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Abstract

We propose an analytic center cutting plane algorithm for semidefinite
programming (SDP). Reformulation of the dual problem of SDP into an
eigenvalue optimization, when the trace of any feasible primal matrix is a
positive constant, is well known. We transform the eigenvalue optimization
problem into a convex feasibility problem. The problem of interest seeks a
feasible point in a bounded convex set, which contains a full dimensional ball
with (< 1) radius and is contained in a compact convex set described by
matrix inequalities, known as the set of localization. At each iteration, an
approximate analytic center of the set of localization is computed. If this
point is not in the solution set, an oracle is called to return a p-dimensional
semidefinite cut. The set of localization then, is updated by adding the
semidefinite cut through the center. We prove that the analytic center is
recovered after adding a p-dimensional semidefinite cut in O(plog(p + 1))
damped Newton’s iteration and that the ACCPM with semidefinite cuts is
a fully polynomial approximation scheme. We report the numerical result of

our algorithm when applied to the semidefinite relaxation of the Max-Cut

problem.
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Résumé

Nous proposons une méthode de centre analytique par plan coupé pour
la programmation semi-définie (SDP). La formulation du probleme dual du
SDP en un probléme d’optimisation de valeur propre, lorsque la trace de
toute matrice primale réalisable est une constante positive, est bien con-
nue. Nous transformons le probleme d’optimisation de valeur propre en un
probleme de faisabilité convexe. Le probleme en question cherche un point
réalisable dans un ensemble convexe borné, lequel contient une sphére de
pleine dimension avec un rayon de £(< 1), et est contenu dans un ensem-
ble convexe compact décrit par des inégalités de matrices, appelé ensemble
de localisation. A chaque itération, un centre analytique approximatif de
Pensemble de localisation est calculé. Si ce point n'est pas dans 'ensemble
de solution, un oracle est appelé, lequel retourne une coupe semi-définie
de dimension p. L’ensemble de localisation est par la suite mis a jour en
ajoutant au centre la coupe semi-définie. Nous démontrons que le centre
analytique est reconstitué en O(plog(p + 1)) itérations de Newton suite &
Paddition d’une coupe semi-définie de dimension p. Ns démontrons aussi que
la méthode de centre analytique par plan coupé avec des coupes semi-définies
est une stratégie d’approximation pleinement polynomiale. Nous rapportons
les résultats numériques de notre algorithme appliqué a la relaxation semi-

définie du probleme Max-cut.
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Chapter 1
Introduction

Semidefinite Programming (SDP) is an extension of linear programming
where vector variable is replaced by matrix variable and nonnegativity con-
straint is replaced by positive semidefiniteness. Semidefinite Programming
can also be studied as a convex optimization problem as the objective func-
tion is linear and the constraints form a convex feasible set. Theoretical
properties of SDP, as a convex optimization problem have attracted the re-
searchers’ attention for the past few decades [7], [10], [51], [12], [5], and [27].

However, efficient algorithms for semidefinite programs were developed
at the end of 1980s, following the development of interior point algorithms
for linear programming. The first polynomial time algorithm was proposed
by Nesterov and Nemirovsky [42, 43, 44]. Their algorithm is based on a self-
concordant barrier function. They proved that interior point methods for
linear programming can be extended to all convex optimization problems.
Independently, Alizadeh [1] extended the potential reduction algorithm from

linear programming to SDP.

The algorithms proposed by Nesterov and Nemirovski and by Alizadeh

were applicable to only primal (or only dual) problem. The extension of



efficient primal-dual algorithms such as path-following methods, from linear
programming to SDP, took the researchers a few years. The first extension
of the Newton direction in primal-dual algorithms for SDP was proposed
by Alizadeh, Haeberly and Overton [2], and independently by Helmberg,
Rendl, Vanderbei, and Wolkowicz [24], Kojima, Shindoh and Hara [28] and
Monteiro [40]. A different direction was later introduced by Nesterov and
Todd [45, 46]. For a survey on the primal-dual search directions, see Van-
denberghe and Boyd [58] and for the references on the complexity of these
algorithms see [3], [4]. For a comprehensive reference of the theory, algorithms

and applications of SDP see Wolkowicz, Saigal and Vandenberghe [60].

Efficient algorithms and applications in areas such as control theory,
statistics, probability, combinatorial optimization, structural design, and
nonconvex quadratic optimization made SDP the topic of concentrated re-
search in 1990s. The most efficient interior point algorithms for semidef-
inite programs as for linear programs are the primal-dual methods. The
first strong numerical result based on these methods, was reported in 1996
in [24]. The result of this paper was very encouraging for many practical
problems. However, semidefinite relaxations arising from combinatorial ap-
plications were still out of reach. Part of the reason for this incapability was
that due to the nature of the combinatorial optimization, the semidefinite
relaxation on these problems is of large size and often has a sparse structure
and the primal-dual algorithm does not exploit this sparsity. On the other
hand at each iteration of the interior point algorithms, a Cholesky factor-
ization of a dense matrix, known as the Gram matrix, has to be computed.
Benson, Ye and Zhang [8] propose a dual scaling algorithm for the problems
with rank one matrix coefficients. In their algorithm, they keep the sparsity
of the problem throughout of the algorithm, but they still need to compute

the Gram matrix at each iteration.



Helmberg and Rendl [23] reformulate the dual problem of semidefinite
program as an eigenvalue optimization problem and apply a spectral bundle
method as a nonsmooth optimization technique to solve it. Their algorithm
is, by far, the most efficient one for large-scale SDP [22]. However, they
don’t report any theoretical complexity bound on the number of iterations
of their algorithm. Another interior point cutting plane algorithm for the
maxcut problem based on a linear programming approach is discussed in
Krishnan and Mitchell [30] and Krishnan [29]. Other references in interior

point cutting plane algorithm are [20, 37, 38, 39].

An alternative technique for nonsmooth optimization is the analytic cen-
ter cutting plane method (ACCPM). This method was introduced by Son-
nevend [53], Ye [61] and Goffin, Haurie and Vial [15]. ACCPM has been
successfully implemented in a wide variety of applications, as for instance in
[14] and [19]. The complexity of the method has been analyzed in case of
single cuts by Atkinson and Vaidya [6], Nesterov [41] and Goffin, Luo and
Ye [16], in the case of multiple cuts by Ye [63] and Goffin and Vial [18], and
in the case of quadratic cuts by Luo and Sun [33], Liithi and Biieler [34] and
Sharifi Mokhtarian and Goffin [52].

For the purpose of proving complexity results, ACCPM is more clearly
described in the context of a convex feasibility problem: find a point in
a bounded convex set {2*, with a nonempty interior. The solution set 2*
is assumed to contain a ball N, with radius € < 1 and is contained in a
compact convex set described by matrix inequalities. At each iteration the
analytic center of the set of localization is computed and a separation oracle
is called: the oracle determines if either the center is in (2%, thus solving the
problem, or returns a cut which cuts off the current point and contains the
solution set. A special updating step is then needed to get as close as possible

to the next analytic center, as first suggested by Mitchell and Todd [36].



ACCPM is well developed for linear and quadratic programming. In this
thesis we employ, for the first time, a nonpolyhedral model into the ACCPM.
We transform the eigenvalue min-max problem arising from semidefinite pro-
gram into a convex feastbility problem and propose the analytic center cutting
surface algorithm with semidefinite cuts to solve this problem. A semidef-
inite cut contains as special cases, single and multiple linear cuts, as well
as quadratic cuts. At each step of the algorithm, an oracle returns a p-
dimensional semidefinite cut. We add the cut at the center, and derive the
optimal updating direction by maximizing the “logdet” of the new slack ma-
trix. The optimal updating direction is used to obtain an interior point of
the updated set, of localization as an initial point to compute the next an-
alytic center. This is an extension of the direction obtained by Goftin and
Vial [18] for the multiple linear cuts to the semidefinite cuts. For alternative

approaches to solving determinant maximization problems see [56, 59].

The restoration procedure is discussed in detail. We prove that the num-
ber of Newton steps needed to recover the analytic center from the interior
point obtained by the optimal updating direction is of order of plog(p + 1).
We call this interior point, a warm start. Moreover, we show that the analytic
center cutting plane algorithm stops with a point in the solution set when
the dimension of the accumulated block diagonal cut matrix reaches to the
bound of O*(p2,,,m?/u%e”), where pmay is the maximum dimension of the cut
matrices and p > 0 is a condition number of the field of cuts. Furthermore,

we prove that the Newton method finds the optimal updating direction in

log & +log Y\ . . .
at most O (}jﬁlj_—glgé——(ljg)"—) iterations, where 3 is the Newton decrement and
* 1—8)e

€ = o and @ is a positive constant less than 1.

From the application point of view, our algorithm can be applied to a large
class of semidefinite programs. More precisely, the semidefinite problems in

which the trace of any feasible primal matrix is constant. We see that many



semidefinite relaxations arising from the combinatorial optimization possess
this property. In particular, we apply our algorithm to the Max-Cut problem.
We develop the ACCPM algorithm in primal and dual settings and discuss
the implementation issues for shallow and deep cuts in both cases. Our

numerical results are created using the primal algorithm.

It is important to notice that, the main intention of this thesis is not to
develop an algorithm for large-scale semidefinite programs. It is rather, the
extension of the ACCPM by means of the semidefinite cuts for the convex fea-
sibility problem. Nevertheless, we illustrate that ACCPM with semidefinite
cuts efficiently solves moderate-size semidefinite programs. To the best of our
knowledge, this algorithm is the second nonsmooth approach to semidefinite
programs after the Bundle method [23]. The advantage of the algorithm
developed here over the Bundle method is however, its strong theoretical
background and complexity results. Independent of our work in this thesis,
very recently, there has been some interests in semidefinite feasibility prob-
lem [54, 57, 9]. However, their setting is different and they target different

applications.

The thesis is organized as follows: In Chapter 2 we introduce the pri-
mal and dual problems of semidefinite programming and state the duality
theorems. We also define the max-cut problem and derive the semidefinite
relaxation on this problem. Chapter 3 is devoted to the most important
properties of the analytic center of a convex set of linear matrix inequal-
ities. This includes the primal, dual and primal-dual potential functions,
the optimality conditions for the exact and approximate analytic center and
primal and dual algorithms for the computation of the analytic center. We
introduce the convex feasibility problem and semidefinite cuts in Chapter 4,
and derive the optimal updating direction to restore the analytic center after

adding a semidefinite cut. In Section 4.3 we present the ACCPM algorithm



and in Section 4.4 we derive the complexity of our algorithm. We also derive
an upper bound on the number of damped Newton steps to compute the
optimal updating direction. Chapter 5 deals with the applications. We re-
formulate the dual problem of SDP into an eigenvalue optimization problem
and then reduce the optimization problem to a feasibility problem. We define
the weighted analytic center in Section 5.3. Primal and dual directions for
computing the weighted analytic center are derived in Sections 5.4 and 5.5.
We also discuss the implementations of primal and dual algorithms when the
set of localization is composed of both linear and semidefinite cuts and in
case of the deep cuts. Our numerical results for a number of random graphs
generated by graph generator "Rudy” are presented in Section 5.7. We also

discuss the computational difficulties for both primal and dual algorithms.



Chapter 2

relii

In this chapter we provide some basic facts that are fundamental for this the-
sis. We introduce the standard formulations of primal and dual semidefinite
program and state basic definitions of the analytic center of a compact set
of matrix inequalities. We begin by introducing our notations:

Lower case letters are used to show vectors and upper case letters are
used for matrices. I and [, are identity matrices of appropriate size or of
size n. The 1™ column of I is shown by e;, and Diag(e;) is a diagonal matrix
with e; on its main diagonal.

We refer to the space of n x n symmetric matrices by 8™, positive semidef-
inite matrices by S, and positive definite matrices by 87, . We denote the
j™ eigenvalue of a symmetric matrix A, by A\;(A) in decreasing order.

For square matrix A, tr(A) is the trace of 4, diag(A) is a column vector
made up of the diagonal elements of A, the Frobenius-norm of A is defined
via .

JAI? = trATA = 3 (0 (AT A)),

Jj=1

and if A is symmetric, the co-norm of A is defined by

[Alloo = max |X;(A)], j = 1,...,n.

=~



The operator " indicates the inner product of two matrices:
Ae B = t’l’ATB == Z a@jbij.
7:7.?.
With the abuse of notation we indicate the component-wise product of two

vectors z and s by
181
rs = : . 1,8 € R,
Lnsn

and the component-wise inverse of vector # € R™ by

—1
T

For symmetric matrices 4;, i = 1, ..., m, we define the m-vector afl by

af] = ((A1)1g> (A2)ig, ---» (Am)ig) - (2.1)

This vector is denoted by bfl when we deal with symmetric matrices B;.
The Lowner partial order on the symmetric matrices is defined by A > B
(A~ B)ift A-Be St (A-BeSt,).

2.1 Semidefinite Programming

Semidefinite programming (SDP) is an extension of linear programming
where vector variable is replaced by matrix variable and nonnegativity con-
straint is replaced by positive semidefiniteness. The primal problem of SDP

can be expressed in the form



max (CeX
5.1 (2.2)
Ao X =0, 1=1,....m

X =0,

where X € 8" is the matrix variable and n x n real matrices 4; and C and
vector b € R™ are the parameters of the problem. Without loss of generality
we assume that 4; € 8™ and C € &". Note that if (' is not symmetric, since
matrix X is symmetric then C ¢ X = CT e X and thus C' can be replaced

1

5(C'+ CT). The same argument holds for matrices A;.

by
Let A be a linear operator from 8™ to m-vector R™ defined by

A1 2 X
AX = : (2.3)
Am o X

for any symmetric matrix X. Then problem (2.2) can be rewritten via

max Ce X
s.t.
2.4
AX =1b (24)
X =0,

Corresponding to the primal problem, the dual problem is defined as the

minimization of a linear function over a convex set of matrix inequalities:

min by
s.t. (2.5)
ATy = C,

where AT : R™ — 8" is the adjoint operator of A, defined by

ATy =3 y;A;. (2.6)
=1

9



Using the slack matrix S the dual problem can be written as

min b7y
2.
s (2.7)
ATy - S=C
S = 0.

The duality gap of the objective values at a dual feasible solution (y, S)

and a primal feasible solution X is

Vy—-CeX = (AX)Ty—CeX
— (ATy—-C)e X
= SeX
> 0.

The strong duality theorem in SDP is weaker than that of in linear programs.
In other words, a Slater’s condition is needed in order to guarantee a zero

duality gap at the optimal solution.

Theorem 1 (Strong Duality Theorem) S* e X* = 0 if the primal prob-
lem (2.4) is strictly feasible, i.e., there exists X > 0 such that AX = b, or the
dual problem (2.7) is strictly feasible, i.e., there exists y such that ATy = C.

If both conditions satisfy then the optimal solution is bounded.

Proof. See Alizadeh [1] =

Without strict feasibility assumption the duality gap at the optimal so-
lution may not be zero. We illustrate this by modifying an example of Van-
denberghe and Boyd [58].

Example 2 Consider problem (2.4), with m =2, n = 3, b¥ = (1,0), ¢33 =

—1 and the coefficient matriz C is zero elsewhere,

0 10 0 60
Ar=1100},4=,010
0 0 1 0 00

10



From the constraint Aye X = by, we have 2x13 + 233 = 1 and from constraint
Aye X = by, we get 9o = 0 and since X is a positive semidefinite matriz the

entire row and column 2 must be zero. Therefore the problem is reduced to:

max —Tss
3.t
ri1 0 213
0 0 0 =0
T3 0 1

This problem 1s feasible but not strictly feasible and the optimal objective
value 1s 25 = —1. The dual problem for this example as defined in (2.5) is

P
as follows:
min
s5.t.
0 wn 0
v y2 O = 0,
0 0 yp1+1

this problem is feasible for any y; = 0 and yo > 0 but not strictly feasible.
The dual optimal objective value is 23 = 0. Thus z, # 2 or, the duality gap

1 18 not zero.

The following theorem provides the optimality conditions for semidefinite

programming:

Theorem 3 (Complementary Slackness) Assume that one of the primal
or dual problems is strictly feasible. Then primal and dual feasible points X*

and (y*, S*) are optimal if and only if
X*S* =0.
Proof. See Alizadeh [1]. m

i1



2.2 Maximum Cut Problem

Applications of semidefinite programming in combinatorial optimization and
nonconvex quadratic optimization problems have been developed in the past
few years. In what follows we study semidefinite relaxations for Max-Cut
Problem. The material of this section is mostly selected from Helmberg [21].

Semidefinite relaxation for the Maximum cut (Max-Cut) problem gives
the tightest bound on the optimal objective value amongst that of other
relaxations. Here we briefly review the derivation of this relaxation and its
approximation result derived by Goemans and Williamson [13].

Max-Cut problem is one of the standard NP-hard problems and is defined
as follows. Let G(V.E) be an undirected weighted graph without loop or
multiple edges. Let |[V| =n and |E| = m. The goal is to divide the node set
V into two sets S and V'\S such that the total weight of edges that connect
these two sets is maximized:

glgg z‘eg“gzswm'

The quadratic formulation of the problem is
max £, wi; (1 — zix;), A (2.8)

Where w;; is the weight associated with edge ¢j and z; = 1, where i € S and
z; = —1 otherwise.

Formulation of the max-cut problem can be improved using the Laplace
Matrix of the graph G. Let C = i—L, where L = Diag(Ae) — A and A is the

weighted adjacency matrix, then problem (2.8) can be reformulated as

max zXCx

s.t. (2.9)
e {-1,1}".

12



Now let C be the convex hull of {:r.xT rx € {1, 1}"}. Since the extreme

points of C are in {~1,1}", problem (2.9) can be written as follows:

max Ce X
s.t. (2.10)

Xecd.

For any matrix C, an optimal extreme point solution of problem (2.10) is
an optimal solution of problem (2.9). This problemn would be a linear pro-
gramming problem if we had an explicit description of the cut polytope C.
However, unfortunately for NP-hard problems, there is almost no hope of
finding a good description. Although we do not have C explicitly but a tight
upper bound can be found by an approximation of the cut polytope. Lau-
rent and Poljak [31] proved that the following formulation is equivalent to

the max-cut problem (2.10):

max CelX

s.t.
diag(X) =e (2.11)
X*>0
rank(X) = 1.

Removing the rank constraint we come up with a semidefinite relaxation

for the max-cut problem:

max CelX
2.
e (2.12)
diag(X) =e
X = 0.

Using random hyperplane rounding scheme, Goemans and Williamson [13]

obtain the following result:

13



Let G(V, F) be an undirected graph with nonnegative edge weights and
let m* be the optimal objective value of problem (2.9). Then for any feasible

solution of (2.12),
m*>al e X,

with o > 0.87856. In particular, for the optimal matrix X*,
aCeX* <m"<(CelX"

Moreover, Delorme and Poljak [11] prove that the semidefinite relaxation of
the max-cut problem is asymptotically optimal for a large class of random

graphs.

14



Chapter 3

enter of

e

nalytic

Matrix Inequalities

In this chapter we review the definition of the analytic center for linear matriz
inequalities and introduce primal, dual and primal-dual barrier functions to
derive the optimality conditions for the analytic center. We present two
algorithms for computing an approximate analytic center of a convex compact
set described by matrix inequalities based on primal and dual settings.

The chapter is organized as follows: Section 3.1 defines the exact analytic
center and derives its optimality conditions based on primal, dual and prima-
dual parameterization. In Section 3.2 we introduce an approximate analytic
center and establish lower and upper bounds on the potential functions at an
approximate center. We also define the Dikin’s ellipsoids in primal and dual
spaces. Section 3.3 is devoted to the primal algorithm for computation of an
approximate center, and finally in Section 3.4 we present the dual algorithm

for computing an approximate analytic center.



3.1 The Analytic Center: Optimality Condi-
tions

Before we begin we state a very important lemma which plays a key role in

the analysis of the interior point methods.
Lemma 4 For a symmetric matriz X we have,
logdet X < Te (X —1).

and if || X || < 1. then,

X 1P
(1= [1X = Ile)’

logdet X > Te (X —1I)— 5

Proof. See Alizadeh [1]. =

3.1.1 Dual parameterization
Consider the following set:
Qp={ye R™:C - ATy = 0},

where A7 is the operator defined by (2.6) and C' € S,. We assume that {1p

is a convex compact set and contains a strictly feasible point. That is
Oy ={yc R™:C - ATy = 0},

is nonempty. Given a point y in %, the dual potential function is defined

via

¢p(y) = logdet(C — ATy)™
= logdet S~

16



The minimizer of the dual potential function is called the analytic center:
y® = arg min ¢p(y). (3.1)

Since ¢p(y) is strictly convex on 27, the analytic center is well defined
and unique. Abusing notation somewhat, we also denote the dual potential

function by ¢p(9).
For small symmetric matrix dS, the second order expansion of log det S™*

is:
log det (S +dS)~! =
log det S™% — trS1dS + %trS“l(dS)S“l(dS) +o(lldS]]?). (3.2)

Now the first optimality conditions of problem (3.1) can be derived by setting
V¢p(S) = 0. That is

tTAiS_l =0, ¢t=1,..,m,

or
A e Sl = 0, 1=1,...,m.

Let X = S7!, then 3 is the analytic center of Qp iff there exist matrices

5% > 0 and X? > 0 such that

AX® = 0
ATy 4 §¢ = ¢ (3.3)
xese = I

3.1.2 Primal parameterization

The analytic center can also be derived using the primal potential function.

Let
Qp={Xe5": AX =0,X = 0},

17



and define the algebraic interior of {1p by
Qp ={XeS": AX =0,X » 0}

Suppose that (13 is nonempty. We show that the minimizer of the primal

potential funciion
dop(X)=CeX —logdet X,
over (p satisfies the optimality conditions (3.3).
We are interested in solving the following convex optimization problem:

min C'e X —logdet X
s.t. (3.4)

AX =0

X > 0.

The first order optimality conditions for this problem read

C—X1-ATy=0,

letting X! = S, (3.3) is immediate.

3.1.3 Primal-Dual parameterization

The analytic center can alternatively be characterized as the minimizer of

the primal-dual potential function:
¢pp(X,5) = ¢p(X)+ ép(S5)
= (e X —logdet X —logdetS,
over Qpp = (p x {2p. Let us show that (3.3) is the optimality condition for
this minimization problem. First observe that
opp(X® 5% = CeX?®—logdet X*5°
= X% 5% —logdet X*5°
= trl —logdet/

= n.
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On the other hand from Lemma 4
ngD(X,S) > _X@S—t?’(XS—])
= trXS —trXS+trf

= n

for all (X,S) € Qpp, with equality iff XS = I. Thus (X% 3% 5% is the

(unique) minimizer of ¢pp(X,S).

3.2 Approximate Analytic Centers

In practice, however, computation of the exact analytic center is impossible
due to the round-off error. Approximate analytic centers are defined for com-

putational reasons. A #-approximate analytic center is denoted by (X, 7, S)

and defined via .
AX = 0

ATg+S5 = C (3.5)
IX5—1 < 0 <1
The next lemma provides lower and upper bounds on the potential func-

tions at a f-approximate center.

Lemma 5 Let (X,%,S) be a O-approzimate center. Then
1. $p(X%) < 6p(X) < 6p(X%) + 51
2. ¢p(5%) < 9(5) < 60(5*) + 35
3. n < ¢pp(X,5) <n+ {5

Proof. The left-hand side inequalities are trivial. We prove the upper

bounds. From Lemma 4
£5) < RoS-Ie(X5 155 - 1|2
hop(X,S) < XeS—JTe(XS—-1T —
ProltS) £ Ao S LRS- U s -1

< n+




and therefore

o 62
! . [ @ <
dpp(X,S) — ppp(X®, 5% < 5= 0)"

or

(6p(X) = &p(X")) + (6p(5) — 6p(5")) <

Since (X*,y% S%) is the analytic center, then

21— 6)

¢p(S) — ép(S*) >0,

and
Op(X) —op(XY) >0
Thus,
_ / e 62
6p(X) = 0(X") < g
and .
— 9y < .

Summing up the two inequalities, proves the upper bound in (3). =

Computational algorithms for the analytic center of a polytope have been
devised in primal, dual, and primal-dual settings based on Newton method.
These algorithms can be extended to compute the analytic center of a con-
vex body described by matrix inequalities [58]. In the next two sections we
discuss the extension of the primal and the dual algorithms to compute an
approximate analytic center. We refer the reader to [62, chapter 3] for a com-
prehensive analysis of the computational algorithms for the analytic center

in the linear case. Before we start we define the Dikin ellipsoid:

3.2.1 Dikin ellipsoid

Let § € Q% and S be its slack matrix. A coordinate-aligned ellipsoid centered

at ¢, and contained in the interior of {1p, i.e., the set
{y: IS AT (y - )5S~ °| < 1}
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is called the dual Dikin ellipsoid. Similarly, we can define the Dikin ellipsoid
for the primal feasible set. Let X > 0 be in Qp. Then, the primal Dikin

ellipsoid centered at X is

{X XX - X)X %) <1

3.3 Primal Algorithm

In this section we derive the Newton direction to solve problem (3.4) from a
strictly primal feasible matrix. Let X € Q%, for small symmetric matrix d.X

one has,

op(X +dX) = Ce(X+dX)+logdet(X +dX)!

~ 6p(X)+(C~ X~V e (dX) + —;-trX“l(dX)X‘l(dX).

We minimize ¢p(X + dX) over the feasible directions dX = (dX)T:

min (C— X7t e (dX)+ 1(dX)X ' e X1{dX)
s.t. (3.6)
A(dX) = 0.

Notice that the constraint A(dX) = 0 guarantees the feasibility of the up-
dated matrix X+ = X +dX. The first order optimality conditions for prob-

lem (3.6) can be stated as
C—X14+ X MdX)x 1 - Ay =0. (3.7)

By multiplying X from the right side and from the left side to (3.7) and then
applying the operator A, with the feasibility of X and dX one has,

AX(ATY)X) = A(XCX),
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or
(ApAp)y = ApCp, (3.8)
where Ap : " — R™ is a linear operator and AL : ™ — S" is its adjoint
operator, defined via
X‘BAlX'S eV .
ApY = : , and Agy = z in'SA,;)('5,
X5A4,X5eY =
and C'p = X°CX 5. Note that (ApAL) € 8™ with (ApAT);; = tr4,X 4;X.
We assume that matrices A; are linearly independent and therefore Ap AL -

0.
From (3.8) (we denote y by y(X) as it is a function of X)

y(X) = (ApAL) ' ApCp, (3.9)
and in view of (3.7) we have
dX = X — XS(X)X, (3.10)
where

S(X)=C - ATy(X). (3.11)

3.3.1 Projection of dX on to the null space of A

A feasible direction dX is a symmetric matrix such that AdX = 0. This
condition may not be satishied after computing dX due to the computational
round-off error. We therefore project the direction dX on to the null space

of A at each iteration:
From (3.10) we have

dX = X P@dX)X ™ =1 - X35(X) X"
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Let P4, (dX) be the projection of dX on to the null space of Ap, and P 4(dX)

be the projection of dX on to the null space of A. Then

Pap(dX) = (I — Ap(ApAp) ' Ap) dX

and thus
PA(dX> = X’SPAP (dX)X'B
= dX - X7 (AL(ApAL) AdX) X
Now let
q= (APAg)”]AdX.
Thus
Pa(dX) = dX — XPALgX?
= dX — XAT¢X.
or

=1

Note that AP4(dX) = 0.

Observe that

X dX)X™® = ALy—-Cp+1
= Ag(.APAg)‘lAPCP —Cp+1

= — (I — AR(ApAR) " Ap) (Cp — )

= _PAP(CP - I)v

(3.12)

(3.13)

(3.14)

where Pa,(Cp — I) is the projection of (Cp — I') on the null space of Ap.

Therefore, the primal direction can alternatively be stated via
dX = —X"P4,(Cp ~ 1) X>.
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This observation can be also seen from (3.13):
I~ Cp=X"%dX)X%— ALy,

since X ~°(dX)X~? is in the null space of Ap and ALy is in the range of
AL and this decomposition is unique, then X ~°(dX )X~ is the projection
of I — Cp on the null space of Ap.

The following lemma shows that the slack matrix S(X) can be charac-

terized as a least square problem:

Lemma 6 Let X € 1y, Then the dual solution S(X) is the minimizer of

the following least square problem:

min || X°SX5 —I||
s.t. (3.15)
ATy+S=C

Proof.

IX3SX° - 1|
= trXSXS —-2trXS+trf
= trX(C - ATY)X(C - ATy) - 2tr X (C — ATy) +n
= tr (X3(C - ATy X?) — 260X (C - ATY) X+
= tr(Cp — ALy)? — 2tr(Cp — ALy) +n
= trC% —2Cp e ALy + ALy e ALy — 2trCp + 2tr ALy +n
= trC3 — 2trCp — 2y ApCp + y7 (Ap ALy + 2tr ALy + n.

The first order optimality conditions read
Q(ApAg)y —2ApCp + 2ApI = 0.
The proof follows from the fact that Ap/ = AX =0. =
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Let P(X) be the optimal objective value of problem (3.15):

P(X) = X78(X)X®—1, (3.16)

and define the primal measure of proximity
mp(X) = [[P(X)]|.
Observe that

P(X) = X5C - ATy(X)X5 -1

— XB(C . j\r~1’)1¥.5 - X.SATy(X)X—.-S

= XC - XTHX® ~ Apy(X)
= (I = AL(ApAL) T Ap) X°(C = X7HX*
= P4, X%(C—-X"HX?

= Pu.(Cp—1I)

The following lemma shows the strict feasibility of the primal direction

and the rate of convergence when ||P(X)]| < 1.
Lemma 7 Ifn,(X) < a <1, then,

Xt =0 and n,(XT)<n(X)?<1
Proof.

Xt = X+dX
= X~ XP4(Cp~ )X
= X-X°P(X)X*®
= X°(I-P(X)X?,
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and since ||P(X)|| < 1, then max |A;(P(X))| < 1 and therefore ] — P(X) = 0,
ie, Xt = 0. To prove the rate of convergence, first observe that from

Lemma 3.15

PO = HXT)SA)XT)° =
< IXT)2SOX)? =1 (3.17)

On the other hand,
dX = - X°P(X)X° = X -~ XS(X)X, (3.18)

and thus X* = 2X — XS(X)X. Now from (3.17) and (3.18): (in what
follows we denote S(X) by 5)

IPXHIP < IS°X*T s 1)
= |ISP2X - XSX)S® —I|?
— “(SSXSS o 1)2“2
tr(S°XS® —I)?
> (A(87X 57 — 1)
Qo((5°X87) —1)%)?
(HSSXSE‘) - [”2>2
1P

I

IN

The proof now follows. ®
Lemma (7) guarantees quadratic convergence within the primal Dikin

ellipsoid. We now derive the complexity of the primal algorithm:

3.3.2 Complexity of Primal Algorithm

Let a strict feasible matrix X with ||[P(X)]| > 1 is available. We apply a step

size o < 1 to reduce the primal potential function by a constant amount at
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each iteration. Let X = X* — X be the primal direction with step size «,

and consider the reduction in the potential function when 7,(X) > 1:

CeX ™ —(CeX —logdet X +logdet X

Ce(Xt—X)~logdet X' X7
[ X~ Ha X))
2(1 = []XH{d X))

Il

op(XT) = ¢p(X)

H

< CedX—-XledX+

N

b

QO

T (3.19)

IA

(C—XNedX +

From lemma (4) the last two inequalities are true if [[X Yd'X)|] < a < 1.
The best bound can be found by minimizing (3.19) over the feasible directions

dX:

min (C— X 1edX
s.t. (3.20)
A(d'X)y =10

[X—2(dX)X % <a<l.

We employ a transformation technique to solve this problem. The idea is to
transform problem (3.20) to an equivalent problem where the identity matrix
I is feasible. To this end we define a new variable X’ := X Xt X~ and
observe that the constraints can be written in terms of the new variable as

follows,
XXX =X (X - X)X =X~ 1,

and,
AldX) = XPAX X2 (d X)X = Ap(X' — 1),

and the objective function,
(C-XNedX = X°(C-X"NX e X *(dX)X™*°

= (Cp—T)e (X' —1).
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Therefore the transformed problem can be expressed as,

min (Cp—1I)e (X' —1)
s.t.

(3.21)
Ap(X' = I) =0,

X — I <a<1

The optimal solution to problem (3.21) can be computed from the identity
matrix /. The direction towards the optimality must be on the null space of
Ap and of the opposite direction of Cp — I in order to minimize the problem.

Thus,

[8% .
X =7-—2 __px),
e
where,
P(X) =Pu,(Cp—I).
Consequently,
X - T=—® P, (Cp~1),
1pca A )
and

(C—-~XYHedX = (Cp—DNe(X' =1

(87

— —allP(X)]l.
Therefore in view of (3.19) we have,
Pp(XT) ~¢9p(X) < —alP(X)||+ 0=a)
< —a+ —0—2—
2(1—a)
= 4.

This shows that by taking the step size o when the iteration is outside the
Dikin ellipsoid the potential function is reduced by § > 0 at each step.
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Therefore after a finite number of iterations, ||P(X)|| satisfies the desired
condition (< 1) and then by taking the pure Newton’s steps the algorithm
quadratically converges to the analytic center. The complexity of the primal
algorithm can be obtained from the fact that the primal potential function
at the analytic center is a lower bound for ¢p(X). This implies that after at
most,

O(¢p(X) — ¢p(X"))

Newton steps the algorithm stops with an approximate analytic center.

In practice, however, we find the step size by a line search method to get
as close as possible to the Dikin ellipsoid. We now describe this procedure:

Suppose that the primal direction dX is obtained by (3.10). We want to
find the step size « such that ¢p(X + adX) is minimized. Observe that

pp(X +adX) = Ce(X +adX)+logdet(X + adX)™
= CeX+aCedX —logdet X — > log(l+ak;),
j=1
where \; are the eigenvalues of symmetric matrix X 3dXX ™. Now by
taking the differential with respect to « and setting it to zero, one has
Ai

C.dX—Zl‘i'OéAj -

i=1

We solve the above equation by a line search. The initial interval is set such

that
X+:XﬁnmX:X5U+aX‘%XX‘ﬂX5>O
Note that, if aAmin (X 7°dXX~3) > —1, then X + adX = 0. Thus

If Apin (X 79dX X ™) < 0, we choose
—1
Do (X—3AX X )

Otherwise, any o > 0 would serve our goal.

o <
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3.3.3 Primal Algorithm

The algorithm can be summarized as follows:

Algorithm 1 (Primal Algorithm) Given X° = 0, ¢ > 0, and 0 < o <
075, set k=0.

Step 1. Compute y(X*) from (3.9) and S(X*) from (3.11)
Step 2. Compute primal direction dX from (3.10)
Step 3. Compute the projection of dX on to the null space of A by (3.12)

Step 4. Compute P(X*) from (3.16) and the measure of prozimity n,(X*) =
[PXF)]],

Step 5. If n,(X¥) < 0.75 take the pure Newton’s directions and set X*+! =
XF+dX

Step 6. If n,(X*) > 0.75, compute the step size o and set X 1 = XF* +
adX,

Step 7. If ¢p(X*T1) — ¢p(X*) < € go to step 8,
Step 8. Set k =k + 1 and return to step 1.

Step 9. Update y(X) and S(X) and stop.

3.4 Dual Algorithm

In this section we discuss the dual algorithm for solving problem (3.1). Recall

that
Qp={yeR™:C - ATy > 0}.
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and 5, is the strict feasible points of Qp. Let y € Q% and dy (and dS = dS7)

be the dual direction. Consider the quadratic approximation of ¢p(S):

¢p(S+dS) = logdet(S+dS)™!
~ logdet S™' —trS™1dS + —;—trS_l(dS)S‘l(dS).

By feasibility of dy one has:
Al (y + dy) + (S +dS) = C

or,
ATdy +dS =0

Therefore,
—~INT 1 T T
oply +dy) = dp(y) + (AST) dy + Sdy (ApAp™ )dy,

where Ap : S* — R™ is a linear operator and AL : R™ — 8" is its adjoint
operator, defined via
S—'5A15”'5 e X "
ADX = , and Agy = Z yiS"'E’AiS“j
S——.SAms~.5 e X =1
Note that (ApA%) € 8™ with (ApAL);; = tr4;S71A;S7!. Since A; are
linearly independent, then Ap AL >~ 0.

Note that,

%trS‘l(dS)S“l(dS) - %trS”l(—ATdy)S‘l(—ATdy)

= —;-t’l’ (Z derS_lA,) <Z dij‘-lAj>
i J
1
= 53 dudystr (5714:5714;)
%,
1
= ‘Q‘dyT(ADADT)dy-
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By minimizing the quadratic approximation of ¢p(y)

i (ASTH dy + sdy" (ApAp")dy. (3.22)
one has
dy = —(ADADT)«IAsﬂl (323)
and
dS = AT (ApApT) TAST! (3.24)
Now let
X(8)=5"(ATdy+5)s (3.25)

The following lemma shows that X (.S) is a solution of a least square problem:

Lemma 8 Let y € QFf and let S be the slack matriz. Then the primal
solution X(S) of the analytic center is the minimizer of the following least

square problem:
min ||S°XS® — ]|
s.t. (3.26)
AX =0

Proof. The objective function can be written as,

|s°x5° ~ 1| = tr(5X5X — 25X +1)
tr(SXSX)—2trSX +n

H

The KKT condition for this problem is
25XS —25 — ATv =0, (3.27)

where v € R™. By multiplying the matrix St from the right side and from
the left side to equation (3.27) and then applying the operator A and noting
that AX = 0, we have:

—2A571 ~ (.AD.ADT)’U =0
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or

and thus from (3.27),
X(8)=5"(ATdy+5)s™

The proof follows. =

Let P(S) be the optimal objective value of problem (3.26):

P(S)= S‘SX(S)S'5 — 1,
note that

P(S) = S°(87 (ATdy+5)57") 7 ~1
= S5 ATdys"
= —8§7%(dS)S™ .

(3.28)

The following lemma shows that if || P(S)|] < 1 then the updated slack matrix

ST = S+ dS is strictly feasible and the dual algorithm converges to an

approximate analytic center quadratically.

Lemma 9 If n4(S) = ||P(S)|| < 1 for some interior point y € Q% and its

slack matriz S, then
ST =0 and n(ST) <m(S)? <1
Proof. Note that

St = §54dS
= S - 8°P(8)5°
= S3I - P(5))S?,
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and since ||P(S)|| < 1, then \;P(S) < 1, for j = 1, ..., n, which implies that
St -0
To prove the second part of the lemma first observe that X (S) is the

minimizer of problem (3.26) and thus

na(ST) = ||P(sh)]]
= |[(s*)*x () (57~ I
1(ST)°X(S)(57)* ~ 1], (3.29)

IN

for all X with AX = 0. On the other hand,
ST =8 ATdy =28 — (ATdy + S5) = 25 — SX(S)S. (3.30)

Now from (3.29) and (3.30) (denoting X(S) by X)

s x @) sH* 1| = [[xsstx® -1
= |lx*@s - sx(s)s)x° -1
- -SSX(S)SX«E’ —2x35x° 1|

= Jlocssx o
= (X5SX5~)

= T OH(XP5X%) - 1)t
< (Zi(xssx5) —1)?)’
= (Jprssxs o)

- s

74(S)*,

H

The proof now follows. =
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3.4.1 Complexity of Dual Algorithm
Assume that (y,S), with S = 0 is given such that 7,(S) > 1, we consider the
new point y* with step size a/ng(5), for 0 < a < 1:

+ (87

VTS

y (ApApT)LASTY, (3.31)

Let

dy = ——2(ApApT)LAS™, and d'S=-ATdYy,

7711<S)
We prove that by taking the direction d'y the dual potential function ¢p(y)
is reduced by a constant amount at each iteration and after a finite number

of Newton steps the iteration lies within the quadratic convergence region.

Consider the reduction in the potential function when ||[S™'ST — ]| <

a<l1,
¢p(yT) ~ oply) = —logdetS~1SH
Te(glgt _ |SLs* — 1) .
< ~Le(S7IST =D+ g emrer gy (332)
_ 1y |S-1d's|?
= —trSTdS + )
i Ty |5-1d's|*
= trSTAdy+ 30— 55T
e [EREEIS
= W 5 sy
Thus
—_ 7 2
¢p(y") —¢ply) < V7 ¢p(y)dy+ 5 (3.33)
- 201 — ST ATdy|)) '
2
= (AS—I)T(Z,U"‘m (3.34)
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The best bound on the reduction of potential function can be obtained by

minimizing the right hand side of (3.33).

min VT¢p(y)d'y
s.t
HS~1ATd’y

l <a a<l
or, in the symmetric form
min (AS™HTd'y
8.1t (3.35)
HS"SATd’yS_E” <o a<l

The optimality condition for problem (3.35) is
AST + pAS Y ATdy)S™ =0, u>0

or
1

dly — "’ILI(A’D-A’DT)QIAS_I'
The correct value of u can be found by the constraint

H

o = ||ssArays |’
= trS YA d'y)S™ (AT dy)
- %]15‘1AT(ADADT)‘1AS”1H2
- L srasso]

1 2
= ;;;HP(S)II ,

and thus 1/u = a/ny(S). Thus the optimal objective value of this problem

can be bounded above by —a:

T oo % ~INT Ty~1 41
Viep(y)dy = nd(S)(AS ) (ApAp™ )T AS
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~q
= trS AT (Ap ATt ASTE
@) A )
R 7
nd(s)nd( )

—mld.(s)

—Q.

i

A

Consequently

Y bl <
dp(y™) — éply) < (1+2<1*a).
Let 6 = a — a?/2(1 — «). Thus

¢p(y™) < dply) -0
where § > 0 for o < 1/3.

Like in primal case, in practice, we find the step size o by a line search
method. Suppose that the dual direction dS is obtained by (3.24)

Hl

ép(S + adS) log det(S + adS) ™

= —logdet S — > log(l+ a);),
=1
where \;s are the eigenvalues of symmetric matrix S™°dSS™®°. The mini-
mizer of the dual potential function can be found by solving
Aj

=0
;1+&Aj

for . The initial interval of the line search is set such that
St =S5+adS =5 (I+aS *dSS™*) $7 » 0.

If adpin (S7°dSS™°) > —1, then S+ adS > 0. Thus, If Ay, (S72dSS™3) <

0, we choose
-1

Amin (S72dSS53)

a <
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Otherwise, any o > 0 would serve our goal.

The general complexity of the algorithm can be obtained from the fact
that the dual potential function at the analytic center is a lower bound for

¢p(y) and hence after at most
O(¢n(y) - only®))
iterations the algorithm stops with an approximation of the analytic center.

The analysis of the primal-dual algorithm is more or less the same as the
analysis presented for primal and dual cases. The complexity result, however,
for the primal-dual case is more specific since the potential function at the

analytic center is known in advance. That is the complexity of the primal-

dual algorithm is
O(¢PD(-XO7 yov SO) - '.’Z)

3.4.2 Dual Algorithm

The dual algorithm for computing an approximate analytic center of {2 can

now be presented:

Algorithm 2 (Dual Algorithm) Given (y° S%) strictly feasible, ¢ > 0,
and 0 < a < .075, set k=0.

Step 1. Compute the dual directions dy and dS from (3.23) and (3.24),

Step 2. Compute X(S) from (3.25) and the measure of prozimity ng(S*)
from (8.28),

Step 3. If n4(S*) < 0.75 take the pure Newton’s directions and set y*+! =
y* + dy and SF = Sk 1+ 49

Step 4. Ifny(S*) > 0.75 set y*+1 = y* +- s dy and ShHl = Sk 4 e ds,
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Step 5. If op(y*™) — op(y*) < e go to step 7,
Step 6. Set k =k + 1 and return to step 1.

Step 7. Update X(S) from (3.25) and stop.
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Chapter 4

Analytic Center Cutting Plane

Method and its Complexity

In this chapter we present an algorithm based on the analytic center cutting
plane method (ACCPM) with semidefinite cuts and discuss its complexity
in detail. We start with introducing the convex feasibility problem in Sec-
tion 4.1. We define the semidefinite cuts and derive the primal and dual
directions after adding a central semidefinite cut. In Section 4.2 we analyze
the restoration procedure and establish an upper bound on the number of
damped Newton steps after adding cuts. The ACCPM algorithm is pre-
sented in Section 4.3. Section 4.4 is devoted to the convergence analysis of
the algorithm. We derive the complexity of our algorithm in this section. We
complete our analysis by setting up the complexity of the Newton algorithm

for computing a strictly feasible point after adding cuts in Section 4.5.

4.1 Convex Feasibility Problem

For the purpose of proving complexity results, ACCPM is more clearly de-

scribed in the context of a convex feasibility problem: find a point in a
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Figure 4.1: A 2-dimensional semidefinite cut

bounded convex set 2*, with a nonempty interior. The solution set (2* is as-
sumed to contain a ball A, with radius € < 1 and is contained in a compact
convex set described by matrix inequalities, so called the set of localization.
At each iteration the analytic center of the set of localization is computed
and a separation oracle is called: the oracle determines if either the center is
in €%, thus solving the problem, or returns a cut which cuts off the current
point and contains the solution set. A special updating step is then needed
to get as close as possible to the next analytic center, as first suggested by
Mitchell and Todd [36]. First, we define the semidefinite cuts.

Definition 10 A p-dimensional semadefinite cut is a cut of the form
B"y < D,

where D € 8 and B : SP — R™ is a linear operator defined by (BX); =
B;e X, with B; € SP; and BTy = Y7, y;B; is its adjoint operator. The
matrices B; are called the cut matrices, and if D = BYj, where § is an

approzimate analytic center, then the cut 1s called a central semidefinite cut.

Figure 4.1 shows a semidefinite cut in 2. Notice that the semidefinite

cut BTy =< D is a generalization of linear, multiple, and quadratic cuts. If
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B, and D are scalar, then B7y < D is reduced to a single cut 47y < by and
if they are diagonal matrices, then the cut is reduced to a set of multiple
linear cuts BTy < diag(D), where the columns of matrix B are diag(B;).

Furthermore, if the cut matrices B; and the constant matrix D are of the

0 - IO
Bi: ) D= )
(—b'? q@'> (0 d>

nen y = D is reduced to a quadratic cu yt y+qgy < d, where the
then BTy < D duced t drat t yI(BTB Ty < d. where tl

form of

vectors b; form the columns of matrix B.

Let
Qp={yeR™: A"y < C}
be the current set of localization. Then the updated set Qf C Qp after

adding a central semidefinite cut is
O ={yeR": A"y =C, By < B"y}.

To compute an approximate center of the updated set of localization, we
need a strict interior point of QF. We start from § and choose the direction
dy = y — § towards the interior of the set of localization as the maximizer of
the determinant of the new slack matrix to the boundary of the dual Dikin

ellipsoid centered at .

min — logdet A
s.t.
1S~ ATdyS—5|| < 1 (4.1)
Bldy+A=0
AXx0.
We call the optimal solution of Problem (4.1), the optimal updating direc-
tion. An interior point of QF is obtained from the analytic center of p and

the optimal updating direction. We call this point the warm start and it will
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Figure 4.2: Optimal updating direction

be used as an initial point to compute the analytic center of f. Figure 4.2
gives a pictorial view of Problem 4.1. It shows the updated set of localization
and the optimal updating direction over Q}, as well as the warm start.

Problem (4.1) can be reformulated as follows:

min - log det(—B7dy)
s.t.
dy" (ApAp)dy < 1.

By the KKT optimality conditions, dy and A are optimal iff there exists

unique multiplier o > 0 such that,

BA' + o(ApAL)dy = 0 (4.2)
Bldy+A = 0, (4.3)

From (4.2)
dy =~ (Ap AB) " BA™! (4.4)

and from (4.3)
A= %BT(ADAg)*BA—l.
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Define the operator V : 87 — & by V = BT (ApAL)~15, then

A=lvit, (4.5)

o

If V is nonsingular, then the dual direction A can be uniquely computed by

solving the following optimization problem
min  §trAVT'A —logdet A,
A0
The correct value of the Lagrange multiplier ¢ > 0 is known in advance:

ISP ATdyS 5P = dy' (ApA)dy
1, o« 1 , ~
= EE(BAQI)f(ADAg)"lBAﬁl (from (4.4))
1 - ~
= ’(;é'tT‘A_llgT(.AD.A‘IIJ)‘IBAvl
= —%trf\"lvf\’l
o

= -(1;1:7"]\‘1]\ (from (4.5))
D

g

On the other hand, ||S*ATdyS~3|| = 1 and thus o = p. Consequently,
dy = —%(ADA%)“IBJN\’I and dS = —ATdy

where,
A — inf? ~1p
A =arg rj{lé%{ztrAV A —logdet A}.

To update the primal direction, observe that the updated primal feasible
X
oi-{(* ) roaxver-)
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and the primal direction dX is obtained by maximizing logdet 7" while re-

specting primal feasibility and remaining in the primal Dikin ellipsoid cen-

tered at X:
min —logdetT
s.t.
AdX +BT =0 (4.6)
1SdX|l <1
T > 0.

The optimality conditions of problem (4.6) are

T 4+ B™ = 0 (4.7)
ATv +0'S(dX)5 = 0 (4.8)
o'(1—|ISdX|) = 0© (4.9)
AdX)+ BT = 0, (4.10)

where ¢’ > 0 is the Lagrange multiplier associated with the norm constraint.
By multiplying equation (4.8) from the left and from the right by S~ and
then applying the operator A we have,

(ApAL)v + o’ A(dX) = 0,

using (4.10)
v =o' (ApAL) BT,
and again from (4.8)

ix = %5—1(,4%)5—1
= —STAT(ApAD)'BTS L.

Since AT(Ap ALY BT is symmetric, then dX is symmetric.

45



Finally from (4.7)

Tt = BT
= UIBT(ADA£>~1BT
= o'VT, (4.11)

and T is the unique solution of the following optimization problem:
~ O"I
= arg min{ —tr — t T} 12
T algr%lé%l{ 5 trTVT — logdet T} (4.12)

Let us find the Lagrange multiplier o’.

1S(dX)|)P = trS°(dX)S(dX)S?®
= trST AT (ApAD) BT STTAT (ApAp) B
‘————-\/—————’ \——-V———-—-/
= uT(ApAD)u
= (BD)T(ApAL)'BT
= trTVT
_ P
o'’

Hence ¢’ = p.
Now for @ < 1 —0, let y+ = § + ady, and

X+ — X+adX 0 ot S+adS 0
0 ol ]’ 0 ah |’

be the warm start. Since T is uniquely defined, in view of (4.5) and (4.11)
one can easily prove that TA = ]l)] and therefore computing T suffices to
compute S*. We postpone the complexity analysis of the optimal updating
direction (problem (4.12)) to section 4.5. The following lemma guarantees

the strict feasibility of the warm start.
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Lemma 11 The updated points X+ and (y*, ST) are strictly feasible for OFf
and QUf respectively, and therefore they can be used as the starting point to

recover the analytic center.

Proof. First observe that

XX )P = (SRS TSP dX S
= tr(STOXTIE5)2(S0dX 5)?
< Z;/\j(S—3/"'15”-5)A§(§'5d§¥5-5) (4.13)
]:‘
< N(STIETISTN) Y NS IAXST)
7j=1
= SRS NISdX]? (4.14)

where inequality (4.13) is due to Theobald [55] (see also Marshall and Olkin
[35]). From (4.14) and noting that dX is optimal for problem (4.6), and X

and S are approximate centers, one has

— ~ 1
X-lX| < —.
1X1aX]] <

On the other hand o < 1 — 6, and
X +o0dX = X% +aX%dX X5 X5

Thus X + adX > 0. Moreover T is positive definite by construction, and
hence X+ > 0. Since X is primal feasible then A(X + adX) + B(aT) = 0.
That is X is strictly feasible for the updated primal set .

To prove the strict feasibility of the dual iteration, we have
S+ adS = 5%1 —aS?ATdyS—?)5%,

and since dy is optimal for problem (4.1), then ||5~5A47dyS—*|| = 1. Thus
S+adS>0. =
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4.2 Analysis of Restoration

Before getting started, we state a lemma similar to Lemma 4:

Lemma 12 Let S € 8" be such that ||S]| < 1. Then
logdet(I +5) > IeS +||S]| +log(1— |IS]))-

Proof. The following inequality is well known (for a proof see Roos, Terlaky,

and Vial [50], page 439)

im (1+5,) > s + ||s]| + log(1 — ||s]]).

The lemma follows by letting A;(S) =s;. =
The following lemma bounds the potential functions at the warm start:

Lemma 13 Let (X,7,S) be a 8-approzimate analytic center. Then
ép(ST) < dp(S) — a(l — 6) —log(1 — ) — log det AL, (4.15)
op(X 1) < ¢p(X) — a1 — 8) — log(1 — o) —logdet oT, (4.16)

and

¢pp(XT,8T) < ¢pp(X,S)—2a(1-6)—-2log(1—a)—2plog a+plogp (4.17)

Proof.

op(ST) = —logdet S(I + aS71dS) — logdet oA
= ¢p(S) —logdet(] + aS71dS) — log det aA

By Lemma 12

$p(5%) < ép(S)+
—TeaS7'dS — ||aS71dS|| — log(1 — ||aS~'dS||) — log det cxA(4.18)
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Since X e dS = —(AX)Tdy = 0,

!I@QS’"]'CZNS' =

- - =

IN
2 @2
[
S
C{))

J
]
‘—55—"
&
%1
?7?‘
=

IA
o
Fb

The first inequality, thus, follows from the inequality (4.18), the above fact
and noting that f(t) = —t — log(l — ¢) is an increasing function over its
domain.

To prove the second inequality note that
op(XH) = ¢op(X) + aC e dX + af” BT —logdet(I +aX 'dX) —logdet oT,

again by Lemma 12

op(XH) < ¢p(X)+aCedX +ay’BT —TeaX 'dX

i - _(419)
—laX1dX|| - log(1 — laX'dX|]) — logdet aT.

On the other hand from AdX + BT = 0

aCodX-kagTB’f—aX‘lode! = lag-d}(—a)?”locl:)(l
(

A
; Q
>
un
S

1
=
B

|

=
bl

L

IN
Q
S

The primal inequality, therefore, follows from the inequality (4.19), the above
fact, and the property of increasing function f(¢). Finally the last inequality
is obtained by adding up (4.15) and (4.16). =

The following theorem provides the complexity of updating the analytic

center after adding a p-dimensional semidefinite cut:
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Theorem 14 Starting from the strict interior point (X, S%), the number of
iterations to update an approzimate analytic center is bounded by O(plog(p+

1)), where p is the dimension of the central semidefinite cut BYy < BTy.

Proof. Since (X, S) is a f-approximate center of the current set of localiza-

tion, from Lemma 4 we have

opp(X,5) < XeS—Te(XS-1)+ 2(1l’fle—§[ﬂ T

92
< |
= oAy

Now, let the analytic center of the new convex body be ((X*)*, (S*)"). Since
b (X°)*, (5%)*) = n +p, from (4.17)
¢pp(XT,5%) = épp (X", (S)") < k(e 0,p) + plogp,

where

02
k{a,8,p) = 500 2a(1 —6) — 2log(1 — ) — 2plog o — p.

At each iteration of the Newton’s method the potential function is reduced

by a constant amount §. Therefore after at most

(ff(cv,@,p) +plogp

5 ]~ O(plog(p+1))

iterations the algorithm stops with an updated analytic center. ®

Figure 4.3 illustrates the recentering iterations from the warm start after
adding a 2-dimensional semidefinite cut. As the figure shows, the number
of iterations to recover the centrality is only one. Alternatively, one can
compute the analytic center of the updated set of localization without using
the optimal updating direction. In this case, one should make the cut shallow

and use the previous analytic center as the starting point. As Figure 4.4



Updating the analytic center starting from the maximizer
of the determinant of the new siack matrices

201
iP5k \ /
104 \
s \ I
A
= of T
I \\
_sf y \
e
/ A .
10k /7 Y
N,
. A
-1 \
_20f
a s
~20 ~15 -0 -5 o 5 10 15 20

Figure 4.3: Recentering steps from the optimal updating direction

Updating the analytic center after adding
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Figure 4.4: Recentering steps without using the optimal updating direction.
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shows this procedure drastically increases the number of steps to update the

analytic center.
In the next section we present an ACCPM algorithm for the convex fea-

sibility problem with semidefinite cuts.

4.3 The ACCPM Algorithm

The ACCPM algorithm attempts to find a feasible point in Q* C Qp, where
Q" is the solution set and contains a full dimensional ball A, with radius €.

We make the following assumptions:
Assumption 1 Qp C [0, 1]™

Assumption 2 Qp s described by an oracle. That is, the oracle deter-
mines if either the center is in 0*, thus solving the problem, or returns a

p-dimensional semidefinite cut which contains §0*.

Assumption 3 For the semidefinite cut B, we assume that

RN =
max (trBu 164} =1, (4.20)
where b, is the m-vector defined in (2.1).
For the next assumption we need to define a condition number on the
semidefinite cut.

Definition 15 At any point z ¢ QF, let BTy < BL'z be the cut generated by

the oracle. The condition number of the cut BL is defined via:
p, = max{det B v : Blu >0, ||Ju|| =1} (4.21)
and the condition number of the field of cuts {BY, ¥ 2z & Q*} is defined by:

= Zié]ﬂf* Ly (4.22)
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Assumption 4
u > 0.
Now let S,(y) = BT (z —y) = 0 be the slack matrix corresponding to one

of the cuts, y° be the center of N, and u be a vector such that [juf] = 1.

Then
S:(y° + eu) = S:(y°) — eBlu,

and as y°+cu e N, C O,
S.(y° +eu) = 0,

and thus
S.(y¢) = eBru

In view of Assumption 4 now the following lemma is clear:
Lemma 16 For any z ¢ QF,
det S, (y°) > Py,

where p 1s the dimension of the cut.

Now we present the ACCPM algorithm:

Algorithm 3 Given % = {y € R™ : (ATy < C°}, where (A°)Ty =

A0 = Diag(e;) 0 and C° = Im O -
0 —Diag(e;) ¢ On

Let k=0
1. Compute an approximate analytic center gk for Q’f).
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2. If §* € O, stop.
3. Otherwise, call the oracle for the py-dimensional cut (B*)Ty < (B*)T¢*

4. Update the set of localization: Q5™ = {y € R™ : (AF)Ty < CF+1},
where (AFOTy = 50,y AR with

Al k
AR — £ 0 , and O = ¢ 0 : (4.23)
0 Blf“ 0 (Bk)TQk

7

Set k =k +1 and go to step 1.

It is worth mentioning that at each iteration k, we enlarge the dimension
of the cut matrices A;, by pr when adding the semidefinite cut as a block
diagonal. That is, for all &

k-1

dim(AY) = 2m+np =2m+ Y p,
=0

and ng = 0.

4.4 Convergence of the Algorithm

Let us bound the potential function at the new center. We first define the
min-potential functions.

Let Qp and €1p be the current primal and dual feasible sets respectively.
The primal (dual) min-potential function denoted by P(Qp) (D(§2p)) is the
value of the primal (dual) potential function at the analytic center of Qp

(2p). We have the following theorem

Theorem 17 Let D(§ip) be the dual min-potential function at the current
set of localization Q)p and let QOf be the updated set after adding the p-

dimensional semidefinite cut BTy < BTy at a 0-approzimate center §. Then

DY) > D(Qp) — Zlogt C(p,9,a), (4.24)
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2

ST-0) (1 —6) —log(1 — o) — p(1 +loga) + plogp,

C(p,0,a) =

and

t: =/ (B)7 (ApAD) b, (4.25)

where b is the m-vector defined in (2.1).

Proof. Let P(Q2p) be the primal min-potential function at Qp and let O}
be the updated primal feasible set after adding the cut. From the properties
of the primal-dual potential function and (4.16)

D) = n+p—PQp)
> n+p—op(X)+a(l —0) +log(l — a) + logdet oT.
In view of Lemma 5 and the above inequality

2

2) - - I (4.2
2(1_9) +O‘(1 9)+10g(1 a)+logdetaT. (4. 6)

D(Q2f) 2 D(Qp) +p-
Recall that
T =arg min{gtrTVT —logdet T}, and trTVT = 1.

Thus logdetT > logdetT’ for any positive semidefinite matrix 7" with

trT'VT = 1. Let
T—l

where T is a diagonal matrix made up of ¢, > 0, defined in (4.25). First we

prove that trT V7! < p?:

4

trT~ VTt = T BT (ApAL)'BT!
= (BT Y (ApAL) BT}



= Z (tT’BiT~l)($7’B_jT‘1)(ADA%);]'l

() (£9) ot

clearly (b)" (ApAL) 108 < t;t,. Thus
trT VT < p* (4.27)
Now
logdetT > —p log VirT-1yT-1 — log det T’

r
> —plogp— ) logt,
=1

From (4.26), the inequality (4.24) is immediate now. ®

Theorem 17 establishes a bound on the potential function at the new
center in terms of p as well as # and a. Since the values of 6 and « are
arbitrary within their limit, we can simplify the bound by choosing fixed

values for them. Let 6 = 0.01 and o = 0.9. One can check that
Clp,0,a) < plog(p+1),
and therefore the inequality (4.24) is reduced to
D) > D(Qp) — plog(p+ 1) Elogt (4.28)

We note that (4.24) is valid for moderate values of 6 and o, i.e, for 8 close

to zero, one should not choose a very close to 1 (e.g. & < 0.9 does the job).
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At iteration k, let p = max{p;,i = 1,....,k} and D(£1%) be the dual min-

potential function at Q%; using (4.28), we have

DL > D(OF) — prlog(py + 1) — ZIOgu

Pk

> D(Q) — prloglp + 1) Zlogt

Npett
> DY) — npiglog(p + 1) Z log #; (4.29)
Now we state a series of technical lemmas to construct a bound on the sum-

mation term in (4.29).

Lemma 18 Let AAT € 8™, with (AAT);; = A; e A;, where A; € S". Then
AAT = Z al (ai])T7

q
lg=1

where afl is the m-vector defined in (2.1).

Proof. First observe that
Ao A = Z(ag)TaJ
g=1

where A; = (a},85,...,a,), 4, € R", i = 1,..,m. Now consider n Gram

matrices G?, ¢ = 1,...,n defined by G7; = (a,)"al. Thus
n

AAT = Y Gt

= Z AqTAm

where A, = (aq,ag, ,ELZI"). Agﬁq can alternatively be expressed by the

summation of a number of rank one matrices:
I
171
= Z aq(aq)T
=1
where af] is the row [ of A, i.e., aé = ((A1)ig: (A2)1gs ooy (Am)1g). ®
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Lemma 19

T 1 T
ApAp = e AA

Proof. Consider the quadratic form associated with Ap A} — gz AA".
Fory ¢ R™

fly)=y" (AD-Ag - ;AAT> y.

(trS)?
Let ALy = W, then ATy = S5W S and we have
fly) = WelW — (trg)Q(S-SWSﬁ) o (S 5?)
= W - 5w
> W - gl S
= 0.

Therefore the quadratic form is nonnegative for any y € R™. ®

Lemma 20 At the k' iteration of the ACCPM algorithm

1 &
AR (AL =8I + o AR (4.30)
Lo=1

where by, = ((B1)ig; (B2)ig, -, (Bm)ig), and matrices B; are block diagonal

matrices composed of cut matrices B, forr =0,1,..,k — 1.
Proof. From algorithm 3 since Q% = [0, 1]™
Ap(AD)T = 81,
and after adding k + 1 semidefinite cuts (B")Ty < (B 'y, r = 0,1, ..., k we
have
ASAEYT = ALY + By (Bh)T

k
> 81+ Bp(Bp), (4.31)

r=0
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where (B}, (Bp,)" )y = tr(S7) 7' B[ (S7) LB} and 5™ = (B")T(y" — ).
On one hand from Lemma 19
1
B (B T - B (B’ T’
D( D) — (tTST)Q ( )
where (B (B)7),; = trB! Bl
From (4.20), we have trS" = Y7, (v" — y):;trBf < m and therefore

1
By, (By)T = =B (B)". 4.32
b(BY)T = — B (B) (432
On the other hand by Lemma 18
pr :
B (BT = Z bfl(bg)T. (4.33)
lg=1

The lemma follows now from 4.31, 4.32, and 4.33. =
The next lemma is essential to bound (4.29). This lemma is due to Ye [63]

with some changes to suit our case.

Lemma 21 [fp < m, then

g4 n2
ST <o2m’log {8+ 2L, (4.34)
2 1 g - .

for t; defined in (4.25).

Proof. Define | m
HA =3+ — 3 b)),

i,j=1
where 0% is the m-vector defined in (2.1); and let #° = 81.

1 o 2
det HEH! = det (H’“ +— > b;(b;.)T> (1 + n%} : (4.35)

1,7€T1
where 7 = {i,7 = 1,....pe\(4,7) = (1, 1)} and

~1
2 2 1 iy
Pt = (b%)T (H’” + 3 Z bj(bj)T> bi.
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Now we establish a lower bound on r. To this end we study the eigenvalues

of
- ! o\ =570 (i y
G=1I+— Z (M550 (05) (HR) 2.
i,7€11
Let z € R™ with ||z|| = 1, then
: 1 ,
2TGr = |la]* + -3 > (@ (H) )

i,7€11

Ol L TN T

1,7€1
1 iNT (ki —1pi
RN ISV A)
Since H* = 81
a'Gr < 1+—15 > éllb;HZ.
m® S
From Assumption (4.20)
2
TGr <1+ 26—
T gr<1+ FcR
and since pr < p < m, then
9
TG < .
r Gr < 3

That is G~ = (8/9)I and therefore
T2 — (b%)T(Hk)—'S’Q"l(Hk)”sbi
2 (8/9)7’%17

where 72, = (b})7(H*)~1bl. Now from (4.35)
k41 8riy ko L i (1T
det ¥ > (14— | det | H +— > B0 .
m ij€Tx

By repeating this procedure for each ¢ and j one has

Pr &2
det H* > T (1 + -—%) det H*,
Gj=1 9m
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where 2 = (b5)7 (HF) 15,
By taking logarithm from both sides of the above inequality we have

&y 2
log det #*1 > ZIOg( - )—Hogdet?{k
2,7=1

2
> 210g< il )—I—logdet?—l’lc

and therefore

Pr .2
T k
—— +log det
1'}::; 55 +logdet H
Ng41 2

> ; 2777;2 + log det H°.

log det ™1 >

(4.36)

On the other hand, using the arithmetic-geometric inequality

log det HF 1

m t k41
=log [T A;(H**1) < mlog i
j=1

and from the definition of #* and Assumption (4.20)

1 & i fLE 2
trH T = tr (8[ +— > bj(bj)T) =8m + ’“*1

i=1
thus

2
log det H**! < mlog (8 + @ﬁ;—> .
m
This inequality together with (4.36) give
Nkl

ng,
> ri < 2mPlog (8+ >
m3

I=1

(4.37)
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In view of Lemma 20, A% (A%)T = #H* and thus
(87 (Ab(AB)T) ™ b < () (1)
or t2 < rZ. The proof follows form (4.37) now. m

In the next theorem we derive a bound on ng, the dimension of the accu-

mulated block diagonal cut matrix.

Theorem 22 The ACCPM algorithm stops with a solution in (0* when

])27713

2)7

g “*()*<

pre

where in OF the lower-order terms are 1gnored.

Proof. Consider the k%" iteration of the algorithm. Since the analytic center
is the minimizer of the dual potential function and since 37 ¢ Q*, for j =

0,1,....,k— 1, in view of Lemma (16) we have
DY) < —logdet(C* — (AF)Ty")
k-1
= —logdet(C® — (A°)Ty*) — >_logdet((B)" (5’ — y))

j=0
< —(2m+ng)loge — klog p.

Notice that if ¢ > 1, this parameter can simply be eliminated from the above

inequality. We therefore consider the worst case complexity where u < 1.

Now from inequality (4.29)

13N}

1
(2m + 1) log pie < 2mlog 5 + nyylog(p + 1) + 5 3 logt,
7=1
or
1 R
log ue — lo +1) € ———— 1 92mlog - + log ¢
g i glp+1) < 2(2m+nk+1>( &7 ; gz)
mo Sk 42
< llOg_Z__‘_;i:_l_l_
2 2m + Npat
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Note that the second inequality is due to the arithmetic—geometric mean.

Finally by Lemma 21

31 mg i
ue \? g 2+ 2m° log (8 -+ 7%)
p+1 2m + ngyq '

The algorithm stops with a solution in {2 when this inequality is violated.

In other words, when ny ~ O*(p*m3/u?c?). m

The next section completes our analysis by bounding the number of

damped Newton steps needed to solve problem (4.12).

4.5 Complexity of the recentering direction

Let 7 be an approximate center of {2p and consider a p-dimensional semidef-

inite cut at 7. Let
F(T) = gtrTVT ~logdetT.

Recall that the optimal restoration direction is obtained by minimizing this
function over the positive semidefinite cone. In this section we analyze the
behavior of the Newton method as applied to F'.

We first prove that the (dual) feasible region is contained in an enlarged
Dikin ellipsoid. This result is used to construct an upper bound on the

functional gap of F' at its optimal and initial points.

Lemma 23 Let (X,4,S5) be a #-approvimate analytic center of Qp. Then

15-24T — )3 < Tt ),

for any y € Qp. In other words, the current set of localization is contained

in a Dikin ellipsoid centered at §, and enlarged by a factor of Qjﬁi)—(%ﬂ—).
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Proof. Let y € Qp be dual feasible and S = C — ATy. From the properties

of matrix norm one can prove that (see the proof of (4.14))

IS7HS = S < ST X ool X (S = Sl (4.38)
Since X @ (S —5) =0,
IX(S = 8)+ 1| = [|IX(S ~ )" +n,

and therefore
1X(S = Sl < IXS] + XS - 1] (4.39)

But,
IXS|? = tr(X°8X7)?

= 2 N(X?SX7)

< (T aE®sx5)

= (Xe5),
and since AX =0, then ||[XS|| = X e S.

Now from || XS — I|| < 6 and
|XS 1|7 = [|§°XS5*° —If*
= Y NSRS 1),
one has
1—8< MXS) <1+,

and thus
XeS<(1+8n and ||S7IX Y, <5

The above inequalities along with (4.38) and (4.39) prove the lemma. =

In the next theorem we derive a bound on the number of iterations of the

Newton method as applied to F(T).
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Theorem 24 Let 70 = \/—E“T%}M%TTI where T 1s the diagonal matriz defined
in. Theorem 17. Then starting from T° the Newton method finds the optimal

updating direction in at most
o plog & +log i
B —log(1+f)

o (1—-0)
A1+ n)
B is the Newton decrement, and p > 0 is the condition number for the field

of cuts defined by (4.22).

iterations, where

Proof. Let T and A be the optimal solutions of problems (4.12) and (4.1)
respectively. We first derive an upper bound on the functional gap of F at
79 and 7. Observe that

F(T% = 267010 - log det T°

2
= g + plog VtrT-1VT-1 — logdet T4,

and from (4.27) and definition of T

P
F(T% < §+plogp+ > logt;.

i=1

Since Ap AL = 81, then " logt; < (p/2)log(1/8) < 0. Thus
F(TY < ]53 +plogp. (4.40)
On the other hand, recall that pT'A = I; thus
F(T) —logdet A = g + plogp. (4.41)

Let us construct an upper bound on — logdet A. From Lemma 23, the up-

dated set of localization {1}, is contained in a Dikin ellipsoid enlarged by a
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factor of —}i@—’ﬂi By shrinking the Dikin ellipsoid with a factor of —-—~——(1 0T T)

at 7 and noting that QF contains a ball with radius ¢, one can prove that

pn{yerR™: ||SPA (-5 % <1}

contains a ball A.. with radius £* = (Tn(fle—;%jﬁ“)' This set is the feasible region

of problem (4.1). Let y* be the center of N.«. Then y* + c*u € N,- for any
u such that ||u|] = 1. In view of Assumption 4, following the same line of

argument as in Lemma 16, we have

- 1 1
—logdet A < plog - 4+ log —.
£* I

Now from (4.40), (4.41), and the above inequality, one has
. 3 1 1
F(T°) — F(T) Sploge—*%—log—«. (4.42)
u

Now observe that F(T) is composed of a self-concordant barrier and a
convex quadratic function and due to the stability of the self-concordant
functions under summation [44, proposition 2.1.1], F'(T') is a self-concordant
function on S%. Using Theorem 2.2.3 in [44] one can prove that the Newton
algorithm with step size ; + 715 reduces the value of F(T') by a constant amount
(8 —log(1 + ) at each iteration, where 5 > 1 is the Newton decrement;
and the convergence rate becomes quadratic when the iteration is close to
the optimal solution.

Thus, we have
F(T*) < F(T) - (8 — log(1 + 8)), (4.43)

where TF =T + 1—1,—1_73—dT, and 8 > 1.
The theorem now follows from (4.42) and (4.43). ®
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Chapter 5

Applications and

implementations

In this chapter we discuss the applications and implementation issues of the
algorithm developed in Section 4.3. We apply the ACCPM as a nondifferen-
tiable technique to solve a special case of semidefinite programming. ACCPM
is an alternative technique for solving nonsmooth optimization problems.
The advantage of this method, as we saw in the previous chapters, is that
the computation of an approximate analytic center of a compact convex set is
relatively simple and the recentering procedure can be done very efficiently.
This is the first integration of a nonpolyhedral cone with the ACCPM.

Our work was motivated by the Spectral Bundle Method for semidefi-
nite programming which was introduced by Helmberg and Rendl [23]. This
method is an extension of the algorithm proposed by Kiwiel [26] into the
cone of semidefinite matrices, where the new iterate is updated based on the
bundle of subgradient information collected from the previous iterates. In
this chapter we use their idea in reformulating dual problem of semidefinite
program into an eigenvalue optimization. Then we transform the optimiza-

tion problem into a convex feasibility problem and apply the ACCPM to find
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the solution.
The chapter is organized as follows: In Section 5.1 we reformulate the

dual problem of a semidefinite program into an eigenvalue optimization and
study the maximum eigenvalue function. We then reduce the eigenvalue
optimization problem to a convex feasibility problem with semidefinite cuts
in Section 5.2. Section 5.3 introduces the weighted analytic center when the
set of localization is composed of linear and semidefinite cuts. Sections 5.4
and 5.5 extend the primal and dual algorithms presented in Sections 3.3
and 3.4 for the weighted analytic center and derive the primal and dual
directions corresponding to the linear and the semidefinite cuts. We describe
recovering the primal feasibility after adding linear and semidefinite cuts in
Section 5.4.1 and discuss the difficulties when dealing with the deep cuts
in dual space in Section 5.5.1. We also present a path-following algorithm
for recovering dual feasibility in such cases. In Section 5.6 we explain how
a feasible solution, near the optimal solution, for the primal semidefinite
program can be created. Finally, Section 5.7 is devoted to the numerical
results of our algorithm when applied to the semidefinite relaxation of the

max-cut problem.

5.1 Eigenvalue Optimization

Recall the primal problem of semidefinite programming defined in Section 2.1.

max CeX
s.t.
5.1
AX =5 (5.1)
X =0,
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and the dual problem

min by

s.1.
Ay —S—C (5.2)
S =0

In the rest of this chapter we assume that t7(X) for any primal feasible ma-
trix X is a positive constant. This assumption is satisfied by many semidef-
inite relaxations arising from combinatorial optimization. In Section 2.2 we
studied the max-cut problem and derived a semidefinite relaxations for this
problem. The above assumption on the trace of primal feasible matrix X is
clearly satisfied by this relaxation in (2.12).

Reformulation of the dual problem into an eigenvalue optimization prob-
lem when tr(X) for any primal feasible matrix X is a positive constant is well
known (see Helmberg and Rend!l [23]). We demonstrate the most important
steps of this procedure. For a comprehensive analysis of this reformulation
see Helmberg [21].

First observe that the slack matrix S is positive semidefinite if the largest
eigenvalue of —S is nonpositive. Moreover, since the optimal primal matrix
X is nonzero, then due to Theorem 1 the optimal matrix S must be singular.

That is Apax(—S) = 0. Thus problem (5.2) is equivalent to
min by
st Amax(C — ATy) =0,

Using Lagrange multiplier 7 we lift the constraint into the objective function

and obtain
min  TAmax(C — ATy) + b7y, (5.3)

In general, the optimal value of Lagrange multiplier is not known in advance.

However, with our assumption it is not difficult to verify that the Lagrange
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multiplier 7 at the optimal solution is equal to tr(X). (see [21, §5.1] for
proof’}.

Problem (5.3) is an eigenvalue optimization problem. More precisely, it
is the minimization of the maximum eigenvalue of an atfine combination of
symmetric matrices. Although the affine combination is differentiable with
respect to y. the maximum eigenvalue of this matrix is not differentiable.

Therefore we need more sophisticated methods for solving this problem.

Let us first study the eigenvalue function and its properties in detail.

Consider the following function:

g(y) - )\max(c - ATy)

This function is well known to be continuous, convex, nondifferentiable and
nonpolyhedral cone. Moreover, it cannot be written as the point-wise maxi-
mum of finite number of convex smooth functions. Thus, the standard non-
differentiable techniques cannot be applied to minimize this function. The
following example from Overton [47] gives a clear pictorial view of the types

of function we are dealing with.

-1 0 6 -1
Example 25 LetAl:( o 1),/12:( 0 ),andC:I, then

C——ATy:(l_'-yl Y2 )

Yo I-w
and Amax = 1+ /4% + 43,

Figure 5.1 shows that Ap.x possess all properties mentioned above.
Note that the maximum eigenvalue function in the above example is a
convex cone that is nondifferentiable at y = 0 which happens to be the

minimum. In general, g(y) is differentiable at y if the maximum eigenvalue
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Figure 5.1: Graph of the maximum eigenvalue of the affine combination of

symmetric matrices 4y, Ay and C'

has multiplicity one. However, in practice we are dealing with functions that
do not have this smooth property. In such cases we work with the set of

subgradients of ¢ at each point.
The subdifferential of function g at point § can be obtained using chain

rule and the Clark generalized gradient:

Theorem 26 (Overton [47]) Let § be in domain of g and the mazimum
ergenvalue of g(g) has multiplicity p, with a corresponding orthonormal basis

of eigenvectors @ = [qi, ..., G). The generalized gradient of g at § is
'
d9(7) = {A(QUQT) - U = 0,tr(U) = 1}. (5.4)

The eigenvector matrix @ plays a key role in our algorithm. In the next

section we discuss transformation of the optimization problem into the convex

feasibility problem.

5.2 From Optimization to Feasibility

The goal is to solve problem (5.3). Let
F) = Thnax (C — ATy) + b7y
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First, note that the maximum eigenvalue of a symmetric matrix can be com-
puted by solving a semidefinite program. If 4 is a symmetric matrix, then

the maximum eigenvalue of A can be obtained via
/\max(A) = max {A el : tT(U) — 1: U - O} ’

and consequently, Amax is @ convex function of A (see [47] for the proof).

Thus

fly) = 7max {(C - ATy) o/ tr(U)=1,U = O} + by
= rmax {(C—ATy) e U+ 0Ty tr(U) = 1.U = 0}

Now consider a restriction of the space of positive semidefinite matrices to
a subcone generated by the faces of the cone at §. That is, let § be a point
in domain of f, and the maximum eigenvalue of C' — A7y has multiplicity p
and Q € R™? be a matrix whose columns form a basis for the eigenspace of

the maximum eigenvalue:
(O - AT@)Q = Amax((j - -ATQ)Q (55)
and define

fy) = tmax{(C—ATy) e QUQT +b"y : tr(U) = 1.U = 0}
= Thmax (QT(C = ATy)Q) + b7y

f(y) is a convex function which establishes a lower bound on f(y). That is

f(y) < fly), for all y € R™.

Moreover

F@) = M (QT(C - ATHQ) + 877
= TAmax (C = ATG) + 577
= (@)
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Let 8 be an upper bound on the optimal objective value and
Q:{(y,z) € R™: fly) SZSQ},
be bounded. (2 contains the optimal solution since
F< = min f(y) < 6.

Note that 2 is the area bounded by a set of subgradients of f at 7 and the

hyperplane z = 0.
Q = {(y, z) € R™ 7 A pax (QT (C — ATy) @) +Hy <2< 9} .

Observe that

Thmax (Q7 (C = ATy) Q) + 8"y < =,

implies that

~—
IA
RS

Phue (@ (0= ATy) @ + 20791

and therefore for all 2 = 1,...,m
- ~ 1
A Q7 (C - ATy) @+ =071 ) < 2,

or
_ .. 1
. (QT (C - ATy) Q + —T—(bTy)I) < 2,
and thus . .
TQTCQ -7 3 QT AQ + > yibid < 21
g=1 i=1

By rearranging
S (—rQTAQ + bil) — 21 = —rQTCQ.
i=1

Thus

0= {yzERm+1 :ATyzj@,zSH}
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where 3, = (y,2) € R™*! and

m
ATy, = z yidi + 2Amy1,

=1
and
/L = **TQTAZ'Q + bil, 1= 1, cey 110,
and
Am-}—l = _Ia
and
C = —1Q7CQ.

Note that Q is of the form of Qp defined in Chapter 4. That is, Q is
a compact convex set which contains the optimal solution set. Therefore
Algorithm 3 can be used to locate a point in the solution set.

So far we demonstrated that the optimization problem (5.3) can be trans-
formed to a convex feasibility problem. In order to make sure that the set of

localization is bounded, in practice we initiate it by a box constraint. That

is
0p = {.e R :i<y<wvandz<z<z}
= {y. € ™" (4%7y, < 1Y,
where
AO = {Im—l—l - m+1]

and

u

& = :
-1

The criterion for choosing lower bounds [ and 2z, and upper bounds u and z

will be discussed later.
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If f is differentiable at 3* then the oracle returns the gradient of f at ¢,
which is a linear cut. Otherwise, it returns a semidefinite cut. Therefore the
set of localization is composed of both linear and semidefinite cuts. In order
to be able to treat these cuts separately, we make the distinction here. At

the k-th iteration of the ACCPM algorithm the set of localization is
Qf = {y. € " (AT, 2 CF, (Af) Ty, < oy, 2 < 0F),

where Afp is a matrix whose columns are linear cuts and (A¥)Ty, < CF
represents the semidefinite cuts. We compute y*, an approximate analytic
center (%. If ¥ is in the solution set, stop. Otherwise, a separation oracle
is called to evaluate the function f at y* and return an orthonormal matrix
QF € R™ Pk where p, is the wmultiplicity of the maximum eigenvalue of
C — ATy*. The matrix QF is used to create a new cut and to update the
set of localization. Q%™ should contain the solution set and cuts off the
current point. If pr > 1, then the new cut is a semidefinite cut and the set

of localization is updated via

Q]BH — Q/lc) N {yz e Rt . (Bk)Tyz < Dk, 2 < 9k+1} 7

where m
(Bk)Tyz = Z yzfzzlb =+ ZBfn—}—l?
i=1
BE = ~r(@)TAQ" + b1, i=1,..m,
By =1,
D* = —r(QF)"CQ,
and

"1 = min{#*, f(*)}. (5.6)
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The semidefinite cut matrix A¥ and the matrix C¥, in this case are updated

as in (4.23)
Af“ = Aéﬁ 0 , and CkFl = ¢t 0 ,
0 Bk 0 DF

?

That is, the dimension of the semidefinite cut matrices A% is enlarged, by py
when adding a pg-dimensional semidefinite cut as a block diagonal.

If pp = 1 (f is differentiable at y*), then B, for = 1,...,m+1 are scalars
and therefore the new cut is a single linear cut. In this case we store BF, for
i=1,..,m+ 1in a column vector b, and update the linear cut matrix A{fv
via

AR = (AL by) -

Ip

Likewise, D* is a scalar and is used to update c;‘p

Thus the updated set of localization in this case is

QIEH — Qllc) N {yk e Rm+1 : (AZ)H)T?JZ < Cgcp-H’ 2 < 9k+1}’

where #*+! is as defined in (5.6).

In practice, as k increases the dimension of the cut matrix also increases.
This, pushes the analytic center of (% to get closer and closer to the upper
bound 6. To avoid this tragedy, we put a weight on the upper bound cut
z < 6, ie., we repeat this constraint p times, (p > 1), and compute the
analytic center. By experience we learned that the best value for this weight
is equal to the current dimension of the cut matrix. In the next section we

define the weighted analytic center and derive its optimality conditions.
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5.3 Weighted Analytic Center

As mentioned before, the set of localization is composed of linear and semideif-
nite cuts. Let nyg and n; be the number of semidefinite and linear cuts re-
spectively and let Nyg = Z;-’;dl p; be the dimension of the current semidefinite
cut matrix. Dropping the index we indicate A" by A, A¥ by A;, C* by C,
Afp by A, cf; by ¢ and % by €p. Thus the set of localization in its general

form in ™ is
Qp = {yz e Rt ATy, <€, ATy, <¢, z < 9}.

The linear cut ATy, < ¢ in this formulation contains the box constraint

(AO)T;U: S CO.

Consider {1p when we repeat z < 8, p times, where p > 1:

The dual potential function for this set is

ny
¢p(y.) =logdet S~ + > log sj“1 +plogo™,
=1
where S = C — ATy, s = c— ATy, and 0 = 6 — z. The analytic center of

{2p is obtained by minimizing the dual potential function over Qp:

min logdet $~ + Y7L, log s7' + plog o™

s.t.
ATy, +S=C
vt (5.7
ATy, +s5s=c
z+o=20

S»0,5>0, 0>0
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The first order optimality condition for Problem (5.7) is
Al ® S_l
' +As 4 pote 1 = 0.
A, e85
Am—l—l o 5”1
Let X = S =571 and £ = po~!, then the optimality conditions read
AX + Az + e =0
ATy, +8=C
ATy, +s=c¢
z4+o0=1~0 (5.8)
XS =1
rs=e
ol = p.
Note that xs is the coordinate-wise product of vectors z and s, and s7! is
the component-wise inverse of vector s.
The optimality conditions for the weighted analytic center can also be

derived by the primal potential function. Let
Qp = {X €SV, € RY, €€ Ry : AX + Av + Ly = 0},
and let

g
¢p(X,2,6) =CoX +c'z+0f—logdet X — > logz; — plogé.

7=1
Then the optimal solution of the following problem
min CeX +clx+ 06 —logdet X — ik logx; — plogé
s.1.

AX + Az + Eepppr =0
X=0,z>0,§>0,

satisfies system (5.8).
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5.4 Primal Algorithm for Weighted Analytic

Center

Like in Section 3.3, consider the quadratic approximation of the the primal

potential function

Gp(X +dX, x4+ dr, & +dE) =
Co (X +dX)+c (v +dr) + 0(E + dE) — log det(X + dX)

— > log(x; + dx;) — plog(€ + dE),

= ¢p(X,0,8) +(C=X"YedX + (c—z7 ) do+ (0 — pe")de
1 | ‘ ‘
+StrX T O X THAX) + 5daT X de + Le-2gg?,

F4

where X, is a diagonal matrix made up of z. Feasible directions d.X, dz and
d¢ should satisty

A(X +dX) + Az + dz) + (E+ d€)emy1 = 0,

or
AdX + Adzx + déepay = 0.
Thus, we solve
min ¢p(X +dX,z + dx, &+ df)
s.t. (5.9)
AdX + Adx + déeppq = 0.
The KKT conditions are

C—X'4+X1dX)X 1 -ATy, = 0 (5.10)
c—xt +Xl;2d:17——ATyz =0 (5.11)
O—pEt+p%de~ 2 = 0, (5.12)
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by multiplying X from the right side and from the left side to (5.10) and

then applying operator A one has
AXCX) - AX + AdX — (ApAL)y, = 0.
By multiplying AX} to (5.11) from the left side, we have
A)(,T“;C — Az + Adr — AXi,ATyZ =0,
and by multiplving p~'¢%¢,,41 to (5.12), we have
—1 12 —1_¢2 e
P QE Em+1 — §€m+1 + d€€7n+1 — Q0 4§ €m41 = 0.

Let
GP = ApAp + A(XIP)QAT + p~1£26m+1€%+17

and
9" = AXCX)+ AX c+ p '0%€epm1.

Then summing up (5.13), (5.14) and (5.15), implies
Gy, =g",

and thus
Yy, = (GP)——IgP_

(5.13)

Substituting y, into (5.13), (5.14) and (5.15) we derive the primal directions

for computing the weighted analytic center

dX = (XA"X)y.+X - XCX
= X - X(C-ATy,)X
der = a:—Xl:;s

dé = paE +&— plogn.
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We refer to G as the primal Gram matrix.

As in Section 3.3, we project the dX, dxr and d€ such that
AdX + Adr + déep,1 = 0.
Let G and g” be the same as G and ¢© where p = 1. That is
GF = ApAL + A(X,)2 AT + Eepyrel 1,

and

7" = AXCX) + AX]c+ 0%emy,

and let ¢ € R™! be defined via
g = (GP)"L(AdX + Adz + déemyy) .

Let the projection of the primal directions be dX, dz, and dé. Then with

the same line of proof as in derivation of (3.12) one can show that
dX =dX — (X ATX)q,
dr = dz - X2 A"q,

and
dg = d¢ — €%.

Observe that

AdX + Adx + déemin
= AdX + Adz + d€epy — (ApAL)g — (AXEAT)q — (Eemin )
= AdX + Adz + dSepys — (ApAf + AXZAT + Cempaehyy ) @
= AdX + Adz + déepy — G'q
= 0.
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In our algorithm we apply a step size o to move as far as possible along
with the primal direction while respecting primal feasibility. Consider the

quadratic approximation of the primal potential function with the step size:

op(X + adX, v + adz, £ + adf)

= Co (X +adX)+c (z+adr)+0(¢+ adf) — logdet(X + wdX)
— > log(z; + adzy) — plog(€ + adf),

= CeX+aCedX +c'u+acldr+ 06 + abdé — logdet X
= > log(1+ak;) = > loga; — Y log(l + ayj)
—plogé — p(1 + o&™'dE),
where \;’s are the eigenvalues of symmetric matrix X ~°(dX)X~° and v; =

a:j“ldxj. Taking the derivative of ¢p with respect to o and setting it to zero

one has

Aj 3 Y pEtdE 0.

X + dx + 0dé — - - ~
CodXtcldrt0de =) Ty = X Ty  Trat @

We solve the above equation by a line search, where we initiate the step size
o to be in the feasible interval [0, amax]. The upper bound of the step size
interval will be determined such that the updated matrix X («) is positive

definite and the updated vector z(a) and &(«) are positive.

Lemma 27 Let X(a) = X + adX, z(a) = 2 + adz and {(a) = € + ad€,
where dX , dz and d€ are primal directions computed by the primal algorithm,
and let A; and v; be as defined above. Then X (o) = 0, z(a) > 0 and &(a) > 0
for any o € [0, aumax), where
-1
Omax = T1:
min; ; (As, 75, §1d€)
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Proof. Note that
X(a)= X +adX = X3(1 + aXSdXX"5) X",
and X (o) = 0 only if a; > —1, for all i =1, ..., ny, or
a/(miin Ai) > 1.

Similarly,

r(a) =z + adr = x(e + ax ™ dy),

and x(a) > 0 only if ay; > —1, forall 7 =1,...,ny, or
a(mjin i) > —1,
and finally, £(a) = £+ ad§ = (1 +£71dE) > 0, if
af7lde > —1.
Thus a feasible step size should satisfy
o (rrlizn (/\Z-,”yj,f*lc%)) > —1

The proof is immediate now. ®

Thus far, we showed that we can transform the optimization problem 5.3
into a feasibility problem. We discussed the issues related to the computa-
tional algorithm for the weighted analytic center of a convex set composed
of linear and semidefinite cuts in primal setting. We derived the primal di-
rections from a strict interior point and showed that how we project the
direction to recover the feasibility. The primal algorithm for computing the
weighted analytic center, as we mentioned before, starts with a strict feasible

point as its initial point. We now address this issue.
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5.4.1 Adding Cuts in Primal Algorithm

In this section we deal with the issues in recovering the primal feasibility after
adding a linear or a semidefinite cut for computing the weighted analytic
center. Theoretically, a linear cut can be considered as a semidefinite cut,
as we did in the previous chapters. However, in practice the distinction
between the two cuts is important. Treating a linear cut as a semidefinite
cut would drastically increase the computation time of both primal and dual
algorithms. It is mostly because of the Cholesky factorization of the Gram
matrices ApAL and Ap AL are computationally very expensive. We first

discuss adding a semidefinite cut:

Adding a p- dimensional Semidefinite Cut

Let
Qp = {X € Sy €€ Ry : AX + Eemer =0},
be the current localization set, where (AX); = A;eX fori=1,...,m+1, and
A; € 8™t are the block diagonal matrices composed of the semidefinite
and the linear cuts. We make this combination for the sake of simplicity
in our analysis below. Separate directions for linear and semidefinite cuts
will be extracted from the general form. The optimality conditions for the
weighted analytic center of Qp are '
AX +&emy1 =0
z+o0=40
XS=1 (5.19)
ATy, +8=C

o€ = p.

Now let

Y Az n Am
Al-:( 0>,fori:1,...,m andAm+1:< + 1),
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and
X:(X }.
§

Qp = {X e S AX =0},

Then

and optimality conditions 5.19 can be rewritten via

AX =0
Ay, +5 = C
SX = 1,
where
@:(S J) and@z(c 9)7
and

Assume that the oracle returns a p-dimensional semidefinite cut BT at the

current iteration. We update 2p by adding this cut:
Q= {X e Sy T e S5 AX + BT =0}

As in Section 4.1 we compute the optimal updating direction dX by max-
imizing log det of the new slack matrix over the primal feasible region and

the primal Dikin ellipsoid:

max logdetT

s.t.
AdX +BT =0 (5.20)
XX <1
T > 0.
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The optimality conditions of problem (5.20) are

~T'4+B% = 0 (5.21)

ATy + o XN dX)X = 0 (5.22)
o(1—||XHX|) = 0 (5.23)
AdX)+BT = o, (5.24)

where ¢ > 0 is the Lagrange multiplier agsociated with the norm constraint.
By multiplying equation (5.22) from the left and from the right by X and

then applying the operator A we have,
(ApATYv + o A(dX) = 0,
using (5.24)
v = o(Ap ALY BT,

and again from (5.22)

| —
dX = ——J—X(AT’U)X
= —~XAT(ApAL)'BTX. (5.25)
dX is symmetric since AT (Ap AL)"'BT is symmetric. Finally from (5.21) T
is the unique solution of the following optimization problem:

P in{? _
T = arg rjgé%{ 21:7“TVT logdet T'}, (5.26)

where V = BT (Ap AL)!B.
Now the primal direction d.X from 5.25 can be decomposed as follows:

dX = —XAT(Ap AL)'BT X,

and

dz = - X2 AT (Ap AL) BT,
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and
dé = ~E(Ap ALY BT epyn,

where Ap AL = Ap AL + AX] AT + €2 In view of Lemma 11, the updated

¥+ = X+ adX
) ol |7

o7 =z + adr and T = € + adf, for a < 1 is a strict feasible point of Q) or

point

the warm start.

We mentioned in Section 4.1 that Problem (5.26) can be solved using a
Newton method and we derived a complexity bound on the number of Newton
steps in Section 4.5. In practice, however, an exact Newton direction seems

difficult to achieve. Let
F(T) = gtrTV(T) —logdet T
Let T > 0 be given. For small symmetric dT'
F(T+dT) = gtr(T + dDYW(T + dT) — log det(T + dT).
Using the quadratic approximation of logdet(7 + d7T)™!, one has
F(T+dTl) - F(T) =
ptr(dT)(T) + Er(dT)V(aT) — 6rT a7 + %trT‘l(dT)T”l(dT).
Note that

trTV(dT) = trTBY(ApAL) ™ BdT
= (BT)'(ApAL)'BAT
= (BdT)T(ApAL) BT
= tr(dT)BY (ApAL) BT
= tr(dT)V(T).
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The Newton step is obtained by setting the gradient of F(T -+ dT') with
respect to dI', to zero. That is

pV(T) + pV(dT) — T + T~ HdT)T~t =0,

By multiplying the above equation from the left side and from the right side
by T; we have

pTV(TT + pTV({dT)T — T + dT = 0. (5.27)
An explicit form of d7' cannot be obtained from (5.27) and therefore com-
puting an exact Newton direction seems to be impossible. To over pass
this problem, in our algorithm, we approximate the quadratic term tr7TVT
in F(T) by a linear term. That is we ignore tr(dT)V(dT) in F(T + dT).

Consequently (5.27) becomes
pTV(T)T —T +dT =0,
and hence
dl =T —pTV(T)T.

This approximation does not significantly change the direction. Our numer-
ical results show that the rate of convergence is still quadratic in most cases
and super linear in some. As an initial point we use T defined in Theorem 24

and we apply a line search to compute the step size.

Adding a Single Linear Cut

Let 2p, the current set of localization, be as defined in the previous section
and assume that the oracle returns a single linear cut b7y, < c¢. We update

2p by adding this cut

Q}}—)___ {X6523d+nlp+l,$€R+ZAX-FZ)CE:G}.
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To find a warm start for computing an approximate analytic center for the

updated set, we maximize log z subject to the primal feasibility within the

Dikin ellipsoid:

max logx

s.t.
AdX +br =0 (5.28)
[X~tdX| <1
x > 0.

Using the first order optimality conditions, Z and dX are solutions to Prob-

lem (5.28) if and only if

—F b = 0 (5.29)
/—[Tv%-a)z‘l(d;?)X*l = 0 (5.30)
o(1-IX7"dX]) = 0 (5.31)
AdX)+bz = 0. (5.32)

From (5.30), (5.31) and (5.32)
Y = p(flpﬂg)“lbi’,

and

dX = X (A"(ApAL)"bi) X,
and from (5.29)
&' =p (b(ApAL) D) 1.
or
2= b(fapfi%)—lb)‘l |
Similar to the previous case we can decompose dX to linear and semidefinite

directions:

dX = ~XAT(Ap ALy oz X,
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and
do = X} AT (ApAL) 10z,

and

dé = —*(Ap AL) oFenm ).

5.5 Dual Algorithm for Weighted Amnalytic

Center

Let
where z < 8 is repeated p times, be the current set of localization in dual

space and

ny
¢p(S,s,0) =logdet S+ > log s]’fl + plogo ™,
j=1

where S = C — ATy,, s = ¢ — ATy, and ¢ = 6 — z, be the dual potential
function for 2p as defined in Section 5.3.
Let y, be a strictly feasible point of (p and consider the quadratic ap-

proximation of ¢p around dS = (dS)?, ds and do:
op(S+dS,s+ds,o+do) =

logdet(S +dS)™ + > log(s; + ds;) ™ + plog(o + do) ™

= ¢D(57870)_tTS~1dS+%trs—l(ds)s_l(ds)
1 .
_(S_I)Tds + é-(dS)TSl;ZdS . po_wl(do_) + 50_2(610)27

where S, is a diagonal matrix made up of s.
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On the other hand, dS, ds and do are feasible directions if

ATdyz +dS =0,
ATdy, +ds = 0,
and
dz +do = 0.
Thus

¢p(S+dS,s+ds,.o+do) =

(5.33)
op(S,s,0) + (AS T dy, + (As™ ) dy, + po~1(dz)
Ly )T (ApAG)dy, + Hdy.)T(ASS2AT)dy, + 0-2(d=),

where ApAL € S™*! is the symmetric matrix defined in Section 3.4, i.e.,
(ADAYJS)U e tTAAiS.‘lAjS—l.
Minimizing (5.33) over dy, € R™*! gives

dy, = —(G")'g",

where
GP = AD.A% -+ A(ASE)Q)AT =+ pa“Q(em—}—leTn-H):

and
gP = AST + As7 4+ po e .

The dual direction dy, with a step size «, obtained by a line search
method, is used to updated the dual iteration yJ = y, + ady,. We refer to

GP as the dual Gram matrix.
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5.5.1 Adding Cuts in Dual Algorithm

The dual algorithm for computing an approximate analytic center as we men-
tioned before is very efficient. The dual potential function is reduced at each
iteration by at least a constant amount. The rate of convergence, however,
is quadratic when the iteration is close to the analytic center, i.e., within
the Dikin ellipsoid. After adding new cuts, we need to recover feasibility. In
practice, the new cuts could be deep, shallow or central. In the dual setting,
recovering feasibility in case of the deep cuts is not trivial. In this section, we
provide a procedure based on a path-following algorithm to recover feasibil-
ity and obtain a warm start for recentering procedure in case of semidefinite
shallow and deep cuts. For the sake of simplicity, we consider only semidefi-
nite cuts. The extension of our algorithm to the case in which we have mixed
linear and semidefinite cuts is trivial. Let us first define semidefinite deep

and shallow cuts:

Definition 28 Let Qp be the current set of localization and §, be an ap-

proximate center of Qp. Let the oracle returns a p-dimensional semidefinite

cut
BTy, < D,

then
1. If D = BTy, then the semidefinite cut is called ”completely shallow”
2. If D < By, then the semidefinite cuts is called "completely deep”
8. If D = BT, then the semidefinite cut is central.

In any other situation, the cut is called "partially deep”.

Now let
QOf =0Qpn{y, € R BYy, < D}.
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If BTy, < D is a p dimensional shallow cut, the current center 7, is clearly
a strictly feasible point of {2}, and can be used as an initial point for the
Newton algorithm to compute an approximate center of Q5. In any other
situation, we need to compute a feasible interior point of Q2F,. In Section 4.1,
we presented a procedure to obtain an interior point of Qf as a "warm
start” for the Newton algorithm if the semidefinite cut is central. We use
this procedure with a path-following algorithm to recover feasibility when
the semidefinite cut is deep (partially or completely). The idea is as follows:

Let By, < D be a p-dimensional semidefinite cut which is completely
or partially deep. We first place the cut at the center and update the set
of localization by adding the central cut BYy, < BY¢.. We then use the
procedure described in Section 4.1 to obtain a ”warm start” and use this point
to compute 7, an approximate center of the updated set. If D = BT¢7, then
update {1p by adding the original cut and use the current center as an initial
point for the Newton algorithm. Otherwise, move the cut to the new center
and repeat the procedure. The path-following algorithm is used after each
call to the oracle where the return cut is deep.

For the optimization problem (5.3), the oracle returns a subgradient cut
and updates the upper bound cut at the same time. The localization set
should therefore be updated accordingly. In this case we add two types
of cut at the same time; the subgradient cut(semidefinite) and the upper
bound cut(linear). We prove that these two cuts cannot be both deep. More

precisely, when one cut is deep the other one is shallow and vice versa. Let
Q={y, e R™ . Ay, < C,z < 6},

be the set of localization arising from Problem (5.3), and (7, 2) be an ap-
proximate center of 2. Let BTy, < D be the new subgradient cut returned

by the oracle, where
Bi=—1QTAQ+ b1, i=1,..,m, (5.34)
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and
By = -1, (5.35)

and
D= -1Q7CQ, (5.36)

where @ is the orthonormal matrix defined in (5.5). That is
(C— AT9)Q = Apax(C — AT9)Q. (5.37)
In the next lemma we show that the subgradient cut is completely shallow

when the upper bound cut is deep and vice versa.

Lemma 29 Let Q) and BT be defined as above and let (i, Z) be an approwi-
mate center of Q. Let 07 be the new upper bound updated by f(j). Then, the
subgradient cut BTy, < D is

1. ”completely shallow” if the upper bound cut z < 0% is deep, or Z > 07,
2. 7completely deep”, if the upper bound cut z < 6% s shallow, or 7 < 67,

3. 7central”, if the upper bound cut z < 0% is central, or if 2 =67

Proof. Let the upper bound is updated by 8% = f(g). From (5.34)
through (5.36)

D-B"g. = —1Q"CQ+7(Q"ATQ)y— (v"p)I + zI
= —1QT(C - A"HQ — (V" §)I + 1.
In view of (5.37)

DB, = —Thua(C — AT9)QTQ — (WT'H)I + 21
= —f(g)l+zl.

Claims 1, 2, and 3 are immediate now. ®
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The same lemma is valid when the subgradient cut is linear. For the

analysis of linear cuts see Goffin and Vial [17].

The disadvantage of the dual algorithm is that the recentering procedure
employs a path-following algorithm when the subgradient cut is deep. This
drastically increases the number of Newton steps and therefore the compu-
tational time. Recovering feasibility in the case of deep cuts without using a

path-following algorithm at this point remains an open problem.

5.6 A Lower Bound

Consider the semidefinite relaxations arising from the Max-Cut problem de-

rived in Section 2.2:
max CeX
s.t.
. (5.38)
diag(X) =e
X =0,
where C' = %L is the coefficient matrix and X € ST is the matrix variable.
Problem (5.38) is a semidefinite program in the primal form of (5.1), where
b=reand A; = e;el, for i = 1,....m. Observe that trX = n for any primal
feasible matrix X, and therefore it satisfies our assumption of this chapter.

The dual Problem is

min e’y
s.t.
. (5.39)
Diag{y) - S =C
50,
which is equal to the eigenvalue optimization
min  NAmax(C — Diag(y)) + e*y. (5.40)
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We apply our primal and dual algorithms, developed in Sections 3.3
and 3.4 with the implementation issues derived in Sections 5.4 and 5.5 to
find y*, the minimizer of (5.40) for randomly generated graphs with different
sizes and edge densities. y* serves as the optimal solution of Problem (5.39).
One advantage of the ACCPM is that the algorithm does not need to update
the primal matrix at each iteration, yet a primal matrix very close to the
optimal can be generated from y* at the end. We describe this procedure
now.

Let y¥ be the optimal solution of Problem (5.40) computed by primal or

dual ACCPM algorithm. Then y* is an approximate analytic center of
Qp = {y. € R™ ATy, 2 C, ATy. <, 2 <6},

where ALy, = Y7 yiA; + 24, and A = [A%al, .. "], where A;s are
the semidefinite cut matrices, a;s are the linear cuts, and A% = [I,,,41, — 1]

is the box constraint. Note that

al = —7(¢@) el +1, fori=1,...,m,, 5=1,...  Nip, (5.41)
and afnﬂ = —1, and
Ai:Dmg(A},_._,A?S‘i), fori=1,. . m+1, (5.42)

where
Al = —7(Q") eie] Q7 + Iy, fori=1,....m,j=1,... ,ngy, (5.43)
and
Al =~1,, forj=1,...,ng (5.44)

Since y; is an approximate weighted analytic center of (p, it satisfies the
first order conditions (5.8). Thus there exist X > 0, > 0, and £ > 0 such

that
AX + Az + ey = 0, (5.45)
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where X = Diag (X',..., X)), with X7 € §, and
27 = [[(@hon) (@302) ] 1, T |

with «f,, € R k=1,2.

First observe that for i =1,...,m,
A;e X + (Ax); = 0. (5.46)

From (5.42) and (5.43)

Ngd

Ao X = S Alex
j=1

= Wi (~7(@) eie] Q@ + 1, ) o X7
7=1

Nsd . ) . Nsd )
= 3 (~T(eie;fp) ® QJXJ(QQ)T) + > trXx?

7=1 j=1
= —(eiel) e X1+ o, (5.47)

2

where
Nsd

X=13 QXY
j=1
and a! = trX.
On the other hand
Ny

(AZC)Z = (mllww - xgoz)i + ija’g
j=1

nlp ]
- (eietir) ® (Xl}cxc - Xl?ow) + E .CL']'CLIJ-, (548)

=1

where X[ is a diagonal matrix made up of zf .. Now from (5.41)

Nip Nip Nip

Saal = Y (—r(@) el ) + 3w
j=1 F=1 j=1
= —(eel)e X2+ a2, (5.49)
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where X2 =7 Yih @ (@) x; and of = 02, ;.

In view of (5.46) and with regard to (5.47) through (5.49), one has
(eie]) @ (Xl + X2 XL+ Xfom) =a' + o,
or diag();’) = e, where

,i' = le -+ );72 - Xl}o:zz + Xl;zox) ’

al + o? (
Note that X* = 0 and af >0, k= 1,2. In general, X may not be a
positive semidefinite matrix because of the negative sign of x},.. However in
practice, at the optimal solution y7, it seems that the primal matrices X*
corresponding to the semidefinite and linear cuts, dominate the primal vec-
tors af . of the box constraint. In most cases as we will see in the numerical
results, X is the optimal solution of Problem (5.38). That is X > 0 and the
relative error between the primal and dual objective values is small.
Computing X is a very expensive task because X7 and A{ are dense ma-
trices. However, since we compute it only once it does not make a significant
1

increase in the over all computational time of our algorithm. Moreover, o

and o can be computed in a less expensive way as follows. In view of (5.45)
Apsi o X + (Az)par + €= 0.

From (5.44)

Tsd ) .
S 7
Am+1 @ ,(X — Z ‘47n+1 @ Xj
=1

Nsd

= Z(-[Pj ® XJ)
j=t
= —trX

= —a.

On the other hand since a/, 41 = —1 for all j,
np

(Aa:)m+1 - (x;ox - I%o:c)’m-i-l - Z‘Tj’
Jj=1
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of (AT)ms1 = (Thop — Thoy Jm+1 — 2. Thus
a/l + Q/Q = (\Iéo,’r>m+1 - (xgox)m*i-l + E

In the rare cases, where X does not satisfy the positive definiteness con-
straint, we can construct a positive definite matrix from X that is a primal
feasible and it is close to the optimal solution:

Let

B = n’zin { (a8, — Tpor) j} :
If 3> 0, then X > 0. Assume that 3 < 0, then clearly

X'+ X2 - X+ X2 —BI0.

box

Let

bozx box
al +a?—f8
Then X/ is positive definite and diag(X¥) = 1. Thus X/ is a feasible matrix
for Problem (5.38).

X+ X XL+ X, - B

X/ (5.50)

5.7 Numerical Results

We coded the primal and dual algorithms by Matlab 6.0 and tested them
with a number of random graphs generated by the graph generator "Rudy”!
on a Pentium(R) 4 CPU 1.60 GHz, with 128 MB of RAM. In this section,
we present our numerical results.

There are some advantages and some disadvantages with both algorithms.
However, the primal algorithm seems to behave better than the dual algo-
rithm in general. The main difficulty which first appeared in both algorithms

is initiating the "box constraint”. Recall that, in order to make sure that

!The graph generator Rudy can be downioaded from the following site:
http:/ /www.zib.de/helmberg/sdp_software html
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the initial set of localization Q° is bounded, we bound y, by a box constrain.
That is [; <y < u; and 2 < z < z. On the one hand, the parameters [
and u should be chosen such that 2° contains the optimal solution y*. On
the other hand, having a big initial set requires too many cuts to satisfy the
stopping criterion and consequently slows down the algorithm. To over pass
this problem we initiate [; = —2 and u; = 2 and start with the small box
constraint —2 < y; < 2. At each iteration if yf, the i component of the
analytic center is very close to its boundary. we loosen up the constraint by
multiplying the bound by 2. We initiate = 73", and z = trC, since [ is a

feasible solution of Problem (5.1).

Computing the Gram matrices G¥ and GP is another difficulty in both
algorithms. As the dimension of the semidefinite cut matrices increases the
computation time of the Gram matrix and its Cholesky factorization also
increases. In fact, Matlab is extremely slow when it comes to a computation
task which involves "for” loops. To overcome this problem we wrote Mex
files in 7C”, to compute Ap.AL and Ap AL, and imported them into Matlab.
This made a significant improvement in the computation time when there are
too many semidefinite cuts. Nevertheless, the fact that we have to compute
the Gram matrix several times at each iteration is the main weakness of our

algorithm from the implementation point of view.

As we mentioned earlier the primal algorithm works better than the dual
algorithm in practice. The advantage of the primal algorithm is that there
is basically no need to identify the deep cuts and take special procedures to
update the analytic center after adding a cut. In primal algorithm shallow,
central and deep cuts are treated in the same way and the updating procedure
is quite efficient. The dual algorithm, however, cannot recover feasibility in
an efficient way after adding a deep cut. As explained in Section 5.5, a

path-following algorithm is applied in such cases. The Gram matrix must
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be computed several times at each recentering process of the path-following

algorithm and it drastically increases the computational time.

Note that the numerical results reported in this section are not compet-
itive with the Spectral Bundle method. There are a number of reasons for
that.

First of all, our algorithm for computing the analytic center is based on
interior point methods. Consequently, the Gram matrix and its Cholesky
factorization has to be computed at each iteration for both primal and dual
algorithms. This is a very expensive task. Secondly, the numerical results
in [23] are obtained using a computer code by C**, whereas we used Matlab
for coding our algorithm. Matlab, as mentioned, is more than 20 times
slower than C**) especially for the computational algorithms involved in
many loops. Finally, because of the difficulties with the dual algorithm, we
have to work in primal setting and therefore we lose sparsity of the original
problem. This is also the reason that the ACCPM works better on the dense

problems than it does on the sparse ones.

The Stopping Criterion

The ACCPM creates a sequence of points y* to reduce the ohjective function
f(y). As y* gets closer to the minimizer of f(y), the reduction f(y*~!) —
f(y*) becomes smaller and smaller. This is a common property of almost
all nonsmooth optimization techniques. We measure this reduction at each
iteration. When we cannot expect a significant improvement between two

iterations, i.e., when

FW Y = FN <elf 51 (5.51)

we compute a feasible primal matrix X/ from 5.50 and the relative error

between the upper bound b7 y"* and the lower bound C e X/. We terminate
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the algorithm if
bTy'* —Ce Xf
bTy* ’

issmall. After running our algorithm with many data (Table 5.2), we realized

€ =

that when e is small enough (¢ = 107°), the relative error & is reasonably
small (< 5x107?) and therefore in most cases the algorithmm stops when (5.51)
is satisfied. Note that X/ is computed only when the reduction in f is small;
in most cases, only once. This matrix then can be used as a primal feasible

solution very close to the optimal.

In Table 5.1 we illustrate the result of the primal algorithm when applied
to the randomly generated graphs with 100, 200, 300, 400 and 500 nodes.
We tested the algorithm for each class of graph with different edge densities
vary between 6% to 90%. The number of edges of a graph with n nodes and
density d is given by the integer closest to (n(n — 1) x d) /200.

The first two columns of the table demonstrate the number of nodes (n)
and the edge density of the graph. the third and the forth columns show
the number of linear and semidefinite cuts at the optimal solution; dim(cut)
indicates the dimension of the optimal cut matrix, which includes linear and
semidefinite cuts. The last column of the table gives the multiplicity of the
maximum eigenvalue at the optimal solution. The key property of Table 5.1
is that as the edge density of a graph increases the dimension of the optimal
cut matrix decreases. In other words, the denser the graph, the less cuts
(linear and semidefinite) is needed to find the optimal solution. This means
that ACCPM is more successful when applied to the more complicated graphs
with many edges as compared to sparse graphs.

Table 5.2 provides additional information on the performance of the pri-
mal algorithm. The third column of the table shows b%y*, the optimal objec-
tive value of Problem (5.2). The forth column of the table illustrates a lower

bound on the dual objective function by the primal objective value C' e X/.
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node | density | Linear cuts | Semidefinite cuts | dim(cut) | p
n (%) (rp) (nsa)
100 6 140 37 235 4
100 20 89 21 135 2
100 40 75 29 149 4
100 80 28 33 118 5)
100 90 22 16 57 3
200 | 6 144 55 208 |51
200 20 102 46 234 4
200 40 102 35 200 5
200 80 a7 41 181 4
200 90 17 25 107 )
300 6 167 69 338 5
300 20 117 54 275 4
300 40 100 72 301 4
300 80 40 46 - 209 )
300 90 22 33 163 5
400 | 6 168 68 375 |5 |
400 20 149 81 394 5
400 40 107 100 445 4
400 80 40 65 306 5
400 90 23 33 177 5
500 6 379 9 404 2
500 20 407 12 431 1
500 40 367 26 421 2
500 80 204 32 270 4
500 90 125 37 205 3

Table 5.1: The primal algorithm performance on a randomly generated

graphs with 100, 200, 300, 400, and 500 nodes
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The relative error between the upper bound and the lower bound is shown in
the next column. The data in this column shows that the objective function
value of the primal problem is relatively close to the optimal objective value
of the dual problem. Therefore, as it was expected, X7 is very close to the
optimal solution of Problem (5.1). The CPU time in the last colunn is in

the format minutes:seconds.

Next, we illustrate the recentering process after adding a cut. Recall
that after adding a p-dimensional cut we compute an updating direction by
solving the optimization Problem 4.1. In Section 5.4.1 we mentioned that
computing an exact Newton direction for this problem is impossible when
the cut is semidefinite. Table 5.3 illustrates the number of iterations and the
the CPU time for solving Problem 4.1. Although, the convergence rate is
not quadratic but the CPU time is reasonably low. The reason is that the
computational time per iteration of this algorithm is not expensive since we

do not need to compute the Gram matrix and its Cholesky factorization.

In Theorem 14 we proved that, starting from the ”warm start” the number
of Newton steps after adding a p-dimensional cut is bounded by O(plog(p +
1)). We mentioned that the recentering procedure is much slower if we make
the cut shallow and use the current analytic center as the initial point for the
Newton algorithm. Table 5.4 shows one step of the recentering procedure,
with and without computing the optimal updating direction for a random
graph with 300 nodes and 90% edge density.

The numerical results demonstrated in this table further confirm the
mathematical result established in Theorem 14. Only 2 Newton iterations
are needed to update the analytic center after updating the upper bound
starting from the "warm start” and the CPU time is 0.20 seconds, whereas
these number for the same cut when starting from the current analytic center

are 30 and 3.76. The situation is more or less the same for the linear (p = 1)
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node | density | upper bound | lower bound | relative error | cpu time
n (%) (bTy*) (CeX7) (&) (mm:ss)

100 6 246.46 245.57 3.5e-3 1:20
100 20 666.22 658.01 9.3e-3 0:42
100 40 1210.06 1202.75 6.0e-3 0:46
100 80 2171.74 2165.61 2.8e-3 0:48
100 90 2378.93 2359.49 8.1e-3 0:16
200 6 892.50 887.03 6.1e-3 336
200 20 2500.82 2486.64 5.6e-3 4:15
200 40 4623.48 4589.48 7.4e-3 3:57
200 80 8500.30 R480.57 2.3e-3 3:49
200 90 9374.95 9334.52 4.3e-3 1:30
300 6 1905.71 1895.29 2.7e-3 13:37
300 20 5442.62 5403.05 7.2e-3 12:16
300 40 10146.02 10063.68 8.1e-3 23:21
300 80 18941.84 18752.76 9.9e-3 10:31
300 90 20956.18 20901.29 2.6e-3 5:16
400 6 3265.83 3243.41 6.8e-3 25:35
400 20 9444.34 9398.43 4.8e-3 44:32
400 40 17783.01 17611.14 9.6e-3 58:13
400 80 33480.24 33228.52 7.5e-3 28:26
400 90 37113.40 36902.81 5.6e-3 9:58
500 6 4239.61 4198.10 9.7e-3 46:28
500 20 14589.08 14443.99 9.9e-3 33:35
500 40 27543.51 27309.76 8.4e-3 53:00
500 80 52081.13 51664.28 8.0e-3 36:51
500 90 57810.31 57503.22 5.3e-3 25:18

Table 5.2: The primal algorithm performance on a randomly generated

graphs
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n = 300 upper bound | linear cut | SD cut | SD cut | SD cut
density: 90% cut p=1 p=2 p=3 p=4
No. Newton steps
for computing 1 1 9 8 11
warm start
CPU time(sec) 0.0000 0.0160 0.5748 | 0.6132 | 0.7921

Table 5.3: Number of Newton steps and the CPU time for computing the

optimal updating direction and the warm start

n = 300 upper bound | linear cut | SD cut | SD cut | SD cut
density: 90% cut p=1 p=2 p=3 =4
No. steps
starting from 2 2 3 3 3
warm start
CPU time(sec) 0.20 0.30 0.35 0.38 0.43
No. steps
starting from 30 25 25 27 27
previous center
CPU time(sec) 3.76 3.84 4.07 4.29 4.69

Table 5.4: Number of Newton steps and the CPU time of the recentering

procedure after adding a p-dimensional cut
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and semidefinite (p = 2,3, 4) subgradient cuts. Note that the computation
of the Gram matrix is needed for each step of the Newton algorithm. This
is why the algorithm is about 20 times faster when we compute the opti-
mal updating direction. As the dimension of the cut matrix increases, the
Gram matrix becomes more and more complex and the computational time
increases exponentially. Therefore bringing the optimal updating direction

into play is essential in practice.
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Chapter 6
Conclusion

We proposed an analytic center cutting plane method with semidefinite cuts
for convex feasibility problems. Convex feasibility problem is a problem of
finding a point in a convex set, which contains a full dimensional ball with ¢
radius and is contained in a compact convex set described by matrix inequal-
ities. Although, the convex feasibility problem is an abstract problem by
nature, however, there are many applications of this problem in nonsmooth

optimization such as minmax eigenvalue optimization.

The ACCPM is an efficient technique for nondifferentiable optimization.
The method has been studied in the past few years in the Euclidean space R™
with single and multiple linear cuts and with quadratic cuts. We employed
for the first time, a nonpolyhedral model into the ACCPM by means of
the semidefinite cuts. As a result, the ACCPM can now be applied to a
wide variety of optimization problems such as linear programming, quadratic

programming and semidefinite programming.

From the theoretical point of view we studied the convergence analysis of
the method in the context of convex feasibility problem. At each iteration

of our algorithm, an oracle returns a p-dimensional semidefinite cut. We up-
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date the set of localization by placing the cut at the analytic center of the
set. Then a special updating procedure is applied to find a strictly feasible
point in the updated set of localization as a "warm start” for computing the
next analytic center. In Section 4.2 we proved that starting from the "warm
start” the Newton algorithm finds the analytic center of the updated set of
localization in O (plog(p +1)). We showed in Section 4.5 that the updat-
ing direction itself can be obtained very efficiently. Applying the Newton
algorithm, the problem comes to optimality in at most O (%> it-
erations, where /J is the Newton decrement, p > 0 is a condition number on
the field of cuts, £* = %
established the main theoretical result of our work in Section 4.4. We proved

and € is a positive constant less than 1. We

that the ACCPM with semidefinite cuts is a fully polynomial approximation
scheme. That is, the algorithm stops when the dimension of the accumulated
block diagonal cut matrix reaches to the bound O"‘(]i’%—%%}]—g)7 where pyay 18 the

maximum dimension of the semidefinite cuts returned by the oracle.

From the practical point of view we applied our algorithm to the semidef-
inite programs arising from combinatorial optimization. In particular, we
considered the semidefinite relaxation on the max-cut problem. Reformula-
tion of the semidefinite programming as an eigenvalue optimization is well
known. We applied the ACCPM, as a nonsmooth optimization technique, to
minimize the maximum eigenvalue of an affine combination of symmetric ma-
trices. We transformed the optimization problem into a feasibility problem
such that the set of localization contains the minimizer of the max-eigenvalue
function. The set of localization in this case is bounded from below by a set
of subgradients of the max-eigenvalue function, and from above by an upper

bound cut.

The weighted analytic center of the set of localization when a weight

equal to the dimension of the current cut matrix is set on the upper bound
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cut was defined. We introduced the weighted analytic center because in
practice, as the number of subgradient cuts increases the analytic center
approaches to the upper bound and therefore we lose the centrality. The
weight on the upper bound cut, which is somewhat arbitrary, pushes back the
analytic center to the center of the set. We derived the first order optimality
conditions for the weighted analytic center and presented its computational

algorithnmis in primal and dual settings.

In primal algorithm, we decomposed the Newton direction into three cat-
egories; (a) the semidefinite direction, for the primal matrix variables cor-
responding to the semidefinite cuts, (b) the linear direction, for the primal
vector variables corresponding to the linear cuts, and (c¢) the direction cor-
responding to the upper bound cut with weight. This devision is done for
computational reasons. In theory, the three groups are combined in the
semidefinite cut. However, it is practically very expensive and unnecessary

to treat a linear cut as a semidefinite cut.

At each iteration if the max-eigenvalue function is differentiable at the
current analytic center the oracle returns the gradient of the function as a
single linear cut. Otherwise the oracle returns a set of subgradients, which
form a p-dimensional semidefinite cut. We updated the set of localization by
adding the cut to the current working set. In practice, a single or semidefinite
cut is either shallow or deep. These issues are crucial for recovering feasibility
in implementation of our algorithm. We made a distinction between linear
and semidefinite cuts in both primal and dual cases and between shallow and

deep cuts in the dual algorithm.

The attractiveness of the primal algorithm is in recovering the feasibility
after adding a cut. There is basically no needs to determine whether a cut
is deep and to take any special procedure for such a case. We discussed two

cases for recovering feasibility; (1) adding a p-dimensional semidefinite cuts,
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(2) adding a single linear cut. In each case we derived a strictly feasible point
in the updated primal set as a "warm start”. We illustrated by the numerical
results that starting from such a point the Newton algorithm finds the next
analytic center in a very efficient way. Such a result was expected as it was

established by a theoretical bound in Theorem 14.

Although, the dual algorithm is capable of exploiting sparsity and it is
the preferred algorithm when dealing with the sparse problems, however,
is not as efficient as the primal one in recovering feasibility. At this point
there is basically no efficient way to recover feasibility after adding a deep
cut in dual algorithm. We dealt with this issue by applying a path-following
algorithm: when the oracle returns a deep linear or a deep semidefinite cut,
we place it at the center and use the procedure described in Section 4.1 to
obtain a strictly feasible point and recover the centrality. Then we move the
cut to the new center and repeat this procedure until we obtain a strictly
feasible point for the updated dual set. At each recentering procedure the
Gram matrix is computed several times, which is the main cause of slowing
down the method. This makes the dual algorithm not a favored one at this
point. The problem of restoration and make use of the full capacity of the

dual algorithm is a potential future research problem.

An advantage of the ACCPM is that after solving the minmax optimiza-~
tion problem, which is equal to the dual problem of semidefinite relaxation
of the max-cut problem, a primal feasible matrix very close to the optimal

can be computed. We provided this course of action in Section 5.6.

Introducing the semidefinite cuts into the analytic center cutting plane
method in this thesis, opened a door to the new applications for this method.
The theoretical results and the complexity bounds established in Chapter 4
demonstrate that the ACCPM is as efficient in nonpolyhedral cone as it is in

linear programming. The ACCPM can now handle semidefinite cuts as good
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as it does the linear or the quadratic cuts. The numerical results however,
presented in Section 5.7, illustrate that the ACCPM can efficiently be applied
only to moderate-size semidefinite programs. The reason that the ACCPM
is not efficient when dealing with large-scale problems is basically due to the

computational difficulties of semidefinite programming.

As we mentioned in Chapter 1, the main purpose of this thesis was to
integrate the ACCPM with the semidefinite cuts and not to design an algo-
rithm for large-scale semidefinite programs. However, with the aptitude of
the ACCPM in recovering centrality after adding cuts, we strongly believe
that a combination of the algorithms presented in this thesis with a branch
and cut or a branch and price algorithm will efficiently solve the moderate-
size max-cut problem to optimality with an integer solution. This will be the

line of our future research.
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