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Abstract

Thinning sea ice cover in the Arctic is associated with larger interannual variability in the

minimum Sea Ice Extent (SIE). The current generation of forced or fully coupled models,

however, have difficulty predicting SIE anomalies from the long-term trend, highlighting

the need to better identify the mechanisms involved in the seasonal evolution of sea

ice cover. One such mechanism is Coastal Divergence (CD), a proxy for ice thickness

anomalies based on late winter ice motion, quantified using Lagrangian ice tracking.

CD gains predictive skill through the positive feedback of surface albedo anomalies,

mirrored in Reflected Solar Radiation (RSR), during melt season. Exploring the dynamic

and thermodynamic contributions to minimum SIE predictability, RSR, SIE and CD are

compared as predictors using a regional seasonal sea ice forecast model for July 1, June 1

and May 1 forecast dates for all Arctic peripheral seas. The predictive skill of June RSR

anomalies mainly originates from open water fraction at the surface, i.e. June SIE and June

RSR have equal predictive skill for most seas. The finding is supported by the surprising

positive correlation found between June Melt Pond Fraction (MPF) and June RSR in all

peripheral seas: MPF anomalies indicate presence of ice or open water that is key to

creating minimum SIE anomalies. This contradicts models that show correlation between

melt onset, MPF and the minimum SIE. A hindcast model shows that for a May 1 forecast,

CD anomalies have better predictive skill than RSR anomalies for most peripheral seas.
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Abrégé

L’amincissement de la couverture de glace de mer dans l’Arctique est associé à une plus

grande variabilité interannuelle de l’étendue minimale de la banquise. La génération

actuelle de modèles forcés ou entièrement couplés a cependant du mal à prédire les

anomalies de l’étendue de la banquise à partir de la tendance à long terme, soulignant

la nécessité de mieux identifier les mécanismes impliqués dans l’évolution saisonnière

de la couverture de glace de mer. L’un de ces mécanismes est la divergence côtière,

un indicateur des anomalies d’épaisseur de glace basé sur le mouvement de la glace

à la fin de l’hiver, quantifié à l’aide du suivi des glaces lagrangiennes. La divergence

côtière acquiert une compétence prédictive grâce à la rétroaction positive des anomalies

d’albédo de surface, reflétées dans le rayonnement solaire réfléchi, pendant la saison de

fonte. En explorant les contributions dynamiques et thermodynamiques à la prévisibilité

de l’étendue minimale de la glace de mer, le rayonnement solaire réfléchi, l’étendue de

la banquise et la divergence côtière sont comparés en tant que prédicteurs à l’aide d’un

modèle régional de prévision saisonnière de la glace de mer pour les dates de prévision

du 1er juillet, du 1er juin et du 1er mai pour toutes les mers périphériques de l’Arctique.

La capacité prédictive des anomalies du rayonnement solaire réfléchi de juin provient

principalement de la fraction d’eau libre à la surface. L’étendue de la banquise et le

rayonnement solaire réfléchi du mois de juin ont des capacités prédictives égales pour

la majorité des mers. Cette découverte est étayée par la corrélation positive surprenante

trouvée entre la fraction de la surface de glace recouverte par des mares de fonte et le

rayonnement solaire réfléchi de juin dans toutes les mers périphériques: les anomalies de

la fraction de la surface de glace recouverte par des mares de fonte indiquent la présence

de glace ou d’eau libre qui est essentielle pour créer des anomalies de l’étendue minimale

de la banquise. Cela contredit les modèles qui montrent une corrélation entre l’apparition
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de la fonte, la fraction de la surface de glace recouverte par des mares de fonte et l’étendue

minimale de la banquise. Un modèle rétrospectif montre que pour une prévision du 1er

mai, les anomalies de la divergence côtière ont une meilleure capacité de prédiction que

les anomalies du rayonnement solaire réfléchi pour la plupart des mers périphériques.
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Chapter 1

Forward

This thesis is presented in a format of a research article that will be submitted to the

Journal of Climate in August 2020. This manuscript satisfies the requirements of a

Masters thesis as it consists of an extensive review of relevant literature, a data and

methods section and a presentation of results and discussion followed by a conclusion.

All chapters presented in this manuscript are to be included in the journal submission.

The following provides information of the article and the contribution from co-authors.

1.1 Manuscript Information

Title: A Regional Seasonal Forecast Model of Arctic Minimum Sea Ice Extent: Reflected

Solar Radiation vs. Late Winter Coastal Divergence

Authors: Rachel Kim 1 and Bruno Tremblay 1

To be submitted to: Journal of Climate

1.2 Contributions of Co-authors

This research project was carried out in close collaboration between Professor Bruno

Tremblay and Rachel Kim. Literature review and analyses involved in this project were

carried out by Rachel Kim. The project’s methodology and interpretation of results were

carried out by both co-authors.

1Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec
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Chapter 2

Introduction

Since the beginning of the observational era, the Arctic has witnessed large changes in the

minimum sea ice extent (SIE), area, thickness and age (multi-year ice fraction in SIE) with

long-term trends approximately equal to -12, -14, -11 and -10% per decade, respectively

(Comiso, 2012; Kwok, 2018; Maslanik et al., 2011; Rigor and Wallace, 2004). Superimposed

on these trends are large interannual variations (Serreze et al., 2007) that make seasonal

and decadal forecasting of the minimum SIE a challenge (Stroeve et al., 2014, 2012). This

highlights the speed at which the system is changing, the deficiencies in model physics

and the need to identify mechanisms that drive summer sea ice melt. These changes in

minimum SIE occur mainly in the North American and Eurasian Arctic with the largest

minimum SIE loss found in the East Siberian (22%) and Chukchi (17%) seas since 1979

(Onarheim et al., 2018). Since the variability of the minimum SIE is projected to increase

as the Arctic transitions from a perennial to a seasonal ice cover (Holland et al., 2011),

the challenges faced by the sea ice forecasting community and stakeholders will only

increase. Improving the seasonal forecasts and decadal projections of the minimum SIE

is of great importance in mitigating the political, economic, environmental and social

consequences of a changing Arctic climate.

In an effort to improve SIE forecasting under a rapidly changing Arctic climate,

the Study of Environmental Arctic Change (SEARCH) Sea Ice Outlook (SIO) was

initiated in 2008 – one year after the drastic all-time record minimum of 2007 – to

compare and assess the predictive skill of forecasting models currently in use in the
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community. These include statistical, heuristic, coupled sea ice-ocean and fully coupled

sea ice-ocean-atmospheric models. An assessment report by SEARCH SIO covering

2008-2013 shows that the ensemble skill of the models is good when the minimum SIE

lies on the long-term trend, but have difficulty forecasting the minimum SIE when the

annual anomaly is large (Stroeve et al., 2014, 2012).

Model studies also highlight the importance of sea ice thickness and sea surface

temperature anomalies in the initialization of seasonal predictions of the minimum

SIE (Blanchard-Wrigglesworth et al., 2011; Chevallier and Salas-Mélia, 2012; Guemas

et al., 2016; Msadek et al., 2014). For instance, two models with similar ice and ocean

components but with different atmospheric components show similar skill in summer

SIE forecasts (Msadek et al., 2014). Bushuk et al. (2017b) find a May ”barrier of

predictability” in the Geophysical Fluid Dynamics Laboratory global climate model; i.e.

May or earlier sea ice thickness anomalies in the peripheral seas have no predictive skill

of the minimum SIE. On the other hand, Bushuk et al. (2017a, 2020) find using a fully

coupled global climate model that sea ice thickness anomalies are amplified between

May and July after melt onset by the ice albedo feedback.

This link between sea ice thickness and surface albedo anomalies strengthens as the

Arctic transitions from a perennial to a seasonal ice cover because a larger fraction of

the ice pack consists of thinner, saltier, weaker and more mobile first-year ice (FYI) that

has a lower melting point, a higher surface temperature and a lower surface albedo

(Rigor et al., 2002). Due to a more mobile and thinner ice pack, a simplified coupled

ice-ocean model showed an increased sensitivity of sea ice anomalies since 2000 to early

summer divergent ice motion (Kashiwase et al., 2017). Similarly, Perovich et al. (2008)

report a five-fold increase in the heat input to the upper ocean from positive anomalies

in early summer open water fraction. Flatter FYI ice also leads to a larger melt pond

area compared to ridged multi-year ice (Perovich and Polashenski, 2012). For instance,

simulated Melt Pond Fraction (MPF) from an ice-ocean coupled model was found to

significantly correlate with the minimum SIE as early as May (Schröder et al., 2014).

However, the fact that MPF in the Baffin Bay, Canadian Archipelago and central Arctic

beyond the seasonal ice zone contribute to the correlation suggests that MPF may be
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correlated with a third parameter physically related to the minimum SIE (e.g. Arctic

Oscillation, Williams et al., 2016).

The positive feedback mentioned above that amplify sea ice thickness anomalies

through the surface albedo suggest a potential predictability of the minimum SIE from

observations (currently absent from physical models). June Reflected Solar Radiation

(RSR) is significantly correlated with the September minimum SIE for the pan-Arctic

(Choi et al., 2014; Huang et al., 2019; Zhan and Davies, 2017) as surface albedo anomalies

become important after melt onset (Kapsch et al., 2016). As such, the predictability

of Top-Of-Atmosphere (TOA) RSR is closely related to the contribution from surface

anomalies (open water and melt ponds) rather than atmospheric anomalies (clouds,

water vapor, aerosols etc.) in June. This link, however, is not as robust for earlier forecasts

dates (Kapsch et al., 2016; Zhan and Davies, 2017). The summer cloud effects are also

debated. Choi et al. (2014) and Huang et al. (2019) attribute June RSR anomalies to both

the cloud shielding effect and surface albedo anomalies while Francis et al. (2005) find no

cloud shielding effect with respect to sea ice melt and argues instead that downwelling

longwave anomalies in the summer explain most of the variability (approximately 40%)

in the minimum SIE in Arctic peripheral seas.

Ultimately, dynamical processes are key to the generation of ice thickness anomalies

that are amplified later in summer by thermodynamical processes. The increased

mobility of ice cover and sea-ice drift speed since the mid-90s, after large positive Arctic

Oscillation index anomalies and associated flushing of multi-year ice out of the Arctic,

was an important turning point for late winter coastal divergence as a predictor of

the minimum SIE (Maslanik et al., 2007; Rigor and Wallace, 2004; Rigor et al., 2002;

Spreen et al., 2011). Thin ice formed from late winter coastal divergence will grow to

an approximate thickness of 1.15-1.45 m, the climatological summer melt (Nikolaeva

and Sesterikov, 1970). This suggests a potential predictive skill for sea ice melt area the

following summer through sea ice thickness anomalies (Brunette et al., 2019; Bushuk

et al., 2017a; Chevallier and Salas-Mélia, 2012; Nikolaeva and Sesterikov, 1970; Williams

et al., 2016). For instance, Chevallier and Salas-Mélia (2012) report a similar critical sea

ice thickness of 0.9-1.5 m that can be used to predict the minimum SIE up to 6 months
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in advance using a coupled global climate model. Williams et al. (2016) use late winter

dynamic preconditioning area (or coastal divergence) from a Lagrangian ice model

forced with observed sea ice drift to develop a skillful statistical model of the minimum

SIE. Following Nikolaeva and Sesterikov (1970), Brunette et al. (2019) use a similar

Lagrangian approach to skillfully predict the minimum SIE in the Laptev Sea from late

winter divergence area.

Other factors with potential predictive skill include cloud longwave forcing and ocean

heat transport. Winter cloud forcing anomalies integrated from November to February

using reanalysis data explain approximately 25% of the variance in the minimum SIE

at a 90% confidence level in the East Siberian and Kara seas, suggesting a potential

predictive skill of winter radiative flux anomalies for the minimum SIE (Letterly et al.,

2016). Liu and Key (2014) and Letterly et al. (2016) report on similar spatial patterns

between September SIE anomalies and winter cloud anomalies integrated from January

to February and November to February (respectively) and advected until September

using Polar Path Finder sea ice drift data. These results, however, may be circumstantial

as both studies look at only one signature year, 2013 and 2007, and use summer sea ice

drift that comes with increased uncertainty compared to that in winter (Tschudi et al.,

2019b). Similarly, Cao et al. (2017) merges in-situ observation and reanalysis data to find

similar spatial patterns between winter downward longwave radiative forcing anomalies

and SIC anomalies during melt onset (mid-May to early June) but only looks at two

anomalously low (1990, 2006) and high (1999, 2013) melt onset years without considering

a link with the minimum SIE. Kapsch et al. (2016) uses a fully coupled global climate

model to report that winter cloud forcing has negligible influence and rather spring and

early summer cloud forcing have an influence on the following September SIE. Finally,

ocean heat transport through the Bering Strait is suggested to influence late summer

anomalous sea ice conditions by triggering the onset of sea ice melt (Woodgate et al.,

2010). Using in-situ mooring observations, the sea ice retreat date in the Chukchi Sea

was found to correlate most strongly with Bering Strait ocean heat transport from April

to June (Serreze et al., 2016). On decadal timescales, a study from the Community Earth

System Model Large Ensemble showed that rapid declines in SIE were mainly correlated
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with ocean heat transport through the Bering Strait and the Barents Sea opening where

sea ice cover lies over shallow continental shelves that allow ice-ocean interaction to

dominate (Auclair and Tremblay, 2018).

Building on the fact that sea ice thickness anomalies are at the origin of predictability

of RSR and can be preconditioned by late winter dynamics, this study focuses on the

regional and seasonal minimum SIE predictability and in particular on the three following

questions: 1. What fraction of June RSR anomalies comes from open water fraction,

MPF and atmospheric contribution? 2. Can late winter coastal divergence lead to longer

lead-time with comparable predictive skill to that of June RSR? 3. If so, by how much

can we increase the forecast lead-time from late winter coastal divergence, if at all, for all

Arctic peripheral seas?

This study presents a statistical seasonal forecast model based on observations for five

Arctic peripheral seas: the Beaufort, Chukchi, East Siberian, Laptev and Kara. First, we

find that June SIE anomalies are equally or more skillful than June RSR anomalies for the

seasonal forecast of the minimum SIE for all seas. The Kara Sea stands as an exception

since melt ponds and clouds introduce uncertainty in the RSR. Moreover, we find that

while June MPF is negatively correlated with RSR in the central Arctic and landfast ice

area, it is positively correlated in the peripheral seas. This is because positive anomalies

in MPF area are associated with ponded ice that reflect presence of ice to be melted,

whereas negative MPF anomalies are associated with negative open water anomalies

in the peripheral seas. In May and April, RSR has better predictive skill than SIE in

the Laptev Sea since the former reflects albedo variations related to SIT anomalies and

atmosphere effects related to polynyas. Finally, we find that lead-time can be extended by

2 months for all peripheral seas from late winter coastal divergence, except for the Laptev

Sea, where April RSR shows higher skill than May-1 late winter coastal divergence, and

the East Siberian Sea, where neither May-1 late winter coastal divergence and April RSR

show skill. For the Kara Sea, late winter coastal divergence shows superior predictive

skill for all forecast dates.

This paper is structured as follows: Chapter 3 describes the observational data used in

this study: sea ice concentration, radiative fluxes, melt pond fraction, sea ice drift and
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ocean heat transport through the Bering Strait. The Lagrangian Ice Tracking System

(LITS) used for tracking sea ice and quantifying late winter coastal divergence is also

described in Chapter 3. In Chapter 4, we first identify the sources of predictability in

RSR: open water fraction, melt pond fraction and atmospheric components. In the same

chapter, we compare predictive skill of RSR, SIE and late winter coastal divergence for

each peripheral sea. Finally, we present hindcast models using the linear trend, RSR

and late winter coastal divergence as predictors for each peripheral sea. Conclusion and

future work are summarized in Chapter 5.
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Chapter 3

Data and Methods

3.1 Data

3.1.1 Sea Ice Concentration

We use the Daily NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice

Concentration (SIC) Version 3 from July 1987 to December 2018 available on the 25 km ×
25 km Equal-Area Scalable Earth (EASE) Grid (Meier et al., 2017; Peng et al., 2013). SIC

is the percentage of ocean area covered by sea ice. The data is derived using brightness

temperatures from the Defense Meteorological Satellite Program (DMSP) Special Sensor

Microwave/Imagers (SSM/I) and DMSP Special Sensor Microwave Imager/Sounder

(SSMIS). We calculate the weekly and monthly SIC from the daily SIC data. The error is

approximately 5% and up to 20% in winter and summer compared to airborne or satellite

remote sensing data of higher resolution than SSM/I and SSMIS instruments (Meier

et al., 2017; Steffen et al., 1992). The higher error in summer are due to clouds and sea ice

surface melt effects on the measured brightness temperatures (Meier et al., 2011, updated

2017). We define Sea Ice Extent (SIE) as the total area of all grid cells with SIC ≥ 15 %.
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3.1.2 Radiative Flux

We use the gridded monthly mean Top-Of-Atmosphere (TOA) all-sky and clear-sky

reflected solar radiation (RSR) and all-sky surface longwave downwelling (LWD) flux

from the Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and

Filled (EBAF) Edition 4.1 (Kato et al., 2018; Loeb et al., 2018). CERES instruments are on

the Terra and Aqua satellites and provide daily data coverage at a global scale with a

spatial resolution of 1°× 1 °from March 2000 to present (CERES Science Team, 2018).

TOA all-sky radiative fluxes are corrected using global mean energy budget

constraints derived from in-situ Argo observations (Loeb et al., 2009). CERES EBAF

clear-sky TOA fluxes are corrected using a radiative transfer model that removes

clouds but is initialized with identical properties to all-sky conditions such as surface

temperature, temperature/humidity profiles, aerosols and surface albedo. Satellite-based

clear-sky fluxes are derived from cloud-free regions within a grid box and are weighted

according to the cloud fraction identified by applying a cloud mask of higher resolution

(Loeb et al., 2020). TOA-RSR is chosen over surface RSR since TOA irradiance is directly

derived from satellite measurements with uncertainties of 2.5 and 5.4 W/m2 for all-sky

and clear-sky, respectively. Surface irradiance has a higher uncertainty of 11 W/m2

(all-sky and clear-sky) as errors are introduced from input sources of satellite-derived

cloud and aerosol properties, and temperature and specific humidity profiles from

reanalysis (Kato et al., 2018; Loeb et al., 2020). Moreover, Choi et al. (2014) compared the

previous version of CERES TOA and surface radiative flux anomalies and report that

absorption and scattering by the atmosphere have minor effects on the absorbed solar

radiation.

Monthly mean all-sky surface LWD fluxes are derived from CERES SYN 1-deg-Month,

which gives gridded monthly mean surface fluxes computed using cloud properties

from MODIS and geostationary satellites (CERES Science Team, 2020). All-sky

surface LWD fluxes are used instead of clear-sky in order to focus on winter cloud

preconditioning effects on sea ice. For surface LWD fluxes, error is introduced from

the bias in the computed cloud fraction viewed from the surface, which is corrected
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using CALOPSO/CLOUDSat, MODIS and geostationary satellites (CERES Science Team,

2020). The degradation of the Terra MODIS water vapor channel that affects night

time cloud mask over polar regions (60°N to 90°N) causing a downward trend in LWD

anomalies is also corrected starting in January 2003 to match the cloud fraction derived

from the Aqua satellite (CERES Science Team, 2020). The overall uncertainty for surface

LWD is 9 W/m2 (Loeb et al., 2020) and is larger for polar regions (12 W/m2 CERES

Science Team, 2020).

3.1.3 Melt Pond Fraction

We use Integrated Climate Data Center (ICDC) ”clear-sky” Melt Pond Fraction (MPF)

data Version 2 available in 8-day composites from May 9 to September 13 for the time

period 2000-2011 at a spatial resolution of 12.5 × 12.5 km (Rösel et al., 2012). The data

set provides the MPF per grid cell. MPF is derived using an artificial neural network

algorithm on MODIS data at frequency bands 1, 3 and 4 in a grid cell size of 500 m. The

neural network uses different surface reflectance values for snow, sea ice, melt ponds and

open water. ”Almost clear-sky” MPF is defined as 12.5 km grid cells derived from more

than 90% usable 500 m grid cells (Rösel et al., 2012). We use clear-sky MPF since all-sky

MPF include grid cells derived from a low fraction of usable 500 m grid cells and are

flagged (if less than 10%) for increased uncertainty (Rösel et al., 2012). The uncertainty

of the derived data is 6% (Rösel et al., 2012). The derived data set was also compared

with aerial photos from the Beaufort Sea in 2000, 2001 and 2008 NSIDC data from four

sites located throughout the Arctic and ship observations from the trans-Arctic HOTRAX

cruise in 2005. The approximate RMSE are 11%, 10.7% and 3.8%, respectively (Rösel et al.,

2012).

3.1.4 Sea Ice Drift

We use the Weekly Polar Pathfinder (PPF) Sea Ice Motion Vectors, Version 4 of NSIDC on

the 25 km × 25 km EASE grid from 1993 to 2018 (Tschudi et al., 2019b) in the Lagrangian

Ice Tracking System (LITS) (Brunette et al., 2019; DeRepentigny et al., 2016; Williams
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et al., 2016). This model is an adapted version of the Sea Ice Tracking Utility (SITU)

software (http://icemotion.labs.nsidc.org/SITU/). Weekly mean fields are

calculated by averaging daily motion vectors. Daily motion vectors are derived using an

optimal interpolation scheme to merge the Advanced Very-High-Resolution Radiometer

(AVHRR), the Advanced Microwave Scanning Radiometer-Earth Observing System

(AMSRE), the Scanning Multi-channel Microwave Radiometer(SMMR), the Special

Sensor Microwave Imager/Sounder (SSMIS), and the Special Sensor Microwave/Imager

(SSM/I) passive microwave sensors, International Arctic Buoy Program (IABP) buoy data

and NCEP/NCAR reanalysis wind (geostrophic wind) data set (Tschudi et al., 2019b).

The daily ice motion from satellite imagery is derived using a maximum cross-correlation

method (Emery et al., 1995). The optimal interpolation scheme uses weight for each sea

ice motion vector based on input source’s accuracy and distance, and takes the average

of the 15-highest-weighted ice motion vectors. This merged sea ice motion dataset

is temporally and spatially complete (Tschudi et al., 2019a). Buoy-excluded merged

sea ice motion vectors were compared with buoy data for accuracy assessment. Mean

difference between the daily merged vector and buoy data is 0.1cm/s with RMS error

of 3.36 cm/sec in the u-component and 0.4 cm/sec with RMS error of 3.40 cm/sec in

the v-component (Tschudi et al., 2019b). While a low bias in drift speed between 1978

and 1987 was reported due to a lower temporal sampling of SMMR (Tschudi et al.,

2019b), this study uses sea ice drift data from 1993 for all analyses presented and the

bias does not affect the results. Lastly, a sea ice mask with a threshold of SIC ≥ 15 % is

applied to sea ice motion fields to retrieve motion estimates from ice-covered ocean only.

Moreover, a land mask is applied to eliminate cells near coasts and within the Canadian

Archipelago as motion retrieval is unreliable in these areas due to mixed land, ocean and

ice cells (Tschudi et al., 2019a).

3.1.5 Ocean Heat Transport

We use monthly mean ocean heat transport (OHT) data in the time period 1998-2015 from

Woodgate (2018). The monthly mean OHT is derived from the A3 mooring deployed 35
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km north of the Bering Strait at a depth of 57 m (Woodgate, 2018). The A3 mooring was

chosen according to its observation quality, completeness throughout the record period

and its proximity to the Bering Strait (Woodgate, 2018). However, the Alaskan Coastal

Current is not sampled in the mooring, and this omission results in an underestimation

of the Bering Strait transport by approximately 25% (Woodgate, 2018). Despite the

underestimation, the Bering Strait OHT data shows a strong correlation in the velocity

and temperature measurements with the A4 mooring deployed near the Alaskan coast

and hence, provides an accurate measure of the Bering Strait OHT anomalies (Woodgate,

2018). The uncertainty in the OHT estimates is lower than 5% (Woodgate, 2018).

3.2 Methods

We present a regional seasonal forecasting model of the minimum SIE for each peripheral

sea of the Arctic Ocean. Following Nikolaeva and Sesterikov (1970), Krumpen et al.

(2013), Williams et al. (2016) and Brunette et al. (2019), we use late winter coastal

divergence area, hereon referred to as Coastal Divergence (CD), as a predictor of the

September minimum sea ice extent. At initialization, LITS places tracers in each 25 km

× 25 km EASE-grid cell over the pan-Arctic domain at a given start week (WX). For

each year, tracers are advected with a 1-week time step using the PPF data set from start

week (WX) until the last week of April, May and June to produce May 1, June 1 and

July 1 forecasts, respectively. At each time step, advected sea ice tracers lying outside

the SIC ≥ 15% threshold is flagged as inactive and no longer advected. At the end of

the integration, we quantify the area of CD with the number of grid cells that are free

of tracers in each Arctic peripheral sea (Figure 3.1). The error estimate on the CD area

estimate is therefore 625 km2 (25 km × 25 km) multiplied by the characteristic length

(parallel to the coast) of a peripheral sea.

DeRepentigny et al. (2016) compared sea ice drift simulations from the PPF dataset

with IABP buoy data to quantify tracking error in LITS. For a weekly temporal resolution,

the median error in trajectories is 7% and the upper-quartile error is 16% of the total

distance travelled. The trajectory error is about 25 km and 36 km for a 12-week (from 1st
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Figure 3.1: a) Initial and b) final positions of sea ice tracers (green dots) advected from
the first week of November 2006 (W45) until the last week of June 2007 (W22) using the
Lagrangian Ice Tracker System (LITS). Blue shading show the SIC in the background.
Note that most of the coastal divergence, inferred from the area with no green dots, in
each peripheral sea occurs in late fall and early winter when the pack is more mobile. We
show a November 1 start week as an example instead of a late winter start week for the
sake of clarity as the signal in coastal divergence is larger.

week of March to 1st week of June) and 17-week (from 1st week of Feb. to 1st week of

June) advection, respectively.

Predictability of the minimum SIE is analyzed for each of the Arctic peripheral seas, as

defined in NSIDC (ftp://sidads.colorado.edu/DATASETS/NOAA/G02186/ancillary/;

see also Figure 3.2). The Barents and East Greenland seas are not included in this study

as sea ice is not present in late summer.

All data sets are interpolated on the EASE-grid with a 25-km resolution. We subtract

the climatological mean and linearly detrend the data sets to remove seasonal and secular

trends in order to focus on the interannual variability. From here on, SIC, SIE, RSR, LWD,

MPF and OHT refer to monthly anomalies and CD refer to integrated coastal divergence

area anomalies unless specified otherwise. The Pearson correlation coefficients presented

in this study are significant at the 95% confidence level, unless specified otherwise.
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Figure 3.2: Arctic map including the definition of peripheral seas: Beaufort, Chukchi,
East Siberian, Laptev and Kara. The jagged edges along each peripheral sea gives an
indication of the spatial resolution of the EASE-grid used in this study.
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Chapter 4

Results and Discussion

4.1 RSR Variability: Atmosphere vs. Surface

We first aim to quantify sources of predictability in RSR from the atmosphere (water

vapor, clouds) and surface conditions (melt pond, open water) for each peripheral sea

and forecast lead-time. To this end, we calculate the Pearson correlation coefficients

between all-sky RSR and clear-sky RSR, all-sky RSR and all-sky surface LWD, clear-sky

RSR and SIC, and clear-sky RSR and clear-sky MPF for June, May and April (Figure 4.1).

The first, second, third and fourth columns in Figure 4.1 each indicate the fraction of

variance explained by the surface, atmosphere (water vapor, clouds), open water and

melt pond, respectively. Clear-sky RSR explains ≈ 60–75% of the variance in all-sky RSR

in the peripheral seas where the correlation is significant and SIC variability is above 5%

for all forecast dates (Figure 4.1-first column). All-sky LWD is negatively correlated in

the Kara and Laptev seas and not correlated in other peripheral seas indicating a positive

feedback from the presence of clouds - i.e. low SIC, low RSR and high cloud/LWD. In the

central Arctic where SIC variability is low, all-sky LWD explains 25–27% of the variance

in all-sky RSR (positively correlated: high cloud, high RSR/LWD), indicating that both

surface and atmospheric effects are important in regions of low SIC variability (Figure 4.1

- second column). We conclude that the surface conditions (r2 = 0.60–0.75) dominate the

TOA-RSR signal and that the atmosphere, while being non-negligible in certain regions

and months, is of less importance, in accord with Zhan and Davies (2017).
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Figure 4.1: Pearson correlation coefficients between detrended June (a-d), May (e-h)
and April (i-k) all-sky and clear-sky Reflected Solar Radiation (RSR, first column),
all-sky RSR and all-sky surface Longwave Downwelling radiative flux (LWD, second
column), clear-sky RSR and Sea Ice Concentration (SIC, third column), and clear-sky RSR
and clear-sky Melt Pond Fraction (MPF, fourth column) anomalies for the time period
2000–2018 (RSR, LWD and SIC) and 2001–2011 (MPF). The black outline shows regions
with significant correlations at the 95 % confidence level. The green outline shows regions
where the SIC variability is greater than 5 % (σ > 0.05). Clear-sky RSR explains 70%, 74%,
61% of the variance in all-sky RSR. SIC and clear-sky MPF explain 65%, 55%, 61% and 7%
(from positive correlation), 23%, 0% (before melt onset) of the variance in clear-sky RSR
in June, May and April, respectively, in the five peripheral seas, where the correlation is
significant at the 95% confidence level (black outline) and SIC variability is greater than
5% (green outline).
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The surface conditions can be broken into two parts: melt pond and open water

fraction. In the peripheral seas where the correlations are significant and interannual

variability of SIC is above the 5% threshold, open water fraction explains 55–65% of

the variance in April–June clear-sky RSR while clear-sky MPF explains 7% (positive

correlations) in clear-sky June RSR, 23% (i.e. a larger fraction) in clear-sky May RSR

when melt ponds start to form (Kwok et al., 2003, see Figure 3: centre, right column)

and 0% in clear-sky April RSR prior to melt onset. Note that MPF derived under all-sky

conditions does not correlate with all-sky RSR in June (r2 = 0.01) nor May (r2 = 0.00) for

any of the peripheral seas. The fact that the correlation between MPF and clear-sky RSR

is only apparent in the clear-sky MPF product indicates that open water dominates the

surface signal, and MPF and atmosphere conditions are two signals of equal importance

competing with one another. Note that while open water fraction (SIC) explains most

of the variance in clear-sky RSR for all months, the area over which the variability of

SIC is above the threshold (σ > 5%) decreases from June (when it covers most of the

peripheral seas) to May and April when it covers much smaller areas limited to coastal

water polynyas (Morales Maqueda et al., 2004; Preußer et al., 2019).

We also note that clear-sky MPF in June is positively correlated with clear-sky RSR in

all peripheral seas except over land fast ice in the Laptev Sea, western East Siberian Sea

and the central Arctic (Figure 4.1d), where SIC variability is low. The positive correlation

in the peripheral seas is counter-intuitive and contradictory to previous studies arguing

that MPF is a skillful predictor of the minimum SIE (Bushuk et al., 2020; Liu et al., 2015;

Schröder et al., 2014). This suggests again that open water fraction rather than MPF is

key for the minimum SIE. In the peripheral seas, positive MPF anomalies mean that ice

is actually present at the surface whereas negative anomalies typically mean no ice, as

opposed to ice that has little melt pond area. In the central Arctic and over land fast

ice, positive MPF anomalies mean more melt pond over ice that typically persists or

systematically melts each year. The fact that MPF is positively correlated in regions of

the peripheral seas where you have large interannual variability in SIE and negatively

correlated in regions where interannual variability is small indicate that ”presence of ice”
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in peripheral seas, even if ponded, is detrimental to the production of large negative

anomalies in the minimum SIE.

In the central Arctic, June MPF still explains 42%of the variance where correlation is

significant, but SIC variability is less than 5%. At high latitudes, between 80-88°N, SIC is

typically higher, ice is fresher and thicker and therefore less permeable to surface runoff

from melt ponds, leading to a maximum MPF per grid cell despite the sun being lower

on the horizon (Rösel et al., 2012; Tschudi et al., 2008). Below, we compare the predictive

skill of SIE, RSR and CD in light of the results above for all peripheral seas of the Arctic

and for all forecast dates.

4.2 RSR, SIE and CD Predictive Skill

For the most part, the predictive skill of RSR and SIE (or equivalently, SIA, not shown)

is equal and significant (within uncertainty, see Table A.1) and explain between 25 and

70% of the variance in the minimum SIE for all peripheral seas for the month of June

(Figure 4.2). In May and April, they mostly lose their predictive skill in agreement

with previous studies showing a loss of early summer SIE’s predictability for detrended

minimum SIE when forecast lead-times are greater than 3 months (see Figure 4.2

Blanchard-Wrigglesworth et al., 2011; Lindsay et al., 2008). CD is equally skillful as RSR

and SIE for a July 1 forecast and remain skillful for June 1 and May 1 forecasts except for

the Chukchi and East Siberian seas, where other dynamical and thermodynamical factors

are important and divergent ice motion is weak (see Section 4.2.2 and 4.2.3 below). We

note that July 1 forecasts are past the melt onset date and as such, the last weeks of tracer

advection do not represent late winter dynamic preconditioning but rather early summer

dynamic ice loss. This is in part why CD forecasts of the minimum SIE continue to be

skillful after melt onset. Lastly, the difference in correlation magnitudes between CD

and RSR where both show significance are negligible for each peripheral sea given their

uncertainties (Table A.1, Figure B.1)

We now discuss regional predictability for each peripheral sea separately and for all

forecast dates.
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Figure 4.2: Pearson correlation coefficients between detrended June (a-b), May (d-e) and
April (g-h) SIE (left column) and all-sky Reflected Solar Radiation (RSR) (middle column)
and Coastal Divergence (CD, right column) area anomalies integrated from optimal start
week WX (see Table B.1) to c) July 1, f) June 1, i) May 1, and minimum SIE anomalies
for each Arctic peripheral sea for the 2000-2018 (SIE and RSR) and 1993-2018 (CD) time
period. Correlations significant at the 95 % and 90 % confidence levels and non-significant
correlations appear in blue, green and grey, respectively. Correlations using sea ice
area instead of SIE are the same (not shown). Correlations between clear-sky RSR and
minimum SIE anomalies are the same as for all-sky RSR within uncertainties (see Table
A1) except for the Chukchi Sea in June and Laptev Sea in April (not shown). This suggests
that atmospheric processes are important for those seas and forecast dates.

19



4.2.1 Beaufort Sea

In the Beaufort Sea, the predictive skill of SIE and RSR is high (r2 = 0.67; 0.52) and

significant for the month of June, medium for the month of May (r2 = 0.20; 0.40) and low

and insignificant for the month of April (r2 = 0.09; 0.12). CD, however, remains highly

correlated (r2 = 0.54, 0.44, 0.42) for all forecast dates (Figure 4.2). The comparable skill

between June RSR and July-1 CD supports the idea that the predictive skill of June RSR

comes from sea ice thickness anomalies at the onset of the melt season (Brunette et al.,

2019; Bushuk et al., 2017a; Chevallier and Salas-Mélia, 2012; Nikolaeva and Sesterikov,

1970; Williams et al., 2016).

The predictive skill of SIE and RSR in June originates from the presence of open

water (Figure 4.1c). In May, SIE and RSR show predictive skill as the open water signal

associated with the Amundsen Gulf polynya is strong (Figure 4.1g). The predictive skill

is lower, however (Figure 4.2d), despite SIC still explaining 78% of the mean variance in

clear-sky RSR in the Beaufort Sea (Figure 4.1c) in areas where SIC variability is greater

than 5%. This is because the size of this area is much smaller compared to June. In April,

both SIE and RSR lose skill in the Beaufort Sea when the area with SIC variability greater

than 5% is nearly zero.

In this sea, while periods of coastal convergence and divergence oscillate throughout

winter, spring ice dynamics does give predictability. For instance, a large fraction (55%) of

tracers were advected out of the Beaufort Sea between the third week of March (W12) and

May 1 in 2008 (not shown), a year with the second lowest minimum in the regional SIE

during 1993-2018 (see also Hutchings and Rigor, 2012). Our results are in accord with the

findings of Kimura et al. (2013) who observe a steady divergence of sea ice tracers in the

Beaufort, Laptev and Kara seas from December 1 to April 30 in 2003-2011 with a similar

ice tracking system using daily-ice velocity from the satellite passive microwave sensor

Advanced Microwave Scanning Radiometer-Earth Observing System data. Finally, we

note that CD remain significantly correlated with the minimum SIE for a June 1 forecast

(although with a smaller correlation coefficient r = -0.53) for the entire satellite record
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(1979-today), indicating that CD remains a skillful predictor even when years with a

thicker and slower ice cover are included.

4.2.2 Chukchi Sea

In the Chukchi Sea, SIE and RSR are equally skillful predictors (within uncertainty, r2

= 0.37; 0.28) for the month of June and lose all skill for the month of May and April

(Figure 4.2). Similarly, CD shows predictive skill for a July 1 forecast but loses skill for

June 1 and May 1 forecasts. This suggest that other (summer) processes (e.g. OHT, ice

drift) govern the interannual variability in the regional minimum SIE. For instance, Bering

Strait OHT in spring is a skillful predictor of SIE in June and July with a resurgence of skill

in late Fall (Lenetsky et al., 2020; Serreze et al., 2016; Woodgate et al., 2010), and on the

rapid loss of SIE in forced climate simulations (Auclair and Tremblay, 2018). Francis et al.

(2005) used an observational data set from TIROS Operational Vertical Sounder (TOVS)

for LWD, winds and sensible heat to report that the variance in minimum SIE anomalies

in the Chukchi Sea is primarily explained by LWD from June to September (≈ 20-55%),

advective heat in the month before the maximum SIE retreat (≈ 10%), and meridional

winds early in the melt season (≈ 25%). The fact that CD for a July 1 forecast shows

predictive skill (Figure 4.2c) supports the statement of summer dynamics influencing the

variability of the regional minimum SIE. A multivariate model using Bering Strait OHT

is investigated in Section 4.3.

Finally, clear-sky and all-sky RSR showing equal predictive skill of the minimum SIE

(within uncertainty) in all peripheral seas for June except in the Chukchi Sea, where

clear-sky RSR shows no skill, suggests that early summer atmospheric radiative fluxes

also play a role in this peripheral sea (not shown).

4.2.3 East Siberian Sea

In the East Siberian Sea, SIE and RSR are equally skillful predictors of the minimum SIE

in June (r2 = 0.32; 0.41) and lose all predictive skill in May and April. In May, SIE is no

longer a skillful predictor (Figure 4.2d) despite the fact that it is significantly correlated
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with clear-sky RSR along the flaw-lead polynya (Figure 4.1g). Flaw-lead polynyas are

regions of open water formed between fast ice and pack ice caused by off-shore winds

(Bareiss and Görgen, 2005). In this peripheral sea, sea ice motion is mostly parallel to the

shore along the circumpolar-flaw lead polynya rather than off-shore (Kwok et al., 2013),

and is therefore less likely to create sea ice thickness anomalies over extended areas. We

hypothesize that dynamic preconditioning in this region is not associated with surface

SIC anomalies, and potentially explains the loss of skill in May SIE.

For a July 1 forecast, CD shows lower (significant at the 90% confidence level)

predictive skill for the minimum SIE and no predictive skill for June 1 and May 1

forecasts (Figure 4.2c, f, i). This supports the suggestions above that divergent sea ice

motion is small and does not lead to extensive sea ice thickness anomalies (see Appendix

B for more discussion). The East Siberian Sea generally shows more convergence of

ice from the tracer advection compared to other peripheral seas (not shown) despite

some interannual variability. This is consistent with Kwok (2006) and Kimura et al.

(2013), who also report convergent winter ice motion in this peripheral sea from a similar

satellite-based ice tracking algorithm. A testament to this convergence of sea ice occurred

in the winter of 2017 when Russian ice breakers Kapitan Dranitsyn and Admiral Makarov

were beset on their way to Arkhangelsk in the East Siberian Sea from thick ridged ice

while on a mission to test the Northern Sea Route under a warming Arctic (Staalesen,

2017). As a result, June RSR and SIE are better predictors of the minimum SIE in this

peripheral sea.

While there is little off-shore ice motion in late winter, Francis et al. (2005) reports on

LWD anomalies explaining the majority of variance in the minimum SIE anomalies in

the month before the maximum SIE retreat (≈ 35%), with southerly wind anomalies also

having some influence at the time of maximum retreat (≈ 10%) through sea ice advection

that enhances thermodynamic anomalies (Rigor et al., 2002).
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4.2.4 Laptev Sea

In the Laptev Sea, SIE and RSR again show equal predictive skill for June (r2 = 0.72; 0.59);

however, SIE loses predictive skill for May and April while RSR remains skillful (Figure

4.2d-e, g-h). This is despite May SIC still explaining 61% of mean variance in clear-sky

RSR where correlation is significant and SIC variability is greater than 5% (Figure 4.1g).

However, the areal extent where SIC variability is greater than 5% is much smaller

compared to June. The fact that clear-sky RSR has equal predictive skill of the minimum

SIE as all-sky RSR (not shown) suggests that the atmosphere is not responsible for this

difference, leaving MPF and/or SIT anomalies as the potential source of May predictive

skill in the Laptev Sea.

This statement is supported by the significant correlation found between May RSR

and June-1 CD in the Laptev Sea (not shown). In other words, RSR reflects the surface

albedo variation that is a function of sea ice thickness anomalies (Light et al., 2015)

preconditioned from CD. This argument of SIT anomalies at the surface, in addition to

SIC and MPF, explaining the variance in all-sky RSR is corroborated by the following: the

variance in clear-sky RSR explained by each surface component – SIC and MPF (Figure

4.1g, h) – does not sum up to the variance in all-sky RSR explained by the total surface –

clear-sky RSR (Figure 4.1e), i.e. another surface component is responsible.

A less convincing argument for the potential source of May predictive skill is MPF,

where clear-sky MPF and clear-sky RSR correlations are only significant in very localized

regions in this peripheral sea (r = -0.75, see Figure 4.1h). However, the unconvincing

results could also potentially be from the uncertainties and the shorter period that come

with the MPF data, rather than from an actual lack in skill.

In April, clear-sky RSR explains a smaller fraction of the variance in all-sky RSR (68%)

than that in June (88%) and May (85%), indicating an increased contribution from the

atmosphere. Moreover, clear-sky RSR shows lower predictive skill of the minimum SIE

at a 90% confidence level than all-sky RSR, further supporting the idea that atmospheric

radiative fluxes play a role (not shown).
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The increased surface air temperature associated with the ubiquitous presence of

polynya in the Laptev Sea compared with other peripheral seas (Barber and Massom,

2007; Bareiss and Görgen, 2005) may explain why RSR remains skillful in contrast with

SIE (see Figure 4.1g and k for polynya signatures). A flaw-lead polynya of approximately

2000 km in length with width between 10-100 km (Morales Maqueda et al., 2004) is

present in the Laptev Sea from November until April along the fast ice edge in the

southern latitudes (Willmes et al., 2011) where shortwave radiation can reach even at

high solar zenith angles before summer solstice. In the winter, approximately 50% of

ocean-atmosphere heat loss occurs over polynyas and leads (Maykut, 1982). By late

April, the net ocean-atmosphere heat flux (including shortwave radiation) can instead

cause surface heat gain (Willmes et al., 2011), increasing water vapor content in the

atmosphere and clouds (Bareiss and Görgen, 2005). While surface albedo increases

dramatically with increasing solar zenith angle under clear-sky conditions, the presence

of clouds increases diffuse radiation that leads to a lower surface albedo (Gardner and

Sharp, 2010; Hartmann, 2016). Choi et al. (2014) also attribute the positive correlation

found between cloud fraction and absorbed solar radiation in April and May to this

cloud effect at higher solar zenith angles.

CD is a skillful predictor in the Laptev Sea for all forecast dates. This peripheral sea

shows ubiquitous off-shore ice motion throughout winter and the highest percentage of

tracers lost due to coastal divergence (and melt for July 1 forecasts) for all forecast dates

(not shown). Our results are in accord with the findings of Brunette et al. (2019) who find

predictive skill in the Laptev Sea for a May 1 forecast and Kimura et al. (2013) who show

a steady divergence of sea ice tracers in the same sea integrated from December 1 to April

30.

4.2.5 Kara Sea

In the Kara Sea, SIE is a skillful predictor of the minimum SIE only for June (r2 = 0.23)

unlike RSR that has no skill for any forecast date (Figure 4.2). This is in agreement

with Choi et al. (2014) who report an absence of significant covariance between early
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summer TOA solar radiation and late summer SIC in the Kara Sea. Two factors can be

responsible for the difference in correlation between June RSR and SIE: the presence of

clouds in regions of large open water or the presence of an extensive ponded ice cover.

The fact that MPF is positively correlated with clear-sky RSR in the Kara Sea (Figure

4.1d) suggests that clouds over open water is responsible for the lack of predictive skill

in June RSR. Furthermore, clouds have a large impact on the planetary albedo in regions

with low SIC as in the Kara Sea (Choi et al., 2019; Gorodetskaya et al., 2006). However,

the reduced ice-albedo feedback associated with summer clouds does not have a large

effect on the minimum SIE in this sea where it is currently almost a seasonal ice cover

with low SIC already by June. The results are also in agreement with Zhan and Davies

(2017) who report that June RSR’s predictability is mainly attributed to surface albedo

anomalies rather than atmospheric conditions such as clouds, water vapor, aerosol and

surface air temperature. We conclude that clouds and uncertainties in MPF explain the

lack of correlation in June RSR.

For May and April, both SIE and RSR lose skill. This is despite the significant and

negative correlation found between May MPF and clear-sky RSR in this sea (r = -0.74).

As discussed in Section 4.1, this is presumably due to open water anomalies outweighing

the effects of melt pond in creating negative anomalies of the minimum SIE. In April,

predictive skill is lost due to lack of surface albedo anomalies.

CD is a skillful predictor of the minimum SIE for all forecast dates. As mentioned

for the Laptev Sea, the Kara Sea also shows consistent coastal divergence and the highest

percentage of tracers lost due to divergence (and melt for July 1 forecasts) for all forecast

dates (not shown), in line with the steady divergence of sea ice tracers reported by Kimura

et al. (2013). This confirms the hypothesis that open water anomalies created by offshore

advection of sea ice dominates the predictability in this sea.

In summary, RSR and SIE have equal predictive skill in all peripheral seas (except

in the Kara Sea) for a July 1 forecast and their predictive skill is mainly due to open

water at the surface. For a June 1 forecast, RSR is a more skillful predictor than SIE in

the Laptev Sea, where SIE loses predictive skill, as RSR appears to reflect ice thickness

anomalies through surface albedo. For a May 1 forecast (i.e. before melt onset), RSR
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and SIE are both non-skillful predictors of the minimum SIE in the peripheral seas. One

exception is the Laptev Sea where RSR shows significant skill, most likely from coastal

polynyas and associated atmospheric effects. Overall, for most peripheral seas, RSR and

SIE’s predictive skill that relies on summer thermodynamics is capped at a lead-time of

3 months (July 1 forecast) and CD remains skillful at a longer lead-time for the Beaufort,

Laptev and Kara seas.

4.3 Hindcast Model

We develop three hindcast models M1, M2 and M3 for the minimum SIE for 2000-2018 in

each peripheral sea based on the linear trend (M1), linear trend + CD integrated from start

week WX (see Table B.1) to May 1 (M2) and linear trend + April RSR (M3). The 2000-2018

period is selected based on availability of RSR data. The simplest model (M1) is written

mathematically as SIEp = a t + C, where SIEp is the predictand, t is time (year) and C is a

constant. M2 is based on the linear trend and May-1 CD (X1) as predictors: SIEp = a t1 + b

X1 + C. M3 is based on the linear trend and April RSR (X2) as predictors: SIEp = a t + c X2

+ C. All constants (a, b and c) are determined from the method of least-squares. We use

the adjusted coefficient of determination (r2) to take into account the fact that increasing

the number of predictors in a statistical model increases the correlation even if the new

predictor is not correlated with the predictand.

The linear trend in M1 explains 29%, 30%, 15%, 32% and 47 % of the variance in

the minimum SIE (r2) in the Beaufort, Chukchi, East Siberian, Laptev and Kara Seas,

respectively (Table 4.1). In general, the fraction of variance explained by the linear trend

is related to the relative magnitude of the interannual variability in the minimum SIE

compared to the trend (Figure 4.3). For instance, the linear trend explains the smallest

fraction of the variance in the East Siberian Sea where the interannual variability is large

and explains the largest fraction of the variance in the Kara Sea where the interannual

variability is small and the trend is large (see Figure 4.3). The large interannual variability

in the East Siberian Sea shows that winter (strong convergence event related to persistence
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Table 4.1: Correlation coefficients (r2), adjusted correlation coefficients (r2) and standard
deviation of hindcast error (σerr) in millions km2 for hindcast models of the September
SIE from 2000 to 2018 for each peripheral sea using linear trend (M1), linear trend and
May-1 Coastal Divergence (CD) area anomalies (M2) and linear trend and April RSR
anomalies (M3). Bold characters indicate significant improvement in predictability using
an additional predictand.

Model Predictors r2 r2 σerr

Beaufort M1 Linear Trend 0.33 0.29 0.15

M2 Linear Trend, May-1 CD 0.51 0.45 0.13

M3 Linear Trend, April RSR 0.41 0.33 0.15

Chukchi M1 Linear Trend 0.34 0.30 0.11

M2 Linear Trend, May-1 CD 0.49 0.43 0.10

M3 Linear Trend, April RSR 0.35 0.27 0.11

East Siberian M1 Linear Trend 0.19 0.15 0.24

M2 Linear Trend, May-1 CD 0.20 0.10 0.24

M3 Linear Trend, April RSR 0.25 0.15 0.24

Laptev M1 Linear Trend 0.36 0.32 0.15

M2 Linear Trend, May-1 CD 0.51 0.45 0.13

M3 Linear Trend, April RSR 0.65 0.61 0.11

Kara M1 Linear Trend 0.50 0.47 0.09

M2 Linear Trend, May-1 CD 0.62 0.58 0.08

M3 Linear Trend, April RSR 0.52 0.46 0.09

of ice thickness anomalies) and summer mechanisms explain the rest of the variance in

minimum SIE.

The M2 hindcast model (linear trend + May-1 CD) increases the adjusted coefficient

of determination (r2) and decreases the hindcast error (σerr) for all seas except for the

East Siberian Sea (Table 4.1). Specifically, r2 increases by 16% (0.29 to 0.45), 13% (0.30

to 0.43), 13% (0.32 to 0.45) and 11% (0.47 to 0.58) for the Beaufort, Chukchi, Laptev and

Kara Seas, respectively, and the hindcast error decreases by 10 to 20 thousand km2, or
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Figure 4.3: Hindcasts of SIE observations (black dashed line) from M1 (linear trend, red),
M2 (linear trend and May-1 Coastal Divergence (CD) anomalies, green) and M3 (linear
trend and April RSR anomalies, blue) for each peripheral sea.

approximately 1–2% of each peripheral sea area. The largest improvement for the M2

model is in the Beaufort Sea (r2
M1 = 0.29 to r2

M2 = 0.45). This result is counter-intuitive as

the largest predictive skill for the minimum SIE from CD was expected to come from the

Laptev Sea where offshore ice motion is ubiquitous in late winter (Brunette et al., 2019;

Nikolaeva and Sesterikov, 1970; Rigor et al., 2002; Williams et al., 2016). The 13% increase

in the Laptev Sea is slightly lower than that reported by Brunette et al. (2019) who used a

slightly different time period and a larger Laptev Sea domain.

For the East Siberian Sea, the interannual variability of the minimum SIE is small

relative to that in 2007 and 2012 when two all-time record low minimum SIE occurred

(black dashed line in Figure 4.3c). The Beaufort and Chukchi seas also show large

negative SIE anomalies for those two record minimum years (black dashed line in

Figure 4.3a, b), however, those anomalies are not significantly larger than the general

interannual variability in these peripheral seas. Hence, the loss of ice in the East Siberian

Sea was the main contributor to the record low SIE in those years. In summer 2007,

a semi-permanent high over the Beaufort Sea and a strong positive dipole anomaly
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(Wang et al., 2009) led to sustained winds exporting sea ice out of the Arctic and large

solar radiation anomalies in the largely ice-free Beaufort Sea with summer sea surface

temperature anomalies reaching up to 5°C (Steele et al., 2008). In August 2012, an

extreme storm that formed over the East Siberian Sea led to surface divergence and

facilitated summer melt (Parkinson and Comiso, 2013; Simmonds and Rudeva, 2018).

Hindcast model M3 (linear trend + April RSR) does not improve the May 1 forecast

skill compared to that based on only the linear trend (M1), except for the Laptev Sea (see

Table 4.1). The Laptev Sea experiences a significant increase from M1 to M3 by 29% (r2
M1

= 0.32 to r2
M3 = 0.61) and is also higher than that of M2 (r2

M2 = 0.45).

Finally, we find that r2 from a hindcast model based on linear trend and June

RSR (Beaufort: 0.64, Chukchi: 0.47, East Siberian: 0.47, Laptev: 0.71, Kara: 0.50) are

comparable (within 10%) to a hindcast model based on linear trend and June SIE

(Beaufort: 0.75, Chukchi: 0.53, East Siberian: 0.37, Laptev: 0.80, Kara: 0.56) for all

peripheral seas. This supports the hypothesis that June RSR anomalies largely stem from

June SIC anomalies preconditioned in late winter. We also confirm that adding Bering

Strait April OHT to M2 and April–May OHT to linear trend + June-1 CD do not improve

r2 for neither the Chukchi Sea nor the East Siberian Sea (not shown). This is in accord

with Lenetsky et al. (2020) who find that April–May OHT significantly correlates with

June and July SIE in the Chukchi Sea, but loses significance with August and September

SIE. The loss of significance after July is attributed to summer dynamical processes and

the sea ice edge retreating northward over the deep Canadian Basin where ocean heat

flux and sea ice interaction is reduced.
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Chapter 5

Conclusion

5.1 Conclusion

This study compares a regional seasonal sea ice forecasting model of the minimum Sea

Ice Extent (SIE) using satellite-derived Reflected Solar Radiation (RSR) and SIE and show

that Coastal Divergence (CD) explains most of the predictive skill in RSR and SIE. The

key conclusions are as follows:

• The predictive skill of RSR mainly arises from open water anomalies and is

essentially equivalent to SIE.

• In June, Melt Pond Fraction (MPF) is negatively correlated with RSR in the central

Arctic; however, it is positively correlated (counter-intuitively) in the peripheral

seas. This is because large MPF in June in the peripheral seas implies ”presence

of sea ice” at the surface and low MPF implies absence of sea ice or open water. We

find that June RSR has predictive skill in all the peripheral seas since the signal from

”presence of ponded sea ice” is smaller than the signal from open water.

• RSR and SIE are equally good predictors for all peripheral seas for a July 1 forecast,

only for the Beaufort Sea for a June 1 forecast and has no predictive skill for a May

1 forecast. There are two exceptions: the Kara Sea where only SIE has predictive

skill for a July 1 forecast and the Laptev Sea where only RSR has predictive skill
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for June 1 and May 1 forecasts. We hypothesize that clouds, melt ponds and

underlying sea ice introduces uncertainties in RSR for the Kara Sea. For the Laptev

Sea, SIE lacks predictability as it does not reflect the albedo variability from ice

thickness anomalies in May and atmospheric contribution from high concentration

of polynyas in April that give RSR the predictive skill.

• CD has equal predictive skill compared to RSR for all peripheral seas for a July 1

forecast. For longer lead-times, CD and RSR both lose skill in the East Siberian

and Chukchi seas. In the Beaufort Sea, only CD remains skillful for all forecast

lead-times.

• The predictive skill in the East Siberian and the Chukchi seas is dominated by

summer processes. The Kara Sea is an outlier in this simple model, where CD

remains always skillful for all forecast dates while RSR never shows skill. This is

because sea ice thickness and SIC anomalies that give predictive skill are absent in

RSR in the Kara Sea due to uncertainties introduced from clouds and melt ponds.

• A simple hindcast model for 2000-2018 using the linear trend (M1) explains 15, 29,

30, 32 and 47% of the variance in the minimum SIE (r2) in the East Siberian, Beaufort,

Chukchi, Laptev and Kara seas, respectively. The largest explained variability in

the Kara Sea highlights the strong trend towards a seasonal ice cover. The lowest

explained variance in the East Siberian Sea show that other winter, spring and

summer processes explain the rest of the variance to varying degrees.

• The largest improvement in predictive skill from adding May-1 CD to the linear

trend was surprisingly found in the Beaufort Sea (r2
M1 = 0.29 to r2

M2 = 0.45 and

σerr M1 = 0.15 to σerr M2 = 0.13). This is believed to be from the semi-permanent

off-shore motion of ice, reduced sea ice thickness and increased mobility in recent

years. May-1 CD adds skill to the forecast in the Laptev Sea (r2
M1 = 0.32 to r2

M2 = 0.45

and σerr M1 = 0.15 to σerr M2 = 0.13), slightly less than the 21% reported by Brunette

et al. (2019). May-1 CD adds predictive skill in the Kara Sea (r2
M1 = 0.47 to r2

M2 =

0.58 and σerr M1 = 0.09 to σerr M2 = 0.08), however, the implication of the predictability
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in this sea is minor due to its fast transition to a seasonal ice cover. In fact, the

predictive skill (r2
M2) is better for the time period of 1993-2018 than 2000-2018 when

summer SIE in this sea was greater.

• Besides the Laptev Sea (where April RSR shows higher skill than May-1 CD) and

the East Siberian Sea (where neither May-1 CD and April RSR show skill), May-1

CD has better predictive skill than April RSR for the same lead-time in all peripheral

seas.

• Bering Strait OHT does not improve forecast skill in neither the Chukchi Sea nor the

East Siberian Sea. In the two peripheral seas, the ocean-sea ice interaction with the

OHT is lost further into the summer as the SIE retreats further north with summer

melt and advection.

Our study identified key dynamic and thermodynamic mechanisms that govern the

minimum SIE for each Arctic peripheral sea. CD is skillful for May 1 and June 1 seasonal

forecasts in the Beaufort, Laptev and Kara seas. Future work includes identifying sources

of correlation between LWD, CD and the minimum SIE. This is based on the hypothesis

that LWD and CD may be correlated with a tertiary variable (i.e. large-scale atmospheric

circulation) that affect the minimum SIE.
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Appendix A

Table A.1: Uncertainties in Pearson correlation coefficients between June RSR and SIE,
and the minimum SIE anomalies for the time period 2000-2018 for each Arctic peripheral
sea. Uncertainties are calculated from a Bootstrap analysis of 1000 resampling of n = 19
elements.

June RSR June SIE

Beaufort 0.10 0.05

Chukchi 0.21 0.15

East Siberian 0.20 0.22

Laptev 0.07 0.09

Kara 0.09 0.08
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Appendix B

Following Williams et al. (2016) and Brunette et al. (2019), we present a regional analysis

of late winter Coastal Divergence (CD) for July 1, June 1 and May 1 forecast dates. CD

is a proxy for ice thickness anomaly before the melt onset and a skillful predictor for the

Laptev Sea and pan-Arctic. To this end, we present correlation coefficients between CD

integrated from start week WX (W3 to W24) to forecast dates of July 1, June 1 and May

1 for all peripheral seas (see Figure B.1). The optimal start week WX for the Beaufort,

Chukchi, East Siberian, Laptev and Kara seas is taken to be W12, W15, W5, W5 and W10,

respectively, irrespective of the forecast date (see Table B.1).

Different seas are expected to be affected differently by late winter dynamical

processes. For instance, in the Laptev Sea, where the ice flow is mostly offshore, CD as

early as February is believed to have an impact on the following September SIE (Brunette

et al., 2019). This is the time scale required to thermodynamically grow 1.0-1.2 m of ice,

i.e. the climatological melt in a given summer (Nikolaeva and Sesterikov, 1970). In the

Beaufort Sea, where the pack can periodically move towards or away from the coastline

in late winter, sea ice thickness anomalies caused by coastal divergence that occurs

mid-winter can be erased by a subsequent coastal convergence event. For this reason,

dynamical processes that occur later in the winter are expected to govern the predictive

skill in this sea. Regardless, CD was shown to have predictive skill of the minimum

SIE. For instance, anomalous divergence in the ice pack in February and April in the

Beaufort Sea in 2016 lead to an ice-free cover in the region the following summer (Babb

et al., 2019). In the East Siberian Sea, off-shore ice motion is not obviously dominant over

on-shore or parallel-to-the-shore ice motion (Kimura et al., 2013; Kwok, 2006; Miles and
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Figure B.1: Pearson correlation coefficients between late winter Coastal Divergence (CD)
area anomalies integrated from start week WX (from W3 to W24 on x-axis) to July 1 (W24,
green), June 1 (W21, orange) and May 1 (W18, blue) and minimum SIE anomalies. The
red dashed line shows the 95% significance criteria for n = 26 elements. The shaded
regions show the correlation uncertainties for each start week WX and each forecast date
calculated from a Bootstrap analysis of 1000 resampling of n = 26 elements. The optimal
start week WX that gives the peak correlation for each forecast date is chosen for each
peripheral sea (see Table B.1).

Barry, 1998). On-shore ice motion erases the thin ice signal from the previous off-shore

motion. For that reason, the peak correlation in CD is lost in spring, the signal is smaller

and the correlation is significant at the 90% confidence level.

The maximum correlation between CD and the minimum SIE in the Laptev (-0.53) and

Kara (-0.62) seas for a June 1 forecast are comparable to that of Williams et al. (2016), who

finds a maximum correlation of –0.58 using a proxy for coastal divergence area anomalies

estimated by backtracking a synthetic ice edge located at 77.5°N from June 1 until the

3rd week of April. The predictive skill was hypothesized to come from the Laptev Sea

where offshore ice motion is a semi-permanent feature. This hypothesis was tested by

45



Brunette et al. (2019) who report a maximum correlation of –0.63 ∓ 0.1 for a May 1 forecast

(compared to -0.48, ∓ 0.1 in this study) for a slightly larger Laptev Sea domain (70–85°N

,90–155°E) and a different time period of 1992-2016.

Table B.1: Start week (WX) for peak Pearson correlation coefficients between late winter
coastal divergence area anomalies integrated from start week WX to July 1, June 1 and
May 1 and the minimum SIE for each Arctic peripheral sea. The peak correlations are
shown in parenthesis next to the given start week. Start week WX chosen for each
peripheral sea is shown in bold. |Δr| is the difference in the correlation coefficients
between the chosen start week WX and start week WX with peak correlation when the
two are different. |Δr| is smaller than the computed correlation uncertainties for all
peripheral seas (Figure B.1).

Forecast Date

July 1 June 1 May 1 Chosen Start Week (|Δr|)
Beaufort W12 (-0.74) W15 (-0.70) W12 (-0.65) W12 (0.05)

Chukchi W17 (-0.46) W15 (-0.34) W15 (-0.36) W15 (0.03)

East Siberian W5/W20 (-0.34) W5 (-0.32) W5 (-0.24) W5 (0)

Laptev W5 (-0.73) W5 (-0.53) W5 (-0.48) W5 (0)

Kara W5 (-0.65) W10 (-0.62) W10 (-0.57) W10 (0.06)
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