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Abstract

This paper presents a method for selecting materials, cross-section shapes, and combinations thereof. The novelty of the method is the
definition of shape transformers. These parameters are dimensionless measures of the geometric quantities of a cross-section. They
describe the shape properties regardless of size, and are invariant to any scaling imposed on the size of a beam cross-section in bending.
Shape transformers are valuable to model the equations of mechanics and to develop selection charts for optimum design. The rationale
of the approach is that the fundamental equations of continuum mechanics can be expressed by a product of four factors: the functional
requirements, the material properties, the shape transformers, and the geometric quantities of a rectangle as defined by its cross-section
size. This permits general expressions of performance indices to be derived for any scaling transformation. Indices for selecting materials
and cross-sectional shapes that minimize the mass of beams are given for stiffness design. The last part of the paper illustrates how shape
transformers facilitate a graphical exploration of performance data. The whole range of cross-sectional shapes can be visualized at a
glance for each material. Lines of iso-performance enable efficiency comparison of materials and/or shapes for a given cross-section scal-
ing. Shape transformers assist design choices and give insight into optimum selection.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Making products that are cheap and have high technical
performance is a common demand of the industrial mar-
ket. The task can be challenging for engineers because they
have to explore several solutions in a limited time and
avoid choices that result in a poor product. The burden
of the struggle can be alleviated if they adopt a strategy
that assists them in making good decisions. The method
should be effective in providing a large number of alterna-
tives, a prompt ranking of their performance, and a guide
for the selection of the best solution.

In the design of light components, materials and cross-
section shapes govern structural efficiency. They are crucial
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variables that have a large impact on performance. For this
reason, it is not surprising that they were the focus of
extensive research in the past [1–5]. Minimum weight crite-
ria were developed to compare the lightweight potential of
materials and cross-sectional shapes. The criteria were
often used in combination with charts that plot how the
efficiency of a solution changes with the design variables
[1–3,5]. The charts offer a valuable means for making early
design choices. Ashby [5,6], for example, has demonstrated
that charts and indices of selection can be successfully com-
bined to support the selection of the best material for an
application, and also to design new materials [7].

This paper presents a novel strategy to support the selec-
tion of materials, cross-sectional shapes and their co-selec-
tion. The framework of the method is underpinned by the
concept of shape transformers [8,9]. Shape transformers
are dimensionless parameters defined to measure geometric
quantities of a cross-section regardless of size. In bending
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Table 1
Area, A, and second moment of area about xx, Ixx, of common cross-
sections

Cross-section A Ixx

3
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stiffness design, shape transformers describe shape proper-
ties that are invariant to any scaling of a cross-section.
Their definition generally permits to decouple the shape
properties from the cross-section size in an equation of
mechanics. The latter can be expressed by a product of four
terms: the design specifications, the material attributes, the
shape transformers, and the geometric quantities of the
rectangular envelope, whose dimensions are the cross-sec-
tion sizes. The second part of the paper shows an applica-
tion of the rationale for deriving performance indices of
beams in stiffness design. The indices allow an independent
choice of materials and shapes for any scaling transforma-
tion. The final part of the paper illustrates that shape trans-
formers enable a simultaneous plot of performance for
different combinations of materials and shape properties.
These charts facilitate the comparison among various
design options, and provide insight into the variables that
govern performance.

2. The basics of the methodology

This section presents the fundamentals of the methodol-
ogy and is divided in four parts. The first introduces a con-
cept for describing the transversal geometry of an element
in terms of shape and envelope. Then, the concept is used
to define classes of shapes and scalar operators of design:
the shape transformers and the envelope multiplicators.
This is followed by the rationale of the method.

2.1. Shape and envelope of a cross-section

Engineering design often requires decisions about the
geometry of structural components. When a material is
shaped into a structural element, its geometry can be
described by a variety of geometric quantities, such as the
area and perimeter of its cross-section, as well as its
volume.

The idea of measuring the geometry of a cross-section
with two separate entities is now introduced. The first
entity is related to the cross-section sizes defining a rectan-
gular envelope, D. The other describes the shape, S, of the
figure enclosed in the envelope, D. Fig. 1 illustrates S and D

for three generic cross-sections. The shape, S, changes in all
Material,
M

Material,
M

Shape, S

Envelope, D

Material,
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Fig. 1. The material, M, the shape, S, and the envelope, D, of common
cross-sections.
examples, while the envelope, D, is the same for the cross-
sections shown in Figs. 1(a) and (b).

A cross-section is therefore conceived as a material, M,
moulded into a shape, S, that fits within a rectangular
envelope, D. The design parameters S and D are defined
in the following sections.

2.2. Shape transformers defining shape classes

Specifying shape properties separable from the proper-
ties of the envelope leads to the idea of defining S as invari-
ant to D. This concept is formulated in terms of shape

transformers, S. Shape transformers are measures of the
geometric quantities of an object. They can be defined for
the area, the volume, and others quantities of an object,
regardless of size [8]. S is governed by the shape of the
object but does not vary with size changes.

Definition: If G is the measure of a geometric quantity,
and GD measures the geometric quantity of its envelope,
then a shape transformer is defined as:

S ¼ G
GD

ð1Þ

Consider, for example, two geometric measures of a
cross-section, such as the area, A, and the second moment
of area about the bending axis, I. Table 1 lists A and I for
some common cross-sections symmetric about vertical and
horizontal envelope mid-planes. If AD and ID are the
respective quantities of the envelope, then applying Eq.
(1) gives the shape transformers for the area, wA, and for
the second moment of area, wI:

wA ¼ A
AD

wI ¼ I
ID

(
ð2Þ

Shape transformers have been formulated to specify
classes of shapes similar to material classification. Rectan-
gles, ellipses, and diamonds, for example, define different
shape classes [7,8] as metals, ceramics and composites
B

x   x H

BH BH
12

H

B B

h b/2h b

(BH � bh) 1
12 ðBH3 � bh3Þ

H

B

p
4 BH p

64 BH3

H hb

B

p
4 ðBH � bhÞ p

64 ðBH3 � bh3Þ



Table 2
Shape transformers for the area and second moment of area of cross-sections with c = b/B and d = h/H

Cross-section wA = A/AD wA range wI = I/ID wI range k = wI/wA k range

1 No range 1 No range 1 No range

1 � cd 0–1 1 � cd3 for c 6¼ d 6¼ 1 0–1 1�cd3

1�cd 1–3

1 � d2 0–1 2wA � w2
A 0–1 2 � wA 1–2

1 � d 0–1 w3
A � 3w2

A þ 3wA 0–1 w2
A � 3wA þ 3 1–3

1 � c 0–1 wA 0–1 1 No range

1 � c(1 � d) 0–1 1 � c(1 � d3) for c 6¼ d 6¼ 1 0–1 1�cð1�d3Þ
1�cð1�dÞ 0–1

w3
A for c ¼ 1 w2

A for c ¼ 1

p
4 No range 3p

16 No range 3
4 No range

p
4 ð1� cdÞ 0–p/4 3p

16 ð1� cd3Þ 0–3p/16 3
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Fig. 2. Examples of scaling a section A. For horizontal (ho) scaling v = 1,
for proportional (pr) scaling v = u, for vertical (ve) scaling u = 1.
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describe classes of materials. Each shape class contains a
solid cross-section and all the hollow cross-sections derived
by the solid one. This means that a hollow cross-section
belongs to a particular class only if the shape of the
removed internal material is the same of that of its solid
cross-section. For example, a hollow section falls into the
class of the ellipses if the removed material has an elliptical
shape; while a hollow rectangular cross-section is included
in the rectangles class because the removed internal layer is
a rectangle. Table 2 reports the shape transformers for the
ellipses and rectangles classes. The main dimensions of the
cross-sections, B and H, describe the envelope, D. Since S

are defined regardless of size, circular and square cross-sec-
tions fit into the classes of the ellipses and rectangles,
respectively.

The special case where the shape completely fills the
envelope is a rectangle or square section, where G = GD

and S is unity, such that:

A ¼ AD ! wA ¼ 1

I ¼ ID ! wI ¼ 1

�
For any other shape, S is less than one (Table 2). Solid

cross-sections, such as ellipses, hexagons, polygonal fig-
ures, and any other shapes, have definite S. Hollow shapes
are derived by removing material layer from their solid
shapes and, therefore, S ranges with the location of the
material within the envelope. Domains of the shape trans-
formers are between zero, i.e. empty envelope, and the val-
ues of the respective solid section. These are upper limit,
representing cross-sections, where the material completely
fills the solid shapes. When these transformers (Table 2)
are used to characterize the efficiency of cross-sections,
then the ranking of a wide range of shapes can be visual-
ized in a single design chart for different shape classes. This
will be shown in Section 4.

2.3. Envelope multiplicators

While S is fundamental for comparing shape properties
among cross-sections, differences in cross-section sizes
(Figs. 1(b) and (c)) can be assessed in terms of envelope

multiplicators. These parameters describe size changes
between cross-sections, i.e. they express the relative scaling
of two envelopes.

To deal with the relative scaling of cross-sections, we
chose a reference cross-section: a rectangle. This is
described by width, Bo, height, Ho, geometric quantities,
Go, such as Ao for area and Io for second moment of area,
and shape transformers wA = wI = 1 because Go = GD.

Now consider a generic cross-section with dimensions B

and H. The changes in sizes relative to the reference can be
conveniently described in bending stiffness design by the
following multiplicators, u and v:

u ¼ B
Bo
¼ b

bo

v ¼ H
Ho
¼ h

ho

(
ð3Þ
where b and bo, h and ho are the dimensions of the internal
layer for hollow or open cross-sections (Table 2).

Three examples of scaling an elliptical cross-section are
shown in Fig. 2. While S is invariant to scaling transforma-
tions, u and v assume different values. In bending stiffness
design, there are three directions of scaling where u and/
or v have special values: v = 1 for horizontal, u = 1 for ver-
tical, and u = v for proportional scaling. Reasons for
imposing a scaling to a cross-section in certain directions
include geometric constraints, size and shape availability,
and type of applied loading [8,10,11].

2.4. The fundamental rationale

Defining shape properties that are invariant to scaling
can be advantageous with writing the equations of contin-
uous mechanics, such as those describing failure mecha-
nisms. An equation of mechanics, E.M., can often be
expressed in terms of material properties, M, geometry,
G, and problem specifications, F, in the form:

E:M : ¼ F �M � G ð4Þ
If the shape transformer definition (1) is rearranged and

used to substitute G in Eq. (4), then S and GD can be
decoupled and the E.M. can be written as:

E:M : ¼ F �M � S � GD ð5Þ
where F groups the design specifications; M are the mate-
rial properties, such as the density, q, and the Young’s
Modulus, E; S are the shape transformers of the cross-sec-
tion, such as wA and wI ; GD are the geometric quantities of
the envelope, D, that are functions of the cross-section
sizes, such as AD and ID.

Eq. (5) represents the underlying principle of the shape
transformers method. An equation of mechanics can be
expressed by a product of F, M, S, and D [8]. As will be
shown in Section 3, this feature is valuable in gaining
insight about the role that the variables M, S, and D play
in a failure mechanism and in characterizing the
performance.

The rationale of the shape transformers can be applied
to a number of design cases. As an example, the following
section presents performance indices for the design of
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beams, while Section 4 illustrates the efficacy of the ratio-
nale with selection charts.

3. Lightweight design of stiff beams in bending

3.1. Modelling with the shape transformers

This section considers the design of light weight beams
that must not deflect more than d under a load P

(Fig. 3). In this scenario, the stiffness requirement of the
beam is P/d and its mass is to be as low as possible. The
equations of stiffness and mass are those relevant here.

Stiffness. The stiffness of a beam of given length, L, and
boundary conditions, c1, is described by the equation:

k ¼ c1

L3
EI ð6Þ

where I is the second moment of area and E is the Young’s
Modulus.

Eq. (6) is written in the classic form as in (4). If the shape
Transformer wI is rearranged to substitute I in Eq. (6), the
beam stiffness takes the form of Eq. (5):

k ¼ c1

L3
� E � wI �

BH 3

12
ð7Þ

Mass. Similarly, if the shape transformer wA is rear-
ranged to substitute A in the mass expression m = qAL,
the latter takes the form of Eq. (5) as well:

m ¼ L� q� wA � BH ð8Þ
Now rearranging expressions (7) and (8) so that the

design variables are isolated to the right-hand side of the
equations gives:

m ¼ q� wA � AD ð9Þ
F 0 ¼ E � wI � ID ð10Þ

where m is the mass per unit length of the beam and
F 0 = kL3/c1 groups the design specifications.

This rearrangement is helpful in visualizing the variables
and the performance of a cross-section into design charts.
This will be illustrated in Section 4.

3.2. Indices of selection

The methodology is now applied to derive indices that
maximize the performance of beams in two design scenarios.
P

δ

L

B

H

Fig. 3. Simply-supported beam under a central load P.
The first case (Section 3.2.1) examines beams of equal sizes
such that the envelope is constrained in both width and
height. The second case (Section 3.2.2) examines the condi-
tion where the design allows the cross-sections to be scaled.

3.2.1. Performance index for non-scaled cross-sections
When cross-sections have the same sizes, u = v = 1, i.e.

there is no relative scaling. The geometric quantities, GD,
of the envelope do not vary and the variables are M and
S. We derive a performance index to select the beam that
best minimizes mass. The higher the performance index,
the lighter the cross-section.

Consider now the ratio of the functional requirement,
expression (10), to the objective function, expression (9):

F 0

m
¼ E

q
wI

wA

ID

AD
ð11Þ

If the constants are grouped into the design requirement
F00 = PL3AD/dc1ID and expression (11) is rearranged to
yield the inverse of mass, 1/m, then:

1

m
¼ 1

F 00|{z}
const

E
q

wI

wA|ffl{zffl}
var

ð12Þ

Expression (12) can be used to find performance indices
for three types of selection, as will be demonstrated below.

M and S co-selection. Since F00 collects the specifications
of the design, and M and S are the variables, the selection
index, p, which governs the performance is a combination
of the following properties:

p ¼ E
q

wI

wA

ð13Þ

The optimum cross-section will have a combination of
material attributes and shape transformers that best maxi-
mize the performance, p.

M selection. If the design requires only the choice of the
material because the shape, S, is already prescribed, then
the index for material selection, pm, is

pm ¼
E
q

ð14Þ

S selection. If M is given, shape selection is ruled by the
index for shape selection, ps:

ps ¼
wI

wA

ð15Þ

Expression (15) has been recently defined as the envelope

efficiency parameter, k [8,9]. Expressions, as well as ranges
of k, have been formulated for different shape classes, as
reported in Table 2. Note that these ranges are theoretical
because there are manufacturing constraints and local
instability that limit the shaping of a material into a thin
wall. These empirical limits have been examined for practi-
cal steel cross-sections [8,9]. Failure due to shear is also an
issue to be considered. More details on the meaning of k
will be given in Section 4 with selection charts.
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3.2.2. Performance index for scaled cross-sections

In contrast to the previous section, the selection of
beams having cross-sections of various sizes is now consid-
ered. Allowing envelope variation implies that the candi-
date cross-sections are relatively scaled. Examples of
scaling transformations are shown in Fig. 2. Cross-section
A can be scaled in either a horizontal (ho), vertical (ve), or
proportional (pr) direction. In all other cases, the scaling is
arbitrary since u 6¼ v 6¼ 1.

Expression (13), p = kE/q, is not generally appropriate
when the beams are relatively scaled. Performance indices
for different scaling conditions are given here.

3.2.2.1. Selection for arbitrary scaling. M and S co-selection.
The general solution of the performance index, �p, for an
arbitrary scaling of the cross-section in bending stiffness
design [8,10] is

�p ¼ ðEwIÞ
q

qwA

ð16Þ

where q = lnuv/lnuv3 is a scaling function of the envelope
multiplicators, u and v. The derivation of �p is not reported
here due to space constraint. The reader is referred to
[8,10].

M selection. If the material is the design variable for
arbitrarily scaled cross-sections that have a given shape,
S, then the index for material selection, �pm, [8,11] is

�pm ¼
Eq

q
ð17Þ

S selection. If M is prescribed, shape selection for scaled
cross-sections is ruled by the index for shape selection, �ps

[8,10]:

�ps ¼
wq

I

wA

ð18Þ

The indices given by expressions (16)–(18) permit the
selection of cross-sections that can be scaled in any direc-
tion, including an inclined angle to the horizontal [8].

3.2.2.2. Selection for prescribed scaling. When the scaling
transformation is decided a priori or imposed by the
design, such as with tightly constrained structures, the
exponent q becomes known and the indices are solely func-
tions of M and/or S. The effect of an early setting of scaling
on the performance is shown in Table 3, where the indices
are given for horizontal, vertical, and proportional scaling.
Table 3
Performance indices for three scaling transformations

Scaling Material
selection

Shape
selection

Material and
shape selection

Horizontal, v = 1 E
q

wI
wA

E
q k

Vertical, u = 1 E1=3

q
w1=3

I
wA

ðEwI Þ
1=3

qwA

Proportional, u = v E1=2

q
w1=2

I
wA

ðEwI Þ1=2

qwA
Results in Table 3 have been derived using expressions
(16)–(18). When inserted in the expression q = lnuv/lnuv3,
horizontal scaling yields q = 1, vertical scaling yields
q = 1/3, and proportional scaling yields q = 1/2. These
indices are now used for graphical selection purposes.

4. Shape transformers with selection charts

Performance indices for material selection (first column
of Table 3) have been successfully applied with material
charts by Ashby [5–7]. This section presents a graphical
approach to visualize how shape transformers can improve
the selection of materials and shapes.

4.1. Key reading of the selection charts

Using the shape transformers, a selection chart displays
one or a combination of properties of the objective func-
tion, q · wA · AD (expression (9)), versus one or a combi-
nation of properties of the design requirements,
E · wI · ID (expression (10)). In the design of a stiff light
beam, the properties of mass that are variable are reported
on the abscissa, while the selectable attributes that describe
the functional requirements are reported on the ordinate.
This means that the location of a cross-section C on a chart
is identified by a point C with co-ordinates:

C q� wA � AD|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m

;E � wI � ID|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
F 0

0
B@

1
CA ð19Þ

The following examines the graphical selection of the
cross-section variables by using the indices given in Section
3.2.1 for non-scaled cross-sections and Section 3.2.2 for
scaled cross-sections.

4.2. Shape selection charts for non-scaled cross-sections

This design task requires the choice of the best shape for
a cross-section with prescribed material and sizes. The
appropriate index is given by expression (15), i.e. ps = wI/
wA. Since M and D are constant, the position of a cross-sec-
tion on a chart is given by the co-ordinates:

C
m

q� AD
¼ wA;

F 0

E � ID
¼ wI

� 	
ð20Þ

The shape transformers wA and wI, given in Table 2, are
used to plot the curves in Fig. 4 for rectangles and ellipses.
This chart, called the envelope efficiency map, has been
recently developed for a different shape classes [8,9].

A description of the chart is now briefed. All the cross-
sectional shapes that partially fill the envelope, B · H,
occupy an area bordered by limit curves 1v and 2v. The
curves represent performance of the rectangles shape class
when the material fraction varies within an envelope of any
size. Outside this area, no cross-sectional shape exists.
Limit curve 1v represents conditions where the material



Fig. 5. Selection chart for cross-sections scaled horizontally (q = 1),
vertically (q = 1/3), and proportionally (q = 1/2). Logarithmic scale.
Legend: Light grey for efficient region, dark grey for inefficient region.
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Fig. 4. Selection chart for shapes not scaled. Legend: light grey for
efficient region, dark grey for inefficient region.
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layer placed on the upper and lower surfaces of the cross-
section is scaled vertically. Limit curve 2v describes an idea-
lised H cross-section where the material layer is placed in
the middle and is vertically scaled. Curve 1p illustrates a
hollow beam where the material on the outer surfaces is
proportionally scaled. Idealised H cross-sections with
horizontally scaled layers are represented by curve 1h.
Cross-sections with material away from the neutral axis
are enclosed in an efficient region (light grey) bordered by
limit curves 1v and 1h. In this region 1 < ps < 3. Cross-sec-
tional shapes with material close to the neutral axis lie in an
inefficient region (dark grey) delimited by curves 1h and 2v
where 0 < ps < 1. Similar to curves 1v, 2v and 1p plotted for
rectangles, curves with equivalent meanings are plotted in
Fig. 4 for hollow ellipses.

Fig. 4 shows that cross-sections satisfying the design
requirements, F 0/(E · ID), lie on a horizontal line. The per-
formance, ps = wI/wA = k, is visualized on the chart as the
slope of the line between the origin and the co-ordinates of
a cross-section. The greater the slope, the lighter the cross-
section. The I section C3, for example, is more efficient than
those represented by C1 and C2.

4.3. Shape selection charts for scaled cross-sections

When the design choice is among scaled cross-sections
with prescribed material, then the performance index is
given by Eq. (16), which rearranged in a logarithmic form
is written as:

log wI ¼
1

q
log wA þ

1

q
log �ps ð21Þ

Eq. (21) is a line plotted in a logarithmic chart (logwA,
logwI), where the gradient, 1/q, is governed by the scaling
transformation, and the y-intercept, 1=q log �ps, describes
the level of performance. Fig. 5 is the equivalent of Fig. 4
but displayed on a logarithmic scale. Thus, Eq. (21) can
be used to plot parallel lines of iso-performance. For a
given scaling, the higher the y-intercept, 1=q log �ps, the
lighter the cross-section.

An iso-performance line permits the comparison of per-
formance for different shapes subjected to a given scaling,
i.e. 1/q = constant. Examples of iso-performance lines are
shown in Fig. 5. For horizontal scaling, the selection line
is q = 1, while for proportional scaling, the selection line
is q = 1/2. The line representing q = 1/3 guides the selection
among vertically scaled sections. For instance, consider a
height constraint that imposes a vertical scaling on an ellip-
tical and a rectangular cross-section. If the ellipse is a first
trial shape, then the rectangle lies above the iso-perfor-
mance line q = 1 and thus results in being lighter. In con-
trast, a vertical scaling (q = 1/3) gives opposite results.
However, a lighter lightweight potential can be obtained
with hollow rectangles lying above the guideline q = 1/3.

4.4. Co-selection of material and shape for non-scaled cross-

sections

When the design prescribes that the envelope does not
vary, then the only variables are M and S. The perfor-
mance is governed by the product of material and shape
properties, p = kE/q. GD is constant and the co-ordinates
locating a cross-section on a chart are:

C
m

GD
¼ M � S;

F 0

GD
¼ M � S

� 	
ð22Þ

Fig. 6 plots the shape transformers (Table 2) for steel
(q = 7.8 Mg/m3, E = 200 GPa) and carbon fibre reinforced
plastic (CFRP) (q = 1.6 Mg/m3, E = 160 GPa) on a chart
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Fig. 6. Co-selection of shape and material for cross-sections not scaled.
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(qwA,EwI). It is found that for each material there are
regions similar to those shown in Fig. 4. This means that
CFRP and steel cannot be shaped into cross-sections
whose properties lie outside the respective boundaries 1v
and 2v. Although curves 1p and 1h can be plotted to give
a broader spectrum of the shapes of a class, they have been
omitted in Fig. 6 to simplify the reading.

Now, as an example, consider a stiffness requirement,
such as that visualized in Fig. 6. The horizontal line cross-
ing the shape boundaries for both materials implies that
CFRP and steel are eligible to satisfy the functional
requirements. Steel can be shaped with wA in the range
C1–C3, while wA for CFRP can be between C4 and C5.
Since the efficiency of a cross-section is visualized on
the chart by the slope p = kE/q, then even an optimum
shaping of steel, such as cross-section C3, cannot provide
a beam as light as C4, which is the heaviest beam made
from CFRP.
St
CFRP 

Al 

Aψρ ×
(Mg/m3)

Selection  

guidelines 

q=1/3

Fig. 7. Co-selection of shape and material is guided by iso-performance
lines for a prescribed scaling (horizontal q = 1, proportional q = 1/2,
vertical q = 1/3).
4.5. Co-selection of M and S for scaled cross-sections

Envelope variation involves relative scaling between
cross-sections. In this scenario, Eq. (16) drives the choice
of the variables for a light and stiff beam. To visualize selec-
tion on logarithmic charts, we take the log of the perfor-
mance index (16) and rearrange it as:

log EwI ¼
1

q
log qwA þ

1

q
log �p ð23Þ
Eq. (23) represents a line that defines points with the
same performance. As seen in Section 4.3, such a line can
be used to guide co-selection of material and shape for a
given scaling. Examples of these lines are shown in
Fig. 7, together with the plots of shape transformers (Table
2) for three materials: CFRP (q = 1.6 Mg/m3, E = 160
GPa), aluminium (q = 2.7 Mg/m3, E = 70 GPa) and steel
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(q = 7.8 Mg/m3, E = 210 GPa). Hollow rectangular cross-
sections are displayed for steel and CFRP, while curves of
rectangular and elliptical classes of shapes are illustrated
for aluminium.

A product of properties, M · S, above a selection line
identifies a cross-section lighter than those below. For
example, consider in Fig. 7 a rectangular cross-section
made from CFRP. For a horizontal scaling (q = 1), there
are no lighter cross-sections of aluminium and steel. Only
an efficient shaping of CFRP (light grey region) allows a
performance improvement. However, if there is a width
constraint (q = 1/3), then both steel and aluminium can
be shaped more efficiently. Lighter solutions for steel and
aluminium are enclosed in the dark grey region.

The brief examples given in Section 4 have shown that
the use of shape transformers can be valuable to develop
maps that widen the spectrum of choices for a light stiff
beam. When materials are to be compared for different
shapes classes, the shape transformers can ease the visual
ranking and help to obtain insight into optimum
selection.
5. Concluding remarks

This paper has introduced the methodology of shape
transformers for efficiency modelling and graphical selec-
tion. Shape transformers are dimensionless measures of
geometric quantities of a cross-section. They describe shape
properties that do not change in value under the scaling of
a cross-section. They enable the formulation of shape clas-
ses similarly to material classification.

Modelling with shape transformers allows the equations
of continuous mechanics and the performance indices to be
expressed in terms of design requirements, material, shape
properties, and geometric quantities of the envelope. One
advantage of this rationale lies in the relative ease in explor-
ing how performance changes with different scaling
conditions.

Performance indices derived for different design scenar-
ios have been used to visualize iso-performance contours
that guide the selection of beams in pure bending. This
paper has shown that plotting the shape transformers on
design charts improves the selection process and helps to
obtain understanding about structural efficiency.
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[7] Ashby MF, Bréchet YJM. Designing hybrid materials. Acta Mater
2003;51:5801–21.

[8] Pasini D. A new theory for modelling the mass-efficiency of material,
shape and form. PhD thesis, Bristol University; 2003.

[9] Pasini D, Smith DJ, Burgess SC. Structural efficiency maps for beams
subjected to bending. Proc Instn Mech Engrs Part L, J Mater: Design
Appl 2003;217(3):207–20.

[10] Pasini D, Smith DJ, Burgess SC. Selection of arbitrarily scaled cross-
sections in bending stiffness design. Proc Instn Mech Engrs Part L, J
Mater: Design Appl 2003;217(2):113–25.

[11] Pasini D, Burgess SC, Smith DJ. Performance indices for
arbitrarily scaled rectangular cross-sections in bending stiffness
design. Proc Instn Mech Engrs Part L, J Mater: Design Appl
2002;216:101–13.


	Shape transformers for material and shape selection of lightweight beams
	Introduction
	The basics of the methodology
	Shape and envelope of a cross-section
	Shape transformers defining shape classes
	Envelope multiplicators
	The fundamental rationale

	Lightweight design of stiff beams in bending
	Modelling with the shape transformers
	Indices of selection
	Performance index for non-scaled cross-sections
	Performance index for scaled cross-sections
	Selection for arbitrary scaling
	Selection for prescribed scaling



	Shape transformers with selection charts
	Key reading of the selection charts
	Shape selection charts for non-scaled cross-sections
	Shape selection charts for scaled cross-sections
	Co-selection of material and shape for non-scaled cross-sections
	Co-selection of M and S for scaled cross-sections

	Concluding remarks
	References


