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Abstract

Embedded random access memories (RAMs) are increasingly being tested

using built-in self-test (BI5T) circuits, because an embedded RAM's signais are not

accessible through input/output pins, Given current trends, the size of embedded

RAMs will eventually grow so large that yield consid~rations will require the use

of redundant lines for repair, Then, BI5T circuits will need to not only detect

faults, but also locate faults for repair. The designs of two different BI50

circuits (one with, and the other without, self-repair capability) appropriate for

repairable, embedded, (single-metal and single-polysilicon layered) CMa5 static

RAMs, are presented. The implementation of a BI50 circuit - with self-repair

requires 15% extra area in a 16K 5RAM, and 5% extra area in a 64K 5RAM.

The BI50 circuit contains a reduced-instruction-set processor, which executes

diagnosis algorithms stored in a read-only memory, and which uses some extrOl

lines to access the memory. The new algorithms employ "hybrid serial/parallel"

operations to access the memory when external repair is availa ble, or "modular"

operations to access it when self-repair is required .
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Résumé

De plus en plus souvent, les mémoires vives encadrées sont examinées pour la

présence des défectuosités par moyen des circuits d'auto-vérification incorporés,

parct que les signaux d'une mémoire vive encadrée ne sont pas accessible à

travers les ports d'entrées/sorties. Suivant les tendances actuelles, la superficie

des mémoires vives encadrées s'augmentera tellement que le rendement de

fabrication diminué obligera l'usage des lignes redondantes pour la réparation.

Alors, les circuits d'auto-vérification incorporés devront non seulement découvrir

les défectuosités, mais devront aussi localiser les défectuosités pour la réparation.

Les conceptions de deux circuits d'auto-vérification incorporés différents (l'un

avec, et l'autre sans, le pouvoir d'auto-réparation), qui sont convenables pour les

mémoires vives statiques, encadrées et réparables, et fabriquées en CMûS (avec

une couche d'aluminium et une couche de polysilicone), sont présentées. Un circuit

d'auto-diagnose incorporé - avec auto-réparation - exige 15% de superficie

supplémentaire dans une mémoire vive à 16K, et 5% dans une mémoire à 64K.

Le circuit d'auto-diagnose incorpvré contient un processeur à peu d'instructions,

qui exécute les algoritiimes diagnostiques emmagasinés dans une mémoire morte,

et qui se sert des lignes supplémentaires pour accéder à la mémoire vive. Les

nouveaux algorithmes emploient des opérations "hybrides en série/parallèle" pour

accéder à la mémoire quand la réparation externe est disponible, ou des opérations

"modulaires" pour y accéder quand l'auto-réparation est requise .

Iii
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1 Introduction

1.1 Motivation for considering this subject

Random Access Memories (RAMs) are the densest circuits being fabricated

today. Because their transistors and lines are packed so c10sely together, RAMs

suffer from a very high average number of physical defects per unit area compared

with other types of circuits, and this fact has motivated researchers to develop

efficient RAM-test sequences that provide good fault coverage [Abadir and

Reghbati 83), [van de Goor and Verruijt 90]. The published results have led some

researchers to suggest that a better solution to the RAM testing problem can

be obtained by redesigning and augmenting the peripheral circuits surrounding

the cell array of the RAM, in order to improve the RAM's testability [Inoue et

al. 87), [Sridhar 86). Others have proposed the addition of even more extra

circuitry to achieve a self-testing RAM, thereby dispensing with expensive external

test equipment [Dekker et al. 89), [Franklin and Saluja 90), [Franklin et al. 90),

[Mazumder and Patel 89]. [Ohsawa et al. 87), [Ritter and Müller 87), [Saluja

et al. 87). [Takeshima et al. 90]. [You and Hayes 85). The principal motivation

behind the proposais for designed-for-testability RA Ms and self-testing RAMs is

the significant reduction in total testing time compared with conventional RAM

testing procedures.
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An embedded RAM usually cannot be tested by simply applying test patterns

directly to the 1/0 pins, because the embedded RAM's data, address and control

signais are not accessible through the 1/0 pins. As a result, there are sorne

published design proposais for built-in self-testing embedded RAMs [Jain and

5troud 86), [Nadeau-Oostie et al. 90]. [Nicolaidis 85), [Sun and Wang 84). Given

current trends, it is reasonable to expect that eventually the size of sorne embedded

RA Ms will grow 50 large that yield considerations will require these embedded

RAMs to have spare rows and spare columns. When this happens, built-in test

circuits will be needed that not only detect the presence of faults, but also

specify the location of faults for repair purposes. A built-in self-diagnosis (BI50)

method, which can test and locate faults in embedded RA Ms, and which can be

implemented using a small amount of extra area, is the subject of this thesis.

The heart of the proposed method is the Oiagnosis and Repair Unit, which

is composed of a small reduced-instruction-set-style processor, which executes

instructions stored in a small read-only memory (ROM). When the embedded RAM

is externally repairable (i.e., it has spare rows and columns that are programmed by

blowing fuses with laser beam pulses), the Oiagnosis and Repair Unit first locates

ail the faults, and then sends a repair procedure to the equipment which controls

the laser beam. However, when the RAM is internally repairable (i.e., it has "soft

fuses:' which may be EEPROM ceIls or ordinary flip-flops), the Oiagnosis and

Repair Unit will program the "soft fuses" by itself, without help from any external

equipment. The same Oiagnosis and Repair Unit (OR-Unit) can be used to test,

diagnose, and (optionally) repair more than one embedded RAM on the same chip.

1.2 Evaluation Criteria

The list below enumerates a possible set of parameters which can be used

to evaluate the overall quality of a given built-in self-testing, self-diagnosing, and

(possibly) self-repairing circuit design. Only methods which optimize most or ail

of these parameters are acceptable for implementation.
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* The area overhead incurred by the extra circuitry (minimize) .

* The effect of the extra circuitry on the performance of the original circuit

(minimize).

* The time requirlld to apply the tests and perform the diagnosis (minimize).

* The fraction offaults located by the built-in self·diagnosis (maximize).

* The repair algorithm's allocation of spare resources to repair faults (i.e.,

the generated repair-plan should deviate minimally from the optimal repair

plan).

* The self-testability of the extra circuitry which actually performs the self

diagnosis and self-repair (maximize).

* The design time needed by an engineer to implement the given method (by

minimizing the amount of custom redesign required for e,ach new memory

block; ideally, any software that generates layouts of complete memory

modules could also generate, as part of each layout, the additional built-in

self-diagnosis circuitry).

* The flexibility of the design, in particular:

o independence of the fabrication technology being used,

o ability to accomodate to new and different fault types as the

tech nology evolves, and

o applicability, with minor changes, to different types of memories,

such as dual-port Static RAMs, and Dynamic RAMs with various

addressing capabilities.

1.3 Summary of thesis

This thesis presents the details of how to design both self-diagnosing and self

repairing embedded RA Ms (applicable to both Static and Dynamic RAMs), that
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can be implemented using a reasonable amount of extra area. Chapter 2 presents

a summary of the variety of physical implementations used to obtain static and

dynamic RA Ms. Chapter 3 presents an organized list of the various fault models

described in the literature. Chapter 4 contains a short survey of the most relevant

previously published work on the topic of BI5T for RAMs and embedded RAMs.

Chapter 5 gives a general view of the software components of such a design. The

details of the hardware designs are presented in Chapter 6. The specifie details of

the software componer.ts, as they relate to the hardware, are given in Chapter 7.

1.4 Claim of original results to appear in thesis

As will be seen from what follows, the self.diagnosis designs proposed in this

thesis, largely satisfy the evaluation criteria enumerated above. In particular, the

new proposed designs possess several qualities which make them more attractive

than any of the more obvious self-diagnosis designs.

(1.) The new designs make use of the memory capacity of the embedded RAM

itselfduring the execution of some of the diagnosis algorithms, and thereby

save much silicon area which would otherwise be an additional part of

the Diagnosis and Repair Unit, and which would only be used to provide

temparary starage far the fault maps generated by some of the algorithms.

(2.) The new algorithms are based on a combination of seriai and parallel BI5T

hardware structures, where previous algorithms dealt with only one kind af

BI5T hardware structure.

(3.) The new designs are non-intrusive because the only extra circuitry that

is placed inside the memory array itself is a purely local bus; and because

ail the other extra circuitry can be placed almast anywhere on the same

IC chip, provided that the local bus can be routed so that it links the

embedded repairable RAM to the Diagnosis and Repair Unit.
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(4.) The new designs are programmable because they use a small, easily

alterable ROM to store the diagnosis and repair algorithms.

(5.) With a very small allocation of additional hardware, the new designs can

execute relatively complex diagnosis and repair algorithms, because the

designs employa data-path structure that functions almost like a small

reduced-instruction-set processor.

(6.) Chapter 5 contains a general description of how to modify any single

bit march test so that the same algorithm can be applied to any RAM

with B-bit words. Previously published books and papers dealing with

march tests have not shown the precise details of how this transformation

is carried out - in particular, the distinctions between "state-changing"

and "state-retaining" march elements have not been made before, nor have

the two types of Marching data backgrounds and two types of Walking data

backgrounds been differentiated .
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2 Physical Description of Embedded RAMs

2.1 General Structure of RAMs

Random access memories (also called read/write memories) allow binary data

to be stored and fetched at approximately the same speed, currently ranging from

a very fast 10 nanoseconds (ns) to a relatively slow 500 ns, depending on the

fabrication technology, and the type of the memory. One measure of the operating

speed of a memory is its access time ta, which is the maximum time required to

read a word from the memory. It is measured from the application of a new

address on the address bus to the appearance of the valid data on the data bus.

The process of reading or writing a word requires that various signais be applied to

the address, control and data lines, and is ca lied a read or write memory cycle. The

memory cycle time te is the minimum time that must elapse between the initiation

of two successive memory operations. Currently, the fastest DRAMs have access

times of about SOns, and cycle times of about 100ns.

Semiconductor random access memory (RAM) circuits are volatile; this means

that if power to the RAM is shut off, then the stored information is lost.

Semiconductor RAMs are mainly c1assified into two types: dynamic RAMs and

static RAMs (the remaining'type of RAM is the Content Addressable Memory, or

CAM, which will not be considered in this thesis). Dynamic RAMs function by

storing low or high voltages across capacitors. Because there is some leakage of
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charge off these capacitors, the data must be periodically sensed and restored to

their original voltages by refresh operations. These refresh cycles must periodically

displace the normal data access cycles of a dynamic RAM circuit in order to prevent

the irretrievable 1055 of stored data. Static RAMs do not require such refresh cycles

nor any other kind of periodic data access (read or write), but can maintain stored

information indefinitely, as long as the power supply is uninterrupted. In spite

of the greater functional simplicity of static RAMs, it is dynamic RAMs which

are more widely used in large quantities, because the price per bit and power

per bit ratios are significantly less for dynamic RA Ms than for static RAMs, with

equivalent storage capacity. However in chips where the RAMs are embedded,

mostly static RAMs are used, because static RAMs have much faster access times

than dynamic RAMs with equivalent storage capacity.

The memory cell arrays of RAMs are organized into W words of B bits each,

for a total information capacity of WB bits. The information capacity of a memory

may also be quoted in terms of bytes, where 8 bits grouped together are known

as a byte. Very often, the number of bits per memory word, designated by B, is

a multiple of 8, such as 16 or 32, signifying that each memory word consists of

a whole number of bytes, such as 2 or 4 bytes. Full-chip RA Ms, that are used in

the main memories of computers, are often Qrganized to provide only a single data

bit for read/write access at a time (i.e., B = 1). Embedded RA Ms may have any

number of bits per word.

A binary-encoded group of input bits provides an address that points to a

particular word of B bits. The data will either be read from or written to the

addressed word. The access time is independent of the particular address chosen,

and is determined by the time it takes one of the address decoder circuits to

activate exactly one row or column select li ne. In most memory designs there are

separate row address decoders and column addressdecoders because of the layout

characteristics of the memory cell array, although there are sorne RAMs which use

only row address decoders. In DRAMs there is usually only one address latch to
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store the incoming address value (it reall:: is only halfofan address), and the latch

will transmit its contents to either the row decoder or column decoder, as required.

This multiplexing of addresses in DRAMs was not adopted merely because it results

in lower pin-counts, but because the slowness of the sense amplifiers in detecting

and amplifying the tiny signais from the cells, allows plenty of time for the column

address to be decoded after the row address has been decoded first. In SRAMs,

which have much faster read/write circuitry than DRAMs do, the full address is

usually stored in one address register, and the appropriate address bits will be

simultaneously transmitted to both the row and column decoders.

2.2 Structure of Dynamic RAMs

ln DRAMs, -he address decoders are also subject to control by the refresh

lagic. When the refresh line is activated by the refresh c10ck (typically every 1 ta

5 millisecands), the column decoder selects ail columns. The row decoder selects

the row specified by the value in the address latch. Ali of the bits in the chosen

row are read out and then written back ("refreshed") simultaneously. During such

a refresh cycle, the refresh logic has the additianal function of disabling ail input

to and output from the data register.

"Reading" or "writing" a bit of data from a DRAM, first requires the selection

of a word line by raising it from its precharged level of 0 volts to the supply voltage

value (usually designated by VDD)' Ali of the transfer gate transistors connected

to the selected word li ne are turned on, and this causes charge to be transferred

from each of the capacitors to their respective bit lines, and thus also causes the

destructive reading of ail the data in the cÎlosen word. Before the charge from

the cells was transferred to the bit Iines, the bit lines were precharged to some

pre-established value, usually to one half of the supply voltage. Each bit line has

its own sense amplifier, whose function is to detect this charge transfer and to

amplify the signal caused by it. The amplified signal ideally has a value of either
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Fig. 2.1 A Typical Dynamic RAM

VDD or ground. The tran~fer gate transistors continue to remain on throughout

this period so that the amplified signais from the sense amplifiers can be fed back

into their respective ceUs to restore the word of data.

"Writing" one bit to a DRAM is performed almost exactly like "reading" one

bit. The only difference is that exactly one sense amplifier does not feed back the

sensed bit line value to restore the charge to one ceU. but it takes a new value from
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the data latch which stores a data bit that has been transmitted to the DRAM,

and asserts this new value on the bit line to be stored into the one cel!.

•

To maximize the signal into the sense amplifier, a large cell capacitance and

a small bit line capacitance are desired. The bit li ne capacitance can be reduced

by sim ply cutting the li ne in half and placing the sense amplifier in die middle

between the two halves. As figure 2.1 shows, a 'ORAM makes use of half cell·

arrays, dual column decoders, a central row of sense amplifiers, and dummy cells

located on both sides, which are used to establish a voltage reference for the sense Oc
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amplifiers. Because of how the sense amplifiers operate, one of the two half ce11

arrays complements ail incoming data bit, storing a "1" as a low voltage and a "0"

as a high voltage. The output circuitry for that particular half cell-array performs

another complementation to restore the data bit's original value.

As can be seen from figures 2.2 and 2.3, a sense amplifier is basically a

differential amplifier that has been augmented with dock signais and a precharge

reference voltage (typically VDD/2). The precharge voltage can be applied through

the access transistor of each dummy word line, as shown in figure 2.2, or it can

be applied directly to the bit lines, as shown in figure 2.3. In the first case, the
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capacitances of the storage ceIls connected to the dummy word li ne are identical

to the capacitances of ail the other storage cells; this results in (1.) the dummy

cells storing a charge halfway between VDD and ground, and (2.) the real storage

cell's capacitance being exactly counterbalanced by the dummy cell's capacitance

on the other bit line half. In the second case, the dummy storage cells (not shown

in figure 2.3) usually have half the capacitance (and hence almost half the size)

of real storage cells, but this means that the dummy cells must be pre-charged

to VDD instead of VDD/2 in order to store the appropriate amount of charge;

therefore, such dummy cells are precharged separately from the bit lines. Ali sense

amplifiers contain an equalization transistor, gated by the dock !/JE, in order to

even out any unintended charge differences between the bit line halves after the

precharging phase, and before the actual sensing operation takes place. The sense

amplifiers discussed above are merely meant to be representative; in fact, there

are many distinctly different sense amplifier designs that have been published 

each DRAM manufacturer uses a different design.

2.3 Structure of Static RAMs

ln Static RAMs, as shown in figure 2.4, no periodic dock signais are needed

to retain the stored data. There are two main types of memory cells used in

CMaS SRAMs. The 4-transistor (4-T) cell has four n-channel transistors and two

polysilicon pull-up resistors. The resistors are created in a high-resistivity second

polysilicon layer, which allows the resistors to be stacked on top of the rest of

the cel!. The resistors must be properly insulated from the transistors below by

an appropriately thick oxide layer. In the 6-transistor (6-T) cell, the two resistors

are replaced by two p-channel transistors. Because transistors are more resistant

to a-partide radiation and large temperature swings than resistors, the 6-T cell

suffers from fewer soft errors than the 4-T cel!. In addition, the 6-T cell consumes

Jess power because its loads need very low standby current. As a result of these

advantages, the 6-T cell CMaS SRAMs are preferred for military and other critical

12
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applications. SRAMs using the 4-T cells have smaller die sizes. and hence cost less

to manufacture, which explains their popularity in commercial applications where

a low price is a major concern.

Figure 2.5 shows a typical 6-T cell in CMOS. The cell uses a pair of cross

coupled inverters, Ql through Q4. as the storage latch. and two access transistors,

Qs and Q6. The 4-T cell of figure 2.6 uses two polysilicon resistors to replace the

transistors Q3 and Q4 of the 6-T cell. which results in a smaller cell area. The

selection of these resistances is critical. If the resistance is too low then the static

•
(or standby) power consumption will be too high. If the resistance is too high

then the charge representing the value "1" that is stored on the gate of either

Ql or Q2 may be indfstinguishable (given the effects of noise) from the charge

representing the value "0". Complementary bit Iines D and D are used because it
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is difficult to achieve reliable operation with a single bit line at high speeds, when

the wide variations in operating temperature and device parameters are taken into

account. The word line is kept tied to ground until the ceIls connected to it are to

be accessed for reading or writing, which is when the word line's voltage is raised

to VDD.

Writing is performed by assigning the ·.talue to be written and its complement

to the D and D lines, respectively. To illustrate the write operation more dearly,

assume that we are given a cell which currently stores a logical "0", and that we

wish to now store a logical "1" in the same cell. The first step is to raise the D

li ne to VDD and to lower the D li ne to ground. Since the cell is storing a "0".

this means that QI and Q4 are on, and that Q2 and Q3 are off. When the access

transistors Qs and Q6 are turned on, the two node voltages start to change. The

transistor parameters are chosen in such a way that the resistances of Qs and Q6

are much lower than the resistances of Ql through Q4. Note that there is now a

path from VDD on li ne D, through Qs. through QI, to ground. Because QI has

most of the resistance in this voltage divider, the voltage of the node between Qs

and QI has gone from 0 volts to greater than half of VDD. This node is connected

to the gates of Q2 and Q4, and its new voltage will tend to turn off Q4 and turn

on Q2. Once Q2 has started to conduct, the voltage of the node between Q4 and

Q2 will start to drop from greater than half of VDD down to ground, and this will

tend to turn off QI and turn on Q3. Once Q2 and Q3 are completely turned on,

and QI and Q4 are completely turned off, the write operation is successful. and

the word line may then be returned to 0 volts.

Reading is performed by first precharging and equalizing the dual bit lines to

half of VDD. and then, just before the access transistors are turned on, allowing

the bit lines to float. To illustrate the read operation more c1early, let us assume

once more that the given cell currently stores a logical "0". When the word line

is activated, the conducting path from bit line D through Qs, through QI. to

ground, pulls down the voltage of line D to 0 volts. Similarly. the conducting path
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from D through Q6. through Q4. to the supply voltage, pulls up the voltage of

line D toward VDD. In the fastest SRAMs, sense amplifiers are used to detect the

initial voltage difTerence in order to complete the read operation more quickly.
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SRAMs contain an address transition detection circuit (ATDe), which starts

the precharging and equalization of the bit lines during the time it takes a new

word line to become activated. This means that the row address lines are fed

to both the row decoder and the ATDC, so that any change in row address is

immediately followed by precharging and equalization. Since column access time

is much faster thall row access time, an ATDC is not connected to the column

address lines. Figure 2.7 shows one bit slice of one type of ATDC.

An additional way to reduce the access time is to use a dynamic multiple word

line (DMWL) scheme. As figure 2.8 iIIustrates, there are two levels of word lines.

The main word li ne is not directly connected to any of the memory cells, which

causes the line's capacitance to be quite small, resulting in a reduction of word-Iine

delay. Only one section word line is active at a time, and thus only a few cells are

accessed at a time, which also shortens delay and reduces the power dissipation.

The ATDC generates a synchronization pulse that enables NOR-gates which allow

the selection of exactly one section word line.

2.4 Redundancy for Static and Dynamic RAMs.

Because densely packed memory chips are so highly vulnerable to defects, the

yield of RAM chips is crucial to the commercial success of their manufacture. Due

to their regular structure, RAMs can be efficiently made fault tolerant through the

addition of redundant (spare) bit lines and word lines. Once a fault in a RAM has

been located, the RAM can usually be repaired by disconnecting some faulty bit

line or word line (when they constitute replaceable units) and by connecting some

spare bit line or word li ne.

The most widely used technique of memory repair is permanent switching:

Here the repair is accomplished by using a laser beam or a large electric current to

blow some permanent fuses which disconnect the faulty lines and which connect

the spare lines. This kind of repair can be performed only by the manufacturer,
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and the extra hardware needed for fault repair (i.e., fuses and special decoders) is

separate from any extra hardware that may be added for self-testing purposes.

Another means of dealing with defects is to use the fault tolerance technique

of coding: Here neither fault location nor repair are done explicitly, instead the

faults are sim ply masked by redundancies in the stored-information.

A third technique, which has been largely ignored by commercial chip

manufacturers, is ca lied soft switching: Here the repair is accomplished by

programming EEPROM cells (or some other non-volatile memory ceIls) that

control multiplexers which can disconnect faulty lines and connect spare lines.

The EEPROM cells are paired with flip-flops, as in commercially available Shadow

SRAMs. When the chip is powered-up, the contents of the EEPROM cells are

written into the f1ip-flops, thereby providing default configuration parameters.

Whenever a new fault is discovered, the new configuration parameters are initially

stored in the flip-f1ops, before the slow reprogramming (i.e. 5 to 10 milliseconds)

of one or more EEPROM cells, in order to change the default setting.

2.5 The meaning of "embedded".

ln order to enhance the speed performance of VLSI chips by reducing

communication flow through the 1/0 pins, it is becoming increasingly common

that logic circuits and memories are being fabricated on the same chip. When the

data, address and control signais of RAMs cannot be directly controlled or observed

through the 1/0 pins, such on-chip RAMs are ca lied "embedded RA Ms," These

embedded RA Ms cannot be properly tested by applying test patterns directly to the

1/0 pins, therefore self-testing methods must be used. Researchers have proposed

self-testing embedded RAM designs using random test patterns and deterministic

test patterns.
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3 Fault Modelling

3.1 General Overview of Fault Models

The types of fault models that previous researchers (surveyed in [Abadir and

Reghbati 83), [van de Goor and Verruijt 901, and chapters 2, 3, 10, and 11 of

[van de Goor 91)) have considered when proposing fault detection and/or location

algorithms, and that might be repairable given appropriate forms of redundancy,

are consolidated and described in this chapter. Three broad classes of faults can

be distinguished:

* Functional faults originate in permanent physical failures in the internai

device structure of memories which will cause incorrect functional behavior.

The detection and location of functional faults is accomplished byapplying

carefully chosen data patterns to memory ceIls in specifie addressing

sequences.

* Dynamic faults refer to failures that occur when the memory is operated

at normal operational speed, but no failures occur when operated at

significantly slower speeds. Such frequency dependent malfunctions

originate mostly from timing inconsistencies internai to the memory circuits.

* Parametric faults are usually associated with voltage and current values

that fall outside the expected margins. These faults refer to situations like:
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output voltage being too high or too low, excessive power consumption,

insufficient fanout capabilities, etc. The detection of parametric faults

generally involves techniques and instruments that are highly dependent on

the fabrication technology used to make the le chip, therefore no self-test

scheme for such faults is practical, and for this reason no further attention

will be given to parametric faults.

Sorne dynamic tests can be combined with functional tests in the same self-test

algorithm because the functional test pltterns are applied at normal operational

speed, and hence these test patterns will detect frequency dependant faults as

weil. The sections below enumerate a wide variety of functional faults, including

as weil those particular dynamic faults which can be detected without the use of

external test equipment.

3.2 Functional Faults affecting Memory Cells

3.2.1 5AF: stuck-at fault

The logical value of a "stuck-at" memory cell is always 0 or 1, and can never

be changed to the opposite value. A test to locate ail SAFs must satisfy the

condition: from every cell, both a aand a 1 must be read.

3.2.2 TF: transition fault

A memory cell fails to undergo either a 0 -> 1 or a 1 -> 0 "transition" when

that same cell is being written-to; "transition faults" are not identical to "stuck-at

faults" , because the value stored in a TF cell may be changed occasionally when a

different cell is being written-to, and a "pattern sensitive fault" exists between the

different cell and the TF cell. Hence, a cell with an "up transition fault" is able to

undergo a 1 -> 0 transition when 0 is being written to it, but cannot undergo a

o-> 1 transition when 1 is being written to it, however there may exist a "pattern
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A: Functional Faults affecting Memory Cells

1: SAF: stuck-at fault

2: TF: transition fault

3: CF: coupling fault

a: CFIlnv: inversion coupling fault. (1; 1) or (!; 1)
b: CFIld: idempotent c':>upling fault. (1; 0) or (T; 1) or (!; 0) or (L; 1)

c: CFIDyn: dynamic coupling fault in SRAMs.

(rD, wO; 0) or (rD, wO; 1) or (rI, wl; 0) or (rI, wl; 1)
d: CFISt: state coupling fault. (0; 0) or (0; 1) or (1; 0) or (1; 1)

e: BF: bridging fault

4: NPSF: neighborhood pattern sensitive fault

a: ANPSF: active neighborhood pattern sensitive fault

b: PNPSF: passive neighborhood pattern sensitive fault

c: SNPSF: static neighborhood pattern sensitive fault

B: Functional Faults affecting Addressing

1: AFIUuA: addressing fault - unused address

2: AFIUrC: addressing fault - unreachable cell

3: AFIMuA: addressing fault - multi-used address

4: AFIMrC: addressing fault - multi-reachable cell

5: SOAF: stuck-open addressing fault

C: Faults affecting the Read/Write Circuitry:

1: Stuck-open Access transistor

2: Stuck-open Precharge transistor

3: S;uck-open Equalization transistor

4: Stuck-open Sensing transistor

D: Une Faults

1: SAF: stuck-at bit line fault

2: BF: bridged lines fault

3: SOF: stuck-open line fault

4: CF: coupled bit line fault

Table 3.1 Summary of Functional Fault Models

sensitive fault" which can cause the 0 -> 1 transition. Similarly. a cell with a

"down transition fault" is able to undergo a 0 -> 1 transition when 1 is being
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E: Dynamic faults

1: RecF: recovery fault

a: RecF/5A: sense amplifier recovery fault

b: RecF/W: write recovery fault

2: RetF: retention fault

a: RetF/55: sleeping sickness

b: RetF/RL: refresh li ne stuck·at fault

c: RetF/5DL: static data 1055 fault

3: IF: imbalance fault

4: 5YNCF: synchronization fault

Table 3.2 5ummary of Dynamic Fault Models

written to it, but cannot undergo a 1 -> 0 transition when 0 is being written to

it, however sorne kind of "pattern sensitive fault" may be able to cause the 1 -> 0

transition. A test to locate ail TFs must satisfy the condition: every cell must

undergo a 1 -> 0 transition and a 0 -> 1 transition, and must be read immediately

after each transition before undergoing any additional transitions.

3.2.3 CF: coupling fault

A pair of memory cells (x, y) are involved in a "coupling fault" when a write

operation that causes a transition in one cell x (known as the coupling cell), also

causes an unintended transition in another cell y (known as the coupled cell).

However, the reverse action: a write operation that causes a transition in cell y,

does not necessarily cause an unintended transition in cell x (if it does cause such

a transition in cell x, then this action constitutes a second coupling fault which is

distinct from the first). In the case of Dynamic RA Ms, sorne of the coupling fault

models are based on certain assumptions:

a) A read operation will not cause an error, which is reasonable since read

signais are usually very weak and are therefore unlikely to influence the

contents of other cells.
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b) A non-transition write will not cause a fault. which is necessary to allow for

read operations to be fault free; in DRA Ms. a read operation is destructive,

and must therefore be followed bya non-transition write operation to restore

the original contents of the disturbed cells.

Coupling faults are c1assified as:

1) inversion coupling faults (CF/Inv)

2) idempotent coupling faults (CF/Id)

3) dynamic coupling faults in 5RAMs (CF/Dyn)

4) state coupling faults (CF/5t)

5) bridging faults (BF)

ln what follows, we use the notation 1to signify a transition write to 1 in a cell

which originally contained a O. Analogously, the notation! signifies a transition

write to 0 in a cell which originally contained a 1. The notation ! signifies an

inversion of the original value stored in a cell. The notation wO signifies a write to

o in a cell whose original content is unspecified (i.e. the operation can be either

a transition write or a non-transition write). 5imilarly, the notation w1 signifies a

write to 1 in a cell whose original value is unspecified.

3.2.3.1 CF//nv: inversion coup/ing fault, (1; 1) or (1; 1)

An inversion coupling fault implies that an 1or ! transition write in one cell

causes the contents of a second cell to always ;nvert. A test to locate ail CF/Inv

coupled ceIls must satisfy the condition: each coupled cel/ must be read after an

odd number of inversions in the coupled cel/ that were caused by transition writes

in the coupling cel/s.

3.2.3.2 CF//d: idempotent coup/ing fau/t, (1; 0) or (p) or (!; 0) or
(!;1)

An idempotent coupling fault implies that an 1 or ! transition write in one

cell causes the contents of a second cell to always take the same value, 0 or 1.
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A test to locate ail CF/Id coupled cells must satisfy the condition: each coupled

cel/ must be read after the coupled cel/ has been forced to the same value an

unspecified number of times (but before the coupled cel/ could be forced to the

opposite value). by transition writes in the coupling cel/s.

3.2.3.3 CF/Dyn: dynamic coupling fault in SRAMs. (rOlwO;O) or
(rOlwO; 1) or (rllwl; 0) or (rllwl; 1)

Adynamie coupling fault can be viewed as a generalization of the idempotent

coupling fault. Adynamie coupling fault implies that a read operation of v~lue

x. or a non-transition write of x, or a transition write to x, may each cause the

contents of a second cell to always take the same value, 0 or 1. A test to locate ail

CF/Dyn coupled cells must satisfy the condition: each coupled cel/ must be read

after the coupled cel/ has been forced to the same value ~n unspecified number of

times (but before the coupled cel/ could be forced to the opposite value). by any

types of read and write operations in the coupling cel/s.

3.2.3.4 CF/St: state coupling fault. (0; 0) or (0; 1) or (1; 0) or (1; 1)

Astate coupling fault implies that if the coupling cell x contains a certain

value, then the coupled cell y is forced to a particular value. At first glance, it

would appear that state coupling faults are identical to dynamic coupling faults,

but there is a c1ear distinction between them. State coupling faults can only occur

between ceIls in the same word line, since ail read and write operations take place

concurrently among such cells. Dynamic coupling faults can only occur between

cells in different word lines, since ail read and write operations take place at

different times. A test to locate ail state coupled cells must satisfy the condition:

each pair of state coupled cel/s (x,y) must be written ta, in such a way that ail

four logical states are supposed ta occur. namely (0,0), (0,1), (1,0) and (1,1).

3.2.3.5 BF: bridging fault

A set of memory cells (x,y,z, ...) are involved in a "bridging fault" when the

24



•

•

cells have a single combined value which is either the logical AND or the logical

OR of the values x, y, z, etc. A test to locate ail bridged cells must satisfy the

condition: each possible pairing of bridged cells (x, y) must be written to, in such

a way that ail four logical states are supposed to occur, namely (D, 0), (0,1), (1,0)

and (1,1). BFs are usually caused by short circuits between cells or lines.

3.2.4 NPSF: neighborhood pattern sensitive fault

The "neighborhood pattern sensitive fault" c1ass is defined as follows: the

value, or the ability to change the value, of;: base cell, is influenced by the values of,

or changes to the values of, a specific group of cells (known as the neighborhood).

The set of values of the specific group of cells is ca lied the neighborhood pattern.

The two most common neighbc,hoods are known, somewhat arbitrarily, as Type-l

and Type-2:

ï ype-l: this neighl>orhood cOllsists of the four "c1osest" cells to the base cell,

namely the cells just above, just to the right, just below, and just to the

left, of the base cel!. Base cells along an edge of the cell array actually have

only three physically ..djacent neighbors, but in the interests of symmetry,

such a base cell is deemed to have a fourth "adjacent" neighbor, which is

the corresponding cell along the opposite edge of the array. Base cells at

the corners of the cell array have only two physically adjacent neighbors,

and they are deemed to have two more "adjacent" neighbors, which are

in fact the h'Jrizontally opposite and vertically opposite corner cells (the

remaining diagonally opposite corner cell is not in the neighborhood).

Type-2: this neighborhood consist~ of the eight "c1osest" cells to the base cell,

namely the cells ofthe Type-l neighborhood plus the four diagonally c10sest

cells to the base cel!. Hence, the eight cells of the neighborhood plus the

base cell form a 3 x 3 square with the base cell as the center. Analogous to

Type-l neighborhoods, the base ceIls along an edge of the cell array have

deemed "adjacent" neighbors along the opposite edges of the array.
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The neighborhood pattern sensitive fault c1ass is only used with reference to

dynamic RAMs, and never with reference to static RA Ms, because NPSFs model

the effects of undesirable charge leakages between the capacitances in single

transistor dynamic RAM cells. NPSFs do not model any faulty behavior known to

exist in static RAMs.

3.2.4.1 ANPSF: active neighborhood pattern sensitive fault

An active neighborhood pattern sensitive fault exists when: the base cell

changes its value, in response to changes in the neighborhood pattern. A test

to locate ANPSFs must satisfy this condition: every base cell must be read in

state 0 and statf: l, for ail possible changes in the neighborhood pattern.

3.2.4.2 PNPSF: passive neighborhood pattern sensitive fault

A passive neighborhood pattern sensitive fault exists when: the base cell is

forced to retain a specific value, in response to a certain neighborhood pattern. A

test to locate PNPSFs must satisfy this condition: every base cell must be written

and read in state O. and written and read in state 1. for ail permutations of the

neighborhood pattern.

3.2.4.3 SNPSF: statie neighborhood pattern sensitive fault

A static neighborhood pattern sensitive fault exists when: the base cell changes

to a specific value, in response to a certain neighborhood pattern. A test to locate

SNPSFs must satisfy this condition: every base cell must be read in state 0 and

state 1. for ail permutations of the neighborhood pattern.
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Fig, 3,1 E.<amples showing the Nine Combinations of

Addressing Faults
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3.3 Functional Faults affecting Addressing

These faults refer to physical failures in the row and column address decoders

and in the address latch. Without loss of generality, only memories with one-bit

words (B = 1) will be discussed in this section. There are four types of non

sequential "addressing faults":

3.3.1 AF/UuA: addressing fault - unused address

The "unused address" fault occurs when a given address is unable to access

any cell at ail. This looks like a shortage of one cell with respect to the number

of addresses. When a read operation is performed at an "unused address". the

response is technology dependant; in some cases, the response will consistently

appear to be a logical 1 or a logical 0, but in other cases, the response may be

completely unpredictable and may depend on neighboring leakage currents and

other noise in the memory.

3.3.2 AFjUre: addressing fault - unreachable cell

The "unreachable cell" fault occurs when there is ,10 address which can reach

a given cell. This given cell is never accessed. This looks like a surplus of one cell

with respect to the number of addresses.

3.3.3 AF/MuA: addressing fault - multiused address

The "multiused address" fault occurs when a given address accesses two

or more cells simultaneously. This looks like a surplus of cells with respect to

the number of addresses. When a read operation is performed at a "multiused

address", the response is technology dependant; in some cases, the response

will consistentiy appear to be the logical AND or the logical OR of the cells

actually accessed, but in other cases, the response may be completely unpredictable

·function of the accessed cells.
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3.3.4 AFIMrC: addressing fault - multireachable ce"

The "multireachable cell" fault occurs when two or more different addresses

can access the same cel!. This looks like a shortage of cells with respect to the

number of addresses. 5ince write operations are performed on a "multireachable

cell" using one or more iIIegal addresses, in addition to the single legal address, it

is required that any test to locate such faults must read from the cell before any

writing using the legal address can mask out the effect of writing from an iIIegal

address.

3.3.5 Combinations of addressing faults

Because there are exactly as many addresses as there are cells, none of these

faults can exist in isolation. The only possible combinations must balance the

apparent shortage of ceIls caused by faults UuA and MrC, with the apparent

surplus of cells caused by faults UrC and MuA. The following nine cases list ail

possible combinations, and examples illustrating these cases are presented in figure

3.1.

1: UuA, with Ure.

2: UuA, with MuA.

3: MrC. with Ure.

4: MrC, with MuA.

5: MrC. with a combination of UrC and MuA.

6: a combination of UuA and MrC, with MuA.

7: UuA. with a combination of UrC and MuA.

8: a combination of UuA anc'iMrC, with UrC.

9: a combination of UuA and MrC. with a combination of UrC and MuA.
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Those combinations which con~ain one or more MrCs (namely: 3, 4, 5, 6, 8

and 9) are susceptible to fault masking when a legally addressed write operation

on a "multireachable cell" overwrites the faulty contents that resulted from an

earlier, illegally addressed write operation on the same cell. Cases 6, 8 and 9 are

further complicated by the possibility that a given "multireachable cell" may have

only iIIegal addresses, when its sole legal address is subject to an "unused address"

fault.

3.3.6 SOAF: stuck-open addressing fault

The above discussion of different addressing fault types is incomplete because

it assumes that the address decoder circuits cannot be transformed into sequential

logic by sorne physical defect. However, a "stuck-open fault" in one of the

transistors can change the decoder into a sequential circuit (i.e., a circuit with

sorne kind of memory capability). This type of fault is corn mon in address decoders

built out of CMOS technology. CMOS "fully complementary logic" gates are

a combination of a pull-up network made from pMOS transistors, and a pull

down network made from nMOS transistors. In a CMOS complementary logic

gate, exactly one of the two networks is always conducling, while the other is not

conducting.

Asingle transistor is said to be stuck-open when it cannot conduct because of

an open gate, open source or open drain connection. An entire CMOS logic gate is

said to be stuck-open when either its pull-up or its pull-down network is prevented

from conducting due to one or more stuck-open transistors in that network, while

the remaining network is in a legally non-conductive state. As a consequence of

neither network being able to conduct, the output line is not driven to 0 or 1, but

takes on a high impedance state. The output level will therefore be determined

by the charge stored by the capacitance of the output line, which implies that

when the;,~'flut signais change and the logic gate becomes "stuck-open", then the

30



•

•

output retains its previous logic value. regardless of which output value the new

input signais are supposed to elicit.

Testing a CMÛS complementary logic gate (a150 known as a "static" gate)

for stuck-open faults requires that pairs of test patterns be applied in a particular

order. The first of the pair of test patterns is the initializing pattern and the

second one is the sensitizing pattern. The sensitizing pattern is chosen so as to

activate a potential stuck-open fault. The initializing pattern is chosen so as to

produce an output value which is the inverse of the (non-faulty) expected value

of the sensitizing pattern. Hence. a stuck-open fault is detected when the wrong

output value is produced in response to the sensitizing pattern. Let us designate

the "initializing pattern" by l P and the "sensitizing pattern" by SP. To detect

a stuck-open fault in the pull-up network. l P should set the output signal to Q,

and SP should be selected to establish one or more conducting paths in the pull

up network, of which each chosen path contains a stuck-open fault. To detect

a stuck-open fault in the pull-down network, l P should set the output signal to

1. and SP should be selected to establish one or more conducting paths in the

pull-down network. of which each chosen path contains a stuck-open fault.

ln a few special cases, the testing of "static" CMÛS logic gates for stuck-open

faults does not require a pair of ordered patterns, l P and SP. More specifically.

if the pull.up network consists of exactly one path of series-connected transistors,

then a stuck-open fault among those transistors is functionally indistinguishable

from a stuck-at-Q fault on the output line. Analogously. if the pull.down network

consists of exactly one path of series-connected transistors, then a stuck-open

fault among those transistors is functionally indistinguishable from a stuck-at-1

fault on the output line. In more concrete terms. these results imply the following

behavioral

(1) a stuck-open pMÛS transistor in an inverter behaves like a stuck-at-Q

output line fault.
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(2) a stuck-open nMOS transistor in an inverter behaves like a stuck-at-l

output line fault,

(3) a stuck-open pMOS transistor in a static NOR gate behaves like a stuck

at-O output line fault,

(4) a stuck-open nMOS transistor in a static NA ND gate behaves like a stuck

at-l output li ne fault.

The four most common implementations of address decoders are constructed

with the components Iisted below:

(A) inverters and static NAND gates,

(8) inverters and static NOR gates,

(e) inverters, static NAND gates and static NOR gates,

(D) inverters and dynamic NOR gates.

The fastest address decoders (D in the list above) avoid the use of static logic

gates, because of the inherent slowness of series-connected transistors (i.e. the

pull-down network in static NAND gates, and the pull-up network in static NOR

gates). The dynamic NOR gates used in decoders are based on the well-known

"(MOS Domino logic" circuit design methodology, which consists of the pull

down network from the NOR function, sandwiched between a pMOS "precharge"

transistor and an nMOS "evaluate" transistor, with the output being fed into two

cascaded inverters that can drive a word line or control a bit line's transmission

gate. 80th the "precharge" and "evaluate" transistors are gated by the same

clock signal. Since this "dynamic" gate is automatically precharged to 1, there

is no need for 1P when seeking faults in the pull-down network - only SP is

required. If the "precharge" pMOS transistor is stuck-open, then the output will

be stuck-at-O, since there is no other way to bring the output line upto VDD. If

the "evaluate" nMOS transistor is stuck-open, then the output will be stuck-at-l,

since it controls access to the only path to ground.
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From the observations above, it is evident that only stuck-open pMOS

transistors in NAND gates, and stuck-open nMOS transistors in NOR gates, cannot

behave like any kind of stuck-at-O/l fault, and thus it is these kinds of stuck-open

faults which will be considered below.

Suppose that there exists a single stuck-open transistor in the pull-up network

of a NAND gate, or in \he pull-down network of a NOR gate, which decodes the

address (Xl, x2, x3,' .. , XM), where each x-value represents either a 0 or a 1.

Each (pull-up or pull-down) network contains M transistors, where each transistor

corresponds to a different x-value. Suppose that the single st·.· :k-open transistor

corresponds to the value x], where J is an integer between 1 and M. On the basis

of these suppositions, it can be shown that this single stuck-open transistor will be

detected, in the context of an address decoder circuit, only by the pair of addresses:

IP = (X1lX2,"" X], ..• , XM) followed by SP = (Xl. X2,"" x], .. "XM)'

The address 1P causes only the correct word li ne (or bit line) corresponding to

the desired address, to be selected (in a fault-free manner) by the gate containing

the stuck-open fault. The address SP causes bath of the lines corresponding to

addresses (XlJX2"",X]",.,XM) and (Xl,X2, ... ,X], ... ,XM) to be selected

at the same time. Hence, within an address decoder, a stuck-open fault can

manifest itself only by specifying two addresses in sequence, such that the addresses

are a Hamming distance of 1 apart. Given that we have an M-bit long address,

then there are 2M lines controlled by the decoder, ~nd therefore the application

of M X 2M pairs of addresses are required to detect the presence of ail possible

stuck-open transistor faults.

3.4 Faults afFecting the Read/Write Circuitry:

3.4.1 Stuck-open Access transistor:

ln this case there is no charge transf':ireither to or from the memory cell

with respect to the bit line (in figures 2.5 and 2.6, the access transistors are Qs
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and Q6)' The sense amplifier will not sense any voltage differential in such a

case, unless there are second-order effects which become sufficiently pronounced

to cause one of the sense amplifier's transistors to conduct more current than the

remaining transistors. To test for this type of fault, we try to induce second-order

effects by storing ail ones in one half bit li ne. and ail zeroes in the other half bit

line, and vice versa. If the leakage currents are sufficient to cause a noticeable

voltage imbalance, then a well-tuned sense amplifier will reinforce the values that

have already leaked onto the bit lines. (Note that this fault is not the same as

the DRAM "imbalance fault - IF", even though it has the same test pattern

requirement as IF.)

Example: say that DRAM cell X, in bit line half D, has a stuck-open Access

transistor, then it is impossible to store either a 0 or a 1 at cell X. Write ail ones

to bit line half D. and ail zeroes to bit line half D. Read cell X, and most likely.

we get a value of l, indicating that cell X is stuck-at-1. Now store ail zeroes in bit

li ne half D, and ail ones in bit line half D. Read cell X. and most likely, we get a

value of 0, indicating that cell X is stuck-at-O. Note that cell X looks like it can

be both stuck-at-1 and stuck-at-O. Conventional tests that look for stuck-at-O/1

memory cells will detect and locate this fault, but will report a paradox: the same

cell appears to be stuck-at both 0 and 1.

3.4.2 Stuck-open Precharge transistor:

The reference voltage level on the bit line may be too low if only one of the

two Precharge transistors is operational, since double the usual capacitance would

now have to be charged by a single transistor. This may cause the pMOS Sensing

transistors to conduct (because the voltage could be low enough to turn them on)

even before the word lines have been activated. If both pMOS Sensing transistors

conduct the same amount of current, then this fault may not even be noticed

since the bit li ne voltage may have been pulled-up just enough to allow the correct

operation of the nMOS Sensing transistors.
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3.4.3 Stuck-open Equalization transistor:

The reference voltages may not be equal on both halves of the bit line (because

one bit line half may have slightly more capacitance than the other bit line half.

or one Precharge transistor may conduct more current than the other Precharge

transistor). causing at least one Sensing transistor to conduct before any word line

has been activated.

3.4.4 Stuck-open Sensing transistor:

If one of the four Sensing transistors (two pMOS and two nMOS) is open. and

therefore cannot conduct. then ail of the memory cells on the affected bit line may

not have their stored values properly sensed, and these values may not be properly

written in the tirst place. This fault will cause sequential behavior in most sense

amplifier designs.

3.5 Line Faults

3.5.1 SAF: stuck-at bit fine fault

A "stuck-at bit line" fault occurs when either a faulty write driver or a faulty

sense amplifier causes a line to be stuck-at aor 1. This fault will behave the same

way as an entire bit li ne of stuck-at memory cells.

3.5.2 BF: bridged fines fault

A "bridged bit Iines" fault occurs when a pair of adjacent bit lines are shorted

together. A "bridged word lines" fault occurs when a pair of adjacent word lines

are shorted together. but this type of short is much less common than adjacent bit

lines being shorted together. An even less common type of short - the "bridged

bit line and word line" fault - is when a bit li ne and a word line, which run

perpendicular to each other, are shorted at the point where one line crosses over

the other.
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3.5.3 SOF: stuck-open line fault

An "open line" fault occurs when the wire that makes up a bit li ne or a word

line has a break in it. When a true-bit line or a complemented-bit li ne in a static

RAM is open, then the corresponding sense amplifier will sometimes behave in a

sequential manner, depending on whether the accessed cell is above or below the

break in the bit line.

3.5.4 CF: coupled bit line fault

A "cou pied bit lines" fault occurs when there is excessive capacitive coupling

between a pair of bit lines. These faults may originate from defective write drivers

or sense amplifiers, which control the bit lines.

ln general, empirical evidence indicates that word lines are affected by fewer

types of line faults than bit lines are.

3.6 Dynamic faults

3.6.1 RecF: recovery fault

Recovery faults occur when sorne circuit in the memory cannot recover fast

enough from a previous state, with the result that the current operation is at least

partly influenced by the previous operation. Such faults only manifest themselves

when the memory is operated at high speed, close to its specified frequency Iimit.

There are two types of recovery faults: sense amplifier recovery faults, and write

recovery faults (which originate in the address decoder circuits).

3.6.1.1 RecF/SA: sense amplifier recovery fault

Asense amplifier recovery fault may occur when the sense amplifier has become

"saturated" after reading a "long" sequence of bits of the same value:l:, just before

the sense amplifier fails to correctly read a bit of the opposite value x. Such a fault
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may also occur when a "long" monovalued sequence of bits is written into memory.

immediately foilowed bya read operation from a ceil containing the opposite value.

This latter fault occurs because the data to be written is placed on bit-lines which

also serve as the inputs of the sense amplifiers. Therefore. the first requirement

for a test to locate sense amplifier recovery faults involves reading a long string of

Os (or Is), foilowed by reading a single 1 (or 0). The second requirement involves

writing a long string of Os (or Is), foilowed by reading a single 1 (or 0). In both

cases, the long string ,)f monovalued operations should not be interrupted with

even a single different operation, as this might prevent the sense amplifiers from

failing.

3.6.1.2 RecF/W: write recovery fault

A write recovery fault occurs when a write operation is foilowed by a read or

write operation at a different address, while the address decoder is too slow to

react such that the second operation mistakenly uses the first address. Such faults

are due to the fact that the signal path through the address decoder logic has

different delays for different addresses. A write-after-write recovery fault occurs

when a write operation to address A2 , which foilows a write operation to address

Al, will actuaily write to address Al' A read-after-write recovery fault occurs

when a read operation at address A2 , foilowing a write operation at address Al.

actuaily reads the contents at address Al, A thorough test for such faults requires

time of the order O(n2), because ail n . (n - 1) possible address combinations

should be tested. A slightly modified Galpat algorithm could be used to locate

these faults.

3.6.2 RetF: retention fault

Retention faults are not caused by read or write operations: they are the result

of "spontaneous" data losses in the memory ceils. Three main types of retention

faults can be distinguished:
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1) sleeping sickness in Dynamic RAMs.

2) refresh line stuck-at faults.

3) data losses in Static RAMs.

3.6.2.1 RetF/SS: sleeping siekness

Sleeping sickness occurs when the leakage current of a particular DRAM cell is

higher than usual, such that when the read part of the refresh operation takes place,

the wrong value will be read out and therefore the wrong value will be written back.

Maximum leakage will be encountered by a cell when the data values stored by ail

its neighboring cells are opposite to the value which it is storing. This implies that

a checkerboard pattern should be written into the memory array to test for this

fault. The memory should not be accessed for at least the time interval between

two refresh cycles, in order to allow the maximum leakage to take place.

3.6.2.2 RetF/RL: refresh line stuek-at fault

Refresh line stuck-at faults can only occur within DRAMs. not in SRAMs,

because only DRAMs have refresh lines. A refresh line failure manifests itself by

the inability of individual memory cells to retain their data values for a period

much longer than the refresh period. Hence. the way to test for such a fault is to

not access the memory. including no attempt at refreshing, for a "long" period of

time. This test can be combined with the sleeping sickness test, if the time period

that the memory is left alone is increased.

3.6.2.3 RetF/SDL: statie data loss fault

Static data 1055 faults occur when SRAM cells lose their contents after not

being accessed for sorne lengthy period of time. In principle, the contents of an

SRAM cell should be retained indefinitely without the need for even reading the

cell occasionally, but when a pull-up device in the cell is defective, there exists the
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possibility that I"akage currents from this pull-up device will eventually cause the

cell's state to change. A test to locate static data loss faults must write a a to

ail cells, wait a "long" time (typically 100 milliseconds). and then read ail ceIls to

verify data .etention; next, the test must write alto ail cells, wait a "long" time,

and then read ail cells.

3.6.3 IF: imbalance fault

Imbalance faults occur in DRAMs when there exists a bit-Iine precharge voltage

imbalance. In DRAM cells, small leakage currents may exist between the cell

capacitors and the bit-lines due to imperfec. access transistors. These leakage

currents can increase or decrease the bit-Iine voltage during the precharge phase

and during the read operation. The worst case is when ail the cells connected

to one half bit-line contain the same data value x, and ail the cells (except the

to-be-read cell) connected to the other half bit-Iine contain the data vaille x, and

their combined leakage currents can sufficiently alter the precharge voltage levels

on each half bit-line, so that the to-be-read cell's stored charge (of value x) cannot

compensate sufficiently for the charge imbalance between the two bit-line halves

which will cause the sense amplifier to produce the erroneous value x. A test

algorithm for this type of faultshould create the worst c.se conditions on every

bit-line.

3.6.4 SYNCF: synchronization fault

A "synchronization fault" occurs when there are defects in the docking

circuitry thar generates various dock signais (such as Precharge and Equalize

for the bit lines) and various enabling signais (such as Read and Write signais for

thr. address decoders, sense amplifiers, and write drivers) .
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4 Brief Survey of Literature

4.1 Published Surveys

There are two, only partially overlapping, recently published surveys on the

topic of "built-in self-testing of RA Ms," namely: [Franklin and Saluja 90) and

chapter 12 (pp. 341-423) of [van de Goor 91). An exhaustive survey will not

be attempted here because it would necessarily duplicate most of the material in

the above-mentionned publications. Instead, sorne short comments are presented

below, on the most recent papers, and how they apply to the subject of this thesis.

4.2 Experimental Results with SRAM March Tests

[Dekker et al. 88) and [Dekker et al. 891 deal with the issue of electrical fault

modelling, in contrast with functional fault modelling. These papers describe sorne

experimental results of a collection of various functional tests that were applied to

16K SRAMs fabricated by Philips. The "traditional" tests (Iike Zero-One, Siiding

Diagonal, GALCOL) had fault coverages ranging from 50% to 70%. The SAF

march tests found between 75% and 85% of ail faults. The CF march tests had

fault coverages from 80% to 100%. The tests for NPSFs found only 55% of ail

faults. From these results it can be concluded that coupling faults are c10sest to

the actual electrical faults occurring within SRAMs.
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[Dekker et al. 88) and [Dekker et al. 891 also deal with defect modeling at

the layout level, using a technique called "Inductive Fault Analysis (IFA)". Layout

defects manifest themselves in the following forms:

1. broken wires

2. shorts between wires

3. missing contacts

4. extra unwanted contacts

5. extra unwanted transistors

These electrical faults, in the context of an 5RAM circuit, result ln the

following reduced functional faults:

a) 5AF in a memory cell

b) TF in a memory cell

c) idempotent coupling fault, CF/Id. between two memory cells in different

words

d) state coupling fault. CF/5t, between two memory ceIls in the same word

e) inaccessible memory cell fault (causing one or more balanced pairs of

AF/UrC and AF/UuA), improperly named "stuck.open fault", which is

il,tended to mean that because of an open ward line, the memory cell

cannot be accessed,

f) an open bit line, which sometimes is a "stuck-open fault" , because it might

cause sequential behavior in the sense amplifier; to cope with this possibility

of sequential sense amps, an extra (seemingly redundant) read operation is

appended to every march element.

g) data retention fault, RetF/5DL, where a memory cell fails ta retain its

logic value after sorne time period, which is caused by a defective pull.up

resistor.
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Based on this functional fault model, three new march tests - namely IFA-9

(see Table 4.1), IFA-13 (see Table 4.2), and Static Data Retention Test (see Table

4.3) - are proposed. which have a somewhat better experimental fault coverage

than a collection of well-known standard march tests for coupling faults. The

most significant theoretical result from this work - which applies more frequently

to SRAMs than to DRAMs - is that march tests can be made sensitive to

sequential sense amplifier behavior by appending extra read operations to sorne

march elements. For instance, the proposed algorithm IFA-9 is transformed into

IFA·13 by appending a seemingly redundant read operation to every march element,

except for the initialization march element 'ft (wO). Many sense amplifier designs

incorporate a data latch for storing the read-out data before sending it to the

1/0 port, such that the write driver for the same bit line pair has no access to

this data latch (furthermore, a "virtual data latch" is s"metimes created within a

sense amplifier, that lacks a real data latch. by sorne types of CMOS stuck-open

faults). Because the real or virtual data latch only stores the latest read·out data,

and does not store the newest data to be written-in (since the write driver lacks

access to the data latch), a stuck-open memory cell or faulty sense amplifier can

be detected by employing a read operation immediately after a transition write,

within the same march element.

'ft (wO)
'ft (rO,wl)
'ft (rl, wO)
.IJ. (rO, wl)

.IJ. (rl, wO)

Table 4.1 IFA-9 Aigorithm - combinational sense amps

The authors Of [Dekker et al. 88] and [Dekker et al. 89) neglected to formalize

their observation~bout sequential sense amplifiers into a generally appli~able

result, since they concentrated exclusively on their experimentally derived fault
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• ft (wo)
ft (rO,wl,rl)

ft (rl,wO,rO)

1J (rO,wl,rl)

1J (rI, wO, rO)

Table 4.2 IFA-13 Aigorithm - sequential sense amps

~ (wO)

Disable RAM and Wait

~ (rO,wl)

Disable KAM and Wait

~ (rI)

Table 4.3 Static Data Retention Aigorithm - one-bit version

model which led directly to the IFA algorithms and the Static Data Retention test.

Here is the general result implicit in their work:

Proposition: A march test will detect ail faulty sequential

behavior in the sense amplifiers of RAMs, if the test contains at

least one instance of each of the following four march sequences, in

any order:

1: il' (... ,rO,wl,rl, ... )

2: il'( ... ,rl,wO,rO, ... )

3: 1J (... ,rO,wl,rl, ... )

4: 1J( ... ,rl,wO,rO, ... )

Corol/ary: The two shortest march tests which satisfy the conditions

of the Proposition are shown ln Table 4.4. Note how conditions land

2 have been merged into a single march element with five 0pj!,rètions.
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• ft (rO,wl,rl,wO,rO) and ft (rl,wO,rO,wl,rl), and conditions 3 and 4 have

been merged, jJ. (rO, wl, rI, wO, rO) and jJ. (rI, wO, rO, wl, rI). These two tests

obviously fail to detect many coupling faults (CFs), so they have lower fault

coverage than IFA-13 and the other superior march tests shown in Chapter 5.

ft (wO)

ft (rO, wl, rI, wO, rO)

jJ. (rO, wl, rI, wO, rO)

ft (wl)

ft (rI, wO, rO, wl, rI)

jJ. (rI, wO, rO, wl, rI)

•

Table 4.4 Shortest "Sequential Sense-Amp" March Tests

4.3 More March tests for 5RAMs

4.3.1 Direct B/ST imp/ementation of march tests

[Nicolaidis 85) implements march tests that are capable of detecting AFs,

SAFs, TFs, and CFs, with hardware containing LFSRs and parity detectors. The

overail design of the BIST circuit was intended to allow for fault detection only,

however similar circuit components are used la ter in this thesis for fault location.

4.3.2 B/ST based on march tests with shifting

[Nadeau-Dostie et al. 90) describes a seriai interfacing technique for embedded

SRAMs. Their scheme is c10sely related to the proposai by [You and Hayes 85)

for self-testing DRAMs, because both schemes serially shift data in a fashion that

makes an entire array of ceIls appear to behave like one very long shift register.

A complete exposition of how this can be accomplished is presented in the next

chapter (see section 5.4.1: "Seriai Access to Memory").
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4.4 Results for DRAMs only

4.4.1 Parallel testing with March tests

[Inoue et al. 87) propose line-mode testing, where an entire word li ne can be

written in parallel, a"d where a string of EXOR gates compares the expected data

with an entire word of read data. The parallel write operation is limited in the

number of distinct patterns which can be applied, and the algorithms used are

march tests, therefore NPSFs are not adequately co~ered by this scheme.

4.4.2 Parallel testing with Checkerboard tests

[Ohsawa et al. 87] is probably the first BIST implementation in a DRAM

by industry (Toshiba). It uses only a checkerboard test. The fault coverage is

even lower than that of the scheme in the previous paragraph. This test was

probably selected for its speed and minimal area, because (to quote the authors)

it is intended for "a daily start-up test of a memory in a system,"

4.4.3 Microcoded march and checkerboard tests

[Takeshima et al. 90) is probably the second BIST implementation in a DRAM

by industry (NEC). It uses a microprogrammed ROM to store both a march test

and a checkerboard test. The fault coverage here is only slightly better than

in the two previous schemes, but the most notable feature of this scheme is its

ROM, which could be easily re-programmed to contain more complex march tests

than the one reported. The authors even point out that with three additional

circuits - a base register, a loop counter, and address switches - the ROM could

be programmed to implement a "galloping" test (such as GALPAT, GALCOL or

GALROW), although ail this extra circuitry and the increased size of the ROM

would nearly double the total BIST area overhead.

The use of a ROM to store algorithms as required by the BISD designs

proposed in this thesis, is distinctly different from the use of the ROM as reported
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• in this paper. This is because the BISD ROM is only accessed by the BISD

processor (which contains a finite-state machine), and it is the processor which

directly controls ail the remaining test circuitry, unlike the microprogram ROM

which directly controis ail test circuitry - in a sense, the microprogram ROM

replaces the BISD processor with its internai finite-state machine. For a pure BIST

scheme (i.e. no fault location), the microprogram ROM technique is more area

efficient, but for BISD with self-repair, the much more elaborate algorithms (for

fault location and computation of a repair plan) are more efficiently implemented

in hardware using sorne kind of processor and stored.program.ROM combination,

as was concluded in [Ritter and Müller 871.

4.4.4 B/ST for Restricted Active and Restricted Static
NPSFs in a Type-2 neighborhood

[Mazumder and Patel 87) employa BIST SAMB architecture, which requires

a modification of the DRAM's column decoder so that, during test mode, the

same data value may be written in parallel to a selected group of cells in one

row; in addition, the ceIls belonging to a particular group within one row can be

read in parallel (a pair of deterministic comparators verify whether the read data

consists of ail O's or ail l's). The choice of fault model and of neighborhood type

result in the cells within a word being divided into two particular groups: the even

numbered bits and the odd numbered bits.

4.4.5 Fast B/ST for RA and RSNPSFs in a Type-2
neighborhood

;i,

cells within a word can be read or written siinultaneously rather th;m'separately
;>"'-".:-

[Mazumder and Patel 89) present essenti.lly the same method as described in

section 4.4.4, with the only difference being that both the even and odd groups of

F/
46

(i.e. ail of the bits in a word a,':€read or written at once, rather than only half of

them). .:/'> , il

j
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4.4.6 BIST for ANPSFs and SNPSFs in a Type-1
neighborhood

[Mazumder and Patel89) again use a BIST SAMB architecture, which requires

the same kind of modifted column decoder that is used by the methods described

in sections 4.4.4 and 4.4.5, in order to effect multiple-bit read and write operations

during test mode. The choice of fault model and neighborhood type result in the

cells within a word being divided into five particular groups: (0 mod 5) numbered

bits, (1 mod 5) numbered bits, (2 mod 5) numbered bits, (3 mod 5) numbered

bits, and (4 mod 5) numbered bits. The algorithm to locate the faults is based on

an Eulerian sequence.

4.5 Inapplicable Results

4.5.1 ParaI/el test with signature analysis

[Sridhar 86) uses an LFSR-based signature analyzer to read bit lines from

one or more arrays simultaneously. Signature analysis is not practical for fault

location. and even for fault detection there is a non-zero probability of aliasing

errors. This scheme's principle advantages are: speed, very low area overhead,

and the possibility of combining it with an external tester.

4.5.2 B/ST for SNPSFs in a Type-1 neighborhood

[Kinoshita and 5aluja 86] and [Saluja et al. 87] employ a BI5T 5ASB

architecture, which does not require changes to the DRAM layout, and therefore

excludes the use of parallelism. As a result, this method can also be implemented

using an external tester. The test response evaluation mechanism is based on

compaction and thus does not allow for fault location but only fault detection.
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4.5.3 DFT based on tree RAM

[Jarwala and Pradhan 871 and [Jarwala and Prad han 88) describe an obvious

application of the MA5B architecture. This technique requires the use of an

external tester - hence it is not directly applicable to this thesis.

4.5.4 B/ST based on random testing

[McAnney et al. 84) and [McAnney ct al. 85] are based on pseudo-random

test techniques, and therefore their results cannot be applied here because faults

cannot be located deterministically using pseudo-random methods.

4.5.5 Concurrent testing

Concurrent testing amounts to using error correcting codes [Chen and Hsiao

84]. This topic is not directly applicable to the subject of this thesis since it deals

with "redundancy within the stored information" rather than "redundancy within

the hardware" in the form of spare rows and spare columns intended for repair.
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5 High-Ievel Algorithms

5.1 Preview of Test-only algorithms: detection of faults.

Ali of the most important faults can be detected using the following sequence

of five test algorithms:

(a) stuck-at faults, address decoder faults, transition faults, inversion coupling

faults, idempotent coupling faults, and linked combinations of TFs and

CFJlds, linked combinations of some CFJlnvs and some CFJlds, and linked

combinations of CFJlds with other CFJlds, can ail be detected by a single

march test, commonly calied March-B (see Table 5.1, notation explained

later in section 5.3). The March-B algorithm was originally proposed in

[Suk and Reddy 81). In order to augment the March-B algorithm so that

it covers sequentiaJ sense amplifier behavior in static RAMs (i.e. the faults

described in sections 3.4 and 3.5.3), we append extra read operations to

satisfy the Proposition in section 4.2 to obtain a new algorithm calied

March-B+ (see Table 5.2).

The original March-B algorithm requires l7n operations, assuming that

the memory contains n cells. The new March-B+ algorithm requires 19n

operations, and it constitutes a very thorough test of static RAMs. Note

that the second march element, ft (rO, wl, rI, wO, rO, wl), already satifies

conditions \ and 2 of the Proposition in section 4.2. The new fourth
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Table 5.1

ft (wo)
ft (rO, wl, rI, wO, rO, wl)

ft (rl,wO,wl)

JJ. (rI, wO, wl, wO)

JJ. (rO, wl, wO)

March-B Aigorithm - one-bit version

ft (wO)

ft (rO,wl,rl,wO,rO,wl)

ft (rI, wO, wl)

JJ. (rI, wO, rO, wl, rI, wO)

JJ. (rO,wl,wO)

•

Table 5.2 The new March-B+ Aigorithm - one-bit version

march element, JJ. (rI, wO, rO, wl, rI, wO), satifies conditions 3 and 4 of

the Proposition.

(b) active NPSFs, passive NPSFs, static NPSFs, and linked combinations of

these NPSFs with stuck-at faults and transition faults (and sorne address

decoder faults), can be detected bya single test. Note that this test is only

applicable to dynamic RAMs, since faulty behavior in static RA Ms generally

cannot be explained using NPSFs. This test is the "combined Active and

Passive NPSF location algorithm", which uses an Eulerian sequenceto order

the write operations, and which has three options for address generation:

(1) "Type-l" neighborhood with the "Two-group" method, or

(2) "Type-l" neighborhood with the "Tiling" method, or

(3) "Type-2" neighborhood with the "Tiling" method.

(c) the remaining Iinked combinations of ail NPSFs with address decoder

faults, can be detected by the march test, MATS+ (see Table 5.3).

50



•

•

ft (wO)

ft (rD, wl)

J,l (rl,wO)

Table 5.3 MATS+ Aigorithm - one· bit version

ft (wO)

ft (rD, wl, rI, wO, rD, wl)

J,l (rI, wO, rD, wl, rI)

Table 5.4 The new MATS++ Aigorithm - sequential
sense amps

If sequential sense amplifier behavior must be considered, then augment

the MATS+ algorithm with the conditions of the Proposition in section 4.2,

to obtain the new MATS++ algorithm shown in Table 5.4.

(d) Iinked combinations of CF/Invs with other CF/invs, and linked

combinations of some CF/Invs and some CF/Ids, can only be detected

by a non-maTch test.

(e) stuck-open faults (SOAF) which transform address decoders into

se'luential circuits can be detected by a non·maTch test.

Further details of these algorithms are provided laler in this thesis.

5.2 Preview of Diagnosis algorithms: location of faults

Ali of the most important faults can be located using a sequence of 8

algorithms, which locate the faults in the following order:

1. SAF in Read/Write circuitry,

2. SAF and dominant-O BF in Address decoders,

3. dominant-l BF in Address decoders,
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4. dominant-O/1 BF in Read/Write circuitry,

5. SAF in Memory cells, dominant-O/1 BF in Memory cells,

6. CF in Memory cells,

7. SOAF, erroneous access of addr~;,·,'s that are a Hamming distance of 1

away,

8. combined Active and Passive NPSF location algorithm.

The details of the location algorithms will be presented later. For the time

being, it suffices to be aware th.t the location algorithms are essentially extensions

of the detection algorithms, and are significantly modified to use the built-in

self-diagnosis hardware. Section 5.4 describes in considerable detail the heavy

dependence between the location algorithms and the self.diagnosis hardware.

5.3 Notation for March Tests

The algorithms shown in Tables 5.1 and 5.3 are in the form of march tests,

because they consist of sequences of "march elements". A single march e/eml!nt

consists of a sequence of operations that are applied to each cell in the memory,

before proceeding to the "next" cell, in either one of two addressing orders: an

increasing order Ut), usually from address a to address N - l, or a decreasing

order (.\J.), which must be exactly the reverse of the 1't addressing order.

The algorithm presented in Table 5.1 is appropriate when each address refers

to exactly one bit of memory. When a word-oriented static RAM is tested, whole

words of data are written to or read from the memory instead of onl~, single bits.

If we apply whole words "f ail O's and ail l's, then we wouldJail to detect certain

coupling faults between 'cells in the same word. In orde/to detect state coupling

faults, we must apply the Primary data backgrounds to each word [Dekker et al.

88]. For example, if we wish to test a static RAM with eight bits per word (Le.

a byte.oriented 5RAM), then the Prii.. ..cy data backgrounds are shown in: Table
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5.5. For a word with B bits, the number of Primary data backgrounds equals

2(flog2 Bl + 1). The March-B+ algorithm for a byte-oriented static RAM, using

the Primary data backgrounds, is shown in Table 5.6. Note how the original 1-bit

algorithm has been replicated 4 times, with ear:h replication using a difTerent pair

of complementary primary data backgrounds.

"0" replaced by:

01010101

00110011

00001111

00000000

"1" replaced by:

10101010

11001100

11110000

11111111

Table 5.5 8·bit "Primary" data backgrounds

The algorithm in Table 5.6 still would not detect sorne coupling faults

within the same word (as mentionned in Appendix C of [van de Goor 91]).

Idempotent coupling faults require difTercnt patterns to be written and read,

namely: the Marching data backgrounds, which replace the write operations in

"state-changing" march elements, as shown in Tables 5.7 and 5.8. A "state·

changing" march element has an odd number of transition-writes in total; the first.

third. fifth, and ail subsequent crld-numbered writes in the original 1-bit algorithm

are replaced by "Odd·Marching" data backgrounds, while the second. fourth, and

ail subsequent even-numbered 1-bit writes are replaced by "Even-Marchi'rig" data

backgrounds. In an analogous manner, Walking data backgrounds replace the

write operations in "state-retaining" march elements. as shown in Tables 5.9 and

5.10. A "state-retaining" march element has an even number of transition-writes in
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ft (wOlOlOlOl)

ft (rOlOlOlOl, wlOlOlOlO, rlOlOlOlO, wOlOlOlOl, rOlOlOlOl, wlOlOlOlO)

ft (rlOlOlOlO, wOlOlOlOl, wlOlOlOlO)

lJ. (rlOlOlOlO, wOlOlOlOl, rOlOlOlOl, wlOlOlOlO, rlOlOlOlO, wOlOlOlOl)

lJ. (rOlOlOlOl, wlOlOlOlO, wOlOlOlOl)

ft (wOOlIOOlI)

ft (rOOlIOOlI, wlIOOlIOO, rlIOOlIOO, wOOlIOOlI, rOOlIOOlI, wlIOOlIOO)

ft (rlIOOlIOO, wOOlIOOlI, wlIOOlIOO)

lJ. (rlIOOlIOO, wOOlIOOlI, rOOlIOOlI, wlIOOlIOO, rlIOOlIOO, wOOlIOOlI)

lJ. (rOOllOOlI, wlIOOlIOO, wOOlIOOlI)

ft (wOOOOlIlI)

ft (rOOOOlIlI, wllIlOOOO, rlIlIOOOO, wOOOOllIl, rOOOOlIlI, wlIlIOOOO)

ft (rlIlIOOOO, wOOOOlIlI, wlIlIOuOO)

lJ. (rllIlOOOO, wOOOOlIlI, rOOOOllIl, wllIlOOOO, rllIlOOOO, wOOOOlIlI)

lJ. (rOOOOlIlI, w~lIlOOOO, wOOOOllIl)

ft (wOOOOOOOO)

ft (1'00000000, wllIlIlIl, rlIllIlIl, wOOOOOOOO, rOOOOOOOO, wllIllIlI)

ft (rllIlIlIl, wOOOOOOOO, wlIlIlllI)

lJ. (rlIlIIIII, wOOOOOOOO, rOOOOOOOO, wllIlIl11, rlIllIlIl, wOOOOOOOO)

lJ. (rOOOOOOOO, wlI11IIII , wOOOOOOOO)

Table 5.6 "Primary" 8-bit version of March-B+ Aigorithm

total; the first, third, and ail subsequent odd-numbered l-bit writes are replaced

by "Odd-Walking" data backy,rounds, while the even-numbered l-bit writes are

replaced by "Even-Walking" data backgrounds. For a word with B bits, the

number of Odd-Marching, Even-Marching and Odd-Walking data backgrounds

equals 4B each; the number of Even-Walking data backgrounds equals 2, since

th~y are ail constant all-zeroes or all-ones patterns. The March-B+ algorithm for

a byte-oriented static RAM that makes use of the Marc~ing.~·nd Walking data
. -;-------

backgrounds, is shQwn in Table 5.11. Note that, unlike Table 5.6, there is no

repetitive replication of the original l-bit algorithm, instead the various Marching

and Walking patterns are interleaved within each march element, resulting in each
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march element being lengthened by a factor of B. An algorithm with a suitable

combination of Marching data backgrounds (such as in Table 5.11) will - as a

byproduct - also detect ail state coupling faults. because any two cells x and y

will be forced into ail four possible states: (0,0). (0,1). (1,0). (1,1).

il' (wO) replaced by: .ij. (wO) replaced by: il' (w1) replaced by: JJ. (w1) replaced by:

01111111 11111110 10000000 00000001

00111111 11111100 11000000 00000011

00011111 11111000 11100000 00000111

00001111 11110000 11110000 00001111

00000111 11100000 11111000 00011111

00000011 11000000 11111100 00111111

00000001 10000000 11111110 01111111

00000000 00000000 11111111 11111111

Table 5.7 8-bit "Odd-Marching" data backgrounds

il' (wO) replaced by: JJ. (wO) replaced by: il' (w1) replaced by: .ij. (w1) replaced by:

00000000 00000000 11111111 11111111

10000000 00000001 01111111 11111110

11000000 00000011 00111111 11111100

11100000 00000111 00011111 11111000

11110000 00001111 00001111 11110000

11111000 00011111 00000111 11100000

11111100 00111111 00000011 11000000

11111110 01111111 00000001 10000000

Table 5.8 8-bit "Even-Marching" data backgrounds

If the Marching and Walking data backgrounds are thought of as B x B square

matrices, then there is a very simple way to represent themall using only 3 bits per

background. A careful examination of the patterns reveals that each matrix has
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ft (wO) replaced by: .IJ. (wO) replaced by: ft (w1) replaced by: .IJ. (w1) replaced by:

01111111 li1111 i0 10000000 00000001

10111111 ll111101 01000000 00000010

11011111 11111011 00100000 00000100

11101111 11110111 00010000 00001000

11110111 11101111 00001000 00010000

11111011 11011111 00000100 00100000

11111101 10111111 00000010 01000000

11111110 01111111 00000001 10000000

Table 5.9 8-bit "Odd·Walking" data backgrounds

ft (wO) replaced by: .IJ. (wO) replaced by: ft (w1) replaced by: .IJ. (w1) replaced by:

00000000 00000000 11111111 11111111

:

00000000 00000000 11111111 11111111

Table 5.10 8-bit "Even·Walking" data backgrounds

3 consta,lt parts: an Upper triangle, a Diagonal, and a Lower triangle. The only

difference between ft (wX) and .IJ. (wX) is the direction of the Diagonal, namely

'" or./. Table 5.12 summarizes the data backgrounds using a compact notation.

ft (wO) .IJ. (wO) ft (w1) Jj. (w1)
Odd.Marching (\71, '" 0, .6.0) (\71,./ 0, .6.0) (\70, '" 1,.6.1) (\70,./ 1, .6.1)

Even.Marching (\70, '" 0, .6.1) (\70,./ 0,61) (\71, '" 1, .6.0) (\71,./ 1, .6.0)

Oâd-Walking (\71, '" 0, .6.1) (\71,./ 0, .6.1) (\70, '" 1, .6.0) (\70,./ 1,.6.0)

Even-Walking (\70, '. 0, .6.0) (\70,./ (J, 60) (\71, '" 1, .6.1) (\71,./ 1, .6.1)

Table 5.12 (U, D, L) represe~tation of data backgrounds,.

We cali an address orthogonal if it is the zero address, or if its binary
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ft (wOOOOOOOO)

ft (rOOOOOOOO, w10000000, r10000000, wOOllOOOOO, rOOOOOOOO, w10000000,

r10000000, wll000000, rll000000, w10000000, r10000000, wll000000,

r11111100, wll111110, r11111110, w11111100, rll111100, wll111110,

rl1111110, w11111111, r11111111, w11111110, rllll1110, wll111111)

ft (r11111111, w01111111, w11111111,

rllllllll ,w10111111, wllllllll,

rllllll11 ,wll111101, wll111111,

r11111111, wllll1110, w11111111)

.lJ. (rllll11l1, w11111110, rllllll10, wllllllll, rllll1111, wll111110,

rllllll10, wll111100, rll111100, wll111110, rllll1110, wll111100,
:

rll000000, w10000000, r10000000, wll000000, rll000000, w10000000,

rl0000000, wOOOOOOOO, rOOOOOOOO, w10000000, r10000000, wOOOOOOOO)

.lJ. (rOOOOOOOO, w00000001, wOOOOOOOO,

rOOOOOOOO, w00000010, wOOOOOOOO,
:

rOOOOOOOO, w01000000, wOOOOOOOO,

rOOOOOOOO, w10000000, wOOOOOOOO)

Table 5.11 "Marching" & "Walking" 8-bit version of
March-B+ Aigorithm

representation contains a single 1-bit. with ail of the other bits being O's. In

decimal representation. the "orthogonal" addresses are O. 1, 2. 4. 8. 16. 32. 64.

128, etc.• induding ail of the powers of 2 that are within the address range.

5.4 Detection & Diagnosis A/gorithms and B/50
Hardware "

;' i

Now that we have established some notation, we will considei'four different

approaches to built-in self-diagnosis hardware, and their impact on diagnosis time
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and on the degree of diagnostic resolution. In ail of what follows, it should be

remembered that our first priority is to make the various algorithms as regul~r

and symmetric as possible (hence, not necessarily as short as possible) so that the

self-test circuitry which implements these algorithms may occupy as liule silicon

area as possible.

5.4.1 Seriai Access to Memory

The types of march elements described so far assume that the circuitry

performs read and write operations directly on ail memory cells. However, in

the context of embedded memories, it may be necessary to perform read and write

operations indirectly during the testing process. For example, one could apply

march elements with shifting: although the read/write circuitry may access an

entire row of bits per operation, the addition of a bit-shifting operation to the

data word would appear to implement a single bit march element. The shifting

operation is obtained by adding multiplexers to the inputs of the write drivers,

with each multiplexer selecting between the normal data input (originating outside

the memory) or the stored value in the transparent latch (originating from the

sense amplifier) from its left-neighboring bit [Nadeau-Dostie et al. 90). During

the "normal mode" of operation, the normal data input is selected. During the

"test mode" of operation, the left-neighboring transparent latch is selected, which

implies that shifting is indissolubly linked to the write operation during "test mode"

(i.e. the shifting operation cannot be separated from the write operation).

Table 5.13 displays these values: SDI (seriai data input), four bit values

representing an entire memory word, four bit values representing the output data

latches, and SDO (seriai data output). Values are displayed during both read and

write operations, and lead to the following observations:

1. During a read operation, the contents of both the accessed memory word

and the out;>ut data latches are identical.
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operation SOI memory word data latches 500

r - abcd abed d
we e eabc abcd d
r - eabc eabc c

wf f feab eabc c

r - feab feab b
wg 9 gfea feab b
r - gfea gfea a

wh h hgfe gfea a

r - hgfe hgfe e

Table 5.13 Serialized march elements

2. Ouring a write operation, only the contents of the accessed memory word

are changed - the output data latches still contain th"ir previous contents

from the preceding read operation, and will only change their contents

during the next read operation.

3. The 500 is identical to the contents of the rightmost bit in the output

data latches, and therefore will change only during read operations, and

can never change during write operations.

4. The SOI is only meaningful during write operations (obviously, SOI is

identical to the contents of the leftmost bit in the memory word), and

is thus inherently irrelevant during a read operation.

The coupling fault model selected must account for the fact that ail operations

inherently access an entire row of bits at once. It is impossible to read onlyone bit

or to write only one bit. Thus, the coupling faults that exist between cells within

the same row must be c1early distinguished from coupling faults between cell~

within different rows. The "same ro~v" coupling faults are ca lied state coupling

faults (CF/St), whereas the "different row" coupling faults are called dynamic

coupling faults (CF/Dyn).
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The definition of a "serialized march element" must highlight the fact that

our only controllable input I~ SOI, and our only observable output is 500. In the

"standard march elemellt" we can directly c...ntrol the input data bit to be written

to each memory cell, and we can directly observe the output data bit which IS read

from each memory cel!. The "serialized" notation (Wl @B,Ra) means that the

operation "read zero at 500" (Ra) is performed concurrently with the operation

"write one at SOI" (Wl), and that both are repeated together with the shifting

operation B times (at the same word address). The direction of the arrow indicates

that the shifting operation is from left to right, with SOI at the far left, and 500

at the far right. The actual sequence of "standard" operations performed on each

bit of the chosen word is different for every bit:

1: for the first bit we apply (rO, w1)(r1, w1)B-l

2: for the second bit (ru, wO)(rO, w1)(rl, w1)B-2

3: for the third bit (rO, wO)2(rO, w1)(r1, w1)B-3

n: for the nth bit (rO, wo)n-l(rO, w1)(r1, w1)B-n

B: for the final hit (rO, wO)B-l(rO, w1)

ln general, the "serialized" sequence of operations (YVy @B'R,,) performed on

SOI and 500, actually performs the "standard" sequence of operations

(rx, wx )n-l(rx, wy)(ry, wy)B-n

on the nth bit of aB-bit word.

ln the "serialized" mode of operation, faults within the output data latches can

corrupt the data values which are intended to be written into the memory cells, and

because we lack direct observability and controllability over each memory cell, this

compels us to reinterpret our vie~ of the "march element" in order to retain fault

coverage. In order to detect (but not locate) faults in the B output data latches we

need at least B +1 seriai read operations and B seriai write operations [Nadeau

Oostie et al. 90]; however, 2B seriai read operations and 2B seriai write operations
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are used for symmetry's sake because it minimizes the BIST circuit's area. The use

of the one-bit-shifting write operation makes the application of "serialized" test

algorithms a slow process, however the ability to detect and locate faults is the

same as for "standard" test algorithms. The minimum non-redundant sequence

is (Wy I8IB'R,,); (Wy 18I1'Ry ), and the corresponding symmetrical sequence is

(Wy I8IB, R,,); (Wy I8IB, R y ), where the second half contains entirely redundant seriai

write operations and mostly redundant seriai read operations.

The "seriai read/write" operation that was used 50 far in the discussions above,

can be described as implementing a "virtual" shift register, and is performed in

two stages, as illustrated in Figure 5.1:

(1) We read the current contents of a given memory word and store it in the B

bits of the Data Buffer; the rightmost bit of the Data Buffer is immediately

available as the Seriai Data Output.

(2) Now we force the multiplexers controlling the inputs to the write drivers

to select the left-neighboring bits of the Data Buffer cells, along with the

Seriai Data Input at the leftmost bit position; we therefore write the SDI

bit along with the B - 1 leftmost bits of the Data Buffer back to the given

memory ward.

A different "seriai read/write" operation exists, which is implemented using a

"real" shift register, and is performed in three stages, as illustrated in Figure 5.2:

(1) We read the current contents of a given memory word and store the B

bits in a Data Buffer, which is configured as a genuine shift register.

(2) We shift the contents of the Data Buffer by 1 bit to the right, we provide a

new leftmost bit from the Seriai Data Input, and we send the old rightmost

bit to the Seriai Data Output. When the Seriai Data Output is compared
\1,

with its expected value, this constitutes the "seriai read" portion of the

operation.
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. - .• Cell Array...-............................,
Step 1:

Read Word
Some Selected Word :abc d e f g h

.. ... ... ... ... ... ... ... ..
l, l,

1 a 1 1 c 1 1 e 1 1g 1

Old Rightmost Bito SDO

Data Buffer

Cell Array...............................
Step 2:

Write Word
!y abc d e f g

1
SDI

New Leftmost Bit y

Data Buffer

Fig. 5.1 Seriai Read/Write in 2 steps, using "virtual" shift
register

(3) Now we write the newly shifted contents of the Data Buffer back to the

given memory word.

•

There exists an important hardware difference between the "real" and the

"virtual" shifting circuits: the write drivers in the "real" shifting implementation

always take their inputs from the Data Buffer - in both the BIST mode and

the normal mode of operation; however, the write drivers in the "virtual" shifting

implementation take their inputs from the Data Buffer only in the BIST mode 

in the normal mode of operation, the Data Buffer is never connected to the write

drivers.

Note that we cannot speak of a "seriai write" or a "seriai read" operation in
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• (ell Array
Step 1:

Read Word
Some Selected Word :abc d e f g h:

" ... ... .. . ...
l, l, l, l,

1al 1 c 1 1 e 1 1g 1 1

Data Buffer

(ell Array
Step 2:

Shift Right
abc d e f g h

SDI
New Leftmost Bit y

Data Buffer

(ell Array

y abc d e f g:
l' ~:

.. ... ... ... ... ... .. . ... ..

Iylalblcldlelflgl

Data Buffer

SDO
Old Rightmost Bit

Step 3:
Write Word

•

Fig. 5.2 Seriai Read/Write in 3 steps, using "real" shift
register

isolation, because the shifting of the Data Buffer's contents (in stage 2, above)

produces an old rightmost bit (hence a seriai read operation) and requires a new .

leftmost bit (hence a seriai write operation). This is different from the "virtual"

63



•

•

shifting operation where the "seriai read" occurs in stage 1, and the "seriai write"

occurs in stage 2.

5.4.2 ParaI/el Access to Memory

ln the "parallel write" operation, B bits are written to a word of memory in

one time-periocJ. Since we are deali~g with embedded static RAMs, we cannot

supply this B-bit pattern from outside of the chip. Because of area constraints

we are restricted in the number and the type of different B-bit patterns which we

may generate on.chip. Usually, we generate patterns that are highly regular, such

as this subset of the Primary data backgrounds: 11111111, 00000000, 01010101,

10101010. An easy way to obtain these patterns is to use a data buffer where each

cell can be individually c1eared tn 0 or set to 1, and then to tie together the c1ear

and set control lines of ail the even cells a;,d of ail the odd cells. The "parallel

read" operation tells us only whether such a regular pattern was correctly stored

in a given memory word. If the B-bit pattern was incorrectly stored in the memory

word, then the "parallel read" operation cannot identify which, or how many, of

the bits are erroneous, only that at least ,)ne bit does not match the regular pattern

[Mazumder and Patel 87]. The parallel read operation can be implemented using

four high fan-in logic gates: two AND gates with B/2 fan-in and two OR gates

also with B/2 fan-in. A different implementation uses B 2-input EXOR gates and

two OR gates with B/2 fan-in, where ha If the inputs to the EXOR gates come

from the memory cells, and the other half of the inputs are reference:oignals for

comparison.

5.4.3 Hybrid SeriaI/ParaI/el Access to Memory

The use of B·bit all-O/l comparators can speed up the application of

test algorithms, and although the ability to detect faults using such "parallel

comparators" is complete, the ability to locate faults is somewhat reduced for
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specific kinds of faults. The purpose of using a hybrid BIST technique where

both shifting operations and all.O/1 comparators are part of the extra hardware,

is to combine the advantages and cancel·out the disadvantages of using either

technique alone.

Seriai Shifting Operations:

advantage: can locate ail kinds of faults

disadvantage: a very slow technique for fault detection

Parallel AII.0/1 Comparators:

advantage: a very fast technique for fault detection

disadvantage: cannot locate some kinds of faults

Therefore, the most logical use of a hybrid serial/parallel BIST method would

be to (1) use the parallel all-O/1 comparators to quickly detect the presence of

faults and partially locate them, and then (2) use the seriai shifting operations to

slowly complete the location of ail faults.

5.4.4 Modular Access to Memory

The reading and writing of data backgrounds (for testing and diagnosis

purposes) can also be performed in a different way that is neither parallel nor

seriai, bllt which is best described as "modular". For this type of write and read

operations, we assume that the memory cell array has been segmented into M

modules (i.e. each word consists of M groups of BIM bits). The "modular

write" operation causes BlM bits to be written to exactly one of the M segments

composing a word, in one time-period, leaving the remaining B - BIM bits of

the word untouched. Similar to the "parallel write" operation, we generate only

highly regular patterns to be written to memory: 0101, lOlO, 0011, 1100, 0000,

1111. The "modular read" operation tells us more than just whether such a

reguiar pattern was correctly stored in the chosen one of M segments composing
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of the memory word, then the "modular read" operation (unlike the "parallel read"

operation) does identify exactly which of the bits are erroneous. The "modular

read" and "modular write" operations can be implemented by connecting each

module's data buffer to a B/M-bitwide bus (ca lied the Diagnosis and Repair Bus,

described later). This bus is connected to a special circuit (ca lied the Diagnosis

and Repair Unit, also described la ter) with the ability, within the time for one

memory cycle, to generate :he B/M-bitwide regular patterns, or to identify (using

EXOR gates) the individual erroneous bits of incorrect data.

Ali of the algorithms described below are available in two formats: first, using a

combination of "parallel write", "parallel read", and "seriai read/write" operations;

second, using only the "modular write" and "modular read" operations. The hybrid

serial/parallel format of algorithms is appropriate for the "Diagnosis Only" (i.e.,

using External repair) hardware design, and the modular format is appropriate for

the "Diagnosis with Self Repair" hardware design.

5.5 Test-only algorithms: detection of faults.

Before we can write algorithms to detect the various faults enumerated in

chapter 3, we must establish how the simultaneous presence of multiple faults can

cause one fault to mask the effects of another fault in response to a given sequence

of data patterns. When one fault masks the behavior of another fault, we say that

the two faults are somehow "Iinked" to each other. A summary of functional test

requirements is given below for various "Iinked" faults.

5.5.1 Homogeneous Linked Faults

The only linked faults where both faults are of the same type are coupling

(aults. There are two possibilities: (1) there is a single coupled cell, which is
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influenced by two difTerent coupling cells, or (2) there is a single cou pied cell

influenced in two distinct ways by a single coupling cell.

It can be shown that tests for unlinked idempotent CFs are more general than

tests for unlinked inversion CFs. Unlinked inversion CFs can be viewed as behaving

like Iinked idempotent CFs where the coupl- J cell is influenced by two idempotent

CFs from a single coupling cel!. More concretely, the (T; 1) CF/Inv can be vie\'!cd

as a linked combination of a (i; 0) CF/Id and a (T; 1) CF/Id, and similarly the

(!; 1) CF/Inv can be viewed as a linked combination of a (!; 0) CF /Ie'. ~nd a (!; 1)

CF/Id.

It can also be shown that state coupling faults (CF/St) a, .. ' oridging faults

(BF) can be detected with a test that detects idempotent CFs. Ir, tests for CF/Id

faults, transition writes are the sensitizing operations, while in tests for BF and

CF/St faults, states (and not transitions) constitute the sensitizing conditions. Ali

BF and CF/St faults will be detected if the four state combinations of any two

cells i and j can be reached; this condition is met by tests for CF/Id faults, as will

be shown later.

It is impor~ant to note that, if we are restricted to using only miJrch tests, then

"Iinked" inversion coupling faults (CFin) cannot be detected in every possible case.

Suppose that the three cells i, j and k, where i < j < k, are linked in such a

way that k is the single cou pied cell influenced by i with a (T; 1) CF/Inv fault,

and is also influenced by j with a (T; 1) CF/Inv fault. Any ît march element will

generate two inversions in k, thus leaving the expected data value in k, and any JJ.

march element will not generate any inversions in k until after it has already read

k. Therefore. an even number of linked (T; 1) CF/Inv faults or an even number of

linked (!; 1) CF/Inv faults, on one side of the cou pied cell, cannot be detected by

march tests.

ln the context of march tests, two of the four possible idempotent CFs

may behave like inversion CFs. and therefore sorne linked combinations of a~

idempotent CF with an inversion CF are also undetectable by march tests. Let us
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again consider three ceIls i, j and k, where i < j < k, and let k be cou pied to i

by a (1; 1) CFIid fault, and also let k be cou pied to j by a (1; 1) CF/Inv fault.

During a ft march element, when cell i undergoes a 0 ..... 1 transition write, it also

causes cell k to go from 0 to 1; then when cell j undergoes a 0 ..... 1 transition

write, it causes cell k to invert from 1 back to its 0riginal value of 0; finally when

cell k is read, no fault is detected. In an analogous manner, let k be coupled to

i by a (1; 0) CF/Id fault, and also let k be coupled to j by a (1; 1) CF/Inv fault.

During a ft march element, when cell i undergoes aI ..... 0 transition write, it also

causer. cell k to go from 1 to 0; then when cell j undergoes aI ..... 0 transition

write, it cau.es cell k to invert from 0 back to its original value of 1; finally when

cell k is read, no fault is detected. Therefore, an odd number of (1; 1) CF/lnv

faults positioned between the coupling cell of a (1: 1) CF/Id fault and the coupled

cell common to ail the linked faults, cannot be detected by march tests. Similarly,

an odd number of (1; 1) CF/Inv faults positioned between the coupling cell of a

(1; 0) CF/Id fault and the cou pied cell common to ail the linked faults, cannot be

detected by march tests.

Neighborhood pattern sensitive faults (NPSFs) cannot be c1assified into either

"Iinked" or "unlinked" categories, due to the uniqueness of the neighborhood for

every base cel!. However, it is significant that a test for Static.. NPSFs is a subset

of a combined test which detects both Active and Passive NPSFs. This can be

seen by considering the following facts:

(1) a SNPSF implies that the base cell is "forced" to a certain value due to a

certain neighborhood pattern,

(2) a test which detects ANPSFs, will detect ail those SNPSFs where the base

cell undergoes a transition from its "correct" value to its "forced" value,

(3) a test which detects PNPSFs, will detect ail those SNPSFs where the base

cell is already at its "forced" value and is being prevented from changing

to its "correct" value.
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Therefore, a test to cetect the combination of Active and Passive NPSFs does

in fact detect ail NPSFs, including Static NPSFs.

5.5.2 Heterogeneous Linked Faults

When linked faults are of different fault types, the following results can be

obtained:

(a) stuck-at faults, address decoder faults, transition faults, inversion coupling

faults, idempotent coupling faults, and linked combinations of TFs and

CF/Ids, linked combinations of sorne CF/!nvs and sorne CF/Ids, ai,d linked

combinations of CF/Ids with other CF/Ids, can ail be detected by a single

marco t€::it.

(b) StUcl'-Jt faults, ?~dress decoder faults, transition faults, and active, passive

and static NP':;;:s, can be detected by a single march test.

(c) linked combinations of CF/Invs with other CF/Invs, and linked

combinations of sorne CF/Invs and sorne CF/Ids, can only be detected

by non-march tests.

Linkage among the non-sequential ad~ress decoder faults can be analyzed with

respect to ail nine possible combinations (as shown in Fig. 3.1) of the four basic

address decoder faults. When it is only important to detect and not necessarily

locate faults, then it is useful to "map" faults occurring within the "read/write

logic" and within the "address decoders" into faults occurring within the "memory

cell array". The conditions which tests must satisfy in order to detect these

"mapped" faults are presented below. These conditions apply only to march tests

which are used to detect SAFs, TFs and CFs, and not for tests to detect NPSFs;

after testing for NPSFs, a separate march test to detect AFs must be run.

A test to detect ail possible combinations of AFs must contain march elements

that match the following patterns:

0: ~( ... ,wX)
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1: ft (rX, ,wX)

2: JJ (rX, ,wX)

It is possible to derive this result, by performing a detailed case by case analysis,

of the nine possible combinatiol1s shown in Fig. 3.1.

When AFs are linked with TFs, the conditions change to:

0: ~ (... ,wX)

1: ft(rX, wX)

2: JJ(rX, wX,rX)

When AFs are linked with CFs, then the conditions become identical to the

march elements required to detect CFs that are not linked to AFs.

It is impossible to devise a combined test which detects both NPSFs and AFs

that are linked, because AFs may mask the NPSFs. A sequence of two tests,

of which the first detects AFs and the second detects NPSFs, is also impossible,

because NPSFs may mask the AFs. The only possible sequence of two tests is: to

first test for NPSFs, followed by a test for AFs. The proofs of the above results

are in Appendix B of [van de Goor 911.

Because tests to detect ," 'd/or locate neighborhood pattern sensitive faults

require a large number of write operations, it is essential to select a sequence of

applying the test patterns in order to minimize the total number of operations.

The appropriate sequences for Static NPSFs are Hamiltonian sequences. The

well-known Gray code is an example of a Hamiltonian sequence. The appropriate

sequences for Active and Passive NPSFs are Eulerian sequences. An algorithm

for constructing an Eulerian sequence from a given Gray code was first presented

in [Hayes 80), and is reproduced on page 130 of [van de Goor 91). Once the

generation technique for test pattern data has been selected, the generation of

memorycell addresses remains to be determined. For "Type-2" neighborhoods only

the "Tiling" method is suitable, but for "Type-l" neighborhoods both the "Tiling"
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method and the "Two-group" method are available for address generation. Each

combination of (1.) fault model, namely APNPSF, ANPSF, PNPSF, and SNPSF;

with (2.) test addressing, namely Type-1 tiling lo~ation, Type-1 two-group

location, Type-1 two-group detection, and Type-2 tiling location; results in a

collection of 15 different algorithms (4 x 4 = 16, minus the PNPSF Type-1 two

group detection algorithm, which is identical to the PNPSF Type-1 two-group

location algorithm). The only appropriate algorithms for self-diagnosis are the

APNPSF Type-1 tiling location algorithm (with 194 steps per melllOry cell), the

APNPSF Type-1 two-group location algorithm (with 196 steps per cell), and the

APNPSF Type-2 tiling location algorithm (with 5122 steps per cell). The complete

algorithms are reproduced in [van de Goor 91], pp. 136-153.

5.6 Diagnosis algorithms: location of faults.

Since the march-test notation is insufficient, we will now introduce some new

notation, to be used in the remainder of this chapter, to specify the details of the

diagnosis algorithms. In particular. the only type of read-action that is available in

march-tests, namely rO or r1 (also known as the "marching read-action"), must

be augmented with two additional types of read-action~.

for moving-cell = 0 to n - 1, exduding base-cell

if stored-value[moving-cell] i' a, then error(moving-cell)

if stored-value[base-cell] i' b. then error(base-cell)

endfor

Table 5.14 The "Galloping read-action:" (r~, ;b)

The "galloping read-action" is represented by the symbol (r~, ;b)' where the

lower operation rb applies to the "base-cell" of this type of read-action, and the

upper operation ra applies to its "moving-cell". As can be seen in Table 5.14, the
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moving-cell and the ba~e-cell are each read n - 1 times, for a total of 2n - 2 read

operations. This type of read-action is termed "galloping" because the read-action

"gallops" back to the base-cell after every individual moving-cell is read.

for moving-cell = 0 to n - l, excluding base-cell

if stored-value[moving-cell] 'f a, then error(moving-cell)

endfor

if stored-value[base-ceIlJ 'f b, then error(base-cell)

Table 5.15 The "Walking read-action:" (r.B);rb

The "walking read-action" is represented by the symbol (r~);rb, where the

final operation rb applies to the "base-cell" of this type of read-action, and the

upper operation ra applies to its "moving-cell". As can be seenin Table 5.15,

the moving-cell is read n - 1 times, and the base-cell is read only one time, for a

total of n read operations. This type of read-action is termed "walking" because

the read-action "walks" from each moving-cell to its neighboring moving-cell, and

finally reads the base-cell only after ail moving-cells have been read.

ln practice, for both the "galloping read-action" and the "walking read-action" ,

the values of a and b are always con,plements of each other, hence there are only

two instances (out of a possible four) of each type of read-action that are actually

used, namely (~o, ;1)' (r? ;0)' (r.O);r1, and ("l);rO. Furthermore, each of, ,
these read-actions also exists in numerous "restricteci" forms, where the restriction

amounts to a ,educed number of moving-cells being selected (i.e. in Tables 5.14

and 5.15, the line (or moving-cell = 0 to n - l, excluding base-cell is replaced by

a shorter, more selective, FOR-Ioop). In such "restricted" read-actions, the set of

moving-cells associated with any given base-cell is usually defined by the electrical

neighborhood of the base-cell, which commonly includes the ceIls in the same row

and/or column as the base-cell, and perhaps several adjaceht rows and/or columns.

72



•

•

for biise-cell = 0 to n - 1

write-to[base-cell] <- 0

endfor

for base-cell = 0 to n - 1

write-to[base-cell] <- 1

if stored-value[base-cell) i' l, then error(base-cell)

for moving-cell = 0 to n - l, excluding base-cell

if stored-value[moving-cell) i' 0, then error(moving-cell)

if stored-value[base-cell] i' l, then error(base-cell)

endfor

write-to[base-cell] <- 0

endfor

for base-cell = 0 to n - 1

write-to[base-cell] <- 1

endfor

for base-cell = 0 to n - 1

write-to[base-cell] <- 0

if stored-value[base-cell] i' 0, then error(base-cell)
,

for moving-cell = 0 to n - l, excludlng base-cell

if stored-value[moving-cell] i' l, then error(moving-cell)

if stored-value[base-cell] i' 0, then error(base-cell)

endfor

write-to[base-cell] <- 1

endfor

'ft (wO); 'ft(wl,rl, (r?, ;1)'wO); 'ft (wl); 'ft (wOi rO, (',1, ;0)' wl)

Table 5,16 The GALPAT Aigorithm

This means that the "restricted" read-actions only require O(.j1i) read operations

in total, whereas the unrestricted read-actions requireO(n) read operations,

ln order to allow the above notation to be used together with the "marching

read-action" and the usual write operations, we introduce the Base-cell convention,

This convention interprets the operations rO, rI, wO, and wl as ail applying to
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the base-celJ. and never to any of the moving-cells. Recall that the original "march

elements" each consist of a single FOR-Ioop. The "augmented march elements" ,

which now allow the use of galloping and wal'Iing read-actions, now contain two

levels of FOR-Ioops:

(1.) a single o:.ter FOR-Joop, which acts on the variable "base-cell", and

(2.) an arbitrary number of inner (non-nestable!) FOR-Ioops, which act on

local copies of the variable "moving-cell" .

An example of this new, compact "augmented march" notation is shown ir

Table 5.16, which shows the widely-known GALPAT algorithm, first in pseudo-code

format, followed by the "augmented march" format in the last line of Table 5.16.

The galloping read-action can be further generalized by allowing more than one

operation to apply to the moving-cell during the inner FOR-Ioop, and by allowing

multiple reads of the base-cell, as shown in Table 5.17.

for moving-cell = a to n - l, excluding base-cell

if stored-value[moving-cell] -1 a, then error(moving-cell)

if stored-value[base-cell] -1 c, 'nen error(base-cell)

write-to[moving-cell] <- b

if stored-value[mr.ving-cell] -1 b. then error(moving-cell)

if stored-value[base-ceIlJ -1 c, then error(base-cell)

endfor

Table 5.17 An example of the "Generalized Galloping
FOR-Ioop:" (ra, " wb, rb, . )

" rCI " " TC

ln ail of the algorithms discussed so far, ail addressing has been exhaustive (i.e.

every cell in the memory is accessed by march elements prefixed by the symbols -0

or .(f), or nearly exhaustive (i.e. in the galloping FOR-Ioop, the moving-cell takes

on the address of every cell in the memory, except for one - that of the base-cell) .

ln the next few sections, algorithms are presented which only access the orthogonal
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addresses. namely 1. 2, 4, 8. 16, 32, 64, "', 2", and the address O. We let the

symbol .L refer to orthogonal addressing in the increasing order [1, 2, 4, 8•...l.
and we let T refer to orthogonal addressing in the decreasing order [... ,8.4.2. 11.
We introduce the notation [address list](operation list) to represent the FOR-Ioop

shown in Table 5.18. Using this notation, the symbol [a) refers to addressing only

the cell with address O.

for base-cell in [address list] do

apply (operation list) to base-cell

endfor

Table 5.18 Notation to represent selective addressing:
[address list](operation list)

5.6.1 5AF in Read/Write circuitry

ln order to locate stuck-at-O/l faults in Data lines and Read/Write circuitry,

the first step is to initialize a single data word at an arbitrary address to ail zeroes.

For simplicity, select the address O. Since a stuck-at-l data line would cause

every single word. that should conta in only zero data bits. to be read incorrectly,

it does not matter which word is selected. See Table 5.19 for the algorithm

(0)(wlÏ);[O](rlÏ).

parallel/serial version

address operation word content

a parallel-write 00000000

0 parallel-read 00000000 or X

Table 5.19 Detect stuck-at-l data line
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If we read a non-zero X from the word 0, then there may be some stuck-at-l

data lines, or there may be local faults affecting that word. Whatever the real

cause of the incorrect data, we must repair the faulty word anyway, so it is quite

unnecessary to probe further to discover the fault's source. Now we must locate

the faulty bit position so that we can effect a repair.

Without loss of generality, assume the direction of shifting to be towards the

right. We use a simple notation to describe the fault types and their locations,

given an eight-bit word width: (--------) denotes no fault, (---1----) denotes

that the fourth column is stuck-at-l, (-0--1---) denotes that the second column

is !,tuck-at-O and that the fifth column is stuck-at-l, (--0--10-) denotes that the

third and seventh columns are both stuck-at-O and that the sixth column is stuck

at-I. See Table 5.20 for the algorithm [O](Wa ®S, Ra), where B is the number of

bit lines.

Fault-pattern: ---1---- -0-1---- ---1-0-- -0-1-0--

step 1 00010000 00010COO 00010000 00010000

step 2 00011000 00011000 00011000 00011000

step 3 COIJ11100 00011100 00011000 00011000

step 4 00011110 00011110 00011000 00011000

step 5 00011111 00011111 00011000 0001'000

step 6 00011111 00011111 00011000 00011000

etc. etc. etc. etc.

Table 5.20 Locate stuck-at-l data line, in bit-seriai fashion

Each step in Table 5.20 represents a Seriai Read-O / Write-O operation. Recall

that pattern detection with this type of hardware is limited to monitoring the

rightmost bit afterevery shift operation (a simple way to monitor this bit is to .

send it ofF·chip i:hrough an 1/0 pin). It is easy to see that only the fault patterns

---1---- and -0-1---- have their stuck·at-l fourth columns actually located at

step 5 in the examples above (the faulty column number is obtained by subtracting
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the step number where al-bit appears for the first time, from the number 9, which

is simply the total number of columns plus one, i.e. 9 - 5 =4). The fault patterns

---1-0-- and -0-1-0-- fail to have their stuck·at-l columns located because of

the stuck-at-O column on the right side which prevents the l-bit generated by the

stuck-at-l column from propagating to column number 8 where it can be detected.

If we use Virtual shift registers, then there is a major limitation to our location

procedures when there are multiple s-a-l and/or multiple s·a·O faults, because

these complementary faults will mask out each others efTects and thereby prevent

location. To perform complete location of ail such faults without introducing a

Real Shift Register (or having full-word access via the 1/0 pins), would require us

to intermingle the repair process with the location procedures. In fact we would

locate exactly one s-a-O/1 bit li ne fault at a time (namely, the rightmost such

fault); then we would repair this fault before being able to locate another s·a·O/1

bit line fault.

Alternate Method: Here we use a Real Shift Register, where every register

cell is further equipped with its own 2-input AN D gate, 2-input OR gate, and a

1-out-of-3 multiplexer. The inputs to the AN D and OR gates are (i) the value

from the data line and (ii) the current value in the shift register cel!. When we

are looking for stuck-at.1(0) data lines, then we use the AND(OR) gate and send

appropriate control signais to the multiplexer so that the output of the AND(OR)

gate is the next value in t~e shift register cel!.

Procedure to detect s-a·O bit fines: We do exactly as for stuck-at-1 bit

lines, except that the roles of 1 and 0 are reversed in the algorithm, namely

[O)(wï);(O](rï);[O](Wl~Rtl.

As indicated in Table 5.21, if we read X, then there are some stuck-at-O data

lines. Now wecan locate these s-a·O bit lines by shifting in both directions, using

exactly the same techniques that we used for the location of s·a·1 bit lines.

The seriai location procedure outlined in Table 5.20 is an o'iginal result.

It locates SAFs in the Read/Write circuitry, using the "r.iten.Walking" data
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address operation word

0 write 11111111

0 read 11111111 or X

Table 5.21 Detect stuck-at-O data lines

backgrounds of Table 5.10.

5.6.2 SAF & dominant-O BF in Address decoders

The procedures below allow us to locate stuck-at-0/1 faults in address decoders

and address lines. We also locate "dominant-O shorts" between address lines,

because they behave like double s-a-O address li ne faults.

address operation word

1 write 00000000

2 write 00000000

4 write 00000000

8 write 00000000

16 write 00000000

32 write 00000000

64 wnte 00000000

128 write 00000000

256 write 00000000

512 write 00000000

0 write 11111111

Table, 5.22 Initialize orthogonal addresses

First we initia/îze the data words at the orthogonal addresses to ail zeroes -.
in compact notation: .L(wO); [OJ(wÏ) - as shown in Table 5.22. In what follows,

we will exploit the fact that ail orthogonal addresses are supposed to contain
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00000000, except for address number 0 which contains 11111111. The p.xample in

Table 5.23 shows how to locate a stuck·at·l address li ne, by sim ply reading each

of the orthogonal addresses in sequence - in compact notation: [O](rï); .l(rlÏ).

ln this particular example, the fifth address·bit line is stuck-at-l, which means that

when we refer to address number 0, we are really accessing address number 16

(in fact, every address whose fifth address-bit is supposed to be 0, will be aliased

to another address whose fifth address-bit is 1). Looking back at the last line of

Table 5.22, it is apparent that when we try to write ail ones to address 0, we are

really writing ail ones to address 16.

desired address real address data word read

-----1----
0 0000010000 111. ..

1 0000010001 000...

2 0000010010 000...

4 0000010100 000...

8 0000011000 000...

16 0000010000 111. .. expected 000... fault located

32 0000110000 000...

64 0001010000 000...

128 0010010000 000...

256 0100010000 000...

512 1000010000 000...

Table 5.23 Locate a single stuck-at-l address li ne

For stuck-at-O address lines we get exactly the same behavior using the above

procedure, as shown in the example in Table 5.24. In this example, the aliasing

of addresses is reversed: now when we seek to read address 16, we realJy end.up

accessing address 0, which contains ail ones.

This procedure also has the advantage that the s-a-O/! address li ne faults

cannot mask each other, therefore any number of such faults can be precisely
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desired address real address data word read

-----0----

a 0000000000 Ill ...

l 0000000001 000...

2 0000000010 000...

4 0000000100 000...

8 0000001000 000...

16 0000000000 lli. .. expected 000... fault located

32 0000100000 000...

64 0001000000 000...

128 0010000000 000...

256 0100000000 000...

512 1000000000 000...

Table 5.24 Locate a single stuck-at-O address li ne

located, as shown in the example in Table 5.25. In this example, the addresses

0, 8, 64, and 256, are ail aliased to the same address, namely 264 (= 8 + 256).

This means that when the ail ones data pattern was supposed to be written to

address 0, it was really written to address 264. When addresses 8, 64, and 256,

were supposed to be read, it was really address 264 that was repeatedly read.

The only information which this simple procedure fails ~o provide is whether

a particular faulty li ne is stuck-at 0 or at 1. But such information is unnecessary

because the repair procedure is the same for both types of faults. In the context

of the procedure presented above, a dominant-O short circuit between a pair of

address lines is indistinguishable from a pair of stuck-at-O address lines, because

every address-bit -except for a single bit- has the value zero, and therefore for

any pair of lines, they will never both have the value 1 at the same time. This

means that the two addresses affected by a dominant-O short circuit fault will both

be aliased to the address O.

The procedure presented in Table 5.22, namely .L(wlÏ); [O)(wï); (O)(rï); .L(rlÏ),
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desired address real address data word read

-1-0--1---

a 0100001000 111. ..

1 0100001001 000...

2 0100001010 000...

4 0100001100 000...

8 0100001000 111. .. expected 000... fault located

16 0100011000 000...

32 0100101000 000...

64 0100001000 111. .. expected 000... fault located

128 0110001000 000 ...

256 0100001000 111. .. expected 000... fault located

512 1100001000 000...

Table 5.25 locate several stuck-at address lines

is derived from the paper [Sarkany and Hart 87]. [Sarkany and Hart 87) only show

how this procedure locates single SAFs, as shown in Tables 5.23 and 5.24, but

they do not show that it locates multiple SAFs; therefore, Table 5.25 is an original

result.

5.6.3 Dominant-l BF in Address decoders

The next two procedures locate the dominant-1 short circuits between address

lines. Recall that the procedure in the previous section covers the dominant

a shorts between address lines, therefore only the remaining address line short

circuits will now be located.

We locate one of the pair of dominant-1 shorted address lines using the

procedure shown in Table 5.26 (note that this procedure does not require the

use of address 0) - in compact notation: .L(wO); .L(rO, wÏ, rÏ). This procedure

has located the faulty address line number 16. In order to locate the remaining

faulty address li ne number 2, we use the procedure iIIustrated in Table 5.27, namely
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desired address real address operation real data expected data

-----*--*-

1 0000000001 read 000 ... ok

1 0000000001 write 111. ..

1 0000000001 read 111. .. ok

2 0000010010 read 000 ... ok

2 0000010010 write 111. ..

2 0000010010 read 111. .. ok

4 0000000100 read 000 ... ok

4 0000000100 write 111. ..

4 0000000100 read 111... ok

8 0000001000 read 000 ... ok

8 0000001000 write 111...

8 0000001000 read 111. .. ok

16 0000010010 read 111. .. 000... half·fault located

16 0000010010 write 111...

16 0000010010 read 111... ok

etc.

Table 5.26 Locate one of a pair of dominant·1 shorted
address lines

T(rï, wÔ). The dominant-1 short causes addresses 2 and 16 to both be aliased

to the address 18, and the reversai of addressing order is required to locate the

fault at address 2. The procedure shown in Table 5.26 is from [Sarkany and

Hart 871. However, the procedure outlined in Table 5.27 is an original result. In

summary, dominant·] short circuits between address lines are located by applying

the algorithm: .L(wlÏ); .L(rlÏ, wï, ri); T(ri, wlÏ).

5.6.4 Dominant-ail BF in ReadlWrite circuitry

The procedures in this section cover short circuits between data lines and

in the readfwrite circuitry. Now that we have located ail of the stuck·at faults
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desired address real address operation real data expected data

-----*--*-

16 0000010010 write 000...

8 0000001000 read 111. .. ok

4 0000000100 read 111... ok

2 0000010010 read 000... 111. .. other half located

1 0000000001 read 111. .. ok

Table 5.27 Locate remaining dominant-1 shorted address line

affecting both the address lines and the data lines, and the short circuits affecting

address lines. we are left with short circuits affecting data/bit lines. before we look

for faults affecting memory cells.

ln order to locate Dominant-O shorted bit Iines, we first want to initialize some

of the words in the memory so as to contain either of the two data pattE'rns shown

in Table 5.28.

address data word alternate data word

1 00000001 10000000

2 00000010 01000000

3 00000100 00100000

4 00001000 00010000

5 00010000 00001000

6 00100000 00000100

7 01000000 00000010

8 10000000 00000001

Table 5.28 Data background for dominant-O shorted bit lines

One possible way to generate these data patterns is to use Virtual shift

registers. The data word stored at address 1 is obtained by first initializing it to ail

zeroes and then using the Seriai input to inject a single 1-bit at the least significant

83



•

•

or most significant bit position. The data word stored at address 2 is obtained

by reading address 1, then shifting the contents Of the word by one bit position

(in the appropriate direction), and finally writing the shifted word to address 2.

Similarly. the data words stored at addresses 3, 4. 5, etc.. are obtained by shifting

the previous word's contents by one bit position and writing them into the next

address. This procedure generates the desired data pattern correctly when there

are no f~ults present. Tables 5.29 and 5.30 show what kinds of data patterns are

generated, using the above outlined procedure (based on Virtual shifting), when

,nere are short circuits between the bit lines. We redefine the notation ---0-0-

to signify that two bit lines are shorted together. with zeroes dominant (it no

longer signifies two stuck-at-O faults), and ---1-1-- to signify that two bit lines

are shorted together. with ones dominant (it no longer signifies two stuck-at-1

faults). In the serialized notation shown in Table 5.29, the symbol [n](Wa [ml,Rb)

signifies that the new contents of ln] are the right-shifted old contents of [ml,

with the leftmost new bit given by Wa. and the rightmost old bit sent to Rb.

The faults can be located by reading each address and checking for the ail

zeroes condition using the all-zeroes Detector (i.e. by inserting the parallel read

operation [n](rD) after each shifting operation). The notation rD means do NOT

expect to read all-zeroes in the fault-free case, because in the fault-free case, none

of the data words [1.2,3,4,5•.. .,B] is all-zeroes. In Table 5.29, the first word to

contain all-zeroes corresponds to the position of one of the shorted lines, and by

this technique location is accomplished.

We can locate Dominant-1 shorted bit lines in a similar manner, except that

the roles of 0 and 1 in the data words are reversed (see Table 5.30).

When we get multiple Dominant-O or Dominant-1 shorts then the two

outermost bit lines are located easily. When we have a mixture of dominant-O

and dominant·l shorts, then we will observe one of the five cases shown in Tables

5.31 to 5.35.
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address data \lord shift right's

shift left shift right serialized-

---0-0-- ---0-0-- notation

a 00000000 00000000 [0](wlÏ)

1 00000001 10000000 [1](W1~Ro)
1 parallel read [l](rlÏ)

2 00000010 01000000 [2](Wo.Q!.Ro)
2 parallel read [2](rlÏ)

3 00000000 00100000 [3](Wo.illRo)
3 parallel read [3](rlÏ)

4 00000000 00000000 [4](WoJ:!.Ro)
4 parallel read [4](rlÏ)

5 00000000 00000000 [51(Wo~Ro)
5 parallel read [5](rlÏ)

etc. etc. etc.

8= B 00000000 00000000 [BI(Wo[~lRo)
B parallel read [B)(rlÏ)

9 = B+l 00000000 00000000 [B + l](Wo~Rl)

Table 5.29 Locate dominant-a shorted bit lines

address data \lord

shift left shift right

---1-1-- ---1-1--

1 11111110 01111111

2 11111101 10111111

3 11111111 11011111

4 11111111 11111111

5 11111111 11111111

etc. etc.

Table 5.30 Locate dominant-l shorted bit lines
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shift left shift right shift left shift right

--10-01- --10-01- --10-01- --10-01-

1 00000001 10000000 11111110 01111111

2 00100010 01000000 11111111 10111111

3 01000000 00100010 11111111 11111111

4 10000000 00000001 11111111 11111111

5 00000000 00000000 11111111 11111111

Table 5.31 Case 1: Dominant-O short sandwiched by
Dominant-1 short

shift 1eft shift right shift 1eft shift right

--01-10- --01-10- --01-10- --01-10-

1 00000001 10000000 11111110 01111111

2 00000000 01000000 11011101 10111111

3 00000000 00000000 10111111 11011101

4 00000000 00000000 01111111 11111110

5 00000000 00000000 11111111 11111111

Table 5.32 Case 2: Dominant-1 short sandwiched by
Dominant-O short

shift 1eft shift right shift 1eft shift right

-0--101- -0--101- -0--101- -0--101-

1 00000001 10000000 11111110 01111111

2 00001010 00000000 11111111 10111011

3 00010000 00000000 11111111 11011111

4 00100000 00000000 11111111 11101111

5 00000000 00000000 11111111 11111111

Table 5.33 Case 3: overlapping Dominant-O and Dominant-1
shorts, different widths

ln cases 1, 2 and 3 both the Shift Left and Shift Right operations, with
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shift left shift right shift left shift right

--01-01- --01-01- --01-01- --01-01-

1 00000001 10000000 11111110 01111111

2 00010010 01000000 11111111 10111111

3 00100100 00000000 11111111 11011011

4 01001000 00000000 11111111 11101101

5 10010010 00000000 11111111 11110110

6 00100100 00000000 11111111 11011011

7 01001000 00000000 11111111 11101101

8 10010010 00000000 11111111 11110110

Table 5.34 Case 4: overlapping Dominant-O and Dominant-!
shorts, equal widths

shift left shift right shift left shift right

--00-11- --00-11- --00-11- --00-11-

1 00000001 10000000 11111110 01111111

2 00000110 01000000 11111111 10111111

3 00001110 00000000 11111111 11001111

4 00001110 00000000 11111111 11000111

5 00001110 00000000 11111111 11000111

Table 5.35 Case 5: completely separate Dominant-O and
Dominant-! shorts

both Zeroes and Ones backgrounds, provide us with information that allows the

location of the two outermost faulty lines. However, in cases 4 and 5, the Zeroes

background Shift Left operations and the Ones background Shift Right operations

provide us with no useable information since the data words never become ail

zeroes or ail ones (therefore the ail zeroes/all ones comparator will not report the

presence of any faults). Only the Zeroes background Shift Right operations and

the Ones background Shift Left operations show that there is something wrong,

allowing us again to locate only the two outermost faulty Iines.
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This procedure, based upon Virtual shifting, requires partial repair before there

can be further location of faulty lines. However, if we apply the same procedure

with Real shift registers being used to generate the required data patterns, then

ail faulty Iines can be located concurrently.

The procedures presented above are a completely original application of the

"Odd-Walking" data backgrounds (see Table 5.9). [Sarkany and Hart 87) use

only one of the four "Odd-Walking" data backgrounds - namely the central

column in Table 5.28 (also the last column in Table 5.9) - and their algorithm

applies this data background only to address 0, whereas the procedures illustrated

in Tables 5.28 through 5.35 apply ail four data backgrounds to a sequence of

addresses, excluding address 0, equal in number to the total number of data bit

lines. [Sarkany and Hart 87] also do not mention the cases of multiple shorted

lines, as shown in Tables 5.31 through 5.35.

5.6.5 5AF & BF in Memory ce/ls

The procedures shown below locate stuck-at memory cells, short circuits

between memory cells, and passively cou pied transition faults. In the following

text, we use a small 16-bit (i.e. 4 words of 4 bits each) memory cell array to more

c1early iIIustrate the functioning of the procedures.

First, we initialize the entire memory to ail zeroes (see Table 5.36), ft (wO).

0000

0000

0000

0000

Table 5.36 Initialize memory

Then, we perform a Read of each word to certify that the initialization is

complete and correct. In the following, we use the abbreviation ft (r:i!) to mean:

88



•

•

"Read each word in the memory, and verify that it is ail zeroes or ail ones, as

appropriate" (in other words, employ either rD or ri, as appropriate). We use the

abbreviation ft (ri) to mean: "Read each word in the memory, and verify thot it

is ail ones or is NOT ail ones, as appropriate" (in other words, employ either ri

or ri, as appropriate).

1111 1111 1111 1111

0000 ft (ri), 1111 ft (ri). 1111 ft (ri), 1111 ft (ri).
0000 0000 1111 1111

0000 0000 0000 1111

Table 5.37 Detect stuck-at-O cell faults

The short procedure in Table 5.37 checks quickly for the existence (but not

the location) of stuck-at-O cell faults. Now we use the longer procedure in Table

5.38 to locate (1) stuck-at-l cell faults and (2) transition faults, where a transition

fails because it is passively cou pied to one or more neighboring cells.

If undesired transitions occur (i.e. there is more than a single zero-bit in the

memory array), this happens because the Cell Under Test is Actively coupling the

remaining cells which are undergoing transitions. The location of these particular

coupling faults is by another procedure.

Now we repeat the procedure in Table 5.38 with a background of ail zeroes

and a single walking-l that appears and disappears at every cell, in order to locate

the stuck-at-O faults and the remaining passively cou pied cells.

The procedures above use hybrid serial/parallel operations only, and they are

original results. If modular operations are to be used instead, then an abbreviated

version of March-B+ can be used to locate exactly the same faults, namely the

algorithm shown in Table 5.39, which is also a previously unpublished march test.
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0111 1111 1011 1111

1111 ft (rÏ), 1111 ft (rÏ), 1111 1~ (rÏ) , 1111 n(rÏ),
1111 1111 1111 1111

1111 11111 1111 1111

1101 1111 1110 1111

1111 ft (rÏ) , 1111 ft (rÏ) , 1111 ft (rÏ), 1111 1~ (rÏ).
1111 1111 1111 1111

1111 1111 1111 1111

1111 1111 1111 1111

0111 ft (rÏ) , 1111 ft (rÏ) , 1011 ft (rÏ) , 1111 ft (rÏ),
1111 1111 1111 1111

1111 1111 1111 1111

et cetera

1111 1111 1111 1111

1111 ft (rÏ) , 1111 ft (rÏ), 1111 ft (rÏ) , 1111 ft (ri),
1111 1111 1111 1111

0111 1111 1011 1111

1111 1111 1111 1111

1111 ft (rÏ), 1111 ft (ri), 1111 ft (rÏ). 1111 ft (rÏ).
1111 1111 1111 1111

1101 1111 1110 1111

Table 5.38 Locate stuck-at-l cell faults

fJ (wO)

fJ (rO, wl, rI, wO, rO)

fJ (wl)

fJ (rI, wO, rO, wl, rI)

Table 5.39 The new Diagnostic March-B± Algorithm
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Cycle 1:

1111 0111 0111 0111

1111 ft (ri) 1111 ft (W*@fR.) 0111 ft (W*~R*) 0111 ft (W*~R.)
1111 1111 1111 0111

1111 1111 1111 1111

0111 0011 0011 0011

0111 ft (W*~R.) 0111 ft (W*~R.) 0011 ft (W*~R.) 0011 ft (W*~R.)
0111 0111 0111 0011

0111 0111 0111 0111

et cetera

0000 0000 0000 0000

0001 ft (W*~R.) 0000 ft (W*~R.) 0000 ft (W*~R.) 0000 ft (rD)
0001 0001 0000 0000

0001 0001 0001 0000

Table 5.40 Locate Actively cou pied and coupling ceIls

5.6.6 CF in Memory cel/s

At this point. the combination of ail the procedures above allows us to locate

ail types of stuck-at faults. ail types of shorts. and ail passively cou pied cells. This

leaves actively coupled and coupling cells to be located. The procedures in Tables

5.40 to 5.43 locate both the cou pied and coupling cells, using hybrid serial/parallel

operations.

The notation ft (W*~R.) signifies a succession of wraparound-shifted read

and write operations performed on every word. in order to serially scan the contents

of every bit. Between these wraparound-shifted operations. which require a total of

BW shifting operations. we perform a pair of full-word read and write operations

to implement a column-wise shifting operation. We reinitialize to ail zeroes before

continuing with Table 5.42.

This four-stage procedure for hybrid serial/parallel operations is an original
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Cycle 2:

0000 0000 0000 0000

0000 1't (rô) 0000 Nt:! 0000 I~ (w.'c-':.h.) 0001 1~ (II'. "'-~u.)1't (W.-' R.)
0000 0000 0001 0001

0000 0001 0001 0001

et cetera

0111 0111 0111 1111

1't (W/!~tlR.) 1't (W.~R.) 1't (W.'~~!;i R. )
-.--

0111 0111 1111 1111 11' (rl)
0111 1111 1111 1111

1111 1111 1111 1111

Table 5.41 Locate Actively coupied and coupling cells

Cycle 3:

0000 1000 1000 1000

0000 1't (rD) NB 1't (W.'@R.) 1't (W.'i~ R.)0000 1't (W. -, R.) 1000 1000

0000 0000 0000 1000

0000 0000 0000 0000

et cetera

1111 1111 1.111 1111

1110 1't (W*~R.) 1111 1't (W.0:~ R.) 0B 1't (rï)1111 1't (W.-, R.) 1111

1110 1110 1111 1111

1110 1110 1110 1111

Table 5.42 Locate Actively coupled and coupling cells

fault location algorithm. If modular operations are to be used instead, then a

two-stage procedure can be used to locate the same faults. A suitable first stage

is the march algorithm IFA-13 (see Table 4.2). From IFA-13, a list of faulty cells is

compiled, and this list contains only the coup/ed ceIls and not the coup/ing cells.

To locate the coup/ing cells, the second stage employs an algorithm with

Galloping FOR-Ioops, as shown in Table 5.44. The list of IFA-13-discovered
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Cycle 4:

1111 1111 1111 1111

1111 ft (rÏ) 1111 ft (W.'i~ R.) 1111 ft (w/~h ..) 1110 ft (W..~R..)

1111 1111 1110 1110

1111 1110 1110 1110

et cetera

1000 1000 1000 0000

1000 ft (W..~R..) 1000 ft (W..~R..) 0000 ft (W..~R..) 0000 ft (rO)

1000 0000 0000 0000

0000 0000 0000 0000

Table 5.43 Locate Actively cou pied and coupling cells

cou pied cells is denoted by [failed cellsJ. This algorithm is c1early different from

GALPAT (see Table 5.16), and it constitutes an original result.

ft (wO)
[failed cells](w1 rI (ra,Wa,ra, . ) wO)

, , " '1 " rl '

ft (w1)
[failed cells)(wO rO (ri, wl, ri, . ) w1)

1 ) • • • rO )

Table 5.44 A Galloping algorithm to locate Coupling cells

5.6.7 SequentialSOAF

Using the procedure in Table 5.45 we can locate stuck-open faults in the

address decoders. Recall from section 3.3.6 that this kind of fault manifests itself

by selecting two address lines at the same time, such that the addresses are a

Hamming distance of 1 apart. Given that we have an M-bit long address, then

there are 2M lines controlled oy the decoder, and therefore M x 2M pairs of

addresses are required to detect the presence of ail possible SOAFs.
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ln order to locate such faults, we must exploit the fact that two word lines

are being activated at the same time. If the two words being accessed are

supposed to store different values, then by trying to read each word individually

we may obtain erroneous readings because of a wired·AND or wired·OR effect

between the two lines. In the procedure shown in Table 5.45, we assume a

wired-OR effect, and we let Wi stand for the binary representation of word

address i. The time required to run this procedure, assuming W words, is:

W +W(l +3 log W +1) = 3W +3W log W steps.

for Wi = 1 -+ W do { write 000 ... to w;}

for Wi = 1 -+ W do

{ write 111 ... -+ Wi ;

read Wi ; expect value 111 ... ;

read (Wi œ1000 ... ) ; expect value 000 ... else stuck.open ;

read Wi ; ignore value;

read Wi ; expect value 111 ... ;

read (Wi œ0100 ... ) ; expect value 000 ... else stuck·open ;

read Wi ; ignore value;

et cetera;

read Wi ; expect value 111 ... ;

read (Wi œ... 0010) ; expect value 000 ... else stuck-open ;

read Wi ; ignore value;

read Wi ; expect value 111 ... ;

read (Wi œ... 0001) ; expect value 000 ... else stuck-open ;

read Wi ; ignore value;

write 000 ... -+ Wi ; }

Table 5.45 Locate Stuck-open addressing faults

As was explained in section 3.3.6, such faults are located by first applying an

"initializing pattern" IP, followed bya "sensitizing pattern" SP. In any algorithm

that uses a sequence of addresses, such that any two adjacent addresses are a

Hamming distance of 1 apart, the location of faults is ambiguous. The located
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fault is within the decoder whose address is 1P, and the faulty bit position within

decoder 1P is given by 1P <D S P. For example, using 4-bit addresses, and letting

the base-address be 0000, the sequence mentioned above is 0000, 0001, 0000,

0010,0000,0100, 0000, 1000. Note that 0001 can be an SP to the first instance

of 0000, or 0001 can be an 1P to the second instance of 0000. To prevent this

multiplicity of IPfSP status, we should insert a "buffering pattern" BP right

after the intended SP. Using a BP of 1111, the above sequence becomes 0000,

0001, 1111, 0000, 0010, 1111, 0000, 0100, 1111, 0000, 1000, 1111. This sequence

will locate 50AFs only within the OOOO-decoder.

The cycle of three read operations shown in Table 5.45 is analogous to the

Galloping FOR-Ioop, but since the addressing follows a "unit Hamming distance"

scheme, we cali it the Hamming FOR·loop. We can use a similar notation to

the Galloping loop for the Hamming loop by replacing the parentheses with angle

brackets O, The algorithm of Table 5.45 can be rewritten in this notation as

follows: 'ft (wO); 'ft (w1, (;i:.~· IR") ,wO). We use the notation !Ji" to represent

[base cell)(rx), where we ignore the read value, because this operation is only

inserted to buffer the address pairs. (We could also use ~", which represents the.

operation [moving cell](rx), to play the role of buffering pattern BP.)

5.6.8 APNPSF location algorithms

The hardware design described in the next chapter is intended for use with

5tatic RAMs, for which NP5Fs are not applicable (hence, for the remainder of this

thesis, the location of NP5Fs is not required). The same BI50 circuit can be used

with Dynamic RAMs, with appropriate changes to the address generators and a

reprogrammed ROM. 5ince the 3 types of APNP5F location algorithms are long

and complicated, they will not be reproduced here - complete details of these 3

algorithms are available in [van de Goor 91J, as was mentionned previously.
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5.7 Repair algorithms: allocation of spares

The computational complexity of optimal reconfiguration is known to be .V'P·

complete [Kuo and Fuchs 87]. Many different heuristic algorithms for spare

allocation have been published [Day 85), [Kuo and Fuchs 87], and each one is

appropriate in different situations. The actual type and amount of redundancy

available, in a given RAM design, will determine which heuristic algorithm should

be used; the selection criteria for heuristic algorithms involves graph-theoretic

analysis, which is beyond the scope of the topic of this thesis.

The DR-Unit diagnoses and repairs each (b+1)-bit line memory module

completely before starting a diagnosis of the next (b+1)-bit line module. First, the

Address Mode bit is set to l, the b Data Bits are set to the current module number,

and the module-number decoder's flip-flop is activated only in the appropriate

Programmable Module. Then by setting the Test Mode bit to 1 (Address and

Program Modes are 0), the b Data Bits are connected to the b bit lines (excluding

the (b + l)th spare bit line) in the chosen module, and the DR-Unit can start

executing diagnosis procedures stored in ROM. When we must consider the

allocation of spare bit lines and spare word lines, then we need more temporary

storage than the scratch-pad registers in the DR-Unit provide. The solution is

to use a fault-free module of the memory array to store a complete fault map

of another module, which is being diagnosed. It is significant that no extra area

overhead is needed to store the location of faulty cells, since with high probability

there will always be some fault-free "Home Module" available to store the fault

maps of other modules.

5.8 Global control algorithm

The DR-Unit's ROM contains an algorithm to control the entire diagnosis and

repair process, as shown in Figure 5.3. The DRU tests itself in two passes. In
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Fig. 5.3 Flow-chart of global Diagnosis and Repair procedure

the first pass, the Instruction Registers are configured into a multi-input Iinear

feedback shift register (MISR), while the Program Counter is incremented byone
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at every c10ck cycle (i.e., no Branch instructions are used). This results in the

entire contents of the ROM being read into the MISR, which at the end of Pass

One will contain a Signature. If the Signature matches the Expected Signature,

which may be stored as the very first or the very last word in the ROM, then we

assume that there are no faults in the Program Counter, Instruction Register, the

ROM's address decoder, and the entire contents of the ROM, and we go on to

Pass Two.

ln Pass Two, we run a self-test program also stored in a part of the ROM,

which exercises ail the remaining registers in the Data Path and ail the instructions

implemented by the RISP. If the DRU successfully completes Pass Two, then we

assume it to be fault-free and we can start testing the embedded RAM itself.
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6 Description of Hardware Design:

6.1 General overview of test hardware.

Test algorithms require certain hardware circuits:

1. An address generator which counts upward from 0 to N -1 and downward

from N - 1 to 0, is best implemented as a binary upjdown counter with a

pipei:ned carry signal to reduce the delay of the ripple-carry signal. When

march tests are used, then address generators based on L:=SRs are quite

suitable.

2. An optional wait counter, which is connected with the address generalor,

to count down the wait time for the optional data-retention test.

3. A data pattern generator which generates the required data word patterns

and their complementary values.

4. A data receiver that compares the expected value with the value actually

obtained from a static RAM during a Read operation. A data receiver can

behave in one of two ways:

(a.) During every read operation, a comparison is made between the

actual and the expected values of data.

(b.) The data from the read operations are compressed using

polynomial division in a parallel signature analyzer, and only the final
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contents of the parallel signature analyzer (called the signature) are

compared with the expected signature. This is only suitable when

the location of faults is not required.

5. A control circuit which implements the test algorithm by controlling the

various self-test circuits and the memory itself. The self-test controller is

designed starting from astate diagram, and can be implemented as a finite

state machine, using a programmable logic array with f1ip-f1ops to store the

internai state values.

The self-testing RAM designs mentionned previously, only consider the problem

of fault detection. In order to provide instructions for the repair of a particular

embedded RAM, we must consider the problem of fault location in addition to

fault detection. The ability to locate faults calls for an "intelligent" self-diagnosis

circuit, which we cali a Diagnosis and Repair Unit (DR-Unit), to be added to the

repairable embedded RAM. This thesis hypothesizes that the best way to design

the DR-Unit is to combine a small reduced-instruction-set processor (RISP) with

a small ROM, because such a design best satisfies the following constraints:

(1.) it can be easily adapted to various memory designs,

(2.) it requires minimal redesign of the memory itself, and

(3.) it has minimal impact on normal memory performance.

Here is a more detailed expia nation of each of these constraints:

(1.) The easy adaptability to a variety of memory designs is due to the fact

that the instructions stored in the DR-Unit's ROM can be easily changed

to suit every kind of memory organization and can be adapted to detect

various types of faults associated with different fabrication technologies.

(2.) Since we are assuming that an embedded RAM cannot be directly accessed

through the chip's 1/0 pins, this means that such a RAM is almost never

connected to data and address busses running through the chip because

100



•

•

such busses almost always lead to 1/0 pins. Instead, an embedded RAM is

connected directly to neighboring circuits without busses. This means that

the DR-Unit's RI5P will be connected to an embedded RAM through an

extra Bus that is used only for the purposes of diagnosis and repair. Hence

the only redesign of the RAM that may be required is the incorporation of

this Diagnosis and Repair Bus (DR-Bus), which is a relatively simple task.

(3.) The only changes in RAM performance will be caused by the DR-Bus,

since ail other parts of the DR-Unit are completely outside the RAM.

The only other "foreign" circuits inside the RAM are the spare rows,

spare columns and the programmable fuses; but these extra circuits are

commonly found in full-chip RA Ms, where their impact on performance is

acceptable, hence their impact on embedded RAM performance is likely to

be acceptable also.

An added advantage of using a DR-Bus to do diagnosis is that if the DR-Bus

is connected directly to the memory cell array's sense amplifiers and write drivers

without going through the address decoders, then any faults in the decoders can

be isolated from any faults in the cell array, thereby simplifying the problems of

fault detection and location.

6.1.1 A Comparison of B/ST Architectures

The most widely used classification scheme for BI5T designs is based on:

a) the number of bits accessed during a read or write operation (Le. single bit

or multiple bit access),

b) the number of cell sub-arrays accessed during a read or write operation (i.e.

only a single sub-array is active, or multiple sub-arrays are active).

Hence there are four general classes of BI5T architectures:

5A5B: single sub-array, single bit;
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SAMB: single sub-array, multiple bit;

MASB: multiple sub-array, single bit;

MAMB: multiple sub-array, multiple bit.

6.1.1.1 Single sub-array, single bit

The SASB architecture is the only architecture which could be used with

unmodified, standard (non-BIST) algorithms that are also used by external testers

to apply the test inputs and evaluate the resultant outputs. Some of the coupling

fault models can be fully tested only with the SASB architecture.

6.1.1.2 Single sub-array, multiple bit

The SAMB architecture is also referred to as fine-mode testing when there

exists an internai mechanism capable of accessing a complete word li ne to:

1. write the same data into multiple ceIls in a single access, and

2. read the data from multiple ceIls and evaluate this data in a single access

by using compression techniques.

Another kind of SAMB architecture, much less common than fine-mode

testing, involves making internai modifications to both the column and row

decoders. The modified decoders mechanism allows r rows and c columns to

be selected at the same time during a write operation, which implies that the

same data value can be written to r . c cells. A read operation can only access c

columns within one row.

Given a memory with n cells, with ..;n rows and ..;n columns, then fine-mode

testing can reduce the test time of most algorithms by a factor of..;n. Some

of the coupling faults will require a mixed architecture approach because of the

difficulty of detecting certain types of coupling faults between cells belonging to

the same row. Using the modified decoders mechanism most algorithms can be

accelerated el'en more, however coupling faults will again pose a slight problem.
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6.1.1.3 Multiple sub-array, single bit

The MASB architecture is only applicable to larger memories that contain

several sub-arrays. If these sub-arrays can be operated independently of each

other, then they can be tested in ila~allel - where a single bit is accessed from

each sub-array. The major implementation advantages of the MASB architecture

are:

a) the circuitry required for generating addresses and test patterns can be

shared among s sub-arrays,

b) the response data can be verified by mutually comparing the s responses

of the sub-arrays, and

c) ail the coupling fault models are completely testable.

6.1.1.4 Multiple sub-array, multiple bit

The MAMB architecture combines most of the characteristics of both the

SAMB and MASB architectures. This architecture can accelerate most algorithms

by a factor of .,fii. s. As with the SAMB architecture, there exists some difficulty

in detecting coupling faults between cells belonging to the same row.

6.1.1.5 Other architectural parameters

The architectural classification system described above presents a viewpoint

which is entirely appropriate for Built-In Self- Test, but is not adequate for Built-In

Self-Diagnosis and Self-Repair. The most important additional parameter to be

added to this classification scheme involves the organization of the spare rows and

spare columns. If the spare Iines are placed in individual sub-arrays, then we have

local redundancy, and if the spare lines belong to the entire cell array as whole,

then we have global redundancy.

103



•

•

6.1.2 B/ST Address Generators

This section discusses the selection of address generalors. In companson

with test data generators and response data evaluators, the address generalors

almost always require the most layout ar~a. There are two possibilities for the

implementation of an address generator: (1) a counter, or (2) a pseudo-random

pattern generator (PRPG). Counters have the disadvantage that they require more

hardware than PRPGs because of the carry propagation logic, and counters are

also difficult to make self-testable.

When march tests are used, then address generators based on PRPGs are quile

suitable. It is a straightforward matter to construct a PRPG using an LF5R, that

has been augmented to produce the al/-zeroes pattern, and that has been further

modified so that the same pseudo-random sequence of addresses can be generated

in both the forward and reverse directions. PRPGs built out of LF5Rs have the

following property: the probability that a parlicular address bit changes during any

given c10ck cycle is equal for ail address bits - this makes possible the detection

of sorne write recovery faulls (discussed in chapter 3), which are due to address

dependent delays in the decoder circuit, that would not be detected if counters

were used as address generators.

6.1.3 Pseudo-random pattern generators

"Pseudo-random pattern generators" (PRPG) are implemented as modified

"Iinear feedback shift registers". The instructions for constructing a suitable PRPG

are as follows:

1. select a primitive polynomial (in the Galois Field of order 2) of the desired

bit-Iength, and a maximum length sequence (exduding only the all-zeroes

pattern) will be.produced from an LF5R whose feedback paths correspond

to the primitive polynomial, bya very weil known result from coding theory,
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required extra circuitry comprises a high fan·in NOR.gate (or its functional

equivalent) and one extra EXOR-gate - the NOR·gate takes as input the

state of every single cell, except for the last one, and the extra EXOR·

gate takes as input the state of the last cell and the output of the NOR

gate; the result of this modification is that the state 000 ... 001 does not

immediately go to the next state 100 ... 000 but instead passes through

the state 000 ... 000,

3. in order to construct a PRPG which generates exactly the reverse sequence

of a given PRPG, we use the same cells which must be able to shift in the

reverse direction, and we implement the reciprocal primitive polynomial;

then we add the high fan-in NOR·gate and extra EXOR-gate, and a

multiplexer at each end of the LF5R.

6.2 Descriptions of the Cel/s, and their Operation

The list below enumerates the hardware components of a "soft switching"

design for embedded RAMs, using local redundancy. We assume that the RAM is

divided into M sub-arrays (also calied modules), each containing (B/M + 1) bit

lines, such that the single spare bit line in a given sub-array can only replace one

of the B/M non-spare bit lines in the same sub-array.

6.2.1 "withRepair" (Fig. 6.1)

•

This is the top-Ievel cell of the proposed design which incorporates the ability of

the hardware to do both the diagnosis and repair cf faults entirely by itself, without

any help from outside circuitry. The signal 5TART specifies when a self-diagnosis

and self-repair session should take place, with the circuit operating in normal-mode

at other times. The signais 5TOP(1:2) specify whether the self-repair successfully

produced an operational circuit, or if there are sorne remaining unrepairable faults.
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Fig. 6.1 "withRepair"

The signais WRDADR(l:n) carry the n bits of the word address, and hence we

have W = 2n words in the memory. The signais DATA(l:B) show that each word

in the memory contains B data bits. Therefore, the total capacity of this memory

is BW = B2n bits,

6.2.1.1 "addrGenBuf" (Fig. 6.2)

•
This cell provides memory addresses in three ways: (1) by allowing the

externally-supplied addressfrom EXTERN(l:n) to pass through, during the normal

mode of operation; (2) by generating a monotonically increasing sequence of

addresses starting at 000 (ail zeroes); (3) by generating a monotonically decreasing
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Fig. 6.2 "addrGenBuf"

sequence of addresses starting at Hl (ail ones). These last two addressing

sequences are created by an internai counter, and are used during the test mode

of operation.

•
6.2.1.2 "c1ockGen"

This cell generates 10 control signais, that are properly synchronized with each

other, from the six bits of TESTCONTROL(1:6) and the CLOCKPIN.
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•

6.2.1.3 "sRam" (Fig. 6.3)

This cell embodies a static RAM which has been augmented with circuitry

that enables the repair of some faults. Note that the memory array itself is

partitioned into M modules, each module containing the ceIls "subCeIlArray",

"drivers5enseAmps", "mod#dec", and "fuse Module" . Each module contains one

spare bit li ne which provides the redundancy required for the repair of faults.

6.2.1.4 ''addrDec "

This cell is a standard design of an address decoder circuit.

6.2.1.5 "addrBu ff"

This cell constitutes a buffer for the address, using a column of D-type flip

flops with a rising (positive) edge.triggered dock.

6.2.1.6 "ready2write"

This cel! generates a synchronized pulse which indicates when a "write to

memory operation" is valid.

6.2.1.7 "subCellArray"

Each memory sub·array (also called module) is composed of b+l columns:

b = B/M basic columns and one spare column. As a result of limitations

in the CAD software used to create this hardware design, some non-standard

elements were used, such as two separate sets of bit lines: 5EN5ED(O:4) for

reading from the memory, and WRITED(O:4) for writing to the memory. The

CAD software was supplied by Bell·Northern Research, and it did not contain

standard-cells for 5RAMs, and its simulator did not allow the use of bidirectional

lines in many circumstances. The resulting hardware design does not invalidate

the BI5D technique itself, in spite of the occasional use of a non-standard feature.
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•

6.2.1.8 "singleColumn"

Each column is composed of W individual memory cells.

6.2.1.9 "singleCell" (Fig. 6.4)

Figure 6.4 shows a non-standard SRAM cell required by the BNR functional

simulator.

6.2.1.10 "driversSenseAmps"

This is an design of write-drivers and sense-amplifiers with storage provided by

edge-triggered flip-flops. The signal SENSED(l:b+l) is a unidirectional line from

the memory array, WRITED(l:b+l) is a unidirectional li ne to the memory array,

and BIT(l:b+l) is a bidirectional line to the data buffer.

6.2.1.11 "mod#dec" (Fig. 6.5)

This cell is an address decoder for module number #' The address is carried by

RB(l:b), which is a valid address when RB(b+l)'s edge rises. RB(b+2) specifies

whether we are reading/writing to ail the modules in the memory together, or only

to one selected module. In general there can be any number of modules, each one

requiring a unique module decoder.
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Fig. 6.5 "mod#dec" (module #0 decoder)

6.2.1.12 "fuseModule" (Fig. 6.6)

This cell provides a programmable interface between the b bits of the data

buffer, and the b+l bits (one of which is the spare) of the memory module. The

data-carrying signais on both sides of this cell are bidirectional, hence the signal

DR selects the direction of data-flow. The signal RESETFUSES forces the fuses

into a predetermined default setting. The signal ENABLE comes from one of

the module address decoders, to specify which module is being tested or being

reconfigu red using its fuses.

6.2.1.13 "softFuse" (Fig. 6.7)

The soft fuse is really a resettable, edge-triggered D-type flip-flop ("drsp").

The signal OC specifies the direction of data-flow: from the buffer-side (BUFS) to

the drivers-side (DRIVS/SPARE), or vice versa. The state of "drsp" determines

whether the signal SPARE replaces DRIVS.

6.2.1.14 "bidirecMux" (Fig. 6.8)

This cell is a bidirectional l-of-2 multiplexer. The signal DR specifies the

direction of data-flow: from the one·bit·side (W) to the two-bit-side (Va/VI),
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Fig. 6.6 "fuseModule"

or vice versa. The signal SL selects which of VO or VI will be connected to W.

Ordinarily, this cell would be laid out quite simply as two transmission gates in

parallel, but since transmission gates are not available in this design environ ment,

this more complex design is used instead.

6.2.1.15 "dataBuffe," (Fig. 6.9)

•
This cell implements an B-bit bidirectional data buffer, using B instances of a

D-type flip·flop ("dp"), B instances of a unidirectional multiplexer ("mx2"), and

2B instances of a three-state buffer ("buse").
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6.2.1.16 "repairingControl/er" (Fig. 6.10)

•
This eell represents a programmable eontroller whieh earries out the funetions

of testing the memory array, loeating the faults, and then programming the soft

fuses to efTeet repairs. The only means of data transfer between the eontroller
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Fig. 6.9 "data Buffer"

and the memory array is the bidirectional part of the DR-Bus (DRBUS(1:b».

Unidirectional control lines from the controller are three lines in the DR-

Bus (DRBUS(b+l:b+3», and six more lines (TESTCONTROL(1:6». The

controller contains a finite-state machine combined with an instruction register

("instrRegCntl"), software stored in a ROM ("Rom"), a program counter for the

ROM combined with a stack ("pCstack"), decoding circuits which convert the

current instruction into 44 control signais ("instrDecod" and "c1kGen2"), and a

data path which creates test vectors for storage into the memory, examines the

vectors retrieved from the memory, and programs the soft fuses to reconfigure the

memory ("alu", "readOnlyRegs", "readWriteRegs", and "busPort").

6.2.1.17 "alu" (Fig. 6.11)

•
This cell is a b-bit arithmetic and logic unit, which contains the input registers

X and Y that hold the operands, and the output register Z that holds the result of

the operation. Three flags are also generated which identify when the operands:

add up to 0 (FLAG(l», are identical (FLAG(2», or cause an overflow condition
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Fig. 6.10 "repairingController"

when they are added together (FLAG(3)).

•
6.2.1.18 "readOnlyRegs"

This cell contains 5 numerical constants which can be fetched by "alu". or
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Fig. 6.11 "alu" (b-bit arithmetic and logic unit)
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Fig. 6.12 "busPort"

which can be sent directly to the "busPort". We have these commonly used

constants available in this type of read-only register arrangement. because the

alternative would be to store them in the Rom. where they would likely be repeated

over and over again, occupying a lot of expensive space in the Rom. One possible

choice for the constants is 0001, 0000, 1111, 0101, 1010.

6.2.1.19 "readWriteRegs"

This cell contains 4 readfwrite registers which can be accessed by "alu" and

by the "busPort", in order to temporarily store variables or test-data.

6.2.1.20 "busPort" (Fig. 6.12)

•
This cell provides an interface between the DR-Bus and the "Data Path". If

the "busPort" did not exist, then "readWriteRegs", "alu" and "readOnlyRegs"

would, in the first place, have to be able to drive the long DR-Bus lines when

writing to the memory and be able to accurately sense the DR-Bus lines when

reading from the memory. Such an arrangement would require "readWriteRegs",
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•

"readOnlyRegs" and "alu" to contain significantly larger circuitry, that must be

carefully calibrated in its analog behavior. In the current design, the "busPort" is

the only place where such circuitry with carefully calibrated analog behavior exists,

except for the write drivers and sense amplifiers of the memory array itself. In

the second place (if "busPort" did not exist), "readWriteRegs", "readOnlyRegs"

and "alu" would each have to be connected to two busses (instead of only one):

to the "Data Path" to communicate among themselves, and to the DR-Bus to

communicate with the memory array.

6.2.1.21 "clkGen2"

This cell generates 3 control signais, namely R(b+l:b+3), which form part of

the DR-Bus, that are properly synchronized with each other, from the two bits of

CTL(1:2) and the CLOCKPIN.

6.2.1.22 "instrDecod"

This ceH decodes the instructions stored in the Rom, INSTR(1:7), to provide 43

control signais, namely: AL(1:8), RO(1:5), RW(1:8), BP(1:4), CG(1:2), TC(1:6),

PC(1:6), IRC(1:4). Some of these control signais are also synchronized with

respect to the clock signal CLKP. The decoding can be accomplished by using

ordinary combinational logic, or by using programmable logic arrays.

6.2.1.23 "instrRegCntl" (Fig. 6.13, 6.14, 6.15, 6.16)

This ceH is the most complex component of the "repairingControHer". It

incorporates an instruction register for the current instruction (most recently

fetched from the Rom), together with a finite-state machine control circuit which

decides whether to transmit the currently stored instruction on to the instruction

decoder ("instrDecod"), or to transmit some other instruction generated by the

finite-state machine. This ceH is also the destination of the START signal which

specifies when the self-test-and-repair mode should begin, and the source of the
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Fig, 6.13 "instrRegCntl" (part 1)

SrOp(1:2) signais which signify when the self-test mode has ended and whether
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the self-repair procedure was successful or not.
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Fig. 6.16 "instrRegCntl" (part 4)

Approximately one half of the cell, as shown in Fig. 6.13 and 6.14, comprises a
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five-bit finite-state machine (FSM). The five-bit state is stored in the five D-type

flip-flops (Fig. 6.14) labelled 'A', 'B', 'C', 'D', 'E' and which generate the signais:

al, a2, a3, a4, a5 and their inverted values: zl, z2, z3, z4, z5. The three lower

bits, namely: a3, a4, a5, are combined with four constant valued bits, namely:

'0', '0', '0' and '1', to form a seven-bit instruction which is sent via bus PCS(1:7)

to another part of the cell, in Fig. 6.15. This generated instruction, carried by

PCS(1:7), is used to control the operation of the Program Counter with Stack

(the cell "pCstack", Fig. 6.18).

Inputs Outputs!

Ii I2 I3 A1 AO

0 0 0 0 0

1 0 0 0 1

x 1 0 1 0

x x 1 1 1

Table 6.1 Priority Encoder truth-table

•
6.2.1.24 "pe42" (Fig. 6.17)

This cell embodies a 1-of-3 Priority Encoder, which functions as shown in

Table 6.1.
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Inputs Output

Cl CO OP

0 0 IO
0 1 Il

1 0 12

1 1 13

Table 6.2 l·of·4 Multiplexer truth-table

6.2.1.25 "mx4"

This cell embodies a l-of-4 multiplexer, which functions as shown in Table

6.2.

Inputs Output

C2 Cl CO OP

0 0 0 IO

0 0 1 Il

0 1 0 12

0 1 1 13

1 0 0 14

1 0 1 15

1 1 0 16

1 1 1 I7

Table 6.3 l-of-S Multiplexer truth-table

6.2.1.26 "mx8"

This cell embodies a l-of-S multiplexer, which functions as shown in Table

6.3.
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Fig. 6.18 "pCstack" (program counter stack)

(xvar)push (xvar)pop

into(l:var) shin
"shiftS"

shout from(l:var)

Fig. 6.19 "stackS" (S-item stack)•
( X var)dock (xvar)reset
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• (xS)clr

Q(1:S) cl
Q(2:S),'O' dO q Q(1:S)

shin,Q(1:7) lI rdff"
Q(1:S)

op
ck

(xS)ckb3
ck~ckb Q(1) --;>\ buffer \---,>shout

Fig. 6.20 "shiftS" (S-bit shift register)

paraout(2:var)parain(2:var)paraout(1)

4p, qo0 l. pl qo
IIcountA"

(1) (1:var-1)
"countB"

(2:var)
co ~

CI co

ck Id r ck Id r

ck-3 ( x var-1 )clock=.f "

oadmode- (xvar-1)loadmode-
reset- ( xvar-1)reset-

"

CO(1:var)

cio
1

parain(l)

Fig. 6.21 "countvar" (var-bit counter)

6.2.1.27 "pCstack" (Fig. 6.18)

•

This cell is a Program Counter with Stack. The stack (see Fig. 6.19) has

the capacity to store upto eight var-bit addresses. The stack is made up of var

bidirectional shift registers, where each bit of an address is stored in a different

shift register (see Fig. 6.20). The length of the shift registers determines the depth

of the stack, which in this case is S. The var-bit counter is unidirectional (i.e. it

only increments its present value, and never decrements) which can also be loaded

with an arbitrary var-bit value, or can be reset to the ail zeroes starting value (see
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ctl
"mx2i"

op

r

rb
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"rdff" qb
ck

ck

and2 co

Fig. 6.21, 6.22, 6.23).

Fig. 6.23 "countB"

6.2.2 "diagnosisOnly" (Fig. 6.24)

•

This is the top-Ievel cell of the proposed design which incorporates the ability

of the hardware to do only the diagnosis of faults entirely by itself, and the repair

is performed with help from outside circuitry. The signal START specifies when a

self·diagnosis session should take place, with the circuit operating in normal·mode

at other times. The signais STOP(1:2) specify whether the externally controlled

repair successfully produced an operational circuit, or if there are some remaining

unrepairûble faults.
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Fig. 6.24 "diagnosisOnly"

•
6.2.2.1 "c1ockGen"

This cell generates 9 control signais, that are properly synchronized with each

other, from the six bits of TESTCONTROL(1:6) and the CLOCKPIN.
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Fig. 6.25 "statieRarn"

6.2.2.2 "paralleIComp"

•

This eell reads ail the data lines in parallel, and deterrnines whether ail the

even lines sirnultaneously carry the value zero or the value one, and whether ail

the odd lines sirnultaneously carry the value zero or the value one,

6.2.2.3 "staticRam" (Fig. 6.25)

This eell ernbodies a typieal statie RAM whieh eontains sorne spare lines whieh
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•

Fig. 6.26 "addrDec"

can only be activated by off-chip means. As a result, from the point of view of the

self-diagnosis circuitry, the redundancy is completely transparent, and is therefore

not displayed in Fig. 6.25.

6.2.2.4 "addrDec" (Fig. 6.26)

This cell implements a typical address decoder.

6.2.2.5 "ceIlArray" (Fig. 6.27)

As before, the cell array uses non-standard bit lines: one for writing, and one

for reading. In reality, a pair of complementary bit ,Iines would be used for both

reading and writing. Note that the area occupiel'by both arrangements is the

same, because both use 2 lines per column.
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•

Fig. 6.27 "ceIiArray"
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~ writein
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l,....... . ...... ................

.................................................................................................

Fig. 6.28 "singleColumn"

The signal WRITEIN is a non-standard item required by the CAD software.

6.2.2.6 "singleColumn" (Fig. 6.28)

•
6.2.2.7 "driversSenseAmps" (Fig. 6.29)

The figure shows a readJwrite circuit equipped with flip-flops.
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Fig. 6.29 "driversSenseAmps"

6.2.2.8 "dataBuff" (Fig. 6.30)

This cell shows a bi-directional data buffer that has been augmented with

circuits to allow for seriai input and output, and parallel writing and parallel reading

of an entire B-bit word.

6.2.2.9 "buffe," (Fig. 6.31)

This cell is a flip-flop with multiplexed inputs and dual outputs, as required by

the cell "dataBuff" .
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•
Fig, 6.30 "data Buff"
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Fig. 6.31 "buffer"

6.3 Design costs and tradeoffs

6.3.1 Area Overhead

Area overheads were estimated, based on the circuits described in this chapter,

for a BISD-with-self-rcpair version of a Static RAM with a single metal layer and

a single polysilicon layer, using 6-transistor CMûS cells. Array sizes from 2k

(2048 bits) upto 32M (33554432 bits) were used with several different internai

arrangements for each size - the constraint W B=(one of the array sizes) was

imposed, but otherwise the values of W, B, M, and other parameters, were varied

widely. The average overheads are tabulated in Table 6.4, and graphed in Figure

6.32. By inspection of the graph, the overhead appears to be inversely proportional

to the size. A statistical power regression analysis shows that the relationship is

actually

overhead = 221.27 x size -0.95832

with a correlation coefficient of r = -0.99956, which is very close to the ideal

value of -1.

Additional estimates of area overhead were calculated, based on a 4-transistor

CMûS Static RAM with two metal layers and two polysilicon layers, in order to
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Fig. 6.32 Average area overheads for 6-T arrays

•

properly compare the BISD-with-self-repair overheads with pure-BIST overheads,

using overhead values reported in [Dekker et al. 89J. Dekker et al. used such a 4·T

SRAM in their implementation. The overheads are compared in Table 6.5, and

it can be seen that the BISD scheme requires approximately 6 to 8 times more

surface area than the march-test-based pure BIST scheme.

135



•

•

Array 5ize Dverhead

2k 49.5%

4k 36.9%

8k 25.5%

16k 15.1%

32k 8.38%

64k 4.43%

128k 2.28%

256k 1.16%

512k 0.586%

"JI 0.294%

2M 0.148ï.

4M 0.0741%

8M 0.0371%

16M 0.0194%

32M 0.0103%
'---- .-

Table 6.4 BI5D overhead for 6-T arrays

Array 5ize BI5D overhead Dekker's overhead

2k 79.2% 15%

4k 59.0% 10%

8k 40.8% 5%

16k 24.2% 3%

32k 13.4% 2'/,

64k 7.09% 1%

Table 6.5 Overhead comparison for 4· T arrays

6.3.2 Repair Choices

When a fault is located, we ne!,d to store the location in a fault map, and

only when the fault map is complete, do we ajlply a repair algorithm. which seeks

to assign the spare rows and spare columns in as nearly an optimal allocation as
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possible. A fault-free module of the memory cell array is used to store a complete

fault map of another module which is being diagnosed. There is a high probability

there will always be at least one fault-free module available to store the fault

maps of other modules, and this implies that no extra area overhead within the

D&R-Unit is needed to store fault maps.

There are two possible ways to apply self-repair algorithms: (1) by

programming an appropriate heuristic algorithm, such as branch-and-bound or

best-first-search, into the ROM of the D&R-Unit, or (2) by using an electronic

neural network implementation of a gradient-descent algorithm [Mazumder and

Vih 90J. The neural network technique has the advantage of significantly higher

percentages of successful repair allocations, in comparison with the programmed

heuristic technique (i.e. the neural network will find repair-plans in most borderline

cases where the programmed heuristic technique gives-up and declares the memory

to be unrepairable). However, the neural network technique may require more area

overhead than reported in Table 6.4. In addition, the implementation of a neural

network may require significant changes to the fabrication processes being used.

The effect on fabrication yield of the BISD circuit and possible self-repair

techniques will not be calculated here; instead, the reader is referred to the

literature [Mazumder and Vih 90), [Stapper et al. 80). [Stapper 86).

6.3.3 Hierarchical Redundancy

A hierarchical self-diagnosis scheme is practical, when global redundancy is

used for repair. Use the self-diagnosis with external repair scheme, but send ail of

the diagnosis information to another chip in the computer. This other chip will send

repair orders to the globally redundant spare lines controlled by soft fuses that are

really Shadow flip-flops (i.e. pach flip-flop is paired with an EEPROM cell). Global

redundancy provides a better yield improvement, and can be laid out with shorter

wires than local redundancy, but cannot provide "free" access to the memory cell
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array. In the case of very fast SRAMs. global redundancy is impossible because

of the requirement for "hierarchical word decoding" (HWD) which reduces power

consumption and significantly improves access time [Murakami et al. 911. In the

currently popular "divided word line" architecture. the global word decoder drives

the global word li ne. The local word decoder placed in every "block" receives the

global word li ne and some block selection signais. and selects one local word line.

As SRAMs become larger, they will be divided into more "blocks" to keep the

array current small. This trend results in a larger stray capacitance on the global

word li ne since the number of local word decoders also increases. Therefore, the

charging/discharging current in the word-decoding circuit significantly increases

even in the "divided word line" architecture.

The "hierarchical word decoding" architecture is proposed as a further method

to reduce the power consumption and increase the speed of the word-decoding

circuitry. In the "hierarchical word decoding" architecture. the word-decoding

circuit is divided into (at least) threestages, which consist of a global word decoder,

a subglobal word decoder, and a local word decoder. The subglobal word decoders

are inserted as buffering stages to efficiently distribute the stray capacitance on the

word-decoding path. In this type of architecture there can be more stages along the

word-decoding path, with the additional buffering stages named subsubglobal word

decoders and/or superlocal word decoders. The "divided word line" architecture

is obviously equivalent to a two-stage "hierarchical word decoding" architecture.

For every memory capacity there exists an optimum number of stages, which can

be calculated by determining the total capacitance en the decoding path. For

example, for CMDS SRAMs operating on 3-V power supplies, we get the following

results: for 256 Kb and smaller SRAMs, two stages are optimal, for 1Mb SRAMs

both two and three stages are equally good, for 4Mb and 16Mb SRAMs three

stages are optimal, for 64Mb SRAMs both three and four stages are equally good,

and for 256Mb and larger SRAMs four stages are optimal.
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Fig. 6.33 "Two Redundancy Techniques Compared"

6.3.4 Segmentation of Spares

One of the majorconcerns with using spare columns to repair faulty ceIls is the
"

large number of goodcells that are wasted. The paper [Mori et al. 91) describes

a 64Mb DRAM with a "cascaded redundancy" scheme (see Fig. 6.33). Each
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Fig. 6.34 "Cascaded Redundancy"

•

"block" contains N column decoders, N+l column select lines in the "A-half

block" with a first set of switches, and N +2 column select lines in the "B-half

block" with a second set of switches (see Fig. 6.34). The first set of switches,

which are controlled by fuse links, selects paths between the column decoders and

the "A-half-block". Similarly, the second set of switches selects paths between

the "A-half-block" and the "B·half·block". Each of the switches is essentially a
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• 1·of·2 multiplexer, with the control signal coming from a line seeded with fuses .

If there are no faulty lines to avoid. then the entire controlline is at VDD' and ail

of the switches connect their input lines with their upper output lines. If there is a

faulty line to avoid, then one of the fuses is blown. causing a break in the control

line; the portion of the controlline above the blown fuse is still at VDD. and thus

the "upper" switches still connect their input lines with their upper output lines.

but the portion of the control li ne below the blown fuse is now at ground. and

thus the "Iower" switches now connect their input lines with their lower output

lines. Each half·block is only able to tolerate one faulty column li ne, even though

the "B·half-block" contains two extra column lines-because one of these extra

column Iines is rendered inaccessible by the single spare column li ne in the "A·half

block". A higher replacement efficiency results from this "cascaded redundancy"

scheme than from the conventional single spare line per block scheme, since the

replacement of a faulty half-line in each half-block is done independently.

6.3.5 Redundancy Choices

The paper [Ki~~Ja et al. 911 develops a "failure-related yield model" to forecast

the yield of very large DRAM chips. The yield varies depending on the selection of

two design parameters, namely: the number of "blocks" into which the memory cell

array is divided, and the number of spare elements for each "block". The selection

of these design parameters to maximize the yield is strongly dependent on the

"defect density coefficient" determined by the manufacturing process. There are

seven typical failure modes which can be caused by a single physical defect:

1. single memory cell failure

2. single ward li ne failure

3. adjacent word line pair failure

4. single bit line failure• 5. adjacent bit line pair failure
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6. word li ne and bit li ne intersection failure

7. memory "block" fatal failure

Items 1, 2 and 4 require only a single spare line for repair, items 3, 5 and 6

require two spare lines for repair, and item 7 cannot be repaired with spare lines

at ail.

The most significant conclusion from the yield analysis based on the failure

model described above, deals with the selection of the "block" size and the

resultant number of spares per block, when a given constant number of spare bits

is specified. For example, four 256Kb "blocks" with one spare row and one spare

column, have the same number of spare bits as one 1Mb "block" with two spare

rows and two spare columns. Considering only the single memory cell failures, the

one spare row and one spare column redundancy scheme can replace up to 8 faulty

bits per 1Mb array, while the two spare rows and two spare columns redundancy

scheme can replace only 4 faulty bits per 1Mb plane. However, the analysis shows

that the two spare rows and two spare columns redundancy scheme is much more

effective at improving yield because of its much greater flexibility. Hence, for very

large DRAMs, a redundancy scheme with at least two spare rows and at least two

spare columns per "block" provides the greatest yield improvement for a given

amount of spare bits.

ln the context of "soft switchillg" repalr, when the spare lines are spread

throughout the memory (i.e. local redundancy), then the extra area overhead

needed for a complete self-diagnosis circuit is less than when the spare lines are

grouped in only one part of the memory (i.e. global redundancy). Although

the design with global redundancy has a higher area overhead than with local

redundancy, it is able to repair a greater variety of faults because of the greater

inherent flexibility of global over local redundancy. The difference in area

requirements is explained below: Ali the possible versions of repair algorithms need

essentially the same hardware (i.e., some kind of control unit, and a DR-Bus that
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communicates with Programmable Modules), whereas ail the possible versions of

diagnosis algorithms can use a wide variety of extra hardware (i.e., there are many

more hardware-design alternatives for implementing a diagnosis method than for a

repair method). In the case of local redundancy, the repair hardware makes spare

lines spread throughout the RAM accessible, and thus using the same DR-Bus

and Programmable Modules, the non-spare lines spread throughout the RAM are

also easily accessible for diagnosis purposes. In the case of global redundancy, the

repair hardware makes the spare lines placed in only one small part of the RAM

accessible, and therefore significant additions (e.g., increasing the length of the

DR-Bus, and adding more lines to the Bus to cope with a more complex addressing

situation) to the repair hardware are needed before the non-spare lines placed in

the rest of the RAM are accessible for diagnosis purposes.

If we use both spare columns and spare rows, we need extra area to implement

a more complex arrangement of Soft Fuses, and we need a more complex repair

algorithm to make proper use of both types of spare lines. 5ince the optimal

allocation of both types of spare is known to be an NP-complete problem, an

exact or heuristic algorithm for repair will need much temporary memory storage

(e.g., a "home" module) to retain a fault map, which is required for any algorithm

to make a reasonably good allocation of spares. Ali this added complexity may

increase the area overhead to such a degree that any gains obtained by having

fewer spare lines in total (i.e., since there would be spare lines in both directions,

there would be greater flexibility in fault repair and thus fewer spares would be

needed in total) may be outweighed by a repair scheme having more spare lines in

total, but where ail these spare lines are in only onc~irection.

ln the design as depicted in the Figures, the DR-Unit uses a narrow DR-Bus

with one set of Data lines, an Address Mode signal, and other Mode signais. We
:,

could have used a wider Bus with r;~ sets of Data lines (where really oôoiy one

set of lines would carry data, whilet,he,"~her would carry sub-array addresse,s
.,~~

only), no Address Mode sig~;:;i;'~ütwith ail other Mode signais remaining. The

} \\~:: "r
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• narrower DR-Bus design uses less area, but increases the execution times of both

diagnosis and repair algorithms, than would the wider Bus design, Furthermore,

the wider Bus design is more fault tolerant because it does not need a volatile

and potentially faulty flip-flop in every programmable module to record whether

that Programmable Module is currently being accessed by the DR-Unit, since the

sub-array address is continuously available on the wider Bus.
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7 Low-Ievel Aigorithms:

7.1 Low-Ievel notation for writing the algorithms.

Here are the assembly language instructions which are available from the DR

Units. The first set of instructions corresponds to the "diagnosisOnly" design,

which uses the "parallel/serial" style of writing/reading data to/from the memory

cell array. The second set of instructions corresponds to the "withRepair" design,

which uses the "modular" style of writing/reading data to/from the memory cell

array.

"Diagnosis Only" Instruction Set:

Hex-code, Description

08 Pop top stack-value and Increment counter

09 Increment counter

DA Pop top stack-value (not used)

OB Push onto stack

OC Load top stack-value into counter

OD Clear: reset counter, reset stack

• DE Load Goto-value into counter

OF Increment counter (duplicates 09)
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11

12

13

Upstart: reset address counter to 0000

Upcount: increment counter by 1

Downstart: reset address counter to 1111

Downcount: decrement counter by 1

•

18 Read from memory during Uppause (with Seriai 0)

19 Write to memory during Uppause (with Seriai 0)

lA Read from memory during Downpause (with Seriai 0)

lB Write to memory during Downpause (with Seriai 0)

1C Read from memory during Uppause (with Seriai 1)

1D Write to memory during Uppause (with Seriai 1)

lE Read from memory during Downpause (with Seriai 1)

1F Write to memory during Downpause (with Seriai 1)

20 Startup and Clear (in test-mode)

24 No-op (in test-mode)

30 Stop: report failure to repair

31 Stop: report successful repair

38 Startup and Clear (in normal-mode)

3C No-op (in normal-mode)

3E Read from memory (in normal-mode)

3F Write to memory (in normal-mode)

58 Read from memory during Uppause (with Parallel 0000)

59 Write to memory during Uppause (with Parallel 0000)

5A Read from memory during Downpause (with Parallel 0000)

5B Write to memory during Downpause (with Parallel 0000)

5C Read from melTlory during Uppause (with Parallel 1111)
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• 50 Write to memory du ring Uppause (with Parallel 1111)

5E Read from memory during Oownpause (with Parallel 1111)

5F Write to memory during Oownpause (with Parallel 1111)

60 Until Flag(O) is true

61 Until Flag(l) is true

62 Until Flag(2) is true

63 Until Flag(3) is true

64 Until Flag(4) is true

67 Repeat ...

68 If Flag(O) is true

69 If Flag(l) is true

6A If Flag(2) is true

66 If Flag(3) is true

6C If Flag(4) is true

•

6F Return from MACRO

70, 71, 72, 73, 74, 75, 76, 77 GOTO MACRO (split 3 +7 address)
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"With Repair" Instruction Set:

Hex-code. Description

00 Until Flag(O) is true (X + y = 0, X = - Y)

01 Until Flag(l) is true (X = Y)

02 Until Flag(2) is true (overflow)

03 Repeat ...

04 If Flag(O) is true (X + y = 0, X = - Y)

05 If Flag(l) is true (X = Y)

06 If Flag(2) is true (overflow)

07 Return from MACRO

08 Pop top stack-value and Increment counter

09 Increment counter

OA Pop top stack-value (not used)

OB Push onto stack

OC Load top stack-value into counter

OD Clear: reset counter. reset stack. reset ALU registers X and Y

OE Load Goto-value into counter

OF Increment counter (duplicates 09)

10 Upstart: reset address counter to 0000

11 Upcount: increment counter by 1

12 Downstart: reset address counter to 1111

13 Downcount: decrement counter by 1

18 Read from memory during Uppause

19 Write to memory during Uppause

lA Read from memory during Downpause

lB Write to memory during Downpause
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• 20 Startup and C1ear (in test-mode)

21 Enable a selected Module Decoder

22 Program a selected Soft Fuse

24 No-op (in test-mode)

30 Stop: report failure ta repair

31 Stop: report successful repair

38 Startup and C1ear (in normal-mode)

3C No-op (in normal-mode)

3E Read from memory (in normal-mode)

3F Write ta memory (in normal-mode)

40, 41, 42, 43

44, 45, 46, 47

Load X with 0001, 1111, 0101, 1010

Lo~d Y with 0001, 1111, 0101, 1010

48 Send 0000 ta busPort (precedes 19, lB, 21, 22)

49 Send 1111 ta busPort (precedes 19, lB, 21, 22)

4A Send 0101 ta busPort (precedes 19, lB, 21, 22)

4B Send 1010 ta busPort (precedes 19, lB, 21, 22)

50, 51, 52, 53

54, 55, 56, 57

58, 59, 5A, 5B

Load X from register A, B, C, D

Load Y from register A, B, C, D

Send Z ta register A, B, C, D

60 Z = X PLUS Y

61 Z = X AND Y

62 Z = X OR Y

63 Z = X EXOR y

• 64 Z = NOT( X)

65 Z = SHIFT( X ) WITH 0
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• 66 Z = SHIFT( X ) WITH 1

67 Z = REVERSë( X )

6C Feed back Z to X

6D Feedback Z to Y

68 Load X from busPort (follows 18, lA)

69 Load Y from busPor~ (follows 18, lA)

6F Send Z to busPcrt (precedes 19, lB. 21. 22)

70, 71, 72. 73 Load reg. A, B, C. D from busPort (follows 18.1A)

74. 75. 76. 77 Send reg. A, B, C, D to busPort (pre. 19. lB, 21, 22)

78. 79. 7A. 7B. 7C, 70, 7E, 7F GOïO MACRO (split 3 -1- 7 address)

The shifting instructions with hex-codes 65 and 66 refer to a bit-wise right

shifting operation, where the new bit (from the left side) can be either a 0 (hex

code 65) or a 1 (hex-code 66). In combination with two other instructions we can

emulate a bit-wise left-shifting operation, using a sequence of five instructions.

The reverse(x) instruction with hex-code 67. performs a bit-wise reversai - in

other words: the first bit is exchanged with the last, the second is exchanged with

the second-to-Iast. and so on. The feedback z-to-x instruction with hex-code 6C,

simply sends the processed value of x, which is now present in z. back to x for

further processing. The four ways to perform shifting are shown below:

"shift right with a new bit of 0" is l'erfnrmed as follows:

(65) Z =SHIFT( X ) WITH 0

"shift right with a new bit of 1" is performed as follows:

• (66) Z = SHIFT( X ) WITH 1
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• "shift I~ft with a new bit of 0" is performed as follows:

(67) Z = REVER5E( X )

(6C) Feedback Z to X

(65) Z = SHIFT( X ) WITH 0

(6C) Feed back Z to X

(67) Z = REVERSE( X )

"shift left with a new bit of 1" is performed as follows:

(67) Z = REVERSE( X )

(6C) Feedback Z to X

(66) Z = 5HIFT( X ) WITH 1

(6C) Feedback Z .0 X

(67) Z = REVERSE( X )

7.2 Translation From High-Ievel ta Low-Ievel notation

Asample diagnosis algorithm is shown below, and march elements 1 and 2 are

expanded into the "withRepair" assembly language (hex-codes have been omitted).

Samp/e Diagnosis II/gorithm:

march element 1: For i=O to m-l, Wl(i).

march element 2: For i=O to m-l, WO(i), RO(i), Wl(i), Rl(i).

march element 3: For i=O to m-l, WC(i).

march element 4: For i=O to m-l, Wl(i), Rl(i), WO(i), RO(i).

The assembly language version of march elements 1 and 2 are given below.
.. . :;;> - ._-

* Status register: sends signais to BI5T circuits not connected to Local Test

Bus.
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* Interbus Port: specially buffered register used to interface the Local Test

Bus with the Data Path Bus.

* Input X: an input register for the ALU, with built-in shifter.

* Input Y: an input register for the ALU, no shifting ability.

* Output Z: the only output register from the ALU.

* RIO register #1: contains ail zeroes.

* R/O register #2: contains ail ones.

* R/O register #3: contains the maximum row address plus one.

* R/W register #1: keeps track of the current row being accessed.

step 1: For i=O to m-1, W1(i).

1. Send R/O reg #1 to R/W reg #1. (this c1ears R/W reg #1 to ail zeroes)

2. Send via Status reg, signal to initialize the Row decoder's counter to ail

zeroes.

3. Send R/O reg #2 to Interbus Port.

4. Drive the Interbus Port. (this writes ail ones to the current word in the

current memory segment)

5. Send R/W reg #1 to Input Y.

6. Increment Input Y operation.

7. Send Output Z to Input Y.

8. Send R/O reg #3 to Input X.

9. Exclusive OR operation.

10. Send Input Y to R/W reg #1.

11. Send via Status reg, signal to increment Row decoder's counter by one.

12. If non-zero Output Z, goto label 3.
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slep 2: For i=O 10 rn-l, WO(i), RO(i), Wl(i), Rl(i).

1. Send R/O reg #1 to R/W reg #1. (this c1ears R/W reg #1 to ail zeroes)

2. Send via Status reg, signal to initialize the Row decoder's counter to ail

zeroes.

3. Send R/O reg #1 to Interbus Port.

4. Drive the Interbus Port. (this writes ail zeroes to the current word in the

current memory segment)

5. Sense the Interbus Port. (this reads the contents of the current word)

6. Send Interbus Port to Input Y.

7. Send R/O reg #1 to Input X.

8. Exclusive OR operation.

9. If non-zero Output Z, goto "Repair Info Storage" (R/W reg #1).

10. Send R/O reg #2 to Interbus Port.

11. Drive the Interbus Port. (this writes ail ones to the current ward in the

current memory segment)

12. Sense the Interbus Port. (this reads the contents of the current ward)

13. Send Interbus Port ta Input Y.

14. Send R/O reg #2 to Input X.

15. Exclusive OR operation.

16. If non-zero Output Z, goto "Repair tnfo Storage" (R/W reg #1).

17. Send R/W reg #1 ta Input Y.

18. Increment Input Y operation .

19. Send Output Z to Input Y.
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20. Send R/O reg #3 to Input X.

21. Exclusive OR operation.

22. Send Input Y to R/W reg #1.

23. Send via Status reg, signal to increment Row decoder's counter by one.

24. If non-zero Output Z, goto label 3.
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8 Conclusion

This thesis describes the many details of how to design a repairable embedded

RAM with built-in self-diagnosis and self-repair capabilities. Calculated estimates

show that such a design can be implemented with an acceptably small amount

(,f extra area overhead. The design methodology is very flexible, since ail that is

required to change the many different fault types being diagnosed is to reprogram

a ROM. When combined with a "soft switching" built-in self-repair technique, this

self-diagnosis methodology can completely repair an embedded RAM without any

external intervention or assistance.

Furthermore, the diagnosis and repair of several embedded RAMs contained

in the same computer system can be carried out by a single shared DR-Unit. The

only extra circuits that must be replicated in every RAM are: the DR-Bus and

sorne address generators. In cases where the RAM is embedded on a chip with a

general purpose processor, that processor could substitute for the DR-Unit, and

thereby reduce the area overhead quite dramatically. The BI5D scheme can also be

conveniently incorporated into regular system maintenance procedures. The BI5D

methodology also has the original feature of being able to use a fault-free portion

of the RAM-under-test in order to store "fault maps" of other faulty sections of

the memory, as part of the self-repair algorithms.
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8.1 Short Summary

The thesis began in chapter 1 with an introduction to the topic and the

reasons why new results on this topic are needed. It is c1early not cost-efficient

for semiconductor manufacturers to discard chips with only 1 or 2 faulty bits in

their embedded RAMs. Hence, there is a requirement for fault location, but since

embedded RAMs do not allow access from thp. 1/0 pins, the standard testing

procedures for full-chip RAMs cannot be applied here. The resulting problem of

"how to achieve yield improvem~nt for embedded RAMs" is a special instance of

the more general engineering challenge of "how to apply architectural techniques

to solve the manufacturing yield problem."

Chapter 2 described the physical structures commonly used in embedded

RAMs. Chapter 3 c1assified the physical failures that occur wit hin these RAM

circuit structures into formai "fault models." Chapter 1\ providec! a survey of

research related to this thesis. Of particular interest is the formalization, in section

4.2, of a result pertaining to sequentialsense amplifier behavior.

Chapter 5 starts with a preview of test and diagnosis algorithms. Section 5.3

explains original rules for the transformation of single-bit march tests into multi

bit march tests. This is followed, in section 5.4, by a discussion of the hardware

implications of the three types of algorithms that must be built-in, namely:

(1) Test algorithms, which detect faults,

(2) Diagnosis algorithms, which locate faults, and

(3) Repair algorithms, which replace faults.

The limited, built-in data-access to the embedded RAM for diagnostic purposes

can take only one offourforms, namely: (a) purely seriai access, (b) purely parallel

access, (c) hybrid seriai and parallel acces~,' and (d) modular access. Architectures

(c) and (d) are the most powerful, and they are used in the two designs presented

in chapter 6. Section 5.5 summarizes some previously published results about
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necessary and sufficient algorithmic conditions to detect (but not locate) faults

that are linked with one another.

Section 5.6 contains ail of the original al&orithms proposed in this thesis.

This section starts with new notation that I~xtends the march notation to include

algorithms with two levels of FOR-Ioops, since such algorithms are essential for

the location of coupling faults and stuck-open faults in address decoders. This

section also shows new algorithms using the "seriai shifting notation" introduced

in section 5.4. This chapter concludes with brief discussions of repair algorithms,

and with the global control algorithm that allow5 the circuits in chapter 6 to apply

the algorithms of chapter 5.

Section 6.1 is the sequel to section 5.4, with its circuit-Ievel description of the

various architectural options (i.e. SASB, SAMB, MASB, and MAMB) available

to designers, and a summary r 1arious built-in address generator circuits (i.e.

up/down binary counter, bidirectional and all-zeroes-augmented linear feedback

shift register, Hamming-unit-distance and orthogonal-address EXORs-and-shift

register-array) to choose from.

Section 6.2 describes the operation of, and includes circuit schematics of,

the two new designs: subsection 6.2.1 shows the "built-in self-diagnosis with

self-repair" design that uses "I1i!)dular data-access", and subsection 6.2.2 shows

the "built-in self-diagnosis without self-repair" design that uses "hybrid seriai and

parallel data-access/'

Section 6.3 discusses the various costs associated with the design (such as the

area overhead estimates), and the tradeoffs considered dur:ng the design process

(such as the hierarchical architecture and local/global placement of redundant

Iines, and the possible use of neural networks to implement the repair algorithms).

Chapter 7 lists the assembly languages of both designs described in section

6.2. This is followed by a sam pie of how to translate the high-Ievel algorithms

from chapter 5 into these low-Ievel instructions, which are stored in the ROM

mentionned in chapter 6.
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• 8.2 Significance of Original Results

The two most significant ch~lIenges that were resolved by the new results

reported in this thesis are:

(1) the challenge of developing original algorithms that can locate a wide

variety of fault types, and that are suitable for implementation in either

of the two most powerful built-in self-diagnosis ~rchitectures: namely

(a) the hybrid seriai and parallel data-accessing architecture, and (b)

the modular data-accessing architecture. Chapter 5 describes numerous

original algorithms, and most of these algorithms are expressed using both

a graphical representation (that makes them easy to understand) and using

a newly-developed compact mathematical notation (which displays the

inherent symmetry).

(2) the challenge of designing performance-optimized and area-optimized

hardware which can execute the algorithms from chapter 5. Chapter 6

actually describes two distinct novel hardware designs: one for each of the

two SI5D architectures mentionned above. Given current trends in the

reduction of feature sizes achicved by semiconductor manufacturers, it is

reasonable to predict that such SI5D hardware designs will be commercially

implemented before the end of this decade.

Although this thesis has focussed upon RAMs that are embedded at the chip

level, the algorithms and hardware designs can also be applied to memories that

are embedded at the board-Ievel, or even at the system-Ievel.

8.3 Future Work

ln order to justify the theoretical estimates of area overhead, and to validate

the claim that the speed performance penalty of the proposed hardware designs is

negligible, the SI5D circuits should be implemented in a semiconductor RAM chip.
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Although the SISO circuits were designed using professional quality CAO software,

and were simulated at the logical-functionality and transistor-delay-timing levels

using a state-of-the-art proprietary simulator, an implementation in silicon could

provide additional opportunities for evaluating the circuits, and thereby lead to

improvements and insights which a simulator cannot give.

As new fault models are proposed to expia in the behavior of physica l defects

in emerging fabrication technologies, new algorithms will obviously be required.

It is not currently known how to systematically enumerate, in a practical fashion.

ail possible test and diagnosis algorithms for RA Ms. However. the new compact

notations introduced in chapter 5 (such as: the Galloping FOR-Ioop, the Hamming

FOR·loop. the Seriai read/write shifting operation with several variations, the rules

for transforming single-bit march tests to multi-bit march tests, etc.) are built

on top of the well-established march-element notation. and they give us a new

overview of the symmetries and shared structures among the algorithms. This

suggests the possibility that there may exist a general classification scheme for ail

practical test and diagnosis algorithms (including future algorithms which apply

to as-yet-unknown fault models). To date. researchers in the field of memory

testing have been content to describe new algorithms in any format. so long as the

algorithms could be applied in a practical fashion. Perhaps a formai, mathematical

notation - that forbids the use of pseudo-code and tabular-listings - could lead

to new insights about memory testing.
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