 1?)AS-1

2dy

and thus from (3.27),

X(S) = S-l (ATdy + S) S-l

The proof follows. Il

Let P(S) be the optimal objective value of problem (3.26):

P(S) = S-.5X(S)S·5 - 1,

note that

P(S) 5'5 (S-l (ATdy + S) S-l) 5'5 - l

S-·.5ATdyS-·.5

-S-·5(dS)S-·5.

(3.28)

The following lemma shows that if IIP(S)II < 1 then the updated slack matrix

S+ = S + dS is strictly feasible and the dual algorithm converges to an

approximate analytic center quadratically.

Lemma 9 If fld(S) = IIP(S)II < 1 for sorne interior' point y E Ob and its

slack rnatrix S, then

Proof. Note that

S+ S+dS

S - 5'.5p(S)S·5

S·5(1 - p(S))5'5,
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and since IIP(S)II < 1, then ÀjP(S) < 1, for.i = 1, ... , n, which implies that

S+ >-- O.

To prove the second part of the lemma first observe that X (S) is the

minimizer of problem (3.26) and thus

T7d(S+) II p (S+)11

Il (S+),5X(S+)(S+),5 - III
< II(S+),5X(S)(S+),5 - III '

for aH X with AX = O. On the other hand,

(3.29)

S+ = S - ATdy = 2S - (AT dy + S) = 2S - SX(S)S. (3.30)

Now from (3.29) and (3.30) (denoting X(S) by X)

II(S+),5X(S)(S+)·,5 - IW II X ,5S+X,5 - IW
IIX·5(2S - SX(S)S)X,5 - IW
IIX·5SX(S)SX·5- 2X·5SX·5+ IW
WX·5SX,5 - I)2W

tr(X·5SX·5 - I)4

I:(Àj (X·5SX,5) - 1)4

< (I:(Àj(X·5SX·5) _ 1)2)2

(IIX·5SX·5 _ IW) 2

11S-5XS-5 - IW
TJd(S)4,

The proof now follows. Il
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3.4.1 Complexity of Dual Aigorithm

Assume that (y, 5), with 5 >- 0 is given snch that TJd(S) 2: 1, we consider the

new point y+ with step size et!TJd(S), for 0 < et < 1:

Let

+ _ et T -1 -1
Y - y - TJd(S) (AvAv ) AS , (3.31)

d, ct (A A T)-lAS- l.Y = -~(C") v v ,'Id c),

and d'S = -ATd'y,

We prave that by taking the direction d'y the dual potential function rjJ D (p)

is reduced by a constant amount at each iteration and after a finite number

of Newton steps the iteration lies within the quadratic convergence region.

Consider the reduction in the potential fnnction when 115-15+ - Iii <
a < 1,

cPD(Y+) - cPD(y) -logdet S-lS+

-1 + IIS- l S+ - 111 2
.

< -1 @ (S 5 - 1) + 2(1 -IiS-lS+ _ III) (;3.32)

-1 , IIS- l d'SI1
2

-trS d 5 + 2(1-IIS-l d'SII)

IIS- l d'SI1
2

trS-
l
ATd'y + 2(1 -IIS- l d'SII)

liS-Id'SI12

(AS-
l f d'y + 2(1 _ liS-Id'Sil)"

Thus

(3.33)

(3.34)
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The best bound on the reduction of potel1tial functiol1 can be obtained by

minimizing the right hand side of (3.33).

mm \JT4JD(y)d'y

S.t

or, in the symmetric form

mm (AS-Ifd'y

s.t (3.;35)

115-.5AT d'YS-511 :::; a, a < 1

The optimality condition for problem (3.35) is

or

d'y = -~(AvAvT)-IAS-I.
f.1

The correct value of f.1 can be found by the constraint

a 2
11 5 -.5ATd'YS-·5W

trS- 1(ATcl'y)S-I(ATd'y)

:2I1s-1AT(AvAvT)-IAS-1W

:21Is-·.5clSS-·5W

~ IIP(S)11
2

,
W

and thus 1/ f.1 = a/T/d(S), Thus the optimal objective value of this problem

can be bounded above by -a:

\JT4JD(y)d'y = T/~~) (AS-1f(AvAvT)-1 AS-1
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< -a.

Consequently
a 2

cPD(Y+) - c/JD(Y) :S ~n + 2(1 _ a)

Let 6 = a - a 2 /2(1 - a). Thus

where 6 > 0 for a < 1/3.

Like in primaI case, in practice, we find the step size a by a line search

method. Suppose that the dual direction dS is obtained by (3.24)

cPD(S + adS) log det(S + adS)-l
n

-log det S - L log(l + aÀj ),

j=l

where Àjs are the eigenvalues of symmetric matrix S-·5dSS-·5. The mini­

mizer of the dual potential function can be found by solving

n À.L J _0
j=l 1 + aÀ j

for a. The initial interval of the line search is set such that

S+ = S + adS = 5'5 (1 + aS-·5dSS-·5) S·5 >- O.

If aÀmin (S-·5dSS-·5) > -1, then S+adS >- O. Thus, If Àmin (S-5dSS-·5) <
0, we choose

-1
a<------­

Àmin (S-·5dSS-·5)
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Otherwise, any 0: > 0 would serve our goal.

The general complexity of the aigorithm can be obtained from the fact

that the dual potentiai function at the analytic center is a lower bound for

rjJD (y) and hence after at most

Iterations the aigorithm stops with an approximation of the analytic center.

The analysis of the primaI-dual aigorithm is more or Iess the same as the

analysis presented for primaI and dual cases. The complexity result, however,

for the primaI-dual case is more specifie since the potentiai function at the

analytic center is known in advance. That is the complexity of the primaI­

dual aigorithm is

3.4.2 Dual Algorithm

The dual aigorithm for computing an approximate analytic center of OD can

now be presented:

Algorithm 2 (Dual Algorithm) Given (yO, SO) strictly feasible, é > 0,

and 0 < 0: < .075, set k=O.

Step 1. Compute the dual directions dy and dS from (3.23) and (3.24),

Step 2. Compute X(S) from (3.25) and the measure of proximity 7Jd(Sk)

from (3.28),

Step 3. If 7Jd(Sk) < 0.75 take the pure Newton's directions and set yk+I =
yk + dy and Sk+I = Sk + dS
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Step 5. ft c/JD(yk+l) - c/JD(yk) < E go ta step 7,

Step 6. Set k = k + 1 and return ta step 1.

Step 7. Update X(S) fram (8.25) and stop.
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Chapter 4

Analytic Center Cutting Plane

Method and its Complexity

In this chapter we present an algorithm based on the analytic center cutting

plane method (A CCPM) with semidefinite cuts and discuss its complexity

in detai!. We start with introducing the convex feasibility problem in Sec­

tion 4.1. We define the semidefinite cuts and derive the primaI and dual

directions after adding a central semidefinite eut. In Section 4.2 we analyze

the restoration procedure and establish an upper bound on the number of

damped Newton steps after adding cuts. The ACCPM algorithm is pre­

sented in Section 4.3. Section 4.4 is devoted to the convergence analysis of

the algorithm. We derive the complexity of our algorithm in this section. We

complete our analysis by setting up the complexity of the Newton algorithm

for computing a strictly feasible point after adding cuts in Section 4.5.

4.1 Convex Feasibility Problem

For the purpose of proving complexity results, ACCPM is more clearly de­

scribed in the context of a convex feasibility problem: find a point in a
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Figure 4.1: A 2-dimensional semidefinite cut

bounded convex set n*, with a nonempty interior. The solution set Q* is as­

sumed ta contain a baIl .tIfc, with radius é < 1 and is contained in a compact

convex set described by matrix inequalities, so called the set of localization.

At each iteration the analytic center of the set of localization is computed

and a separation oracle is called: the oracle determines if either the center is

in [2*, thus solving the problem, or returns a cut which cuts off the current

point and contains the solution set. A special updating step is then needed

to get as close as possible to the next analytic center, as first suggested by

Mitchell and Todd [36]. First, we define the semidefinite cuts.

Definition 10 A p-dimensional semidefinite eut is a eut of the form

where D E SP and 13 : SP -t Rm is a linear operator defined by (BX)i

Bi @ X, with Bi E SP,. and BI'y = L:~l YiBi is its adjoint operator. The

matrices Bi are called the cut matrices, and if D = Bl'y, where y is an

approximate analytic center, then the eut is called a central semidefinite eut.

Figure 4.1 shows a semidefinite cut in 52. Notice that the semidefinite

cut BI'y :::; D is a generalization of linear, multiple, and quadratic cuts. If
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Bi and D are scalar, then BT y ::S D is reduced to a single eut bTy :::::: bo and

if they are diagonal matrices, then the eut isreduced to a set of multiple

linear cuts BT y :::::: diag(D), where the columns of matrix B are diag(Bi ).

Furthermore, if the eut matrices Bi and the constant matrix D are of the

form of

D=(IO)
o d '

(4.1)

then BTY ::S Dis redueed to a quadratie eut :tl'(BTB)y +qTy :::::: d, \vhe1'e the

vectors bi form the columns of matrix B.

Let

be the current set of localization. Then the updated set Dt c nD after

adding a central semidefinite eut is

To compute an approximate center of the updated set of localization, we

need a strict interior point of Dt. We start from fj and choose the direction

dy = Y - fj towards the interior of the set of localization as the maximizer of

the determinant of the new slack matrix to the boundary of the dual Dikin

ellipsoid centerecl at fj.

mm - log clet A

s.t.

IIS-·5ATdyS-·511 :::::: 1

BTdy+A = 0

A c:: O.

vVe calI the optimal solution of Problem (4.1), the optimal updating direc­

tion. An interior point of nt is obtainecl from the analytic center of DD and

the optimal updating direction. We calI this point the warm start and it will
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Figure 4.2: Optimal updating direction

be used as an initial point to compute the analytic center of Dt. Figure 4.2

gives a pictorial view of Problem 4.1. It shows the updated set of localization

and the optimal updating direction over Dt, as weIl as the warm start.

Problem (4.1) can be reformulated as follows:

mm -log det(-BT dy)

s.t.

By the KKT optimality conditions, dyand Aare optimal iff there exists

unique multiplier a 2: 0 such that,

From (4.2)

BA-1 + a(AD A1;)dy

BTdy+A

o
0,

(4.2)

(4.3)

and from (4.3)
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Define the operator V : SP -----t SP by V = BT(ADA'b)-lB, then

(4.5)

If V is nonsingular, then the dual direction A can be uniquely computed by

solving the following optimization problem

min ~trAV-IA -logdetA,
A>--O

The correct value of the Lagrange multiplier (J 2: 0 is known in advance:

- T T-
dy (ADAD)dy

~(BA-1?(ADA'br 1BA-1
(J"

~trA-IBT(A AT)-lBX-1
2 D D

(J"

1 - - 1-trA-1VA­
(J"2

!:-trA-1A
(J"

p
(J

(from (4.4))

(from (4.5))

On the other hand, IIS-'sATdyS-,slI = 1 and thus (J = p. Consequently,

where,

A= argmin{EtrAV-1A -logdetA}.
A:::O 2

To update the primaI direction, observe that the updated primaI feasible

region Dt is
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and the primaI direction dX is obtained by maximizing log det T while re­

specting primaI feasibility and remaining in the primaI Dikin ellipsoid cen­

tered at X:
mm -logdet T

s.t.

AdX +BT = 0

IISdXII:::; 1

T è: O.

The optimality conditions of problem (4.6) are

_T-1 + BTu 0

ATv + JIS(dJ()S 0

JI(l -IISdXII) 0

A(dX) + BT 0,

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

where JI 2 0 is the Lagrange multiplier associated with the norm constraint.

By multiplying equation (4.8) from the left and from the right by S-l and

then applying the operator A we have,

using (4.10)

and again from (4.8)

dX -~S-l(ATV)S-l
JI

_S-lAT(ADAI;) -1BT$-1.

Since AT(ADA'b)-lBT is symmetric, then dX is symmetric.
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Finally from (4.7)

T- 1 BT V

(l'BT(An A1)-lgt

(lIVT,

and T is the unique solution of the following optimization problem:

- (l'
T = argmin{ -tr-TVT -logdet T}.

T?::-O 2

Let us fincl the Lagrange multiplier (l'.

(4.11)

(4.12)

tr-S-.5(dX)S(dX)S·.5

tr-S-1AT (AnA1)-lBT S-lAT (ADA~r-1Bt
" ".... ./

u

'uT(ADA1)u

(BT)T(ADA1)-lBT

tr-TVT
p

(l'

Hence (l' = p.

Now for (li < 1 - (), let y+ = f) + wjy, and

u

+ = ( X + (lIdX 0))( - ,
o (liT

be the warm start. Since T is uniquely defined, in view of (4.5) and (4.11)

one can easily prove that TA = 1.1 and therefore computing T suffices to
p

compute S+. vVe postpone the complexity analysis of the optimal updating

direction (problem (4.12)) to section 4.5. The following lemma guarantees

the strict feasibility of the warm start.
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Lemma 11 The updated points X+ and (y+, S+) are strictly feasible for Dt
and Dt respectively, and therefore they can be used as the starting point ta

recover the analytic center.

Proof. First observe that

IIX-1(f'l(11 2 Il (S-·5X-1S-·5)(S·5ixS·5) 11
2

tr(S-·5X-1S-·5?(S·5dXS5?
n

< L )'](S-··5X- 1S-·5),.;(B-5d~'l(S5) (4.1.3)
j=l

n

< ),î(S-·5X- 1S-··5) L ),](B-5iXS 5)
j=l

IIS-1X-111~IISdXI12 (4.14)

where inequality (4.13) is due to Theobald [55] (see also Marshall and Olkin

[35]). From (4.14) and noting that dX is optimal for problem (4.6), and X
and Sare approximate centers, one has

On the other hand 0 < 1 - (), and

Thus X + odX >- O. Moreover T is positive definite by construction, and

hence X+ >- O. Since X is primaI feasible then A(X + odX) + B(oT) = O.

That is X+ is strictly feasible for the updated primaI set Dt.
To prove the strict feasibility of the dual iteration, we have

and sinee dy is optimal for problem (4.1), then IIS-·5AT dyS-·511 = 1. Thus

S+ ois >- O. 11III
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4.2 Analysis of Restoration

Before getting started, we state a lernrna sirnilar to Lernrna 4:

Lemma 12 Let 5 E sn be SllCh that 1/511 < 1. Then

logdet(I + 5) 2:: / @ 5 + 1/511 + log(l -1/511)·

Proof. The fol1owing inequality is weIl known (for a proof see Roos, Terlaky,

and Vial [50], page 439)

n

L 10g(1 + Sj) 2:: eTs + Iisii + 10g(1 - Ilsll)·
)=1

The lemma follows by letting Àj(S) = Sj. II1II

The fol1owing lemrna bounds the potential functions at the warrn start:

Lemma 13 Let (X, y, S) be a fJ-approximate analytic center. Then

rPD(S+) :::; cPD(S) - a(l- ()) -log(l- a) -logdeta1\, (4.15)

rPp(X+) :::; cPp(X) - a(1- fJ) - log(l - a) -log det aT, (4.16)

and

cPPD(X+,S+) :::; cPPD(X, S) - 2a(1-()) - 2Iog(1-a) -2p log a+p logp (4.17)

Proof.

-log det S(I + aS-liS) - log det a1\

rPD(S) - log det(I + aS-liS) - log det a1\

By Lemma 12

rPD(S+) :::; rPD(S)+

-/ @aS-liS -llaS-IdSïl-1og(1-lIaS-ldSïl) -logdeta1\(4.18)
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Since X @ls = -(AXVay= 0,

II @ aS-IdS/ a I(S-I - X) @ dBI

ü /u - S·5XS·5) @S-··5(dB)S-·51

< aIIS·ôXS·5 - IIiIIS-·5(dB)S-·511

< üe.

The first inequality, thus, follows from the inequality (4.18), the above fact

and noting that f(t) = -t - Iog(l - t) is an increasing function over its

domain.

To prove the second inequality note that

again by Lemma 12

cPp(X+) :::; cPp(X) + aC @ lx + œfFBT - l @ aX-IdX
-llaX-I dXII-Iog(l - lIaX- I dXII) -logdet aT.

On the other hand from AdX + ET - 0

(4.19)

laC. lx + af/BT - aX-I. dXI laS. dX - aX-I. dXI

a i(X··5S X·5 - 1). X-·5dXX-·51

< aIIX·5S X·5 - IIIIIX-·5dXX-·511

< ae.

The primaI inequality, therefore, follows from the inequality (4.19), the above

fact, and the property of inereasing function f(t). Finally the Iast inequality

is obtained by adding up (4.15) and (4.16). lIIi

The following theorem provicles the eomplexity of updating the analytie

center after adding a p-dimensional semiclefinite eut:
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Theorem 14 Starting from the $trict interior point (X+, S+), the number of

iterations to update an approximate analytic center is bounded by O(p log(p+

1)), where p i$ the dimension of the central semidefinite eut BTy j BTf).

Proof. Since (X, 5) is a a-approximate center of the current set of localiza­

tion, from Lemma 4 we have

- - - -, IIX5 - JI1 2

< X ® S - J @ (X5 - 1) + 2(1 _ /IX S _ Jll)
a2

< n + 2(1 - ar
Now, let the analytic center of the new convex body be ((XO)+, (SO)+). Since

rPPD ((.,\"0)+, (SO)+) = n + p, from (4.17)

cPPD(X+, S+) - rPPD ((Xa)+, (sa)+) ~ l1:(a, a, p) +P logp,

where

a2

l1:(a, a,p) = 2(1 _ B) - 2a(1 - a) - 21og(1 - a) - 2plog a-p.

At each iteration of the Newton's method the potential function is reduced

by a constant amount 6. Therefore after at most

rl1:(a, a,p~+ plogPl rv O(plog(p + 1))

iterations the algorithm stops with an updated analytic center. II1II

Figure 4.3 illustrates the recentering iterations from the warm start after

adding a 2-dimensional semidefinite eut. As the figure shows, the number

of iterations to recover the centrality is only one. Alternatively, one can

compute the analytic center of the updated set of localization without using

the optimal updating direction. In this case, one should make the cut shallow

and use the previous analytic center as the starting point. As Figure 4.4
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Updating the analytic center starting trom the maximi;zer
of the determÊn>;int of the new s.lack m"'tfices

Figure 4.3: Recentering steps from the optimal updating direction

20

-20 -'0

Updating the ",-"atytie canter after adding
a Semldeflnite Cut

o
Y,

-1

Figure 4.4: Recentering steps without using the optimal updating direction.
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shows this procedure drastically increases the number of steps to update the

analytic center.

In the next section we present an ACCPM algorithm for the convex fea­

sibility problem with semidefinite cuts.

4.3 The ACCPM Algorithm

The ACCPM algorithm attempts to find a feasible point in 0* COD, where

çy is the solution set and contains a full dimensional baIl J'iE \vith radius é.

\iVe make the following assumptions:

Assumption 1 OD C [0, l]m

Assumption 2 flD is described by an oracle. That is, the omcle deter­

rnines if either the center is in fl*: thus solving the problern, or retums a

p-dirnensional sernidefinite cut which contains fl* .

Assumption 3 For the sernidefinite cut BT : we assurne that

~ax (trBi , Ilb~ll) = 1,
z,l,q

where b~ is the m-vector defined in (2.1).

(4.20)

For the next assumption we need to define a condition number on the

semic1efinite eut.

Definition 15 At any point z tI- fl*, let B~y ~ B~z be the cut genemted by

the oracle. The condition nurnber of the cut B~ is defined via:

J-lz = max{detB;u: B;u t 0, lIuli = 1} (4.21)

and the condition nurnber of the field of cuts {B~, V z tI- fl*} is defined by:

J-l = inf J-lz·
z\l!l*
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Assumption 4

p > o.

Now let SAy) = Bnz - y) c:: 0 be the slack matrix corresponding to one

of the cuts, yC be the center of Né, and u be a vector such that lIull = l.

Then

and thus

In view of Assumption 4 now the fol1owing lemma is clear:

Lemma 16 For any z tJ- D*,

where p is the dimension of the cut.

Now we present the ACCPM algorithm:

Algorithm 3 Given D~ = {y E Rm : (AOf y -< Co}, where (AOf y

L:i Yi A?, with

A? = ( Diag(ei) 0 ), and CO = (lm 0).
o -Diag(ei) 0 Om

Let k = 0

1. Compute an approximate analytic center ti for D1S.

53



(4.23)

2. If Jl E 0*, stop.

3. Otherwise, call the oracle for the Pk-dimensional cut (Bkf y ::::; (Bk)Tfl.

4. Update the set of local'ization: ot+1 = {y E Rm : (Ak+I)TY ::::; Ck+I},

where (Ak+lfy = I:i YiA7+1, with

Ak+l = (A7 0) and Ck+1 =
~ 0 Bk '

!

Set k = k + 1 and go ta step 1.

It is worth mentioning that at each iteration k, we enlarge the dimension

of the eut matrices Ai, by Pk when adding the semidefinite eut as a block

diagonal. That is, for aIl k

k-I

dim(A}) = 2m~ + nk = 2m + I: Pi,
i=O

and no = O.

4.4 Convergence of the Algorithm

Let us bound the potential function at the new center. We first define the

min-potential funetions.

Let fl p and OD be the eurrent primaI and dual feasible sets respeetively.

The primaI (dual) min-potential funetion denoted by P(flp ) ('O(OD)) is the

value of the primaI (dual) potential funetion at the analytie center of Op

(OD)' We have the following theorem

Theorem 17 Let 'O(flD ) be the dual min-potential function at the current

set of loealization flD and let ot be the updated set after adding the P­

dimensional semidefinite eut BTy::::; BTy at a e-approximate center y. Then

p

'0(01));:: 'O(flD ) - I:logti -C(p,e,cr),
i=l
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where

rj2
C(p, a, a) = 2(1 _ a) - a(l - a) -log(l - a) - p(l + log a) + pIogp,

and

(4.25)

where b1 is the rn-vector defined in (2.1).

Proof. Let P(flp ) be the primaI min-potential funetion at fl p and let fl~

be the updated primaI feasible set afler adding the eut. From the properties

of the primaI-dual potential function and (4.16)

7)(flt) n + p - p(n~)

> n + p - cPp(X) + a(l - a) + log(l - a) + log det aT.

In view of Lemma 5 and the above inequality

~ -
7)(nt) 2:: 7)(SlD) +P - 2(1 _ a) + a(l - a) + log(l- a) + log det aT. (4.26)

Recall that

- PT = argmin{2trTVT -logdet T}, and trTVT = 1.

T- 1

T'= -vrt=rT=-l=V=T=-=l '

where T is a diagonal matrix made up of tk > 0, defined in (4.25). First we

prove that trT-1VT- 1 :::; p2:

Thus log det T > log det T' for any positive semidefinite matrix T' with

trT'VT' = 1. Let

trT-1VT-1 trT-1BT (ADAb)-l BT-1

(BT-1f(ADAb)-lBT- 1
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m

L (t'TBiT-1)(trBjT- 1)(ADA'b)i/
i,j=l

i~l (t, (B;!kk) (t, (E:!',) (Av A1);;'

p 1 rn

L t;fL (Bi)Il(Bj)qq(ADA'b)i/
l,q=l q 1',J=1

"'" _1 (bl)T(A AT)-lbq
L.t t t 1 D D q'l,q 1 q

Now

logdetT > -plogJtrT-lVT-l -logdetT
p

> -plogp- Llogk
i=l

From (4.26), the inequality (4.24) is immediate now. llIIII

(4.27)

Theorem 17 establishes a bound on the potential function at the new

center in terms of p as weIl as f) and 0:. Since the values of f) and 0: are

arbitrary within their limit, we can simplify the bound by choosing fixed

values for them. Let f) = 0.01 and 0: = 0.9. One can check that

C(p,(j,o:) ~plog(p+ 1),

and therefore the inequality (4.24) is reduced to

p

V(Dt) 2: V(Dn ) - plog(p+ 1) - Llogti .

i=l

(4.28)

We note that (4.24) is valid for moderate values of (j and 0:, i.e, for (j close

to zero, one should not choose 0: very close to 1 (e.g. 0: < 0.9 does the job).
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At iteration k, let P = max{pi, i = 1, ... , k} and V(Di) be the dual min­

potential function at Di; using (4.28), we have
Pk

V(Di+l) > V(Di) - Pk log (Pk + 1) - Llogti
i=l

Pk

> V(Di) - Pk log(p + 1) - L log t i
i=l

nk+l

> V(D~) - nk+l1og(P + 1) ~ L log fi

i=l
(4.29)

Now we state a series of technical lemmas to construct a bound on the SUffi­

mation term in (4.29).

Lemma 18 Let AAT E sm, with (AAT)ij = A @ A 7 , where Ai E sn. Then
n

AAT
= L a~(a~f,

l,q=1

where a~ is the m-vector defined in (2.1).

Proof. First observe that
n

Ai @ Aj = L(a~fa~,
q=1

where Ai = (aLa~, ,a~), a~ ERP, i = 1, ... ,m. Now consider 11. Gram

matrices Cq
, q - 1, ,11. defined by Cij = (a~fa~. Thus

n

:LA~Aq,
q=1

where Aq = (a~, a~, ... ,a~). A~Aq can alternatively be expressed by the

summation of a number of rank one matrices:
n

cq = :L a~(a~f,
1=1

where a~ is the row l of Aq, i.e., a~ = ((Ar)lq, (A2 )lq, ... , (Am)lq). 11IIII
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Lemma 19

T 1 T
ADAD è::: (trS)2 AA

Proof. Consider the quadratic form associatec1 with ADAb - (tr~))2AAT.

For y E Rm

f(y) = yT (ADAb - (tr~)2AAT) y.

Let AbY = VV. then ATy = S·5WS-5 and we have

f(y) ~'V ID vV - l (S5VVS·5) ID (S·5HIS 5)
(trS)2

IIvVll2 _ 1 I/S5WS 511 2
(trS)2

> 111111/2 _ 1 I/S·511 4 11W112
(trS)2

o.

Therefore the quadratic form is nonnegative for any y E Rm. 11IIII

Lemma 20 At the k th iteration of the ACCPM algorithm

A k (Ak )T >- 81 +~ ~ bl (b1l (4.30)D D - m 2 L..t q q ,
l,q=l

where b~ = ((B1 )lq, (B2 )lq, ... , (Bm)lq), and matrices Bi are block diagonal

matrices composed of cut matrices BI, for r = 0,1, ... , k - 1.

Proof. From algorithm 3 sinee nfJJ = [0,1 lm

AD (AD)T >- 81D D - ,

and after adding k + 1 semidefinite cuts (Br)TY :::; (Br)Tyr, r = 0, 1, ... , k we

have

A~+l(A~+ll A~(A~l+ 13b(Bbl
k

>- 81 +I: 13;(13;l,
r=D
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where (Bv(Bbf)ij = tr(ST)-l B[(ST)-l Bj and ST = (BT)T(yT - y).

On one hand frorn Lemma 19

BT (BT )T >- 1 BT(BT)T
D D - (trST )2 ,

where (BT (B7V)ij = trBiBj.
From (4.20), we have trST = L:~l(yT - y)itrB[::; m and therefore

On the other hancl by Lemma 18

PT

BT(BTV t L b~(b~V·
l,q=l

(4.32)

(4.33)

The lemma follows now from 4.31, 4.32, and 4.33. lIlI

The next lemma is essential to bound (4.29). This lemma is due to Ye [63]

with some changes to suit our case.

Lemma 21 If P ::; rH, then

(4.34)

for ti defined in (4·25).

Proof. Define
1 Pk

1{k+l = 1{k + -2 L b;(b;V,
m i,j=l

where b~ is the m-vector clefinecl in (2.1); and let 1{0 = 81.

clet 1{k+l = clet (1{k +~ '"' bi.W.V) (1 + ~) , (4.35)m2 .L...t J J m2
~,JE'Il

where Il = {i, j = 1, ... ,Pk \(i, j) = (1, 1)} and

r 2 = (biV (1{k + ~2 .~ b;(b;)T) -1 bi.
~,JEIl
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Now we establish a lower bound on r. To this end we study the eigenvalues

of

9 = l +~ L (1{k)-.5b~(b~f(1{k)-.5.
m i,jEIl

Let x E RTn with I/:cll = 1, then

.TTgx IIxl12+~ '" (xT(1{k)-.5bi.)2
m2 ~ J

i,jEIl

< Il:r112+ 1~2 .~ I/xI1211(1{k)-.5b~112
l,J ELl

1 +~ '" (bi)T(1{k)-lbi.
m2.~ J J

z,JEIl

From Assumption (4.20)

and since Pk :S P :S m, then
9

xTg:l: < -.
-8

That is g-1 t (8/9)1 and therefore

r2 (bif(1{k)-.5g-1(1{k)-.5bi

> (8/9)rf1'

By repeating this procedure for each i and j one has

Pk ( 8r
2

)det 1{k+l 2: II 1 + i~ det 1{k,
.. 1 9m
Z,J=

60



where r 2. = (bi)T(1{k)-1bi
~J J J'

By taking logarithm from both sicles of the above inequality we have

i~' log ( l + ::~ ) + log det Ji'

> L.

Pk

. log (1 + 8rl~) + log det 1{k.
i=l 9m

S· 2 < 1/8 L 81'2 < 1 dmce rii _ , tllen 9~2 _ ;:; an

(
81'2) 2

(
?) ? _11-

log 1 + 8ri-i > 8r~ _ 9m
2

9m2
- 917/,2 2(1 _81'7;)

9m2

and therefore

2r··>_n_
- 2m2

log det 1{k+l >

>

Pk.2L 1 ii
2

+ log det 1{k

i=1 2m
nk+l r 2

L ~ + logdet1{°.
i=1 2m

(4.36)

thus

On the other hand, using the arithmetic-geometric inequality

m tr1{k+1
log det 1{k+1 = log II Àj (1{k+1) :S m log ---

j=1 m

and from the definition of 1{k and Assumption (4.20)

log det 1{k+l :S m log (8 + ~~1 ) .

This inequality together with (4.36) give
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In view of Lemma 20, At(Ai)T ~ 1{k and thus

or tz s rh. The proof follows form (4.37) now. III

In the next theorem we derive a bound onn.k, the dimension of the accu­

mulated block diagonal cut matrix.

Theorem 22 The A CCPM algor·ithm stops with a solution in Çl* when

2 3

O*(p 1'11
nk rv 2-:2)'

fl E

where in 0* the lower-order terms are ignored.

Proof. Consider the kth iteration of the algorithm. Since the analytic center

is the minimizer of the dual potential function and since fi 1- Çl*, for j =

0,1, ... , k - 1, in view of Lemma (16) we have

k-l

-log det(CO - (AOf yC) - L log det((Bjf (yj _ yC))
j=O

< -(2m + nk) log E - k log fl.

Notice that if fl 2': 1, this parameter can simply be eliminated from the above

inequality. We therefore consider the worst case complexity where fl < 1.

Now from inequality (4.29)

1 1 nk+l

(2m + nk+l) log pE S 2m log - + nk+llog(p + 1) + - L log ti,
2 2 i=l

or

log flE - log(p + 1) < 1 (2m log! +nfl log ti)2(2m + nk+l) 4 i=l

1 m + ,,",'~k+l t?
< l 2 L..-~=l ~- og

2 2m + nk+l
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Note that the second inequality is due to the arithmetic-geometric mean.

Finally by Lemma 21

The algorithm stops with a solution in Sl* when this inequality is violated.

In other words, when nk "-' O*(p2m 3/ J-l2E;2). III

The next section completes our analysis by bounding the number of

clamped Newton steps neeclecl to solve problem (4.12).

4.5 Complexity of the recentering direction

Let jj be an approximate center of SlD and consider a p-climensional semidef­

inite cut aty. Let

F(T) = ~trTVT -log clet T.

Recall that the optimal restoration direction is obtainecl by minimizing this

function over the positive semidefinite cone. In this section we analyze the

behavior of the Newton method as applied to F.

We first prove that the (dual) feasible region is contained in an enlarged

Dikin ellipsoid. This result is used to construct an upper bound on the

functional gap of F at its optimal and initial points.

Lemma 23 Let (X, jj, 5) be a ()-approximate analytic center of SlD. Then

- 5 T - 5 1+0
IIS-' A (y - y)S-' Il S; 1- O(n + 1),

for any y E SlD' In other words, the current set of localization is contained

in a Dikin ellipsoid centered at y, and enlarged by a factor of (l+~~~+l) .
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Proof. Let y E SlD be dual feasible and S = C - ATy. From the properties

of matrix norm one can prove that (see the proof of (4.14))

Since X @ (S - S') = 0,

IIX(S - 5) + 111 2 = IIX(S - 5)11 2 + n,

and therefore

IIX(S - 5)11::::; IIXSII + IIXS - III·
But,

(4.39)

tT(X·5SX·5?

LÀ~(X·5SX·5)

< (L Àlg·5SX·5)r
(X @ S)2,

and sinee AX = 0, then IIXSil = X GD S.
Now from 11-"':5 - III ::::; () and

115-5X 5.5
- 111 2

LÀ;(S·5XS·5 - 1),

one has

and thus

X @ 5 ::::; (1 + B)77o and IlS-IX-III < _1 .
00 - 1-8

The above inequalities along with (4.38) and (4.39) prove the lemma. I11III

In the next theorem we derive a bound on the number of iterations of the

Newton method as applied to F(T).
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Theorem 24 Let TO = ~ T~l l' where T is the diaqonal matrix definedtrT- VT- . ~

in Theorem 17. Then starting Jrom TO the Newton method finds the optimal

updating direction in at most

(
PlOg : + log 1)o E f.L

13 - 10g(1 + 13)

iter·ations, wheTe
* (1 - e)é

é = --'----'---
(l+e)(l+n)'

13 is the N euJton decrement, and 11 > 0 is the condition numbeT fOT the field

of e1tfs defined by (4.22).

Proof. LetT and Abe the optimal solutions ofproblems (4.12) and (4.1)

respectively. We first derive an upper bound on the functional gap of F at

TO and r. Observe that

EtTTOVTO - log det TO
2

~ +P log vtrT-lVT-l - log det T-1
,

and from (4.27) and definition of T

Since ADAb è: 81, then L: log t i ~ (p/2) log(1/8) ~ O. Thus

F(TO) ~ ~ + plogp.

On the other hand, recall that prA = 1; thus

- - P
F(T) -logdetA = 2" + plogp.

(4.40)

(4.41 )

Let us construct an upper bound on - log det A. From Lemma 23, the up­

dated set of localization nb is contained in a Dikin ellipsoid enlarged by a
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factor of (l+~~~+l). By shrinking the Dikin ellipsoid with a factor of (l+~~~+l)

at f) and noting that ot contains a baIl with radius E, one can prove that

contains a baIl JVE* with radius E* = (ll~)(~:l)' This set is the feasible region

of problem (4.1). Let y* be the center of NE*. Then y* + E*U E N f * for any

U such that IlulI = 1. In view of Assumption 4, following the same line of

argument as in Lemma 16, we have

- 1 1
- log det A ::::; p log -; + log -.

E f-L

Now from (4.40), (4.41), and the above inequality, one has

F(TO) - F(T) ::::; p log~ + log~.
E* f-L

(4.42)

Now observe that F(T) is cOl11posed of a self-concordant barrier and a

convex quadratic function and due to the stability of the self-concordant

functions under summation [44, proposition 2.1.1], F(T) is a self-concordant

function on S~. Using Theorel11 2.2.3 in [44] one can prove that the Newton

algorithm with step size l~/3 reduces the value of F(T) by a constant al110unt

((3 - 10g(1 + (3)) at each iteration, where (3 2: 1 is the Newton decrement;

and the convergence rate becomes quadratic when the iteration is close to

the optimal solution.

Thus, we have

F(T+) :::; F(T) - ((3 -log(l + (3)),

where T+ = T + l~/3 dT, and (3 2: 1.

The theorel11 now follows from (4.42) and (4.43). 11III
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Chapter 5

Applications and

implementations

In this chapter we discuss the applications and implementation issues of the

algorithm developed in Section 4.3. We apply the ACCPM as a nondifferen­

tiable technique to solve a special case of semidefinite programming. ACCPM

is an alternative technique for solving nonsmooth optimization problems.

The advantage of this method, as we saw in the previous chapters, is that

the computation of an approximate analytic center of a compact convex set is

relatively simple and the recentering procedure can be done very efficiently.

This is the first integration of a nonpolyhedral cone with the ACCPM.

Our work was motivated by the Spectral Bundle Method for semidefi­

nite programming which was introcluced by Helmberg and Rendl [23]. This

method is an extension of the algorithm proposed by Kiwiel [26] into the

cone of semidefinite matrices, where the new iterate is updated based on the

bundle of subgraclient information collected from the previous iterates. In

this chapter we use their idea in reformulating dual problem of semiclefinite

program into an eigenvalue optimization. Then we transform the optimiza­

tion problem into a convex feasibility problem and apply the ACCPM to find
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the solution.

The chapter is organized as follows: In Section 5.1 we reformulate the

dual problem of a semidefinite program into an eigenvalue optimization and

study the maximum eigenvalue function. \\Te then reduce the eigenvalue

optimization problem to a convex feasibility problem with semidefinite cuts

in Section 5.2. Section 5.3 introduces the weighted analytic center when the

set of localization is composed of linear and semidefinite cuts. Sections 5.4

and 5.5 extend the primaI and dual algorithms presented in Sections 3.3

and 3.4 for the weighted analytic center and derive the primaI and dual

directions corresponding to the linear and the semidefinite cuts. We describe

recovering the primaI feasibility after adding linear and semidefinite cuts in

Section 5.4.1 and discuss the difficulties when dealing with the deep cuts

in dual space in Section 5.5.1. We also present a path-following algorithm

for recovering dual feasibility in such cases. In Section 5.6 we explain how

a feasible solution, near the optimal solution, for the primaI semidefinite

program can be created. Finally, Section 5.7 is devoted to the numerical

results of our algorithm when applied to the semidefinite relaxation of the

max-eut problem.

5.1 Eigenvalue Optimization

Recall the primaI problem of semidefinite programming defined in Section 2.1.

max CoX

s.t.
(5.1)

AX=b

XtO,
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and the dual problem
mm bTy

s.t.

ATy-S=C

S è:: O.

(5.2)

In the rest of this chapter we assume that tT(X) for any primaI feasible ma­

trix X is a positive constant. This assumption is satisfied by many semidef­

inite relaxations arising from combinatorial optirnization. In Section 2.2 we

studied the max-eut problem and derived a semidefinite relaxations for this

problem. The above assumption on the trace of primaI feasible matrix X is

c1early satisfied by this relaxation in (2.12).

Reformulation of the dual problem into an eigenvalue optimization prob­

lem when tT(X) for any primaI feasible matrix X is a positive constant is weIl

known (see Helmberg and Rendl [23]). We demonstrate the most important

steps of this procedure. For a comprehensive analysis of this reformulation

see Helmberg [21].

First observe that the slack matrix S is positive semidefinite if the largest

eigenvalue of -S is nonpositive. Moreover, since the optimal primaI matrix

X is nonzero, then due to Theorem 1 the optimal matrix S must be singular.

That is Àmax(-S) = O. Thus problem (5.2) is equivalent to

min bTy

s.t. Àmax(C - ATy) = O.

Using Lagrange multiplier T we lift the constraint into the objective function

and obtain

(5.3)

In general, the optimal value of Lagrange multiplier is not known in advance.

However, with our assumption it is not difficult to verify that the Lagrange
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multiplier T at the optimal solution is equal to tT(X). (see [21, §5.1] for

proof).

Problem (5.3) is an eigenvalue optimization problem. More precisely, it

is the minimization of the maximum eigenvalue of an affine combination of

symmetric matrices. Although the affine combination is differentiable with

respect to y, the maximum eigenvalue of this matrix is not differentiable.

Therefore we need more sophisticated methods for solving this problem.

Let us first study the eigenvalue function and its properties in detai1.

Consider the following function:

g(y) = Àmax(C - ATy).

This function is well known to be continuous, convex, nondifferentiable and

nonpolyhedral cone. Moreover, it cannot be written as the point-wise maxi­

mum of finite number of convex smooth functions. Thus, the standard non­

differentiable techniques cannot be applied to minimize this function. The

foIlowing example from Overton [47] gives a clear pictorial view of the types

of function we are dealing with.

C _ ATy = ( 1 + YI Y2

Y2 1 - YI

Example 25 Let Al = (-1 0), A2 = (0 -1),
o 1 -1 0

),

and C = l, then

Figure 5.1 shows that Àmax possess aIl properties mentioned above.

Note that the maximum eigenvalue function in the above example is a

convex cone that is nondifferentiable at Y = 0 which happens to be the

mmlmum. In general, g(y) is differentiable at Y if the maximum eigenvalue
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y,

Figure 5,1: Graph of the maximum eigenvalue of the affine combination of

symmetric matrices Al, A2 and C

has multiplicity one, However, in practice we are dealing with functions that

do not have this smooth property. In such cases we work with the set of

subgradients of g at each point.

The subdifferential of function g at point y can be obtained using chain

rule and the Clark generalized gradient:

Theorem 26 (üverton [47]) Let y be in domain of g and the maximum

eigenvalue of g(y) has multiplicity p, with a corresponding orthonormal basis

of eigenvectors Q= [qi, ... ,qp]. The generalized gradient of g at y is

âg(y) = {A (QUQT) : U è:: 0, tr(U) = 1} . (5.4)

The eigenvector matrix Q plays a key role in our algorithm. In the next

section we discuss transformation of the optimization problem into the convex

feasibility problem.

5.2 From Optimization to Feasibility

The goal is to solve problem (5.3). Let
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First, note that the maximum eigenvalue of a symmetric matrix can be com­

puted by solving a semidefinite program. If il is a symmetric matrix, then

the maximum eigenvalue of A can be obtained via

Àmax(A) = max {A @ U : tT(U) = 1, U è: O},

and consequently, Àmax is a convex function of A (see [47] for the proof).

Thus

f(y) Tmax{(C _ATy) @U: tr(U) = I,U è: o} +bTy

T max { (C - ATy) @ U + bTy : tr(U) = 1. U è: O}

Now consider a restriction of the space of positive semidefinite matrices to

a subcone generated by the faces of the cone at y. That is, let y be a point

in domain of f J and the maximum eigenvalue of C - ATYhas multiplicity p

and Q E Rnxp be a matrix whose columns form a basis for the eigenspace of

the maximum eigenvalue:

(5.5)

and define

.f(y) T max {(C - ATy) @ QUQT + bTy : tr(U) = 1. U è: O}
TÀmax (QT(C - ATy)Q) + bTy

.f(y) is a convex function which establishes a lower bound on f (y). That is

.f(y) :s; f(y), for a11 y E Rm
.

Moreover

l(y) TÀmax (QT(C - ATy)Q) + bTy

T Àmax (C - ATy) + bTy

f(y)·
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Let e be an upper bonnd on the optimal objective value and

n= {(y,z) E Rm+1
: f(y) ~ z::; e},

be bounded. ncontains the optimal solution since

! ~ 1* = min f(y) ::; e.

Note that n is the area bounded by a set of subgradients of f at f} and the

hyperplane z = B.

Observe that

( -T ( T ) -) TT Àmax Q C - A y Q + b y::; z,

implies that

T Àmax ( QT (C - ATY) Q + ~(bTY)I) ::; z,

and therefore for aIl i = l, ... , m

or

and thus
m m

TQTCQ - TL YiQTAiQ + LYibJ :::; zI.
i=l i=l

By rearranging

m

LYi (_TQT AQ + bJ) - zI:::; -TQTCQ.
i=l

Thus
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where Yz = (y,z) E Rm+1 and

m

ATYz = L Yi1L + zAm+l,
i=l

and
- -T - .

Ai = -TQ AiQ + bJ, Z = 1, 0.0' Tn,

and

Am+l = -l,

and

Note that D is of the form of fl D defined in Chapter 40 That is, D is

a compact convex set which contains the optimal solution set. Therefore

Algorithm 3 can be used to locate a point in the solution set.

So far we demonstrated that the optimization problem (503) can be trans­

formed to a convex feasibility problem. In order to make sure that the set of

localization is bounded, in practice we initiate it by a box constrainto That

is

fl~ {Yz E Rm+l : l :S Yi :S u and ~ :S z :S z}

{Yz E Rm+1 : (AO)TYz :S CO},

where

and
u

-l

-~

The criterion for choosing lower bounds l and ~, and upper bounds u and z
will be discussed later 0
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If f is differentiable at yk then the oracle returns the gradient of f at yk,

which is a linear eut. Otherwise, it returns a semidefinite eut. Therefore the

set of localization is composed of both linear and semidefinite cuts. In arder

to be able to treat these cuts separately, vve make the distinction here. At

the k-th iteration of the ACCPM algorithm the set of localization is

where A7p is a matrix whose columns are linear cuts and (Ak)Tyz j C k

represents the semidefinite cuts. vVe compute yk, an approximate analytic

center D1). If yk is in the solution set, stop. Otherwise, a separation oracle

is called to evaluate the function f at yk and return an orthonormal matrix

Qk E RnxPk, where Pk is the multiplicity of the maximum eigenvalue of

C - ATy k . The matrix Qk is used to create a new eut and to update the

set of localization. D~+l should contain the solution set and cuts off the

current point. If Pk > l, then the new eut is a semidefinite eut and the set

of localization is updated via

where
m

(Bkfyz = LYiBf + zB~+l'
i=l

and

(5.6)
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The semidefinite cut matrix A~ and the matrix Ok, in this case are updated

as in (4.23)

That is, the dimension of the semidefillite eut matrices A7 is enlarged, by Pk

whell adding a Pk-dimellsiollal semidefinite eut as a block diagonal.

If Pk = 1 (j is differentiable at yk), then Et, for i = 1, ... , m+ 1 are scalars

and therefore the new eut is a single linear eut. In this case we store Et, for

i = 1, ... , m + 1 in a column vector b1p and update the linear eut matrix Afp

via

Ak+1 [4 k
1: ]lp = "Il' Jl p .

Likewise, D k is a scalar and is used to update c7p .

Thus the updated set of localization in this case is

nk+1 = Ok n {Y E Rm +1 . (Ak+1)Ty < ck+l z <_ ek+l} ,D D· z . lp . z - lp ,

where ek+l is as defined in (5.6).

In practice, as k increases the dimension of the eut matrix also increases.

This, pushes the analytic center of n~ to get doser and doser to the upper

bound e. To avoid this tragedy, we put a weight on the upper bound cut

z :s e, i.e., we repeat this constraint p times, (p ?: 1), and compute the

analytic center. By experience we learned that the best value for this weight

is equal to the current dimension of the eut matrix. In the next section we

define the weighted analytic center and derive its optimality conditions.
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5.3 Weighted Analytic Center

As mentioned before, the set of loealization is composed of linear and semidef­

inite cuts. Let nsd and ni be the number of semidefinite and linear cuts re­

spectively and let N sd = 'L,j::A Pj be the dimension of the current semidefinite

cut matrix. Dropping the index we indicate A k by A, A7 by Ai, C k by c,
A7p by A, c7p by c and nt by nD . Thus the set of localization in its general

form in Rm+1 is

The linear eut ATyz ::s: c in this formulation contains the box constraint

(A°)Tyz ::s: co.

Consider nD when we repeat z ~ e, p times, where p 2: 1:

nD = {YZ E Rm
+
1: ATyz j C, ATyz ::s: c, : ::s: e, '.~' l Z ::s: ~}.

p tlmes

The dual potential function for this set is

nz
cPD(Yz) = logdetS-1 + Llogst + plogo--l,

j=l

where S = C - ATyz, S = C - ATyz and 0- = e- z. The analytic center of

nD is obtained by minimizing the dual potential function over nD :

mm log det S-l + 'L,j;llog s.t + p log 0-- 1

s.t.

ATyz+S= C

ATyz + s = c

z+O'=B

S è::: 0, s 2: 0, 0' 2: °
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+ A -1 -1 0S + po- em +1 = .

The first order optimality condition for ProbIem (5.7) is

Al @ S-l

Am @ S-l

Am +1 @ S-l

Let X = S-l, :1: = 8-1 and ~ = po--1, then the optimality conditions read

AX + Ax + ~em+1 = 0

ATyz + S = C

ATyz + s = c:

z+o-=e

XS=I

xs = e

o-~ = p.

(5.8)

Note that .TS is the coordinate-wise product of vectors x and 5, and 8-1 is

the component-wise inverse of vector s.

The optimality conditions for the weighted anaIytic center can aIso be

derived by the primaI potentiaI function. Let

Dp = {X E S!:Sd, x E R~, ~ E R+ : AX + Ax + ~em+1 = o} ,
and let

ni

rPp(X, x, Ç) = C @ X + cTX + e~ -logdet X - 2:)ogXj - plog~.
j=l

Then the optimal solution of the following problem

mm C @ X + CTx + e~ - log det X - 'L,";~l log x j - p log ~

S.t.

AX + Ax + ~em+l = 0

X ~ 0, x 2: 0, ~ 2: 0,

satisfies system (5.8).
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5.4 PrimaI Aigorithm for Weighted Analytic

Center

Like in Section :3.3, consider the quadratic approximation of the the primaI

potential function

rjJp(X + âX, J: + ri];, E, + dE,) =

C @ (X + dX) + cT(]; + dx) + 8(E, + dE,) -logdet(X + dX)

- I: log(:rj + d:r:j) - plog(E, + dE,) ,

epp(X, T, Ç) + (C - X- l ) @ dX + (c - :r-1)Td]; + (8 - pE,-l )dç

+~tTX-l(dX)X-l(dX) + ~dXTXl;2dx· + ~E,-2de,
2 2 2

where X lp is a diagonal matrix made up of x. Feasible directions dX, d]; and

dE, should satisfy

A(X + dX) + A(x + dx) + (E, + dç)em +1 = 0,

or

AdX + Adx + dçem+l = o.

Thus, we solve

mm rjJp(X + dX, x + dx, ç+ dE,)

s.t. (5.9)

AdX + Adx + dçem +1 = O.

The KKT conditions are

C - X-1 + X-I(dX)X-1 - ATYz

c - x-1 + X l;2d]; - ATyz = 0

f) - pE,-l + pE,-2dç - z
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by mu1tip1ying X from the right side and from the 1eft side to (5.10) and

then app1ying operator A one has

A(XCX) - AX + AdX - (ApA~)yz = o.

By multip1ying AXI~ to (5.11) from the 1eft side, we have

and by mu1tip1ying p-lÇ2cm _H to (5.12), we have

(5.13)

(5.14)

Let

C p A AT + 4(V )2AT + -lç2 T
T = pp" """lp P '" em+1em +1 ,

and

gP = A(XCX) + AXI~C + p-lgeem+l'

Then summing up (5.13), (5.14) and (5.15), implies

and thus

Substituting Yz into (5.13), (5.14) and (5.15) we derive the primai directions

for computing the weighted analytic center

dX

dx

d~

(XATX)yz +X - XCX

X-X(C-ATyz)X

X 2
X - lps
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We refer to cP as the primaI Gram matrix.

As in Section 3.3, we project the dX, dx and d~ such that

AdX + Ad:r + cl~em+1 = O.

Let (}P and gP be the same as cP and gP where p = 1. That is

and

and let q E Rm+l be defined via

- P-1
q = (C) (AdX + Adx + d~em+d.

Let the projection of the primaI directions be dX, lx, and d~. Then with

the same line of proof as in derivation of (3.12) one can show that

dX = dX - (XATX)q,

- 2 T
dx = dx - XlpA q,

and

Observe that

AdX + Alx + d~em+l

AdX + Adx + d~em+1 - (ApA~)q - (AX~AT)q - (eem+l)q

AdX + Adx + d~em+1 - (ApA~ + AXl;AT + eem+le?r:+l) q

AdX + Adx + dçem+1 - (}Pq

O.
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In our aIgorithm we appIy a step size 0 to move as far as possible along

with the primaI direction while respecting primaI feasibility. Consider the

quadratic approximation of the primaI potentiaI function with the step size:

cPp(X + odX, x + odx, f, + odf,)

C @ (X + odX) + cl' (:r + a(h:) + (J(f, + ode:,) - log det(X + odX)

- I:Iog(xj + Œdxj) - plog(f, + acff,) ,

C @ X + ŒC @ dX + cT:); + ŒcTd:r + (Jf, + oedf, -Iogdet X

- I:log(l + ŒÀj ) - L::logxj - L::log(l + Œlj)

-plogf, - p(l + Œf,-ldf,) ,

where À/s are the eigenvalues of symmetric matrix X-· 5(dX)X-· 5 and Ij =

xj1dxjo Taking the derivative of cPP with respect to 0: and setting it to zero

one has

pf,-ldf, = O.
1 + o:f,-ldf,

We solve the above equation by a line search, where we initiate the step size

0: to be in the feasible interval [O,omax]. The upper bound of the step size

interval will be determined such that the updated matrix X (0:) is positive

definite and the updated vector x(o:) and f,(o:) are positive.

Lemma 27 Let X(o:) = X + odX, 01;(0:) = X + odx and f,(o:) = f, + o:df"

where dX, dx and df, are primal directions computed by the primal algorithm,

and let '\ and Ij be as defined above. Then X(o:) >- 0, x(o:) > 0 and f,(o:) > 0

for any 0: E [O,O:max], where

-1
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Proof. Note that

and X(a) >-- 0 only if aÀ i > -1, for aIl i = 1, ... , rl sc{, or

a(m.in À i ) > -l.
1.

Similarly,

x(a) = x + ad:[ = x:(e + ax-1dx) ,

and :1:(00) > 0 only if arj > -1, for aIl) = 1, ... , rllp, or

a(min rj) > -1,
J

and finally, ç(a) = ç + adç = ç(l + ç-1dç) > 0, if

Thus a feasible step size shouid satisfy

The proof is immediate now. 11IIII

Thus far, we showed that we can transform the optimization problem 5.3

into a feasibility problem. We discussed the issues related to the computa­

tionai aigorithm for the weighted analytic center of a convex set composed

of linear and semidefinite cuts in primaI setting. We derived the primaI di­

rections from a strict interior point and showed that how we project the

direction to recover the feasibility. The primaI aigorithm for computing the

weighted analytic center, as we mentioned before, starts with a strict feasible

point as its initial point. We now address this issue.
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5.4.1 Adding Cuts in PrimaI Algorithm

In this section we deal with the issues in recovering the primaI feasibility after

adding a linear or a semidefinite eut for computing the weighted analytic

center. Theoretically, a linear eut ean be eonsidered as a semidefinite eut,

as we did in the previous chapters. However, in practice the distinction

between the two cuts is important. Treating a linear eut as a semidefinite

eut would drastieally increase the computation time of both primaI and dual

algorithms. It is rnostly beeause of the Cholesky factorization of the Gram

matrices ApA~ and ADA'b are computationally very expensive. vVe first

discuss adding a semidefinite eut:

Adding a p- dimensional Semidefinite eut

Let

Dp - {X E S~SànlP,~ E R+: AX +~em+l = O},
be the current localization set, where (AX)i = Ai@X, for i = 1, ... , m+l, and

Ai E snsànzp are the block diagonal matrices composed of the semidefinite

and the linear cuts. We make this combination for the sake of simplicity

in our analysis below. Separate directions for linear and semidefinite cuts

will be extracted from the general form. The optimality conditions for the

weighted analytic center of Dp are

Now let

AX +~em+l = 0

z+O"=B
XS=I

ATyz +S = c
O"~ = p.

(5.19)

for 'i = 1, ... , m
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and

Then

Dp = {X E S~sd+nlP+l : AX = o} ,

and optimality conditions 5.19 can be rewritten via

where

and

AX 0

ATyz + S C

SX I,

,5= (5 Œ) and c= (C g),

1=ep)
Assume that the oracle returns a p-dimensional semidefinite cut ST at the

current iteration. We update Dp by adding this cut:

As in Section 4.1 we compute the optimal updating direction dX by max­

imizing log det of the new slack matrix over the primaI feasible region and

the primaI Dikin ellipsoid:

max logdet T

s.t.

AdX +ST= 0

IIX-1dXII ::; 1

T~O.
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The optimality conditions of problem (5.20) are

_T- 1 +BTv

.ATv + (}X-l(dX)X-l

(}(1 - IIX-1dX/I)
A(dX) + BT

o

°
°
0,

(5.21)

(5.22)

(5.23)

(5.24)

where () 2': 0 is the Lagrange multiplier associated with the norm constraint.

By multiplying equation (5.22) from the left and from the right by X and

then applying the operator A we have,

using (5.24)

and again from (5.22)

dX

(5.25)

dX is symmetric since AT(Ap.A})-lBT is symmetric. Finally from (5.21) T

is the unique solution of the following optimization problem:

- PT = arg min{-trTVT - log det T},
Tè: 0 2

(5.26)

where V = BT(ApA})-lB.

Now the primaI direction dX from 5.25 can be decomposed as follows:

and
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and

where ApA~ = ApA~ + AX~AT + t;2. In view of Lemma 11, the upclated

point

/T+ = ( X + aiX )..X _ ,
aT

x+ = x + cyril: and ~+ = ~ + adf" for 0 < 1 is a strict feasible point of D~ or

the warm start.

We mentioned in Section 4.1 that Problem (5.26) can be solved using a

Newton method and we clerived a complexity bound on the number of Newton

steps in Section 4.5. In practice, however, an exact Newton direction seems

difficult to achieve. Let

F(T) = HtrTV(T) - log clet T.

Let T >- 0 be given. For small symmetric dT

F(T + dT) = Htr(T + dT)V(T + dT) -logdet(T + dT).

Using the quaclratic approximation of log det(T + dT)-l, one has

F(T + dT) - F(T) =

ptr(dT)V(T) + Htr(dT)V(dT) - trT-ldT + 1trT-l(dT)T-l(dT).

Note that

trTV(dT) trTBT(ApA~)-lBdT

(BTf (ApA~)-lBdT

(BdTf(ApA~)-lBT

tr(dT)BT(.ApA~)-lBT

tr(dT)V(T).
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The Newton step is obtained by setting the gradient of F(T + dT) with

respect to dT, to zero. That is

pV(T) + pV(dT) - T- 1 + T-1(dT)T- 1 = o.

By multiplying the above equation from the left side and from the right side

by T, we have

pTV(T)T + pTV(dT)T - T + dT = O. (5.27)

An explicit form of dT cannot be obtained from (5.27) and therefore com­

puting an exact Newton direction seems to be impossible. To over pass

this problem, in our algorithm, we approximate the quadratic tenu tTTVT

in F(T) by a linear tenu. That is we ignore tr(dT)V(dT) in F(T + dT).

Consequently (5.27) becomes

pTV(T)T - T + dT = 0,

and hence

dT = T - pTV(T)T.

This approximation does not significantly change the direction. Our numer­

icai results show that the rate of convergence is still quadratic in most cases

and super Iinear in sorne. As an initial point we use TO defined in Theorem 24

and we apply a line search to compute the step size.

Adding a Single Linear eut

Let Op, the current set of Iocalization, be as defined in the previous section

and assume that the oracle returns a single linear eut bTYz :S c. We update

Op by adding this cut
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To find a warm start for computing an approximate analytic center for the

updated set, we maximize log:r subject to the primaI feasibility within the

Dikin ellipsoid:

max logx

S.t.

AdX + bx = 0

IIX-1dXII ::; 1

x 2: O.

(5.28)

Using the first order optimality conditions, i and dX are solutions to Prob­

lem (5.28) if and only if

_x-1 + bu

;Fu + JX-1(dX)X-1

J (1-IIX-1dXII)
A(dX) + bi

From (5.30), (5.31) and (5.32)

and

o
o
o
o.

(5.29)

(5.30)

(5.31)

(5.32)

and from (5.29)

or

Similar to the previous case we can decompose dX to linear and semidefinite

directions:
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and
dx - _X2AT(A- A-T)-lbx- lp Pp,

and

d-Ç- Ç2(A- A-T)-lbx~'e
'" - -'" pp" m+l'

5.5 Dual Algorithm for Weighted Analytic

Center

Let

ft D = {Yz E Rm+1
: ATyz ::5 C, ATYz :S c, z :s g} ,

where z :S g is repeated p times, be the current set of localization in dual

space and

nz
cbD(S, S, a) = log det S-l + L: log st + p log a-l,

j=l

where S = C - ATYz, s = c - ATyz and a = g - z, be the dual potential

function for ft D as defined in Section 5.3.

Let yz be a strictly feasible point of DD and consider the quadratic ap­

proximation of rPD around dS = (dS)T, ds and da:

rPD(S + dS, s + ds, a + da) =

logdet(S + dS)-l + L:log(sj + dSj)-l + plog(a + da)-l

1
rPD(S, s, a) - trS-ldS + 2trS-1(dS)S-1(dS)

_(s-l)Tds + ~(ds)TSI;2ds - pa-1(da) + Ea-2(da)2,
2 2

where Slp is a diagonal matrix made up of s.

90



On the other hand, dS, ds and da are feasihle directions if

and

dz + da = O.

Thus

cPD(S + dS,:3 + ds, a + da) =

cPD(S,s,a) + (AS-1fdyz + (Açlfdyz + pa-1(dz)

+Hâyzf(ADAL)dyz + ~(dYzf(ASI;2AT)dyz + ~a-2(âz)2,

(5.33)

where ADAL E sm+l is the symmetric matrix defined in Section 3.4, i.e.,

(ADA'b)ij = trAiS- l AjS- l
.

Minimizing (5.33) over dyz E Rm+l gives

where

and

The dual direction dyz with a step size a, obtained by a line search

method, is used to updated the dual iteration Yi = yz + adyz· We refer to

GD as the dual Gram matrix.
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5.5.1 Adding Cuts in Dual AIgo:rithm

The dual algorithm for computing an approximate analytic center as we men­

tioned before is very efficient. The dual potential function is reduced at each

iteration by at least a constant amount. The rate of convergence, hmvever,

is quadratic when the iteration is close ta the analytic center, i.e., within

the Dikin ellipsoid. After aclding new cuts, we need ta recover feasibility. In

practice, the Ilew cuts could be deep, shallow or central. In the dual setting,

recovering feasibility in case of the deep cuts is not trivial. In this section, vve

provide a procedure based on a path-following a1gorithm ta recover feasibi1­

ity and obtain a warm start for recentering procedure in case of semidefinite

shallow and deep cuts. For the sake of simplicity, we consider on1y semidefi­

nite cuts. The extension of our a1gorithm to the case in which we have mixecl

linear and semidefinite cuts is trivial. Let us first define semidefinite deep

and shallow cuts:

Definition 28 Let OD be the current set of localization and Yz be an ap­

proximate center of OD' Let the oracle returns a p-dimensional semidefinite

eut

then

1. If D >- BTyz, then the semidefinite eut is called "completely shallow"

2. If D -< BT Yz, then the semidefinite cuts is called "completely deep"

3. If D = BT Yz, then the semidefinite cut is central.

In any other situation, the cut is called "partially deep".

Now let
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If ETYz ::5. D is a p dimensional shallow eut, the eurrent center Yz is clearly

a strietly feasible point of Dt and can be used as an initial point for the

Newton algorithm to compute an approximate center of Dt. In any other

situation, we need to compute a feasible interior point of Dt. In Section 4.1,

we presented a procedure to obtain an interior point of Db as a "warm

start" for the Newton algorithm if the semidefinite eut is central. vVe use

this procedure with a path-following algorithm to recover feasibility when

the semidefinite eut is deep (partially or eompletely). The idea is as follows:

Let ETyz ::5. D be a p-dimensional semidefinite eut which is eompletely

or partially deep. \iVe first place the eut at the center and update the set

of localization by adding the central eut BTyz ::5. BTyz. We then use the

proeedure deseribed in Section 4.1 to obtain a "warm start" and use this point

to compute y:, an approximate center of the updated set. If D >- ETy:, then

update DD by adding the original eut and use the current center as an initial

point for the Newton algorithm. Otherwise, move the eut to the new center

and repeat the procedure. The path-following algorithm is used after eaeh

eall to the oracle where the return eut is deep.

For the optimization problem (5.3), the oracle returns a subgradient eut

and updates the upper bound eut at the same time. The localization set

should therefore be updated aecordingly. In this case we add two types

of eut at the same time; the subgradient cut(semidefinite) and the upper

bound cut(linear). We prove that these two euts cannot be both deep. More

precisely, when one eut is deep the other one is shallow and vice versa. Let

- +1 -T -n = {yz E Rm
: A Yz ::5. C, z ::; e},

be the set of 10calization arising from Problem (5.3), and (y, z) be an ap­

proximate center of O. Let BTYz ::5. D be the new subgradient eut returned

by the oracle, where

(5.34)
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and

Bm +1 = -1,

and

where Q is the orthonormal matrix definecl in (5.5). That is

(5.35)

(5.36)

(5.37)

In the next lemma we show that the subgradient eut is eompletely shallow

when the upper bouncl eut is deep and viee versa.

Lemma 29 Let n and BT be defined as above and let (;g, z) be an approxi­

mate center of n. Let e+ be the newupper bound updated by f (;g). Then, the

subgradient cut BT yz ~ D is

1. n completely shallow n if the upper bound eut z ::; e+ is deep, or z > e+,

2. "completely deep", if the upper bound cut z ::; e+ is shallow, or z < e+,

3. "central n, if the upper bound cut z ::; e+ is central, or if z = e+

Proof. Let the upper bound is updated by e+ = f(y). From (5.34)

through (5.36)

-rQTCQ + r(QTATQ)y - (bT y)1 + z1

-rQT(C - ATy)Q - (bT y)1 + z1.

In view of (5.37)

-rÀmax(C - A T :9)QTQ - (bT y)1 + z1

- f(y)1 + z1.

Claims 1, 2, and 3 are immediate now. I11III
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The same lemma is valid when the subgradient cut is linear. For the

anaiysis of linear cuts see Goffin and Vial [17].

The disadvantage of the dual algorithm is that the recentering procedure

employs a path-following algorithm when the subgradient cut is deep. This

drastically increases the number of Newton steps and therefore the compu­

tational time. Recovering feasibility in the case of deep cuts without using a

path-following algorithm at this point remains EUl open problem.

5.6 A Lower Bound

Consider the semidefinite relaxations arising trom the Max-Cut problem de­

rived in Section 2.2:
max C.X

s.t.

diag(X) = e

X è::: 0,

(5.38)

where C = ~L is the coefficient matrix and X E S~ is the matrix variable.

Problem (5.38) is a semidefinite program in the primaI form of (5.1), where

b - e and Ai = eief, for i = 1, ... , m. Observe that trX = n for any primai

feasible matrix X, and therefore it satisfies our assumption of this chapter.

The dual Problem is
mm eTy

s.t.

Diag(y) - S = C

S è::: 0,

which is equal to the eigenvalue optimization

min nÀmax(C - Diag(y)) + eTy.
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vVe apply our primaI and dual algorithms, developed in Sections 3.3

and 3.4 with the implementation issues derived in Sections 5.4 and 5.5 to

find y*, the minimizer of (5.40) for randomly generated graphs with different

sizes and edge clensities. y* serves as the optimal solution of Problem (.5.39).

One advantage of the ACCPM is that the algorithm does not need to update

the primaI matrix at eaeh iteration, yet a primaI matrix very close to the

optimal can be generated from y* at the end. 'iVe describe this procedure

now.

Let y: be the optimal solution of Problem (5.40) computed by primaI or

dual ACCPM aigorithm. Then y* is an approximate analytic center of

where ATyz = I:~~1 YiAi + zAm +1 and A = [AO, al, ... ,an1p
], where AiS are

the semidefinite cut matrices, ais are the linear cuts, and AO = [1m+1 , -1m+tl

is the box eonstraint. Note that

j - (j)1' l' j 1 f . - 1 . - 1ai - -i q eiei q + , or z - , ... , m, , J - , ... , nlp ,

and a~î+1 = -1, and

Ai = Diag (A} , ... , A7sd
) , for i = 1, ... , m + 1,

where

Aj - (Qj)1' 1'Qj 1 f . - 1 . - 1i - -1 eiei + Pj' or z - , ... , 1n, J - , ... , nsd,

and

(5.41)

(5.42)

(5.43)

(5.44)

Since y; is an approximate weighted analytie center of fl D , it satisfies the

first order conditions (5.8). Thus there exist X >- 0, x > 0, and ~ > 0 snch

that

AX + Ax + ~em+1 = 0,
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where X = Diag (Xl, ... , X nsd ), with X j E S~\ and

'th ..k Rm+J ,. - l ')W1 J: &01,' E + ,1\ - ,~.

First observe that for i = 1, ... , m,

From (5.42) and (5.43)

nsd

Ai @ X = L Ai @ x j

j=l
nsd

L (-T(QjfeieTQj + I pj ) 0 xj
J=J
nsd nsd

L (-T(eief) @Qjxj(Qjf) + LtTXj

j=l j=l

-(eief) 0 Xl + al,

where
nad

Xl = TL QjXj(Qj)T,
j=l

and al = tTX.

On the other hand
nlp

(Ax)i (xiox - X;ox)i + L Xja{
j=l

nlp

(eief) @ (Xlox - X;ox) + L Xja{,
j=l

where Xtox is a diagonal matrix made up of x~ox' Now from (5.41)

(5.46)

(5.47)

(5.48)

nl p nl p

L (-T(qjfeieTqjXj) + L Xj
j=l j=l

-(eief) 0 X 2 + 00
2

, (5.49)
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h XA 2 _ ""nlp j( j)T d 2 _ ",nlp
W ere - T L..j=l q q Xj an a - L..j=l Xj'

In view of (5.46) and with regard to (5.47) through (5.49), one has

T (A 1 A2 1 2) 1 2(eiei ) @ X + X - X box + X box = a + a ,

or diag(X) = e, where

- 1 ( A_ 1 Ar 2 1 2 )
X = l 2./\: + -'\ - X box + X box .

o +0
Note that }(k >- 0 and l:tox > 0, k = 1,2. In general, -,y may not be a

positive semiclefinite matrix because of the negative sign of xtax' However in

practiee, at the optimal solution y;, it seems that the primaI matrices }(k

corresponding to the semidefinite and linear cuts, dominate the primaI vec­

tors Xtol; of the box constraint. In most cases as we will see in the numerical

results, X is the optimal solution of Problem (5.38). That is -,t c= 0 and the

relative error between the primaI and dual objective values is small.

Computing X is a very expensive task beeause xj and Ai are dense ma­

trices. However, sinee we compute it only once it does not make a signifieant

inerease in the over aIl computational time of our algorithm. Moreover, al

and 0 2 ean be computed in a less expensive way as follows. In view of (5.45)

Am+1 @ X + (AX)m+1 + ~ = O.

From (5.44)
nsd

2: A{n+I @ X j

j=l

n 8 d

2:(-Ipj @ xj)
j=l

-trX

On the other hand sinee a~+ l = -1 for aIl j,
nlp

(Ax)m+I = (X~ox - X~ox)m+I - 2: Xj,
j=l
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12 (l) (2) ta + a = Jbo:r m+l - X box m+l + <".

In the rare cases, where X does not satisfy the positive definiteness con­

straint, we can construct a positive definite matrix from X that is a primaI

feasible and it is close to the optirnal solution:

Let

If (3 ~ 0, then X >-- O. Assume that /3 < 0, then clearly

A 1 A 2 rI 2
X + X - )(box + X box - 131 >-- O.

Let
Xf = Xl + X2

- Xlox + X?ox - 131 . (5.50)
al + a 2 - 13

Then X f is positive definite and diag(Xf) = 1. Thus X f is a feasible matrix

for Problem (5.38).

5.7 Numerical Results

We coded the primaI and dual algorithms by Matlab 6.0 and tested them

with a number of random graphs generated by the graph generator "Rudy" 1

on a Pentium(R) 4 CPU 1.60 GHz, with 128 MB of RAM. In this section,

we present our numerical results.

There are some advantages and some disadvantages with both algorithms.

However, the primaI algorithm seems to behave better than the dual aIgo­

rithm in general. The main difficulty which first appeared in both algorithms

is initiating the "box constraint". Recall that, in order to make sure that

IThe graph generator Rudy can be downloaded from the fol1owing site:

http:/ jwww.zib.dejhelmbergjsdp..software.html
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the initial set of localization nO is bounded, we bound Yz by a box constrain.

That is li :s; Yi :s; 1Li and z :s; z :s;~. On the one hand, the parameters l

and u should be chosen such that n° contains the optimal solution Y*. On

the other hand, having a big initial set requires too many cuts to satisfy the

stopping criterion and consequently slows clown the algorithm. To over pass

this problem we initiate li = -2 and Ui = 2 and start with the small box

eonstraint - 2 :s; Yi :s; 2. At each iteration if y~, the i th eomponent of the

analytic center is very close to its boundary, we loosen up the eonstraint by

multiplying the bound by 2. \,ye initiate z = bTyo, and z:: = trC, since l is a

feasible solution of Problem (5.1).

Computing the Gram matrices cP and CD is another difficulty in both

algorithms. As the dimension of the semidefinite eut matrices increases the

computation time of the Gram matrix and its Cholesky factorization also

increases. In fact, Matlab is extremely slow when it cornes to a computation

task which involves "for" loops. To overcome this problem we wrote Mex

files in "c" , to compute ApA~ and ADAb, and imported them into Matlab.

This made a significant improvement in the computation time when there are

too many semidefinite cuts. Nevertheless, the fact that we have to compute

the Gram matrix several times at each iteration is the main weakness of our

algorithm from the implementation point of view.

As we mentioned earlier the primaI algorithm works better than the dual

algorithm in practice. The advantage of the primaI algorithm is that there

is basically no need to identify the deep cuts and take special procedures to

update the analytic center after adding a eut. In primaI algorithm shallow,

central and deep cuts are treated in the same way and the updating procedure

is quite efficient. The dual algorithm, however, cannot recover feasibility in

an efficient way after adding a deep eut. As explained in Section 5.5, a

path-following algorithm is applied in sueh cases. The Gram matrix must
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be computed several times at each recentering process of the path-following

algorithm and it drastically increases the computational time.

Note that the numerical results reported in this section are not compet­

itive with the Spectral Bundle method. There are a number of reasons for

that.

First of aH, our algorithm for computing the analytic center is based on

interior point methods. ConsequentlYJ the Gram matrix and its Cholesky

factorization has to be computed at each iteration for both primaI and dual

algorithms. This is a very expensive task. Secondly; the numerical results

in [23] are obtained using a computer code by C++; \vhereas we used Matlab

for coding our algorithm. Matlab, as mentionec1, is more than 20 times

slmver than C++ J especially for the computational algorithms involved in

many loops. FinallYJ because of the difficulties \vith the dual algorithmJ we

have to work in primaI setting and therefore we lose sparsity of the original

problem. This is also the reason that the ACCPM works better on the dense

problems than it does on the sparse ones.

The Stopping Criterion

The ACCPM creates a sequence of points yk to reduce the objective function

f(y). As yk gets doser to the minimizer of f(y), the reduction f(yk-l) ­

f (yk) becomes smaller and sma11er. This is a common property of almost

a11 nonsmooth optimization techniques. We measure this reduction at each

iteration. When we cannot expect a significant improvement between two

iterations, i.e.; when

(5.51)

we compute a feasible primaI matrix X f from 5.50 and the relative error

between the upper bound bTyk and the lower bound C @ X f. We terminate
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the algorithm if
_ bTy* - C @Xi
e = -'---=:----

bT *Y

is small. After running our algorithm with many data (Table 5.2), we realized

that when E is small enough (E = 1O~.s), the relative error e is reasonably

small « 5 x 1O~3) and therefore in most cases the algorithm stops when (5.51)

is satisfiecl. Note that Xi is computed only when the reduction in f is small;

in most cases, onIy once. This matrix then can be used as a primaI feasible

solution very close to the optimal.

In Table 5.1 we illustrate the result of the primaI algorithm when applied

to the randomly generated graphs with 100, 200, 300, 400 and 500 nodes.

VVe tested the algorithm for each class of graph with different edge densities

vary between 6% to 90%. The number of edges of a graph with n nodes and

density dis given by the integer closest to (n(n - 1) x d) /200.

The first two columns of the table demonstrate the number of nodes (n)

and the edge density of the graph. the third and the forth coIumns show

the number of linear and semidefinite cuts at the optimal solution; dim(cut)

indicates the dimension of the optimal cut matrix, which includes linear and

semidefinite cuts. The last column of the table gives the multiplicity of the

maximum eigenvalue at the optimal solution. The key property of Table 5.1

is that as the edge density of a graph increases the dimension of the optimal

cut matrix decreases. In other words, the denser the graph, the less cuts

(linear and semidefinite) is needed to find the optimal solution. This means

that ACCPM is more successful when applied to the more complicated graphs

with many edges as compared to sparse graphs.

Table 5.2 provides additional information on the performance of the pri­

maI algorithm. The third column of the table shows bTy*, the optimal objec­

tive value of Problem (5.2). The forth column of the table illustrates a lower

bound on the dual objective function by the primaI objective value C @ Xi.
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node density Linear cuts Semidefinite cuts dim(cut) p

n (%) (nlp ) (nsd)

100 6 140 37 235 4

100 20 89 21 135 2

100 40 75 29 149 4

100 80 28 33 118 5

100 90 22 16 57 3

200 6 144 55 298 5

200 20 102 46 234 4

200 40 102 35 200 5

200 80 37 41 181 4

200 90 1 17 25 107 5
1

300 6 167 69 338 r-
i)

300 20 117 54 275 4

300 40 100 72 301 4

300 80 40 46 209 ;)

300 90 22 33 163 5

400 6 168 68 375 5

400 20 149 81 394 5

400 40 107 100 445 4

400 80 40 65 306 5

400 90 23 33 177 5

500 6 379 9 404 2

500 20 407 12 431 1

500 40 367 26 421 2

500 80 204 32 270 4

500 90 125 37 205 3

Table 5.1: The primaI algorithm performance on a randomly generated

graphs with 100, 200, 300, 400, and 500 nodes
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The relative error between the upper bound and the lower bound is shown in

the next column. The data in this column shows that the objective function

value of the primaI problem is relatively close to the optimal objective value

of the dual problern. Therefore, as it was expected, X f is very close to the

optimal solution of Problem (5.1). The CPU time in the last column is in

the format mirmtes:seconds.

Next, we illustrate the reeentering proeess after adding a eut. Reeall

that after adcling a p-climensional eut we compute an upclating direction by

solving the optimization Problem 4.1. In Section 5.4.1 we mentioned that

computing an exact Newton direction for this problem is impossible when

the eut is semiclefinitc. Table 5.3 illustrates the number of iterations and the

the CPU time for solving Problem 4.1. Although, the convergence rate is

not quadratic but the CPU time is reasonably low. The reason is that the

computational time pel' iteration of this algorithm is not expensive since we

do not need to compute the Gram matrix and its Cholesky factorization.

In Theorem 14 we proved that, starting from the "warm start" the number

of Newton steps after adding a p-dimensional eut is bounded by 0 (p log(p +
1)). We mentioned that the recentering proeedure is much slower if we make

the cut shallow and use the eurrent analytic center as the initial point for the

Newton algorithm. Table 5.4 shows one step of the recentering procedure,

with and without computing the optimal updating direction for a random

graph with 300 nodes and 90% edge density.

The numerical results demonstrated in this table further eonfirm the

mathematieal result established in Theorem 14. Only 2 Newton iterations

are needed to update the analytic center after updating the upper bound

starting from the "warm start" and the CPU time is 0.20 seconds, whereas

these number for the same eut when starting from the current analytic center

are 30 and 3.76. The situation is more or less the same for the linear (p = 1)
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node density upper bound lower bound relative error cpu time

n (%) (bT y*) (C @ Xl) (e) (mm:ss)

100 6 246.46 24.5.57 3.5e-3 1:20

100 20 666.22 658.01 9.3e-3 0:42

100 40 1210.06 1202.75 6.0e-3 0:46

100 80 2171.74 2165.61 2.8e-3 0:48

100 90 2378.93 2359.49 8.1e-3 0:16

200 6 892.50 887.03 6.1e-3 336

200 20 2500.82 2486.64 5.6e-3 4:15

200 40 4623.48 4589.48 7.4e-3 3:57

200 80 8.500.30 8480..57 2.3e-3 3:49

200 90 9374.95 9:3:34.52 4.3e-3 1:30

300 6 1905.71 1895.29 2.7e-3 13:37

300 20 5442.62 5403.05 7.2e-3 12:16

300 40 10146.02 10063.68 8.1e-3 23:21

300 80 18941.84 18752.76 9.ge-3 10:31

300 90 20956.18 20901.29 2.6e-3 5:16

400 6 3265.83 3243.41 6.8e-3 25:35

400 20 9444.34 9398.43 4.8e-3 44:32

400 40 17783.01 17611.14 9.6e-3 58:13

400 80 33480.24 33228.52 7.5e-3 28:26

400 90 37113.40 36902.81 5.6e-3 9:58

500 6 4239.61 4198.10 9.7e-3 46:28

500 20 14589.08 14443.99 9.ge-3 33:35

500 40 27543.51 27309.76 8.4e-3 53:00

500 80 52081.13 51664.28 8.0e-3 36:51

500 90 57810.31 57503.22 5.3e-3 25:18

Table 5.2: The primaI algorithm performance on a randomly generated

graphs
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n = 300 upper bound lineal' cut 8D eut 8D eut 8D eut

density: 90% eut p=l p=2 p=3 p=4

No. Newton steps

for computing 1 1 9 8 11

warm start

CPU time(see) 0.0000 0.0160 0.5748 0.6132 0.7921

Table 5.3: Number of Newton steps and the CPU time for eomputing the

optimal updating direction and the warm start

n = 300 upper bound linear eut 8D eut 8D eut 8D eut

density: 90% eut p-1 p=2 p=3 p=4

No. steps

starting from 2 2 3 3 3

warm start

CPU time(sec) 0.20 0.30 0.35 0.38 0.43

No. steps

starting from 30 25 25 27 27

previous center

CPU time(sec) 3.76 3.84 4.07 4.29 4.69

Table 5.4: Number of Newton steps and the CPU time of the recentering

procedure after adding a p-dimensional eut
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and semidefinite (p = 2,3,4) subgradient cuts. Note that the computation

of the Gram matrix is needed for each step of the Newton algorithm. This

is why the algorithm is about 20 times faster when we compute the opti­

mal updating direction. As the dimension of the cut matrix increases, the

Gram matrix becomes more and more complex and the computational time

increases exponentially. Therefore bringing the optimal updating direction

into play is essential in practice.
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Chapter 6

Conclusion

We proposed an analytic center cutting plane method with semidefinite cuts

for convex feasibility problems. Convex feasibility problem is a problem of

finding a point in a convex set, which contains a full dimensional baIl with E

radius and is contained in a compact convex set described by matrix inequal­

ities. Although, the convex feasibility problem is an abstract problem by

nature, however, there are many applications of this problem in nonsmooth

optimization such as minmax eigenvalue optimization.

The ACCPM is an efficient technique for nondifferentiable optimization.

The method has been studied in the past few years in the Euclidean space \Hm

with single and multiple linear cuts and with quadratic cuts. We employed

for the first time, a nonpolyhedral model into the ACCPM by means of

the semidefinite cuts. As a result, the ACCPM can now be applied to a

wide variety of optimization problems such as linear programming, quadratic

programming and semidefinite programming.

From the theoretical point of view we studied the convergence analysis of

the method in the context of convex feasibility problem. At each iteration

of our algorithm, an oracle returns a p-dimensional semidefinite cut. We up-
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date the set of localization by placing the cut at the analytic center of the

set. Then a special updating procedure is applied to find a strictly feasible

point in the updated set of localization as a "warm start" for computing the

next analytic center. In Section 4.2 we proved that starting from the "warm

start" the Newton algorithm finds the analytic center of the updated set of

localization in 0 (p log(p + 1)). We showed in Section 4.5 thai the updat­

ing direction itself can be obtained very efficiently. Applying the Newton

algorithm, the problem comes to optimality in at most 0 (P,~o~lt(::~)t) it­

erations, where (3 is the Newton decrement, fJ > 0 is a condition nurnber on

the field of cuts, (11~)(~)~n) and () is a positive constant less thcUl 1. \iVe

established the main theoretical result of our work in Section 4.4. We proved

that the ACCPIVI with semidefinite cuts is a fully polynomial approximation

scheme. That is, the algorithm stops when the dimension of the accl1mulated
2 3

block diagonal eut matrix reaches to the bound o*(p?~r; ), where Pmax is the

maximum dimension of the semidefinite cuts returned by the oracle.

From the practical point of view we applied our algorithm to the semidef­

inite programs aI'ising from combinatorial optimization. In particular, we

considered the semidefinite relaxation on the max-eut problem. Reformula­

tion of the semidefinite programming as an eigenvalue optimization is weIl

known. vVe applied the ACCPM, as a nonsmooth optimization technique, to

minimize the maximum eigenvalue of an affine combination of symmetric ma­

trices. We transformed the optimization problem into a feasibility problem

sueh that the set of loealization contains the minimizer of the max-eigenvalue

funetion. The set of localization in this case is bounded from below by a set

of subgradients of the max-eigenvalue function, and from above by an upper

bound eut.

The weighted analytic center of the set of localization when a weight

equal to the dimension of the current cut matrix is set on the upper bound
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eut was defined. We introduced the weighted analytie center beeause in

practice, as the number of subgradient cuts inereases the analytic center

approaches to the upper bound and therefore we lose the eentrality. The

weight on the upper bound eut, which is somewhat arbitrary, pushes back the

analytic center to the center of the set. VVe derived the first order optimality

conditions for the weighted analytic center and presented its computationaI

algorithms in primaI and dual settings.

In primaI algorithm, vve decomposed the Newton direction into Unee cat­

egories; (a) the semidefinite direction, for the primaI matrix variables cor­

responding to the semidefinite cuts, (b) the linear direction, for the primaI

vector variables corresponding to the linear cuts, and (c) the direction cor­

responding to the upper bound eut with weight. This devision is done for

computational reasons. In theory, the three groups are eombined in the

semidefinite eut. However, it is practically very expensive and unnecessary

to treat a linear eut as a semidefinite eut.

At eaeh Iteration if the max-eigenvalue function is differentiable at the

current analytic center the oracle returns the gradient of the function as a

single linear eut. Otherwise the oracle returns a set of subgradients, which

form a p-dimensional semidefinite eut. We updated the set of localization by

adding the eut to the current working set. In practice, a single or semidefinite

eut is either shallow or deep. These issues are crucial for recovering feasibility

in implementation of our algorithm. We made a distinction between linear

and semidefinite cuts in both primaI and dual cases and between shallow and

deep cuts in the dual algorithm.

The attractiveness of the primaI algorithm is in recovering the feasibility

after adding a eut. There is basically no needs to determine whether a eut

is deep and to take any special procedure for such a case. We discussed two

cases for recovering feasibility; (1) adding a p-dimensional semidefinite cuts,
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(2) adding a single linear eut. In each case we derived a strictly feasible point

in the updated primaI set as a "warm start". We illustrated by the numerical

results that starting from such a point the Newton algorithm finds the next

analytie center in a very efficient vvay. Such a result was expected as it was

established by a theoretical bounel in Theorem 14.

Although, the dual algorithrn is capable of exploiting sparsity and it is

the preferred algorithm when dealing with the sparse problems, however,

is not as efficient as the prirnal Olle in recovering feasibility. At this point

there is basically no efficient way to recover feasibility after adding a deep

eut in dual algorithm. We dealt with this issue by applying a path-following

algorithm: when the oracle returns et deep linear or a deep sernidefinite cuL

we place it at the center and use the procedure described in Section 4.1 to

obtain a strictly feasible point and recover the eentrality. Then we move the

eut to the new center and repeat this procedure until we obtain a strictly

feasible point for the updated dual set. At each recentering procedure the

Gram matrix is computed several tirnes, which is the main cause of slowing

down the method. This makes the dual algorithm not a favored one at this

point. The problem of restoration and make use of the full capacity of the

dual algorithrn is a potential future research problem.

An advantage of the ACCPM is that after solving the minmax optimiza­

tion problem, which is equal to the dual problem of semidefinite relaxation

of the max-eut problem, a primaI feasible matrix very close to the optimal

can he computed. We provided this course of action in Section 5.6.

Introducing the semidefinite cuts into the analytic center cutting plane

method in this thesis, opened a door to the new applications for this method.

The theoretical results and the complexity bounds established in Chapter 4

demonstrate that the ACCPM is as efficient in nonpolyhedral cone as it is in

linear programming. The ACCPM can now handle semidefinite cuts as good
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as it does the linear or the quadratic cuts. The numerical results however,

presented in Section 5.7, illustrate that the ACCPM can efficiently be applied

only to moc1erate-size semidefinite programs. The l'eason that the ACCPM

is not efficient when dealing with large-scale problems is basically due to the

computational difficulties of semidefinite programming.

As we mentioned in Chapter 1.. the main purpose of this thesis was to

integrate the ACCPM with the semidefinite cuts and not to design an algo­

rithm for large-scale semidefinite programs. However, with the aptitude of

the ACCPM in recovering centrality after adding cuts, vve strongly believe

that a eombination of the algorithms presented in this thesis with a braneh

and eut or a braneh and priee algorithm vvill efficiently solve the moderate­

size max-eut problem to optimality \vith an integer solution. This will be the

line of our future researeh.
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