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Abstract We propose a novel approach to the teaching of undergraduate planar mechanism
dynamics. To illustrate the approach, we use a case study, the dynamics of the planar slider-crank
mechanism. In this case study, we make extensive use of an operator representing in two-dimensional
form the cross-product of two vectors. Furthermore, by using the natural orthogonal complement,
introduced elsewhere, we produce a systematic procedure to derive a dynamic model of the same
class of mechanism. Subsequently, we illustrate how, with the use of the aforementioned operator, the
dynamic balancing of this mechanism, as first proposed by Berkof and Lowen for RRRR planar linkages,
and extended by Bagci to the slider-crank mechanism, simplifies tremendously.
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The teaching of the planar kinematics and dynamics of machines has undergone very
few, if any, innovations in the last half century of what has been called modern 
mechanism and machine theory [1]. This epoch has been marked by the advent of the
computer, in which has been traditionally called theory of machines and mechanisms
(TMM), and nowadays is being called mechanism and machine science (MMS). If we
compare MMS textbooks of the late 1940s or early 1950s with current ones, a remark-
able difference is that the latter include, as a rule, code (usually Fortran or BASIC) to
evaluate, verbatim, classical formulas. Needless to say, the casting of these formulas
in computer code does not advance the state of the art in the teaching of MMS. Arecent
book [2] does intensively use Matlab for the solution of MMS problems.

We have reviewed the formulation of planar kinematics and dynamics, and came
across an alternative, novel formulation, based on an operator used to represent the
three-dimensional cross-product in two-dimensional form. What the operator offers
is an alternative to the popular treatment of planar kinematics and dynamics based
on complex numbers. However, notice that complex numbers cannot handle three-
dimensional mechanism analysis; the method introduced here cannot only be readily
extended to three dimensions, but was also derived from three-dimensional analy-
ses. With the aid of the operator introduced here, the kinematic analysis of planar
mechanisms is greatly simplified. The dynamic analysis of mechanisms is simpli-
fied likewise with the aid of this operator and the introduction of the natural ortho-
gonal complement [3, 4].

Subsequently, we show how the equations for the dynamic balancing of the planar
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slider-crank mechanism can be derived much more concisely with the use of the
aforementioned operator, following a novel, simplified approach.

The dynamic balancing of linkages is a classical problem in MMS, which acquires
special significance in high-speed machinery. Berkof and Lowen [5] proposed a
general method of planar mechanism balancing. The method is general in the sense
that it is applicable to any force-balanceable planar linkage, and provides the 
necessary and sufficient set of balancing equations. These authors used the princi-
ple that if the total centre of mass of a mechanism can be made stationary, then the
shaking force vanishes. The approach followed by Berkof and Lowen, called the
‘method of linearly independent vectors’, allows the analyst to render the mass
centre of the overall mechanism stationary.

As opposed to the complex vector method of Berkof and Lowen, a new method
for complete balancing of planar linkages was proposed by Kochev [6], which
applies ordinary vector algebra and produces the balancing equations in Cartesian
form.

Numerous other researchers have investigated the problem of dynamic balancing
[7–10]. More recently, research attention has been directed to the balancing of 
multi-degree-of-freedom machinery, in particular for planar linkages [11–12], while
the balancing of spatial mechanisms has been studied as well [14, 15]. The static
balancing of serial manipulators using counterweights and springs has been studied
[15–17], along with that of parallel manipulators [18–20].

The complete force and moment balancing of the planar slider-crank mechanism
was reported by Bagci [21]. When in motion, the slider-crank mechanism, shown in
Fig. 1, exerts forces and moments on the frame on which it is mounted, by virtue
of the inertia of its links. These forces can be reduced by a proper mass redistribu-
tion of the moving links. Bagci used the method of linearly independent vectors of
Berkof and Lowen’s to balance the shaking force by the redistribution of the link
mass. Bagci went on to balance the shaking moment by both the redistribution of
the masses and by the addition of counter-rotary masses. Moreover, Nahon et al.
[10] showed that the shaking moment cannot be balanced by means of a mass redis-
tribution of the links alone, but by means of control. These authors proposed the use
of redundant actuation in a dynamically balanced four-bar planar linkage to elimi-

Fig. 1. Slider-crank mechanism.



nate the shaking moment. Thümme [9] demonstrated experimentally the feasibility
of shaking-force elimination. This paper deals with the dynamic balancing of the
slider-crank mechanism using a new teaching aid. First, the mathematical modelling
of the mechanism, using the natural orthogonal complement [3], is obtained. Then,
two design equations in six design parameters for the complete dynamic balancing
are derived.

Mathematical modelling of the slider-crank mechanism

The discussion below draws from basic concepts of linear algebra, which is nowa-
days a key component of the core undergraduate curriculum of mechanical engi-
neering programmes in many universities. In our experience, undergraduate students
tend to forget their linear algebra immediately after they have been exposed to it
because, admittedly, they do not use it in their engineering science courses. A 60-
minute review of basic definitions and concepts usually suffices to bring them back.
We believe that avoiding the use of linear algebra in the undergraduate engineering
courses just contributes to the students’ estrangement from the subject.

The kinematic constraints and the mathematical modelling of the slider-crank
mechanism are obtained using the method of the natural orthogonal complement
[3]. As applied to planar mechanisms, the method requires the definition of the 
twist, ti of the ith link and of the wrench, wi, exerted onto the same link as three-
dimensional arrays, namely,

(1)

where wi and Ti are the scalar angular velocity and the torque acting on the ith link,
respectively. Moreover, c.i and fi are the two-dimensional vectors representing the
velocity of the mass centre of the ith link and the force acting at that centre. Like-
wise, the 3 ¥ 3 inertia dyad, represented by matrix Mi, is defined as

(2)

where Ii is the polar moment of inertia of the ith link about its mass centre. More-
over, 0 and 1 are the two-dimensional zero vector and the 2 ¥ 2 identity matrix,
respectively.

Below we represent the scalar moment T exerted by a force f acting at a point P
of a rigid body, of position vector p, with respect to a point Q, of position vector q,
in the form

(3)

where the 2 ¥ 2 orthogonal matrix E represents a rotation in the plane through an
angle of 90° counter-clockwise, namely,
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(4)

Henceforth, fi-1,i denotes the force exerted by the (i - 1)st link onto the ith link,
with i - 1 understood as modulo 3. Likewise, Ti-1,i is defined as the couple exerted
by the (i - 1)st link onto the ith link.

Now, the Newton–Euler (N–E) equations for the ith link moving in the plane, as
depicted in Fig. 2, are written, for i = 1,2, in the form

(5)

(6)

Upon combining equations (5) and (6), we obtain

(7)

where the 3 ¥ 4 matrix Bi and the four-dimensional vector fi are defined as

(8)

for i = 1,2, with bi ∫ ri,i+1 - ri. Note that fi denotes the array of internal or con-
straint forces acting on the ith link. These are forces exerted by the neighbouring
links; not by the environment. We will thus speak of internal or constraint wrenches
to indicate the concurrent action of force and couple.

For link 3, note that, in order to account for the offset of the point of application
of the reaction force, it is assumed that link 0 exerts on link 3 a force -f30 acting at
C3 and a couple -T30. Moreover, in order to keep the discussion at an introductory
level, we assume that all joints, revolute and prismatic, are ideal, i.e., they provide
neither backlash nor friction. In this light, then, -f30 is normal to the surface of
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Fig. 2. Free-body diagram of the ith link.
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sliding. Figure 3 shows the free-body diagram of the slider, where we have f30 = f30j.
Thus, the N–E equations of link 3 are

(9)

(10)

which can be cast in the form

(11)

where M3 and B3 are 3 ¥ 3 and 3 ¥ 4 matrices. Moreover, f3 is a four-dimensional
vector, while t3 and w3 are both three-dimensional vectors, all these items being 
displayed below:

(12)

Hence, using equation (7) for links 1 and 2, and equation (11) for link 3, the 
mathematical model is obtained:

(13)

where the 9 ¥ 9 matrix M, the mechanism inertia dyad, and the 9 ¥ 8 matrix B, are
given below:

(14)
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Fig. 3. Free-body diagram of the slider.
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in which 0 is the two-dimensional zero vector, while O and 1 are the 2 ¥ 2 zero
matrix and the 2 ¥ 2 identity matrix, respectively. Moreover the eight-dimensional
vector f is defined, in turn, as

(16)

Thus, f is the array of internal or constraint wrench of the whole mechanism, which
does not develop any power, its sole role being to keep all links together.

We can now write the kinematic constraint equations of the slider-crank. Refer-
ring to Fig. 4, the kinematic constraints between links 1 and 0; 2 and 1; and 3 and
2 can be expressed as

(17)

(18)

where c.i-1 and c.i are the velocities of the mass centres of the (i - 1)st and the ith
links, respectively, while q

.
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3 is the relative angular veloc-
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. Now, equation (18)

can be written in the form

(19)

In equation (19), the 2 ¥ 3 matrices Ai,i-1 and Ai,i, for i = 1,2,0, are given as
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Fig. 4. Geometric relations between the (i-1)st and the ith links.



The constraints between the slider and the base, links 3 and 0, can be written in turn
as

(22)

since link 3 undergoes a pure translation in the direction of vector i. Combining
equation (19) for i = 1,2,0, with the foregoing constraints, equation (22), the kine-
matic constraints for the mechanism under study, become then a linear homogeneous
system:

(23)

where t = [tT
1, tT

2, tT
3]T and the 8 ¥ 9 matrix A is defined as

(24)

It is apparent that AT = B, which is not by chance. This is a result of the 
reciprocity between the feasible twists of the cnstrained mechanical system and the
constraint wrenches exerted by the joints. In fact, upon rewriting equation (13) in
terms of A,

(25)

it becomes apparent that the internal wrench, f, is nothing but the vector of Lagrange
multipliers of classical dynamics. Furthermore, the twists of the individual links are
given as

(26)

Now we derive the mathematical model of the single-degree-of-freedom system, i.e.,
we project all individual, uncoupled N–E equations (5, 6) onto the input revolute
axis, the result being one single second-order ordinary differential equation. To do
this, we set up first the loop-closure equation of the mechanism, with reference to
Fig. 1:
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Upon differentiation of both sides of equation (27) with respect to time, we obtain
the loop-velocity equation, namely,
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Moreover, the derivatives of r01 and q are readily calculated as

(29)

where rs is an influence coefficient [22]. Then, using equation (29), the foregoing
equation takes the form

(30)

In the above equation we have deleted the common factor y. π 0, thereby obtaining
a two-dimensional vector equation in two unknowns, rq and rs, with rq being a second
influence coefficient. While the two foregoing coefficients can be calculated graphi-
cally [22], we outline here an algebraic calculation. First and foremost, we notice
the important properties of matrix E below. If r is an arbitrary two-dimensional
vector, then

(31)

Next, upon multiplying both sides of equation (30) from the left by jT and rT
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successively, we obtain the expressions for the influence coefficients as
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where vector u is defined as
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Moreover, by virtue of equation (30), vector u satisfies the relation
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with 0 indicating the eight-dimensional zero vector, and, hence, u lies in the null-
space of A. (The concept of nullspace is central to linear algebra, to which mechani-
cal engineering students are exposed at McGill University in their third semester.)
By virtue of the definition of A and the vector of non-working constraint wrenches,
after multiplication of both sides of equation (13) by uT, the vector of non-working
constraint wrenches is eliminated from the said equations, and hence,
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(37)

Moreover, upon differentiating both sides of equation (34) with respect to time, we
have

(38)

Further, substitution of equation (38) into equation (37) leads to the mathematical
model of the mechanism, namely,

(39)

where
I(y) ∫ uTMu (generalized inertia);
C(y,y.

)y. ∫ -uTMu
.y.

(Coriolis and centrifugal force terms);
t(y) ∫ uTw (generalized external force arising from actuation, gravity and dissi-
pation effects).

Furthermore, the generalized inertia of the mechanism is given by

(40)

which can also be derived from the well known theorem of parallel axes of first-
year mechanics, as applied to a composite body, comprising all moving links. This
interpretation of the generalised inertia of the mechanism should explain why this
concept is configuration-dependent. Moreover, the coefficient, C(y,y.

), of the 
Coriolis and centrifugal forces is given by

(41)

where || · || is the Euclidean norm of vector (·), while r¢q and r¢s are defined as

(42)

Furthermore, the external generalized torque, t, is given by

(43)

where t A is the driving torque that is assumed to be applied at link 1 by the driving
motor, while tG and tD account for the gravity and dissipative effects of the system,
respectively. As to the latter, and in light of our assumption of ideal joints, only
viscous effects are considered here.

Dynamic balancing

The dynamic balancing of the slider-crank mechanism is now undertaken by resort-
ing to the approach introduced by Angeles and Sinatra [23]. With reference to Fig.
2, the centre of the ith joint and the mass centre of the ith link are denoted by Oi
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and Ci, for i = 0,1,2,3, respectively. Note that only the mass centres of the moving
bodies are relevant.

We now introduce the definitions below:

(44)

i.e., m is the total mass of the linkage, and c is the position vector of the mass centre
C of the linkage. Upon differentiation of both sides of equation (44) with respect to
time, we obtain

(45)

One more differentiation with respect to time yields

(46)

The N–E equation (6) is now recalled, and written for all three moving links:

(47)
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(49)
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The sum of all foregoing equations leads to

(51)

Further, we introduce equation (46) into the above equation, and hence,
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As in the case of the four-bar linkage, dynamic balancing is achieved if the mass
centre of the linkage is stationary, i.e., if
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which implies
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the above constant being necessarily equal to zero due the limited mobility of the
linkage. Hence, the balancing condition can be stated as
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Now, from equation (34), the velocity vectors of the mass centres of all links are
given as

(56)

Thus, upon substituting equation (55) into equation (56), we obtain

(57)

and, since y. π 0,

(58)

Now, if we let

(59)

then, equation (58) can be recast as

(60)

Multiplication of both sides of equation (60) by E leads to

(61)

On the other hand, equation (61) can be simplified if we recall equation (30), which
allows us to express irs as a linear transformation of r12 + rqr23, thereby obtaining

(62)

Now, for arbitrary links, we can always express the local position vector of the mass
centre of the ith link as a linear transformation of the corresponding vector ri,i+1, i.e.,

(63)

where C and D are 2 ¥ 2 matrices representing a rotation plus a scaling, namely,
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where ai denotes the corresponding angle of rotation, while ri denotes the 
concomitant scaling factor, for i = 1,2. It is noteworthy that the 2 ¥ 2 matrix inside
the parentheses in the above expressions represents a rotation in the plane through
an angle ai, for i = 1,2 [24]. Moreover, the scaling factors can be readily found to
be

(65)
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(66)

In order to proceed further, we need to impose the condition that the coefficients of
1 and of E inside the brackets in the above equation be equal, i.e.,

(67)

(68)

Thus, equation (60) can be simplified as

(69)

Moreover, note that E2 = -1; additionally, using equation (62), the foregoing 
relation reduces to

(70)

Now, by virtue of equation (29), rs π 0, while i π 0, for it is a basis unit vector.
Hence, equation (70) leads to

(71)

(72)

which, along with equations (67) and (68) are the dynamic balancing conditions
sought. Note that these conditions involve six linkage parameters, namely, a1, a2,
r1, r2, m1, and m2. In light of the definitions of these paramaters, however, the 
last four are constrained to be positive quantities, which, in an optimization 
problem, can become highly demanding for undergraduate students. Most likely,
parameters m1 and m2 will be either dictated by the specific application at hand, or
decided on by the designer based on experience. In order to avoid dealing with con-
strained variables, non-dimensional Cartesian coordinates can be introduced,
namely,
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Therefore, if the mass ratios are given, then the non-dimensional Cartesian 
cordinates of the mass centres of the various links, after balancing, are given by
equations (74) and (75).

Conclusions

The dynamics of the slider-crank mechanism was formulated using a novel, 
systematic approach. This approach allowed a straightforward derivation of the
dynamic balancing conditions of the foregoing mechanism. These conditions are
expressed as two equations in six linkage parameters. A few concepts of linear
algebra were invoked, which are nowadays standard components of the mechanical
engineering undergraduate core curriculum. Students should therefore be expected
to handle these concepts with some familiarity. Finally, it is noteworthy that, by
manipulating vectors and matrices as blocks – a frame-invariant approach – as
opposed to manipulating their components, first, physical insight is gained; then, all
relations derived are produced in a more economic and more concise form than if
components were used.
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