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Abstract

-
e

X

The finite element method is extended to the modal ansalysis of open dielectric

wa.vegmdes with the use of infinite elements which preserves the linearity of the method. \

Previously, infinite elemem\s .mcorporatmg a single radially decaying trial function were
used. Since the decay length has to be optnmzed for each mode by means of an outer

iteration loop, these are called optimized smg@y methods.

¢

In the method of this thesis, called the multiple fized decay method, each infinite
element incorporates several radially decaying exponential trial functions. The outer
optimization loop is eliminated and all modes corresponding to a given phase constant
are calculated in one pass of the solver. In addition, tqhese-inﬁnite elements improve the

accuracy by providing more degrees of freedom with which to model each mode.

The three component curl-curl functional is used with a penalty term to eliminate

spurious modes from the propagating mode frequency range.
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= Sommaire

La méthode des éléments finis est étendue a I’analyse modale de guides d’ondes

. - ‘;’ L r » 13 I3 . I d . 1 d 3 ’
ouverts diélectriques en utilisant des éléments infinis ce qui préserve la linéarité de la
&

méthaode. °
Auparavant, les éléments infinis incorporant une seule forrction d’essai de décrois-
sance radiale étalent utilisés, Etant donné que la longuéur de la décroissance doit étre

optimisée pour chaque mode au moyen d’une boucle d’itération externe, celles-ci sont

appelés méthodes optimisées de longueur unique.

Par la méthode présentée dans cette thése, appelée la méthode de longueur mul-

tiple fixe, chaque élément infini incorpore Plusieurs fonctions d’essai exponentielles a

. décroissance gadiale. La boucle d’optimisation externe est donc eliminée et tous les
modes correspondant a une constante de phase donnée sont calculés & la fois. De plus,
ces_éléments infinjs améliorent la «précision en offrant plus de degrés de liberté pour

-

<
modéliser chaque mode. . |
l

Une formulation variationelle a trois composantes est utilisée avec une fonction

de pénalité afin d’éliminer les modes indésirables de l'intervalle de fréquence de modes

g

propagé\s.

Y
\\
L



Ty e Y e A
MLy o . . F

N

Acknowledgements .
\

,
I would like to thank my supervisox%r. Jon Webb, for his invaluable assistance
in the preparation of this thesis and his many contributions.

I would also like to thank Minou Mansouri for translating the abstract and Sussan

Nassehi for providing software assistance. I also extend my thanks my colleagues in the
Computational Analysis axid Design Laboratory for their help and support. ’

Financial support from the Natural Science and Engineering Reasearch Council*
and from the Centre de Recherches en Inf#())rmatique de Montréal is gratefully acknowl-
edged. P

LC I 2 YR 220 LR ol S /- e e apeine Lot B
AN AR SR AR QS Ay
TR N




Table of Contents .
Chapter One: Introduction and Literature Survey b
1. Introduction . ............... e 1‘.’ ........ p.1
2. Literature Survey ......... f e e G p.2
2.1 Linear Methods ... ................... oL, R . p4
2.1.1 The Finite Element Method . . ... .......... [ p.4
The Virtual Boundary Techmque,, ......... N 7 p4
Scalar Ballooning . .......... MU P p.5
Conformal Mapping . . *.7 .. .. ... .......... L p.6
Combined Finite Elements and Infinite Elements . . ... ..... .. p.6
2.1.2 Finite Differences ... ....................... Foo.. . pT
2.1.3 Telegraphist’s Equations . . . . ... ................ . p.7
2.2 Non-Linear Methods . . ... ...ttt i i p.8
2.2.1 Point Mgtching e e e e e e e e e e e e e p-8
2.22Integral Eqfations . . . . ... ... ... .. p.8
2.2.3 Finite Element Hybrid Methods ... .......... .. P p.9
Combined Finite Elements and Function Expansion ... ..... .. p-9
Combined Finite Elements a.r\d Integral Equations . ... ...... p.10
3. Thesis Summary .. ........ M . ... ... . o L. p.10
Chapter Two: Open Waveguide Tgéory
1. The Problem Definition ... .......... ... ... .. ........ p.11
2. The FieldNotation .. ......... ... . ... ... p.12
3. Maxwell’s Equations and the Constitutive Relations . . . ... .. pe- - pl4
4. The Perfect Electric and Magnetic Conductor Boundary Conditions . . p.15
5. The. Continuity Relations® . . . .. ... ... ... ... .. ........ p.15
6. The Curl-Curl Equationin H . ... ... ........ [P - p.16
7. The Far-Field Boundary Conditions . . . . ... ... e e e p.16
8. The Variational Principle .. ........... .. ... ... . ...... p.18
Chapter Three: The Conventional Finite Element Method
1. The Isotropic Guide Case ... .......... ... ..... p.21
2. The Unknown Field Components . . . . . .... . .............. p.21
3.Tﬁ’eRaleigh-Rjtquthod..................‘. ......... p.23
4. The Finite Element Method . . . ... .. .... .. ..... ... .. ..... p.24
5. Triangular Finite Elements . . . ... .. .... ... ... .... ... D24
6. The Field Vector Trial Functions . . . . . . ... . ....... ... . ... p.27
7. Local Matrix Assembly . . ... ........ A p.29
8. The Application of the Boundary Conditions . . .............. p.31
9. Glpbal Matrix Assembly . ... . ... .. ... .. ... ... . ..... p-34
i ‘ RN
. , i



rd

Chapter F(/n?rt Infinite Elements
1. Elements for the Infinite Regions . . . . ..... .. e
2.'The Infinite Element Mapping and the Azimuthal Trial Function . . . .
3. The Radial Trial Functions .. .........................
4. The Full Trial Function . ............. ... ... cuo....
5. The Integration of Trial Function Terms ......... e

Chapter Five: Restllts

1. The Fortrasf PrOgram . . . . ..o vttt e e oo
2. The Slab Waveguide, .. . . . e e e e A
3y The Circular Dielectric Waveguide . . . ....................
4 The Square Dielectric Waveguide . . . .............. o,
5. The Effect of Varying the Parameter § . . ... .. .oooonn .
6. A Comparison of the MFD and OSD Techmques e e e e

Chapt:ar Six: Conclusions . . . . ... ...t it e e
Appendix I: Proof of Variational Principle 2.1 ............ e
Appendix II: The F‘requ.ency Range of Spurious Modes . . .. .. .........

References @ & % 0 0 0 ® o s 0 s .‘1 oooooooo ® e 8 0 6 ¢ ¥ s s s 0 0 0 s 0 LI I )

> p.35
p.35 .

p.36

p.39
p-40

p-44
p.46
p.50
p.50
p-60
p-60

p.62

p.63 .

p.72

p.80

L]

o

N IS g
A A
te



SE -

I Pir

N
z,y,2

T, 0,2

Cl,c27c3
£
e, h
E,H
E,H

L

H = [az ay a,]T

Symbol List

o
the phase constant *
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the angular frequency = 2rf - L
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the permittivity of free space
the relative pefmittivity tensor
the permiability and relative permiability
the permiability of free gpace . e
the speed of light in vacuo = m
the normalised frequency = <
the problem geometry in the x-y plane
the perfect electric conductor boundary contour
the perfect magnetic conductor boundary contour
the far-field boundary ’
cartesian coordinates
cylindrical coordinates
the finite element local coordinates
the infinite element local coordinates
the fields as a function of (z, y, z,t)
the fields as a function of (z,y,2)
the fields as a function of (z, y)
the trial function weight variables
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Introduction and Literature Survey CoE .
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1. Introduction V .

Waveguides which employ dielectric materials as a transmission media include
devices of current interest such as optical ﬁbx:es and Iila.nar guides. They are used as
low-loss carriers of communication signals’over long distances or as components of pla-
nar circuits at frequencies ranging from millimeter-wave to optical. Typical unbounded
dielect;ic anegt.xidg cross-sections aI:e sHown in Figure 4.1, The importance of °the§e
devices in the field of communigations has prc;voked considerable research into the de-
velopmient of numerical methods for their analysis. Indeed, the task of designing ah

dielectric waveguide can be made easier and less costly if its high frequency behaviour

can be predicted prior to its fabrication.

’fhe electromagnetic waves which are carried by unbounded dielectric waveguides
dwithout radiation loss are called surface waves and they assume distinct field patterns
called modes. Each mode has a cut-off frequency which is the l;west frequency at which
it will propégat‘e and remain guided. The mode with the lowest cut-off frequency i
called the fundamental mode. The moglal wave properties that are of the most intéreé
to the designer of dielectric waveguides are the dispersion characteristics and the field
distributions. The dispersion characteristics of a mode are usually presented in the
form of a dispersion curve whichhis a plot of the normalised frequency (or free-space
wavenumber) kg versus the phase constant § for each ;node of interest (see Figures 5.2,
5.4, 5.6). Given the hdispersion curves. of xthe fundamental mode and the next lowest
mode of a particular device for example, the frequency interval in which conversion of
energy from the fundamental'—n-lode to higher m:)des cannot occur can be determined; it
is the interval between the cut-off frequencies of these two modes. The phase and group

-

velogities of the modes can also be determined from the dispersion cu;;ves.

A knowledge of the field distribution of a mode is also important; it can indicate

for example %l‘le extent to which the energy of the surface wave supported by the guide

[]
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Y »is concentrated in the core region. It can also be used to estimate ohmic losses suffered .

by the guide, if they are small, with a perturbation method (first the fields of an equiv-
alent lossless guide are calculated, then these values are used to calculate the losses by

considering any finite conductivitf of the dielectric materials-or existing conductors).

Various useful dielectric waveguide s‘trucizures have been proposed or fabricated
which because of the exploitation of desirable\ properties or the manufacturing process,
have irregular shsapes or permittivity distributions. Finding a closed-form arialytical(
expres;ion for the modes of most these unbounded guides is usually impossible unless
the waveguide geometry and.permittivity profile are identical with the coordinate curves

.Se\ the Helmholtz equ‘ation is separable. The only recourse

of a coordinate systera in whi

for solvmg the general dielectric wavegulde problem is the application of a numerical

methOd,. S

2
This- thesis presents a numerical method for the modal analysis of a generaJ

class of translationally-symmetric dielectric waveguides. Thls class includes transver-

sally unbdanded dielectric guides with arbitrarily-shaped cross-sections and arbitrarily-

inhomogeneous permittivity profiles. It is restricted however to sourceless, lossless,
\

isotropic guides with uniform permeability x4 = po. All conductors are assumed to be

perfect. For brevity, members of this class shall be referred to in this thess simply as

open gusdes. . » <

o -

The numerical method employed is the finite element method using a three com-
ponent magnetic vector functional and using mﬁ,ute elements to handle the unbounded
nature of open guides. It ylelds the freqéxenmes of the modes which correspond to a
given phase constant value (these can be used to plot dxspersmn curves) and the field

distribution.

e
£

[ N

2. Literature Survey ’ ’ :

The body of literature related to the modal analysis of translationally symmetric

¥

c dielectric waveguides is enormous. This survey will therefore be limited to numerical

methods which are capable of modelling any open guide as defined above. The vari-

. X
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ous methods will be categorised according to whether the final approximate numerical

problem is linear or non-linear (defined below), and according to the particular scheme

. : : A
adopted to model the infinite extent surrounding the core region.

In the following, linear methods are defined as those in which the final algebraic
problem can be reduced to the generalised eigenvalue problem, Ax = ABx. These meth-

ods can benefit from specialised, efficient algorithms [1,2] which return an exhaustive

list of the“%:nvalues.

With non-linear methods, the ﬁnz(ﬂﬂﬂgebraic problem has the form det(C) = 0
where the elements of the matrix C are non-linear functions of the free space wavenum-
ber ky. Methods of this type must use computationally costly root-finding algorithms

and the resulting solutions must then be checked carefully to ensure that none of the

roots have been missed

2.1 Linear Methods
211 The Finite Element Method

The finite element method (FEM) [3,4] consists in dividing the prosblem reg#ihn
into small sub-domains over which trial function expansions are defineds The unknown
coeflicients in the expansions are determined by a variational method in which the trial
functions are inserted into a functional whose stationary points are solutions to the

defining differential equations.

The FEM was applied to the modal analysxf of closed homogeneous waveguide
problems by Silvester {5] who used polynomial trial functions and a functional for the
scalar Helmholtz equation Because of its great flexibility and relative simplicity, the
FEM has since been applied extensively to a wide variety of closed waveguide problems
(6,7,8,9,10]. The following methods extend the FEM to open guides while preserving

\

linearity.

The Virtual Boundary Techmque

Yeh et al applied the unpmodified F to the modal analysis of open waveguides

in 1975 [11]. The modelling of the infinite extent was performed by simply surrounding

o
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the guide with a perfectly conducting cylinder, called a virtual boundary, whose radius
was large relative to the dimensions of the core. The entire problem, that is the interior
of the core and the exterior region betwegn the core and the conducting cylin\a& was
then meshed witk{ regular finite elements and the modes were solved using a E; — H,
functional. The authors noted that a gradual increase in the radius of the cylinder
resulted in a convergence of the calculated modes to the actual solutions. This effect

was greatest near cutoff where the exterior fields decay very slowly and thus the radius

" of the cylinder had to be made Very large to obtain accurate results.

A similar methrod was employed by Ikeuchi et al. [12] who added an outer
iterative loop which gradually increased the radius of the virtual k;oundary (on which
E. was constrained to be zero) until the maximum value of H, on the boundary became
small relative to its maximum value in the entire region. I{l this way the inaccuracy due
to the presence of the artificial virtual boundary could be estimated and the solutions
could be obtained to any desired\level of accuracy except near cut-off where the region

to be meshed became prohibltive/fy large.

Welt and Webb [13] chose the location of the virtual boundary for arbitrarily
shaped guides by first calculating the field decay rate for an equivalent homogeneous
dielectric rod and placing the virtual boundary where its field was negligible. This

method was found to be suitable for all the cases studied.

In all applications of the virtual boundary method, an imnprovement of accuracy
is obtained at the expense of an increase in the mesh size, especially near cut-off. This
and the concomitant increase in computing time and memory requirement are the major

drawbacks of this method

Scalar Ballooning

4

The ballooning method was first applied by Silvester et al. [14] to open boundary
Laplace field problems. In this technique, the finite interior region is meshed with regular
finite elements while the exterior region is meshed iteratively in successive identical
annulus-shaped regions. Each iteration doubles the exterior mesh area but does not

increase the global matrix size. A quasi-infinite area can therefore be modelled in only

-5
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a few (about eight) iterations. .

Chiang [15,16] applied thesame method to weakly guiding fibres using an ap-
proximate scalar functional. The pre-supplied constant which is usually 8 or 8/ko with
the other methods is neither for this method. It is rather a variable chosen specially
to eliminate the eigenvalue variable k; from the functional contributions of the exterior
mesh. This allows for the recursive meshing and global matrix assembly of the outer an-
nuli At the‘ present, this method cannot be applied to the general open guide problem
which r‘equires a vector functional and cannot be accurately approximated gy a scalar

functional.

Conformal Mapping

By conformally mapping the quarter plane into a half-circle, Wu and Chen (17}
were able to transform the infinite extent surrounding a waveguide into a finite region.
The FEM was then applied to discr/etise the finite region, a.nd accurate results were
obtained with an E, — H; formulat?;n. This particular application of the conformal

mapping method is limited however to guides having a plane of symmetry.

Combined Finite Elements and Infinite Elements

Another method of solving unbounded waveguide problems is to define infinste
elements which extend radially to infinity [18,19,28,21]. To correctly model the decaying

behaviour of the actual solutions to the Helmhol

equation, each infinite eleiment must
inéorporate one or more decaying trial functiong in the infinite direction. This approach
using one decaying exponential trial function in each infinite element was used by Yeh
et al. [22] with an E; —H, functional and later by Rahman and Davies [23] with a three

component vector functional.

Tile main disadvantage of this method is that the correct value for the parameter
which specifies the infinite element decay rate cannot be determined before the problem
is solvea, nor can it figure as one of the unknown variables to be solved for, because of the
non-linear dependence of the function'al on the decay parametér value. If a generalised

eigenvalue solver is to be used, the decay parameter must be supplied beforehand as a

-6 - )
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fixed constant. Since the "éccuracy"of the solutions’ I:E:l‘ the cut-off is critically dependent
on the value of the decay parameter, Yeh a'nd also Rahman and Davies found it necessary:
to optimize the decay parameter for each mode through the adiiition of an outer iteration
loop to the FEM program. In this thesis, not one, but a range of exponential decaying

trial functions is used in each infinite element, allowing the variational principle to

weight them to match the actual decay as closely as possible without optimization.

2.1.2 Finite Differences

In the finite difference method the problem region is first discretised into a rect-
angular grid of nodes Then the differential operators of the functional or the defining
equations themselves are approximated using difference calculus v"v’lij produces an al-
gebraic system of equations. Schweig and Bridges [24] applied this method to open
guides by approximating the integrand of the E, — H, functional with finite differences.
Since the problem was enclosed in a perfectly conducting box as in the virtual boundary
method, the accuracy near cut-off was compromised. >

;& major disadvantage with the finite difference method is that if the mesh must
be refin 3 in a small region, extra nodes must be added along the length of the entire
problen: region which increases the matrix problem size unnecessarily. With the FEM,

the mesh can refined locally in a small region and the modelling of oblique boundaries

is facilitated since the nodes are not constrained to lie in a rectangular grid. .

3
1]

2.1.3 Telegraphist’s Equations

This method consists in enclosing the ope;l gu'\de in a large rectangular waveguide
and approximating the modes by a linear combination of the modes of an equivalent
homogeneo“us rectangular waveguide. The Telegraphist’s equations are derived directly
froita Maxwell’s equations and the orthogonality properties of the closed ?’eéuide

modes [25,26,27). This method is similar to a virtual boundary technique iy that the

problem is enclosed in a perfectly conducting boundary; it is therefore inaccurate near.

O

the cut-off frequencies of the modes.
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- 2.2 Non-Linear Methods

2.2.1 Point Matching

t

First applied to homogeneous unbounded rectangular waveguides by Goell in

1969 [28), the point matching method involves expressing the longitudinal electric and

magnetic field components (E; and H,) in the interior and exterior regions of the guidein -

¥
\leir truncated series of Bessel functions which are solutions to the Helmholtz equation.
The unknown coefficients of the series are found by matching the tangential components
of these field expressions at N points on the iRerface of the two regions and solving the

resulting characteristic equation for the eigenvalues.

The method has been applied to unbounded guides having more exotic shapes
[29,30,31,32,33] and composite dielectric profiles [234,35]. Its application to the gex;eral
open guide is not straightforward however; increasing the number of matching points,
which adds more terms to the truncated series representation of the fields, will not
necessarily cause the ei:genva.lues to converge to the exact solutions in the general case
[29,36]. "Problems such as this in establishing the validity of the series representation
make the point matching method difficult to apply to open guides.

S 4
2.2.2 Integral Equations

\ )
By constructing equivalent electric and magnetic current densities frpm the in-
homogeneities of the dielectric fibre, de Ruiter [37] arrived at a set of surface integral
equations similar to those representing free-space electromagnetic fields with volume

L~
source terms. To solve for the modal free-space wavenumbers, a system of equations is

derived by applj;ing the moment method and a point-matching technique.

) . . . . ! . .
Green'’s functions were used in the derivation. and therefore the integral equations
contained Hankel functions whose argument was the free-space wavenumber. Thus the

problem was non-linear and was solved by an iterative complex zero search algorithm.

For the aha.lysis of an oben guide consisting of one homogeneous dielectric c§lin-
der of arbitrary shape embedded in a siixgle medium, Su [38] devised a method in which

the integral equations are dérived from Green'’s second identity. Asuwith. previous scalar

-

- 8-



N

N

of the scattering coefficients.

integral equation methods, the resulting equations contain a contour integral which is

difficult to evaluate since the closed contour includes Green's function singularities.

/
2.2.3 Finite Elément Hybrid Methods

Various schemes have beenﬁ proposed to eouple the FEM with other methods
more suited to unbounded regions. They combine the flexibility of the FEM in handling
arbitrarily-shaped and arbitrarily-inhomogeneous finite regions with the supérior ability

of other methods in modelling homogeneous infinite regions.

Combined Finite Elements and Function Expansion

Oyamada and Okoshi [39] divided the fibre into two regions separated by a circu-
lar boundary. The finite region inside the circle contains all the inhomogeneities of the
fibre while the exterior region is homogeneous and unbounded. An E; — H, functional

similar to that of Yeh [11] is used to solve for the modes of the combined region. The

" contribution of the interior region to the functional is supplied by regular finite elements.

For the exterior region, the E, and H, variables are expanded into two truncated series

of modified Bessel functions which are then substituted into the.functional.

By relating the Bessel function ';véignll_ts to the nodal field values on the circle
through a discrete Fourier transform, the function'fﬂ for the gombined /region can be
expressed in terms of the nodal field values in the interior region ana the free space
wavenumber only. Due to the presence of the Bessel functions, the functional is a non-
linear function of the free-spase wavenumber kg. For this reason, a non-linear root
finding technique must be used to.find the modal sol\mons which are the minima of the

functional.
¥

Instead of theé E, — H, functional, Wu_and Chen [40] employed a vanatlonal
pnng‘ple based on the reaction concept [41][4‘7] which solves for the scattered field frorn
an obliquely illuminated dielectric waveguxde Th:s method i is other\mse very similar to

that of Oyamada and Okoshi (above) except that the modal frequencms are the poles

—

| /
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Combined Finite Elements and Integral Equations

Integral equation methods such as the one presented by Su [38] (above) are able
to efficiently model the infinite cladding surrounding a homogeneous guide but-they
cannot be applied to inhomogeneous guides for lack of a convenient Green’s functic;n.
By using finite elements in the interior region combined with integral equations, Su
[43] effectively eliminated two drawbacks of the previous method. First, inht;mogeneous
core regions could be accommodated with the application of the FEM, and second, the
hybrid method did not require the integration of a contour integral containing Green’s

function singularities. The method, however, remains non-linear.

3. Thesis Summary

The remainder of this thesis is organised as follows. Chapter 2 presents, for the
general lossless reciprocal anisotropic open guide case, the theory required later for the
Finite/Infinite Element Method of Chapters 3 and 4 in which only isotropic guides are
considered. Chapter 3 is an introduction to the finite element method fc3r closed guides
and Chapter 4 extends this method to open guides through the use of infinite elements.
Chapter 5 contains results for several open guide examples; Chapter 6 is the conclusion.

Appendices I and II contain proofs required by Chapter 2.

. -10 - _




Chapter Two

Open Waveguide Theory

1. The Problem Definition

A

Consider a dielectric waveguide }vith a giv'en cross-sectional geometry and per-
mittivity profile. The guide is translationally symmetric along the z axis; the transverse
plane is the zJ-\q/ plane. The geometry may include unbounded homogeneous regions (if
the guide is open) agd conductors. I*:'igure 2.1 is an example of an open dielectric wave-
guide. In the transvigse plane, the problem geometry is given the syml;ol §2. In some

cases, such as the onqin Figure 1.1a, the {2 surface may consist of the entire z-y plane.

The problem cap include three types of boundaries. All conductors are assumed
to be perfect; the skin d;:\pth is therefore zero and only the contours of the conductors;
represented by 00,, need be considered. The prQbIem can also include perfect magnetic
conductors contours 0¥, which are used to exploit symmetry and reduce the problem.
The last contour, 92, is used to constrain the ﬁglds at r = oo wherer = \/m It
is defined as 00, = N (I%i?mr = R) which is the part of a circle of infinite radius,

centered at the origin, that is inside the problem region.

/

The materials w}{ich compose the guide can be anisotropic but are assumed to
be lossless and reciprocal everywhere. The permittivities of all materials are assumed to
be independent of frequency over the range of frequenciés considered. The permeability

is uniform everywhere and equal to that of free-space.

In the transverse i;lane, the homogeneous regions can be either finite or infinite.
The core region is defined simply as the smallest region which includes all finite homo-
geneous regions. The guided modes of the guide are defined to be the electromagnetic
waves with time and z dependence e’(“'~#%) (where w and B are real numbers) and

whose power flow is in the positive z direction only. Also, the energy of guided modes

is confined to the core region of the guide which implies that the energy densities of the

magnetic and electric fields, and therefore the field components, decay with distance

from the core. The guided modes can be thought of as being excited by a source at

-11 -
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z = —oo and propagating without loss since time t = —o0.

?
Let e; = e;(z,y,2,t) and h, = hi(z,y, #,t) represent the electric and magnetic
b

fields corresponding to the i ™ mode supported by a given open guide. The mode has

phase constant B, angular frequency w, and normalised frequency k¢; defined as follows:

B = T (2.1)
w, = 2k (2.2)
koi = :3 g (2.3)

where ¢ = 1/,/lo€p is the speed of light in vacuo, f, is the frequency of mode 7 and A

is the wavelength.

The problem considered in this thesis is as follows. Given a pre-supplied value of
the phase constant # and a description of the geometry and material propertgsies of an
open guide, determine the normalised frequencies (ko, ko2, . . ., kop) and magnetic field
distributions (hy, hy,... h,) of the p lqwest guided modes (i.e. ko3 < ko2 < ... < kop).
In developing the necessary theory and later determining the modes of a particular

waveguide, it is assumed that the waveguide in question is indeed capable of supporting

guided modes. A proof of the existence of guided modes for the genreral open guide case

will not be attempted.

As the theory will later demonstrate, if the electric field distribution is required,

. J
it is more convenient to determine the modal magnetic field distributions (hy, hs, ..., h,)
first and then to calculate from these the (e1,ez,...,€p) modal electric field distribu-
tions.
A\

2. The Field Notation

Since the fields of all modes are harmonic in both time-and the longitudinal

coordinate z, e and h can be expressed as the real parts of complex fields as follows:

é(xa Y, z,t) = Re{E(.’L, Y, z)ejw{} = Re{E(x, y)CJ(wt—ﬁz)}
(2.4)

h(z,y,z,t) = Re{H(z,y,z)e*'} = Re{H(z,y)ei“~52)}

L -12-
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In these relations, the variables (E, H) and (E,H) are implicitly defined as three com-

ponent vectors having complex valued components and representing the (z,y,2) and
(z,v) dependenc;: of the fields respectively:
E(z,y,2) = Ez(2,y,2)i + Ey(z,y,2) + E:(2,y,2)k
H(z, ;%) = H.(s,,2)i + Hy(z,y52)j + Hi(z,9,2)k
E(z,y) = Eu(z,p)i + Ey(z,y)j + Ex(axd) k
H(z,y) = H(z,y)i + Hy(z,y)j + H.(z,y)k
Although only the transverse dependence (E(z, y), H(x, y)) of the fields is unknown, the
‘theory derived in this chapter will be in terms of (E, H) for notational convenience. The

finite and infinite element theory of Chapter 3 will make use of the (E, H) functions. To

facilitate integratioil later, the (E,H) fields are defined as being identically 0 outside (2.

3. Maxwell’s Equations and the Constitutive Relations

\(
The theory of open waveguides begins with Maxwell’s equations [44,p.17] for

sourceless problems expressed ‘in terms of the (E,H) variables: ' .
VxE = —jwB ' (2.5)
VxH = jwD ' (2.6)
V-D - 0 ‘ (2.7)

. V-B = 0 (2.8)

and the constitutive relations [44,p.21]:
~

B = M H = Hao H 3 . (29)
eE = ¢(z,y)6FE for isotropic media
D = , (@ 9) e (2.10)
KE = K(z,y)eE for anisotropic media

t

The relative permittivity tensor K is a real symmetric matrix [45,p.314] for lossless
reciprocal dielectric media and therefore can be diagonalised by a rotation of the coor-

dinate axes:

Dz = KzzE: Dy = ’inyy ~ Dz = szE:

W

s -




The scalars K4, £y, 5 ,l, > 0 are called the prinespal dielectric constants of the material.

. They are also the e'igenvalues of K, since tI;e coordinate transformation is unitary
[46,p.235]. The eigenvalues of K~! are g.-, g;—;,k-lz—z > 0 (because KE = kE =
K'E = %E ). Since the eigenvalues of K~! are non-zero and positive, it follows that
K=! is positive definite (46;p.250]. This result will be required by Variational Principle
2.1 (see below).

4. The Perfect Electric and Magnetic Conductor Boundary Conditions

The open guide cross-section § can include perfect electric conductor boundaries
bQ, and perfect magnetic conductor boundaries (?Q,,. The 02, boundary condition
follows from the physics of perfect conductors [44,p.36] whereas the 90, boundary, also
known as a symmetry wall, is an useful mathematical artifice which will be employed

to reduce the problem size by exploiting symmetry.

-

In terms of the (E, H) variables, the boundary conditions are: x
nxE = 0 on 09, (2.11)
) nHE = 0 on 80, (2.12)
n-E = 0 on 99, (2.13)
nxH = 0 on 09, ' (2.14)

5. The Continuity Relations

From the integral forms of (2.5),(2.6),(2.7) and (2.8), and the underlying physics

the continuity conditions

nxE, = nxE ' (2.15)

nxH, = omXx H, (2.16)
nD; = n-D, (2.17)
n-B, = nB, ° “ u ’ (2.18)

can be derived[47,p.149]< They apply along any setirceless boundary between two ma-

terials where n is a unit vector normal to the boundary and (E;, E;) and (H;, H3) are

-15-
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the fields infinitesimally close to the boundary on either side of it. The last two becoine,

upon substitution of the constitutive relations (2.9) and (2.10):

f
n (K3 E)) = n-(KE3) (2.19)

n - (4o Hy) . (2.20)

n-H, = n- H2 . (221)

Normal H is therefore continuous along any material boundary whereas ndrmal E 1s

discontinuous if the permittivity of the two materials is different.

6. The Curl-Curl Equation in H

d

Since the H field, from (2.16) and (2.21), is continuous across any material bound-
ary, it is more convenient numerically to specify the problem in term of H only. By
. substituting an expression for E obtained from (2.6) into equation (2.5) applying the

constitutive relations we can derive:
Vx(K7VxH) — kH-= 0 (2.22)

This is the anisotropic vector Helmholtz equation or curl-curl equation in H.

~

7. The Far-Field Boundary Conditions

Consider the boundary value problem specified by the perfect electric and mag-
netic conductor boundary condlitions and the vector Helmholtz equation in H. This
boundary value problem will admit solutio}whose field components grow radially
These are not guided modes a.%:l they must be eliminated from the solution space by

¢

im§osing additional constraipts on the solutions in the far-field region. A

o determine suitable\far-field boundary conditions, consider any transverse slice

‘ AN
z1 £ z < z; of.a givexisotropic open guide where z; # z;. Let the energy stored in the

-16 -
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electric and magnetic fields inside the slice' be denoted by £. Since the mathematical
model being developed is for physical guides excited by sources having finite power
output, it is reasonable to require that £ be finite. The search for modes will therefore

be restricted to those which satisfy

f =27 , ) ) A
E = / /(eEE + uH'H)da:dydz .
2 :

2 2

9

I=n
Z=2Z9 ¢=21I’ r=oc

= / / /(eEzE + pHéH).rdrdqﬁdz

=z ¢=0 r=0'

< o0 wl

The integration is carried out over the entire transverse plane, not just . This is
justified if the fields outside § are defined to be zero. For this integral to converge, the

following two condi!ion§ are sufficient, though not necessary: A

imFE = 0. = limfVxH = 0 from (2.5) w0
T =00 =00
, (2.23)
and im vVfH = 0

\ =00

In order to eliminate solutions which grow radially, the constraints of (2.23) will
be adoptéd as the far-field boundary conditions since they only admit fields which decay
radially. It will be assumed that these far-field constraints are valid: for anisotroeic open
guides also and thatctheir_ imposition does not res’ult in the omission of ’ga.lid guided

modes. «
\ , -
It is also necessary to eliminate those solutions which propagate radially out-

side the core. For isotropic guides, this can be done by requiring that the transveri?/,-
wavenumber k? = ¢, kf~— 8% be purely imaginary in each infinite region 7 (see [48,p.292)).
This relation is imposed on the solutions to the problem examples in Chapter 5 which

are all isotropic. Setting k? = jh, we have ,

Y = B =k > 0 (2.24)

The case h = 0 corresponds to modes at cut-off and is not considered.

® ) -17-




8. The Variational Principle

The solutions (ko1 , H;), (koz, Hz), ..., (kop, Hp) of the above curl-curl differential
aquation with boundary conditions (2.12), (2.14) and (2.23) can be obtained with the

following variational principle (49,50]:

Variational Principle 2.1

N Let D be the space of compléx three component vector functions
H(z,y,z) =H(z,y)e’?* (B # 0) which are infinitely differentiable 1n
§1, zero outside {1, square integrable and satisfy the prescribed boundary

conditions:
Hxn = 0 on 389, (2.25a)
sH-n = 0 on 99, (2.25b)
lim viH = 0 (2 25c¢)
Jim VFVxH = 0 (2.25d)
rlix&ﬁ sV.H = o0 | (2.25e)

Then the stationary points H, of the following functional for positive
definite ', s >0 and H# 0

Ao

/ (VxH)* K™YV xH)+s(V¢H)" (V- H)) dedydz
Q

kg (H) = = "
(H* H)dzdyd-=
[

=0 Q

are solutions to the following differential equation

°

VxEK'VxH -~ sVYV-H -kiH=0 m Q (2.25f)
where k& = ki(H) > 0 (2.25g)

and satisfy the following natural boundary conditions:

(VxH,)xn = 0 on 09, (2.25h)
sV-H = 0 on 89 (2.251)

in addition to the above prescribed boundary conditions (2.25a,b,c.d.e)

- 18 -
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The stationary points are the H(z,y, z) functions at which the first variation of
ki (H) vanishes (see Gelfand and Fomin [51]). Note that if ko # 0, equation (2.25h)
is equivalent to the electric wall boundary condition from (2.6). The proof of this
variational pr'inciple is given in Appendix 1. If s is set to zero, then this reduces
to Berk’s variation'al principle [52,53] which, when used in the Bnite element method,
is known to yield spurious, or unphysical, modes in addition to the physical modes
[54]. To determine the source of these spuric;us modes, the comments made by Webb
[65] concerr:ing the statibnary points of the above variational principle for the closed
waveguide case will be adapted for the open waveguide case as follows. Consider the

following two sets of equations:

VxK'WxH-kH = 0 in Q (2.27a)
Hxn = 0 on 089, (2.27b)
: * (VxH)xn = 0 ol 01, (2.27¢)
Lm iH = 0 (2.27d)
lm r(VxH) = 0 ' (2.27e)
ki >0 (2.27)
and
s(V(V-H) + k{H) = 0 in Q (2.28a)
| H-n = 0 on 09, (2.28b)
V-H = 0 on 8% (2.28¢)
lim ViH = 0 (2.28d)
lim Vr(V-H) = 0 (2.28¢)

r—00 \
ﬂ ki >0 (2.28f)

As Webb demonstrates, the solutions of (2.27) and those of (2.28) are stationary points
of Variational Principle 2.1. The static solutions for which k¢ = 0 are not considered.
The divergence-free solutions of equation (2.27) are the \physical modes of the guide
whereas the solutions of (2.28) are irrotational and do not correspond to any physical

-19 -

*

3




e

modes. Since the frequencies of the solutions to (2.28) scale with s, there will be

infinitely many of these solutions as s approaches 0. This is the origin of the spurious

modes which occur with Variational Principle 2.1 when s is set to zero.

From (2.24), the guided modes of 1sotropic guides satisfy kZ < B%/e, . It is

shown in Appendix 2 that the spurious mode satisfy the relation k? > s32. Therefore,

if we set s = 1/e,,, the solutions obtained with Variational Principle 2.1 will be free of

spurious modes in the interval kZ < f%/e,. This technique will be used to eliminate

spurious modes from the numerical solutions of isotropic guides.
Al

It remains to justify the imposition of the boundary condition H-n =0 on 99,

ortr the physical modes in Variational Principle 2.1. This can be done as follows:

1

From (211); (VxH)xn = 0 on

= K} (VxH)xn = 0 on

= [VxKY(VxH)] n = 0 on
= H:-n = 0 on

L4

This boundary condition is therefore consistent with the physical mode equation which

are solutions to (2.27).

®

-90 -

a0,
on,
of,
of,

from (2.22) if kg #0




Chapter Three "

The Conventic;nal Finite Element Method

4

1. The Isotropic Guide Case y

The finite element method (FEM) will be presented in this chapter. Ch.apter 3
applies the FEM only to the core region of isotropic dielectréc guides and Chapter 4
extends the technique to handle the infinite regions by introdﬁcing a new tﬁae of infinite
element. The theory of Chapter 2 is gpplicable to the more general open anisotropic
guides, but because the anisotropic ciz was not implemented in code, the numerical
method presented in thé next two chapters is restricted to isotropic guides onﬂly. This
restriction is not imposed by the FEM; this method has previously been appiied to

lossless anisotropic closed guides composed of materials having permittivity tensors

that are diagonal [6,56] and non-diagonal {10,23,57].

The boundary value problem for isotropic open guides is the same for anisotropic

€
open guides except that all occurrences of the relative permittivity tensor K are replaced
by the scalar €¢,. The modes of isotropic guides can be also determined with Variational

Principle 2.1, in which K is again replaced by e,.

he I}BEM theo;y pertaining to the vector Helmholtz problem is well established
and therefore its presentation in this chapter is brief. Only the concepts that are rele-
vant to this thesis are emphasxsed many references to more detailed treatments in the
literature are provided. g’or an, introduction to the finite element method, the reader is

referred to Zienkiewicz [3] or Silvester and Ferrari [4].

o

. 2. The Unknown Field Components

One advantage of restricting the consideration to isotropic guides is that the

number of unknown field components is halved. To demonstrate this, we first decompose

-921-




7

H =

P

where H,, ,H.; Hyr Hyi, Hep and H, , arereal valued functions of (z,y,%). Substituting

these fields into the isotropic Helmholtz equation (2.22):

r 2
. o

N
Ik

&

since, as shown later, the FEM mesh defines a piecewise homogenéous problem region.
By equating real and imaginary parts on both side?, we
the variables (H',r,H,,r, —-jH,.). and sz,,,jH,,,,H"). It is therefore necessary to solve
for only half the components, and the transverse field H (recall that H = He~75%) is

(Her +jHa)i + (Hyr +jH,)J + (Her +5H)K

Hyr + (=

iavee

redefined as:

where H;, H, and/H, are real valued functions. This simplification is not possible in

i

”
Oy0z

H(z,y)

s2n., -
i[p2n.,

il

3

(-2t + (-
[-Bater+ (-

- (

2
+ ,62 )Hzr -

& lij
+ b_y'i)(—Hzt) + ,B'a_yHyr)] +

52
dz?

:B ’Q"—)Hyl + —

the components H into real and imaginary parts:

ﬂga;(—H,.)] +

0
Hy: + (—a_y; + ﬂz)Hzt t IBEHzr]

& &

= 527 t 5.5y
o2 U2

3209

H,r)| +
H..)]

62

0
+ gg7 (~Har) + S5 Hy)

He(z,y)i

the general anisotropic guide case.

~22 -

|

The assumption of homogeneity (i.e. €, = constant) has been made in this derivation

+ Hy(zsy)j - sz(:z:,y)k

Hzr + szn
Hyr + iji
Hzr + szn

" H,, + jH.,

Hyr + 7Hy

- Hz: + ]H:r

(J

tain identical equations in

S



3. The Rayleigh-Ritz Method - :

-

n

‘ ‘ The functional of Variational Pri;xciple 2.1 lends itself readily to the applica-
tion of a numerical procedure called th; Raylesgh-Ritz method or the direct method \
T68,p.162][51,p.193]. This technique is used to locate approximations to the stationary
points of the curl-curl functional i the space spanned by the N linearly independent

vector functions

\ F'l, F|21"')':|N

which are called trial functions . The trial functions must individually satisfy the
essential bqunaary conditions stipulated by Variational Principle 2.1. In order to locate

the stationary points, H is written as a weighted sum of the trial functions:

ay T E'll E'l

‘ - a H . H

H = X; aH, = 2 :2 = "aTf .2
- an Hy ' Hyl - A -

and then substituted into the kZ (He™75%) functional (2.26). The unknown weights a,

2 2 2
are determined by setting the derivatives gf“l, %, ey g—ff; to zero which is equivalent to

taking the first variation of kZ. From this a generalised eigenvalue problem~4a = vBa

- can be derived which yields N eigenvalues v, and eigenvectors a,:

1
2

S e n

v, = kZ(af ey, 1<i<N

Hy

The objective of this thesis is.to obtain the p lowest modal frequencies but

@
the Rayleigh-Ritz method cannot guarantee this for any choice of grial functions. To
- 1

demonstrate this, consider the trial function space spanned by the trial functions (l:l, =

Hoi1s 1‘5 i < N), where (H;,H,,. ) are the actual solutions in increasing eigenvai;xe
order. The eigenvalues obtained with the Rayleigh-Ritz method are then (v; = kg(, =
kg(H,'He-‘Jﬂ‘) ; 1 <1< N) which are not the lowest N ‘eigenvalues (the fundamental
mode is missin;g). As shown by t%]is example, the ability of the Rayleigh-Ritz method

/ to approximate the first p modes can depend strongly on the choice of trial functions.

- 93 -




When this method is applied to the analysis of open guides, the number and variety of

trial functions should be such that each actual mode can be modelled to an arbitrarily

close approximation.

4. The Finite Element Method
The FEM is a special case of the Rayleigh-Ritz method where a finite problem
region 5 has been subdivided or meshed into L non-overlapping subregions such that

Q2 = QIUQZU...UQL

N

and NN, = 0 if i#j

To each sub-region ¢ there corresponds one or more trial functions which are zero outside
§),. The term finite element refers to a particLlar choice of the ;ubregion shape and
the accompaning trial functions defined in its interior.d Many types of finite elements
have been proposed in the literature (see Zienkiewicz). In this thesis, the triangular
finite elements of Silvester [59] are implemented. As an example of problem region
subdivision, the core region of the coated cylindrical open guide of Figure 3.1 a) is
meshed with triangular elements in Figure 3.1 b). Note that the curved edges must be
approximated with line segments. This introduces an error in the results which can be

reduced by using smaller elements.

Tl;e permittivity is constant inside each triangular element to facilitate the in-
tegration of the functional (see section 7). If the permittivit; in any region of the
original problem varies continuously. thfzn it must be approximated in discrete steps by
homogeneous elements. This approximation can again be improved by using smaller

1
elements.

5. Triangular Finite Elements - : .

Triangular elements possess a local coordinate system (see Figure 3.2) in which
the pc;sition of a point P is given by the relative areas ((i, (2, (3), called zeta coordinates,
of the triangles formed by joining P to the three vertices with line segments. ;I‘hat is

area of the triangle 23P
area of the triangle 123

C1=

- - 924 -
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Figure 3.1

An example of problem region sub-division using triangular elements.
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a) b) \

Figure 3.2  The zeta coordinates in a) the z-y plane and b) the ¢;-¢, plane. The point
P in the z-y plane maps to the point P’ in the $1-¢2 plane.




- area of the triangle 31P
area of the triangle 123

T
*»
I

area of the triangle 12P
area of the triangle 123

(3 =

The trial functions associated with triangular finite eiements are called a-polynomials
and each is a function of the zeta coordinates ({y,(z,(3) . The number of a-polynomials
defined in each element subregion is no = (n + 2)(n + 1)/2 where n is called the order
of the element; ng is the number of polynomials required to form a complete set of n**

order trivariate polynomials in each element. :

The a-polynomials functions are interpolatory at ng regularly spaced points
called nodes in the triangle; that is each function has unity value at its particular
node and is zero at all other nodes. Figure 3.3 illustrates how the nodes are positioned
for element orders 1 to 4. Each node and corresponding a-polynomial is designated by

both a single index and a triple index.

For each order n, the ny a-polynomials are defined [59] in terms of the triple

indices as follows:

Qe = Ps(Cx)PJ(Cz)Pk(Ca) (3-1)
) L inC-q+1
(2= iz
where Pi(() = =1
1 ifl=0

6. The Field Vector Trial Functions

X - . . .
Inside each triangular element, the H field is written as-a weighted sum of ng
“vector trial functions H; in which each of the three components of H is assigned its.owni

a-polynomial trial function at every node:

- 27 - bY
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a) order 1 b) order 2 c) order 3

Figure 3.3 The single and triple indices for triangular element orders one to four.
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kg

1

no

= Z [a,, (€162, C3) 1 + ay a((y,¢2,€3)i — Jai: 0‘(41:42’43)1‘]
=1

no

= Z [aizi + ayj — jau“]“’((n(zafa)
=1 ?
where the single index node numbering instead of the triple index is used (see Figure 3.3).
The scalar components of the [a,,1 + a,,j - ja, k] vector a}re the unknown weights. Since
the a-polynomials are interpolatory, the vector [a,.1 + a,j - ja,.k] is the vector value
of H at node :. Another proberty of the a-polynomial trial functions is that the value ;
of H along any edge depends only on the vector weights of the nodes located on that
edge. Elements that abut each other therefore have the same trial function values along
the entire length of the shared edge'. Elements which satisfy this property, which is

necessary for the continuity of H, are called conforming elements.

7. Local Matrix Assembly

The next step in the Rayleigh-Ritz procedure is to insert the trial functions into
the functional

(H) = kZ(He?5%)

Ao ~
/ /[(v X (He”’ﬂ‘))*:l-(v x (He™78%)) 4 5(V - (He™7%%))"(V . (He-ff”))] dzdyd=:
z=0 Q ‘

Ao )
/ /((He"ﬁ’j)*- (He™?P%)) dzdyd:

=0 Q

In the FEM code, the integration of the curl and divergence terms in the numerator of
the functional and the magnitude term in the denominator are performed separately and

one node pair at time. Consider for example the node pair (u, v) of element ! ; insertion

-29 —
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// V x (H, e”7P5))". (VX(H e™%%)) dz dy dz

=0 Ql

v

Ao
/ / (V ) (Flue"fﬂz))* (V . (F‘l,,e_’ﬂz)) dzdydz

=0 §;

/(F‘Iue"ﬂz)' (H,e™7%%)dz dy dz

=0 Q,

i

[-au: Qyr
uy
Quy M Qyy
auz auz
L -
4T
(auz Qyz
uy
Quy N Qyy
Qyuz ] Ay,
0]
au.t aUI
+®
uy
Qyy 0 Gy
Ay ] - Qy:

where (Q, is the element subregion and the (M*¥, N*¥ O"") matrices are given by

[ Ao A
;—;fﬂzo.. aydzdy f( au a—o’-'-h)dzdy éf(Tﬂau -%")dxdy
Q] 7]
Py A By
M* = | Tfi-5e g dzdy 2 f(Bauant G ) dady = J(=Boru B 1dzdy
2 N7 7
Ao A
:ﬂ—ﬂ%—’i“-a.,)u:dy ;—:’-ﬂ—ﬂ%’*av)dzdy (rf(aa 29"—"' %""a—a’“)dzdy
L o Q
( Aof"" 92y yzdy Aofgﬂ-n. Badzdy o f(~p%ua,)dzdy]
. &
Nt = | Aof%Bptdedy ao[I Smdady do f(—p%au)dady
117] ! 17
Ao f(~Bau 8f )dzdy Ao f(-Bau Bgt)dzdy Ao [Bauaudzdy
Ql Q nl J
-30 -




=

- /‘v, B A
. . ! '
~ 1]
1 )&ofa., aedzdy 0 0 R =
1
]
O = 0 Aofa..q'rvdzdy 0 .
L]
0 0 ,\ofa.. aydzdy
L Qy i

The elements of these matrices are integrated by converting the variables of integration
8

from the (z, y) to the ({3, (2) variables and then ma.kiné use of the following matrices:

<

. 1 1-(2
Too = 2 / / o @y d€,dC
=0 (,=0
da, Oa ‘
-(rg) _— ZTuv
K.P = / f an va d¢,d¢, \
42—0 C,—O
1 1-(
Oa
(rn _ u
Luv - / / 3(;: Qy dCldCZ
(,=0 (,=0

The details of how these matrices, called universal matriges , can be calculated are given
in references [59] and [60]. The universal matrices need only be computed pnce and then

stored in a sequential disc file for retrieval during the execution of the FEM program.”

8. The :Application of the Bodndary Conditions

The above H, trial functions do not satisfy the essential boundary conditions
of Variatiqnal Principle 2.1 which require that the trial fields be tangential \ﬁo electric
conductor surfaces and normal to magnetic conductor surfaces. In the finite element pro-
gram, the imposition of these boundary conditions occurs only after the (M*?, N** O*?)
matrices are calculated because it is computationally more convenient. They are im-
posed by modifying these matrices to arrive at the same matrix equation that would
have resulfed if trial functions satisfying the boundary conditions had been used from

the start. - .

Y . T
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As an illustrative example, consider the node pair (u,v) where the field at node
u is not constrained by any boundary copditions but node v lies on a 02, boundary

surface. The integral of the curl term for instance yields:

// (V x (Hye ?P5)". (Vx (Hye™?%%)) dz dy d=
=0,

T
Quz My, My, My Qyz

= Quy le M22 M23 a,,y
Gy, Mz Mz, Msy Qy:

Since the H field is normal to the 0€2, boundary surface at node v, the unknown vector

[@.zi+awyj - 7a,:k ] can be expressed as a normal vector: |

H = Gyl + Guy)] — Jau:k = a@un = aunnzl + aynnyj

node v

{
where n = n, i+ n,j. This implies that a,; = @ynn:, avy = avnny, and a,,; = 0, so that
by resolving the trans#rse components into a single normal compone;i’a.nd eliminating

ay., the integral becomes

/ / (V x (Hye™?8%))" (v x (Hye™7#%)) dzr dy dz

z=0 ﬂl i -
T
Quy M]] ny + M12 ny
= Quy My n, + M2, Ny Qyn
Qy: M3 n, + M3y n,

A

The 'modified M"* matrix has only one column. For cases where the fields are cen- -

o

strained on t’:he node u as well, a similar manipulation must be peﬁormed on the rows
of the modified M** matrix. The type of manipulatid® depends on the applied bound-
ary condition. All nodes are ’éésumed to each beiqng to one of five categories labelled
“Fr, 487, “Y”, “O” and “Z”, as shown in Fiaure 3.4. The “F” nodes are not con-
strained by any boundary surface and retain all three weight variables (ayz, auy, a.:).

The “S” nodes are located on a straight electric conductor and therefore their transverse
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label F S - Y 0 y/
field ' )
components (Hz, Hy, H) (He, Hz) (Hz) (Hx) none
e
H
{4 ‘
H S ®
examples - T 4 'i/ g
/ » SN
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The five node categorics.
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components (ayz, Gyy) are resolved into a single tangential component a,; and the a,,

component is retained. The; “Y” nodes also lie on a 0§, boundary but at a'location
where two boundary lines meet at angle other than 180°. Since two tangential compo-
nents cannot co-exist at one point, the transverse components are simply eliminated for
this case and only the a,,, C(?mponent is kept (this is an approximation since the actual

field may be singular at this point).

2
The “O” case occurs where two 0X), boundary lines meet at 180° or where a

0Q, and a 0, boundary line meet at 90°. In this case the transverse components
are resolved into a single normal component a,, and the a,, component is eliminated
as was shown in the above example. Where two €1, boundaries or a 0§, and a 92,
boundary meet at angles ot.her than 180° or 90° respectively, the “Z” case occurs and

all components are eliminated.

9. Global Matrix Assembly

Y

By combining all the contributions from each node p;.i—r\in every element, the k¢

functional for the entire finite problem region {15 can be obtained:
’ a*Aa

aTBa

where (A, B) are the global mat\rl'ccs of the discretised problem and

. T
a = [alz a1y a1y A27 A2y Q22 .. ]

ki (He %) =

is the vegtor consisting of all unknown z,y,z,normal or tangential component variables.
nown variable associated with a particular node is coupled algebraically only to
variables of the other elements that contain the node. The A and B matrices
se. To locate the stationary points of this functional, the derivatives of

k# with respect to each unknown variable are taken and set to zero; this yields the

following generalised eigenvalue problem:
Aa = kiBa
This is be selved numerically by an eigenvalue solver program (see Chapter 5). The

approximate modal normalised frequencies are the square roots of the eigenvalues and

the H field distribution is given by the eigenvectors.

~34 - \C



e L Y

e e e e s s o ai i R Sn Voan i€ T ke Awnn YL B TS

Chapter Four

. Infinite Elements

1. Elements for the Infinite Regions

Finite elements cannot be used to megh the infinite transverse regions surround-
ing an open guide but infinite elements, which are elements with infinite area, can be
used. Man‘y infinite elements have been proposed [18,19,20,61,21,62] for solving deter-
ministic (i.e. non-eigenvalue) unbounded problems in other éiseiplifles of engineering
such as fluid dynamics and mechanics. Tﬁe shape most ueed in these references is the
flared parametric infinite element shown in Figure 4.1 which results from the mapping
of a semi-infinite strip in the {-n plane. The trial functions’selected by each author
are much more varied however, since they are specially selected to reflect the actual
solution’s asymptotic radial behaviour which depends strongly on the type of ptoblem
being solved. Infinite elements suitable for extending the FEM to open gmdes, which

present additional difficulties, are discussed next. The resulting method is called the
Finite/Infinite Element Method. ‘ ‘

7

2. The Infinite Element Mapping and the Azimuthal Trial Function

Parametric infinite elements [19] are chosen for this thesis because their flexible
shape can be used to mesh a wide range of problem geometries. To avoid having the
semi-infinite edges 1 and 2 intersect, the angles 6; and 6, in Figure 4.1b are required
to be greater than or equal to 90°. The mapping function which maps any point in the

-1 plane into the z-y plane is:

e = a(3)a-¢ v o= w)-g
+ o509 +ou(Ee-0 o
+ wa ()¢ + w(FEe .
+ oz (5S¢ + wa(FL)¢

Because it makes the integration of the infinite elements easier (see section 5), the

mapped ir(iﬁnite elements are constrained to be symmetrical, that is the angles 6, and

t
N
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92 must be equal. Since the infinite element adjoins a triangular elem\r\t on an edge
with n + 1 nodes, the infinive element also has n + 1 nodes along that edge znumbered
locally as shown in Figure 4.1b. Just as for trxa.ngular elements, one mtefpolatory
vector trial function is associated with each node. For each cornponent oj.'/t’he field at
‘;xode 1, the trial function is of the form ,()v(£) ; the n and £ dependence are thus
separate. As shown later, 7(0) = constant and therefore along the edge shared with
the finite element, each component varies as ,(77) . To achieve field continuity with the
adjacent triangular element for any values of the nodal weights (a;, a,y, @, ), each z/),in)
function should have the same variation along the shared edge as the corresponding a-
polynomidl in the triangular element. By defining the loc;a’.l coordinates 7, = (1 + ny/.‘Z
and 12 = (1 — n)/2, which are equivalent to the corresponding triangular element zeta

coordinates, the required ¥ function can be written

1~ 1
: biln) = Pioa(gL) Papro(52)
= }):-—1(771) Pn+l-x(772) i=1,2’-"’(n+1)
H(ﬂ’-:l-—) fl1>1
where P(v) = 9=1
1 . ifl=0

which is similar to equation (3.1) . The remaining part of the variation of H is described

by «v(€) which is called the radial trial function.

\

3. The Radial Trial Functions

2

The choice of radial trial functions must take into consideration the solution’s

“actual radial behaviour. The interval 0 < r < 0o can be thought of as consisting of two

parts, near field and the far field or asymptotic region. .

The main difficulty in solving the unbounded Helmholtz eigenproblem is- that

the actual asymptotic radial field behaviour is not known before the problem is solved.

This difficulty is not éncountered in open deterministic problems such as the Laplace

problem for which the asymptotic field behaviour is known. If a finite/infinite element

scheme is used, the correct radial trial functions can therefore be incorporated in the
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Figure 4.1  The flared parametric infinite element in a) the £-n plane and b) the z-y
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infinite elements. Alternatively, a number of other approa;che:s can be employed, such

as ballooning [14;16], or coupling the FEM to a surface integral method [63,64].

For the scala.rJ IjIelmhgltz eigenproblem described by the differential equation
V%4 + (erki — §?)¢ = 0, this difficulty can be circumvented. It is possible to recast
this problem [15] by making k = /8% — €,.k2, the knovsrm quantity (instead of 8) where
€re is the relative permittivity 7in\the exterior, and by modifying 1:.\he scalar functional
accox:dingly. This makes the asymptotic field behaviour known in advance, since i\t is
specified by h. The same techﬁiques available for handling the unbounded exterior

region in the deterministic case can therefore be used.

This parti{:ula.r strategy is not applicable to the vector Helmholtz eigenproblem
because the integrand of the functional contains teris in 3 as well as 2. To overcome
this difficulty, Yeh et al. [22] used the FEM with parametric infinite elements which
incorporated a radial trial function of the form v = ™" where @ > 0. The asymptotic
field behaviour is therefore specified by the decay length 1/a which is globally defined for
the whole problem.. ]éecause the correct decay to specify is unknown, an outer iteration

loop was added to the FEM which optimized the @ parameter for each mode of interest.

Rahman and Davies [23) employed similar elements whose decay was specified in
the « direction by e~*/L= or the y direction by e=¥/Lv or both by e=*/L==¥/Ly The
total number of L decay lengths for the entire problem can be greater than one but
only one was assigned to each element. Th%flecay lengths were optimized in an outer
iteration loop, as with Yeh et al.. Methods such as these which employ infinite elements
incorporating a single optimized exponential &ecay in each element will be referred to

as optimsized single decay (OSD) methods.

Although it was formulated for the scalar Helmholtz problem, the two techniques

proposed by Hayata et al. [65] are OSD methods which iterate to the optimal exponen-

““tial decay parameter efficiently by using either the previous eigenvectors or the previous

" eigenvalue to calculate the next estimate of the decay length.

The radial trial functions used in this thesis make the above decay length opti-

mization loop unnecessary and conserve the simplicity of the FEM. These trial functions
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are of the form

ﬂy(f’ ao, al’ cee sy aq-l) — ao e_tlLo + al(e—E/Lx — c"‘f/Lo)\

+ oo 4 aggey(eT 8wy — ¢/ La)

where the decay lengths (Lo, Ls,...,L,~;) specify a sufficient range of decays to al-
‘low the ~ trial function to adequately model the asymptotic behaviour of all modes

of interest simultaneously. These decay lengths are not optimized so the method is _

called the multiple fized decay (MFD) method. The addition of the unknown variables
(a1,...,a4-1) does increase the problem size relative to the OSD method, and therefore

also the execution time of the eigenvalue solver but this is offset by the removal of the

outer optimization loop and the fact that all p modes are found for in one execution of

the solver.

The MFD trial functions also provide superior modelling in general of the actual
radial field behaviour because the fields are a linear combination of ¢ exponential decays

iﬁstead of just one in the case of the OSD method. I_'“or example, the modelling of field

variation in the near field region is improved with the MFD method, since a certain “

number of radial trial functions with short decay lengths can be made available to
supply flexibility in approximating the fields near the core. The superior modelling
ability of the MFD method is particularly pronounced near the cut-off frequencies of

the modes as the empirical results of section 5.6 demonstrate.

4. The Full Trial Function

Comblmng all the azimuthal ,(n) functions and the radial MFD 7({ ) function

into a single expressiorn, there obtams

n+1 -2
E ¢1(n)(7izi + '7tyj - j’Yi:k) '(4.2)

i=1

H(n, ¢)

]

where . %y = a e ¢l 4 Z Qims (67¢/Em — =8/ Lo)

m=]

g=1
Gioy e—&/Lo + Z Gimy (e~ §/Lm _ e—E/Lo)

| - m=l

i

Yiy

o
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Yo = e E0 4+ N g (e7t/Em — ooy

m=]

For { = 0, the nodal trial functions reduce to v,z = @joz, Yiy = @ioy and 7i; = @,p:. The
unknown variables (a;oz, @10y, G10z) are therefore the values of the field components at

the (n + 1) nodes of each infinite element.

Just as for triangular elements, the trial functions are modified by the application
of the electric or magnetic conducting wall boundary conditions on any of the three -
edges. As before, this modification occurs after the integration of the functional by
resolving the unknown variable components into normal or tangential components, or
the removal of components (see section 8:>f Chapter 3). Note that these trial functions
also satisfy the required far-field boundary conditions- (2.25¢), (2.25d) and (2.25e). ‘

- |
5. The Integration of Trial Function Terms 1
|

Let n be the order of the triangular elements. When the trial functions of (4.2)

are inserted into the kZ(He™’#%) functiodal and expanded, both the numerator and

- -

denominator coasist of a series of terms of the form

and J = -g-%‘;'f)l is the Jacobian of the map ém the (z,y) to the'(£,n7) domain.
For the mapping of equation (4.1), it can Nown that J is of the form

where J; > 0 and J; > 0, and therefore the general functional term I is

1 oo -
I(Lu,v,w,Jy,J2,J3) = // e“E/Lf" 7" (J1 + J26 + Jan)¥ dldn .
- =10 /) -
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A simple method of determining this integral does not exist as in the case of triangular
elements for which universal matrices can be defined. However, if w = 0, w = 1 or

J2, J3 = 0 the integration of I can be performed using the simple formula

1 oo 0 if v is odd
// e~/Lgunt dedy =
-10 —"Z—I‘—(ﬁzl_lr if v is even
(v+1)L
If w = -1, the I integral is
! 1 o0 . d -
Lowe =1, 0 Ja) - = // e T X
. <10

For this integral, a Gauss cubature integration scheme [21] and a semi-closed exact
formula were attempted. Both were found to be inadequate because their accuracy was
not uniform over all possible values of L and Hﬂ . The innaccuracy in the semi-closed
exact formula was due to the round-off error that occurs in the summation of very large

terms of near equal magnitude but opposite signs.'The Gaufs cukature method was also’

found to be too slow because of the high orders of Gausg-Jlegendre and Gauss-Laguerre

quadrature that are required to achieve acceptable accuracy.

To resolve these difficulties, the integrand is simplified by imposing J3 = 0 which
is the same as requiring that the infinite element shape be symmeétrical in the :1:;y plane.

The following semi-closed formula can then be used [66,p.321]:

1 oo

1
, —&/L gu v de d
[o/e € 1" T dedn

%

r 0 if v is odd

1l

(v .;.—21)J2 [(“'1)“—1<%)" exP(ij;) EI(IJT};)
. N + Z_:l (k—1) ("_j_:)""'k(%)_k,] if v_;i&:t?v?n s

)
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symmetrical infinite elements I1-I in mesh b) by the addition of finite elements F,-F}.




where Fi is the ezponential integral fundtion [66,p.927]:

- (k- 1)
Ei(~z) = ¢7* Z(—l)" '—;T— + R, for z>0
k=1
n!

where |R,| < —E‘-ﬁ

The use of symmetrical infinite elements does not restrict the problem gédmet?/since

any problem region meshea with asymmetrical infinite elements can be converted to a

H

symmetrical infinite element mesh with the addition of triangular elements. Figure 4.2
shows an example of this conversion. Such a scheme increases the number of unknown ~

N >

variables but simplifies the integration code considerably and improves the accuracy.




Chapter Five ‘

Results

£

¢

1. The Fortran Program .

The program “OMAX” was written in Fortran to implement the MFD method

presented in Chapters 3 and 4. Two auxiliary programs, UNIMAT and MATPST, were

also written to generate the required universal matrices.

The OMAX i)rograrn accepts a data file as input which describes the 8 values,
the problem mesh, the boundary conditions and the ;naterial permittivities. For each
B value, it assembles the global matrices, solves the generalised eigenvalue problem and
outputs a list of the first p eigenvalues. If requested, OMAX will also generate a file
with plotting information that can be used to display field intensity graphs or transverse

o

field vector plots.

—

The ¢ fixed decay lengths (Lo, L1,...,Ly-1) that are supplied to the trial func-
tions of each infinite element are selected automatically by the OMAX program using
the parameters-¢, Cq and N, (see below) which are supphed in the input file. In the
examples, ¢ is set to either 5 or 6 with good results. Increasing ¢ causes OMAX to
allocate more radial trial functions to each infinite element which tends to reduce‘the
error in the results but also increases the computation time.

The decay length selection algorxthm starts by calculating an estimate L;, of
the shortest decay length required to model any mode for a particular choice of the
phase constant 8. Let €rmax and €rmin be the maximum relative permittivity of the
problem (usually located in the core) and the minimum relative permittivity (usually in
the infinite region) respectively. Now for an open guide ponsistirig simply of a circular
homogeneous éore (of any ra&lius) ofarelat.ive permittivity €.max surrounded by a cladding

of relative permittivity €pmi,, the following relation holds [67,p.367]: \

) [max(h) ]2 = ( €rmax — €rmin )k02

T

where h = /8% — €.k§ is the transverse wavenumber anywhere in the cladding. Putting
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this in terms of max(k) and £ only,

: [mex(R)]? = (1 - £=i)g?

€rmax

L d

The asymptotic radial behaviour of the fields of this guide is % [48,p.297], and there-

 fore an estimate Lp;, of the shortest decay length is ~

S T 1
min ma_x(h) (1 _ ;"L“'_)%ﬂ

Starting with this estimate, the decay lengths are generated by repeated multi-

plication by the coefficient Cy:
Liyw = Cul { '

The user selected parameter Cy theiefore controls the distribution of the decay lengths.
For all the test examples, it is set to the value 10, This value causes OMAX to specify
decay lengths which are very large relative to the core dimensions of the guides, and

thus permits the modelling of the modes very near to cut-off.

Since the fields may have features which are small in comparison to max(h), the
user can specify a number N,; of near-field decay lengths. These are also genergted
from L,,;, by successive division by Cy. In summary, all decay lengths are generated by

the formula:

L' = Lpw(Cq)*~Nat i=0,1,...,(g-1)
]

Most of the computation time is spent assembling the infinite elemeritl global matrix
contribution and solving the generalised eigenvalue problem. Although the global ma-
trices are sparse, a dense matrix solver is used. The solver is compased of EISPAC_K
routines [%‘1 which convert the generalised eigenvalue problem to a standard eigenvalue

problem, tridiagonalise the resulting matrix aud then use Sturm sequencing to locate

»
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2. The Slab Waveguide
%

As a simple e ple and test of the MFD technique, consider the problem of de-
termining the TM phodes with no y variation of the slab waveguide shown in Figure 5.1a.
. The guide consisté of a homogeneous dielectric film with relative permittivity e, = 3

and thickness ¢, depeﬁ on a conducting plane located at z = 0. The surrounding
h

homogeneous cladding relative permittivity €,, = 1. An analytical expression for

the E, component of the TM solutions is [44,p.114):

/ N
ik
N s. dZ for 0<z <t
sin k4t
E: = —h (5.1a)
kT for z>t

where k4 and h are the transverse wavenumbers satisfying the equations

( ke, = B2 + k3 (5.1b)

‘k(f &y, = B2 - R? (5.1¢)

The modes are the simultanous solutions to equations (5.1b), (5.1c) and_ %he charac:

&

teristic equation
AR

kgt tan kgt = :—'lht " (5.1d)
r2

It is impossible to apply the infinite/finite element method to this problem in its un-
modified form. The problem has no core region of finite size that can be meshed with

finite elements and infinite elements that extend in the +y or —y direction cannot be

'
[y
|

used, since their trial fields decay in these directions whereas the actual solutions are
y invariant from (5.1a). To overcome these difficulties, two perfect magnetic conductor
boundaries (9€2,) are placed as shown in Figure 5.1bat y = 5{:21’ which produces a core \
region and permits a mesh like that of Figure 5.1c with 20 finite elements and a single
infinite element to be used. The actual solutions do decay in the 4z difection for z > {,
B ‘ so that infinite elements exteélding in that direction can be used. The modified guide

supports the following TE and TM modes:
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£ ' - . ‘ .
TM modes H;y =0
S;;};d: skmy for 0<z<t -
* d .
E. = o—he m = 0,1,2,...,(5.233,)
E:;,—,—cos kny for z >t
TE modes: E, = 0
(::;l;d: sinkp,y for 0<z<t
d .
H, = —he ' m = 1,2,... (5.2b)
%:h—tsin kmy fgr z2>1t
where kn, = -n;]—ﬂ ; ~ (5.2¢) -

which are simultaneous solutions of the following equations

ke, = B2 + k2 + K, ] | (5.2d) -

kle, = B — R: + K ] (5.2¢)

N kgt tankgt = N he (TM modes only) (5.2f)
[ 61'2 r

kgt cot kst = -+ht (TE modes only) (5.2¢g)

—

The frequencies of the TE and TM modes with m > 0 can be made a.rbltranly
large by reducing b-(from (5.2c), this increases the value of the constant k,, in (5.2d) and
(5.2e)). The lowest eigenvalues are thus the desired TM modes with no y dependence
(m = 0). ‘ \ L

P

The results from the OMAX program with second order trlangles and 6" decays
are shown in Flgure 5.2; the norrnalxsed B versus V coordinates are used The solutxons

to equations (5.2d,e,f) are also shown as the solid lines. Very close agreement is obtamed~

for the lowest modes from cut-off to the highest frequencies shown on the graph

? . e !
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3. The Circular Dielectric Waveguide

The next example is the weakly-guiding circular ws;,veguide of Figure 5.3a with
interior and exterior refractive indices of n; = Ve, = 153 and n2 = fe, =
1.50 ‘ respectively, and radius a. The closed-form analytical solutions to the modes
of this_guide, designated TMy,, TEy,, EH,, and HE,,,, (where u,v = 1,2,...), are
given i§68,p.225]. To reduce the problem size, only one quarter of the problem is
m}shed as illustrated in Figyre 5.3b; the mesh is composed of 12 triangular and 4
infinite elggxents. All modal H fields have ¢ dependence e/*? and therefore it can be
shown that they all satisfy either the perfect electric conductor (952,) or the perfect
magnetic conduétor (9Q,) boundary conditions on the symmetry lines (the z and y

axes). The correspondence between the applied boundary conditions and the resulting

modes is shown in Table 5.1. The OMAX program was run with third order elements

. .
. for each of the three pairs of boundary constraints in the table producing the results

in Figures 5.4a,b,c. The largest global matrix size was 335 which occurred when both
edges were set to the OS2, boundary type. The analytical solutions are shown as the
solid lines. The results are most accurate at cut-off and towards the higher frequencies,

and the maximum error in ko is 0.03%.

L4

) Table 5.1
{
' Boundary Conditions
- Resulting Modes
edge 1 edge 2 ,l -
o, o0, TMJO",‘, EH,,, HEy (v even)
oN, o, TEou, EHyy, HE,, (v even)’
o0, o0, . EH,., HE,,y (v odd) .

4. The Square Dielectric Waveguide

Using a point-matching method, Goell\[ZS] calculated the dispersion curves of
the modes of the square waveguide of Figure 5.5a forWhich no exact analytical solutions
are available. As for the circular waveguide, a quarter mesh was used and the three

pairs of edge 1 and 2 boundary conditions were applied separately. The point matching
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Figure 5.4a  The circular dielectric waveguide results using the
mesh of Figure 5.3b) with edge 1 = 80, and edge 2 = 9(1,.
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Figure 5.6  The square dielectric waveguide results using the i
mesh of Figure 5.5b). .
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The effect of varying s on the spurious mode using

the mesh of Figure 5.3b) with edge 1 = 3, and edge 2 = 3Q,.

Figure 5.7
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Figure 5.8  The square waveguide meshes used to calculate the results shown in Figure
5.9.
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Figure 59 A comparison of the OSD and MFD techniques for the fundamental mode
of the square waveguide. The solid curves illustrate the variation of bko with b/L using
the OSD technique for several valués of normalised phase constant 3. The dashed lines
represent the results of the MFD téchriique with 6 fixed decays for the same values of 8.
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results are shown in Figure 5.6 as the solid lines while the OMAX results appear as the

circles, sqhares and triangles.

With the boundary conditions on edges 1 and 2 both set to 0€2,, the execution
time for each S value cycle was 12 minutes on a VAX 8650 and the size of the global

matrices was 338.

5. The Effect of Varying the Parameter s

It 1s mentioned in Chapter 2 and proved in Appendix 2 that spurious modes
satisfy ko > /sB. To confirm this relation, the OMAX program was executed for
the square waveguide problem of the previous example by fixing the value of § at 20
while varying the s parameter between 0 and 2. In Figure 5.7, each column of crosses
represents the modes, both spurious and physical, that result from the execution of
OMAX; for a particular value of s. The total number of m?des i each column 1s 217
(this is the order of the global matrices) but only those which satisfy bky < 22 4 are

shown.

Figure 5 7 shows how the spurious modes grow in frequency as s increases,
whereas the frequencies of the physical modes remain nearly constant. Since Ve = 1.5,
V€2 = 1 and b =1, the spurious modes are eliminated completely from the propagating
range bB/\/er; < bko < bB/\/ery, or 13.33 < bko < 20, when s reaches unity. Reference
lines at s = 1 and bke = 20 are included in the figure. , )

Note that for this elimination method to be effective, all the essential boundary
conditions of Variational Princip'le 2.1 must be applied. Using a similar method, Rah-
man and Davies [49] describe an open channel waveguide example (on page 927) which

requires that s be set to 104 for the elimination of spurious modes. This may be due to

an incomplete application of boyndary conditions.

6. A Comparnison of the MFD/and OSD Techniques a)

The drawbgack of the OSD method is that the single decay length L must be

optimized, particularly near cut-off This is illustrated in Figure 5.9 in which the nor-

-—60J. J
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malised frequency of the fundamental mode is plotted versus the decay length'L (solid

lines) for the OSD method applied to the square waveguide mesh of Figure 5.8b. Each
curve represents a different value of § which varies between 1 and 3.75. The néed for
optimization is made appare17¢~.by the severe variation of the frequencies with decay

<

length.

The results of the MFD method applied to the mesh of Figure 5.8a are included
for comparison (horizontal dashed lines). Even though the mesh is smaller, the results

of the MFD technique compare very well with'those of OSD.

- 61..
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Chapter Six
Conclusions

Computational analysis and de'sign tools for arbitrarily-shaped and arbitrarily-
inhomogeneous unbounded dielectric waveguides (i.e. open guides) are of current in-
terest since analytical closed form solutions are pusua.lly not available and determining
the required modal characteristics-through experiment is expensive and laborious. This
thesis presents a numerical technique for the modal analysis of open guides in which in-
finite elementsare used to extend the finite element method to unbounded guides. This
technique preserves the linearity of the finite element method and a.llows‘ the problem
to be transformed algebraically into a generaliseci ’eigenvalue problem which yields the

first p modal eigenfrequencies in one pass of the solver.

Previously, the optimized single decay (OSD) method was employed which has the
disadvantage of requiring that the decay length be optimized separately for each mode
of interest. In this thesis, the multiple fized decay (MFD) method is introduced which
supplies each infinite element with'a weighted sum of decaying trial functions with fixed
decay length. The outer optimization loop is eliminated and each mode is approximated

more closely since the infinite elements dispose of more dégrees of freedom.

Further improvements can be made to the ‘MFD te{zchnique by incorporat}ng a

sparse solver into the code, since the matrices generated by the integration of the func-
tional are sparse. The integration itself could be improved by developing an error bound
for the exact integration of asymmetrical elements, thus removing the present restriction

of symmetrical shape on the infinite elements. | o

a "
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Appendix I

Proof of Variational Principle 2.1

.

Let D be the space of cdmplex three component ¥ector functions H(z, y, z) of the

4

form . - -

'H(z,y;z) = H(z,y)e??* = [Hi(z,p)i + Hy(z,9)i + Hi(e,p)kle™  B#0

which are infinitely differentiable in (1, zero outside {2, square integrable and satisfy
l;oundary conditions (A1.3) (see below). The norm is defined as

BN —

\.y

| = [ /H*-H\)da:dydz

Two preliminary results%that are required for the main proof are presented first. Let
F(H), Q(H) and N(H) be functionals which map from D into the set of real numbers.
In particular, let ) and NV be

) QH) = ¢(H; H)
(A1.1)
NH) = n(H;H)
. /
where ¢ and n are sesquilinear forms and therefore satisfy the properties
<
9(A;B) = ¢(B; A)"
(A1.2)

l

n(A;B) n(B; A)*

where A and B are arbitrary vector functions in D.

Let the symbol 6F represent the first ?ﬁatiQn of F(H) with respect to an
arbitrary change H, € D, that is B

F(H +H,) — F(H) = §F + O(|[H.[?) ‘

ot




Lemma Al.1

. h The first variations of Q and N are given by:
6Q = Re{q(H,;H)}
6N = Re{n(H,;;H)}
Proof:
The change in @ due to a change H, is:
Q(H+H,) - Q(H) .
= Q(Ha + H; H, +H) - Q(H;H)
= ¢(H;H) + ¢q(H;H,) + ¢(H,; H)
+ Q(Ha;Ha) - q(H;H)
= ¢(Hqy H)* + g(H,; H) + g(HuH,)  (from Al.2)
2Ref{ g(Hqa; H)} + q(H,; Hy)
§Q + O(|H.||*)

= 6Q = 2Re{q(Hs;H)} Q.ED.

Lemma Al.3

- If F=Q/N (N #0) then the first variation of F is:

| S$QN — Q&N
A o §F = e
/
. Proof: . .
* Writing @ = FN, the change in @ due to a change H, is:

QH+H,) - Q(H) = F(H+H,)N(H+H,) — F(H)N(H)

= [F(H) + 6F + O(JHJ?)][N(H) + 6N + O(|H[")] — F(H) N(H) -

LT . T

F 6N + 6FN + 6F6N + O(|JH,||?)

Clal R S

* = 6Q + O([H.|*)
, and since the term 6F 6N is of orders of ||H, || greater than one, we obtain "
w " §Q = ESN + 6FN \
C ” > g = GQZEI) (g
- (
S - QN ];2Q5N (v £0) QE.D.
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We can now proceed mtt&a main result of this Appendix, the proof of Variational

Prmcxple 2.1. The boundary conditions that are satisfied by any H € D are

& ,
Hxn = 0 on 09, {Al.3a)
sH-n = 0 on 09, - (A1.3b)
- rlinolo viH = 0 (A1.3c)
| lim Vr(VxH) = 0 (A13d)
rlixgc svr(V-H) = 0 (Al.3e)
The functional of Variational Principle 2.1 is
H) gH:H) &
k2 (H) = A = -
c® = N@ T R

Ao
/ ((VxHY K3(VxE) +s(V- B (V- H)) dedydz

= =0 Q
//H' H) dz dy dz
z=0 0
).
where ‘
Ao
¢(A;B) = / /( (V x A)'-K"I(V xB) + s(V-A)*(V:B) ) dzdydz
" =0 Q .
and '
] Ao
n(A;B) = //(A‘-B) drdydz
&" z=0 0

The matrix K~! is positive definite and s > 0; the functional Q(H) = ¢(H;H) is

therefore positive semidefinite. The functional N (H) = n(H; H) is identical to the norm
. i3y

which is positive definite. We therefore have kZ (H) > 0.

Now since K is real symmetric and therefore Hermifian, we have K'¥ = K and

KK-'=1 = KHR-12] = KK =1'= K= (K-, and
. g

-85 -
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. satisfy (Al.2):

q(A;B)

-

= Re{¢(Ha;H,) ~ kf, n(Hs;H,)} = 0 -

v .. -
. B A !
R n \a\//.l
, .
:

therefore K~! is Hermitian as well. Using this result, it can be shown that ¢ and n

» ’ . a

Xo .
//( (VxA) K (VxB) + s‘&V~ Aj"‘(V- B) ) dzdyd=
z=0 Q

Ao
L[ [(@xBY KT x &) + (V- A (V- B) ) dodyde] ™

+

n(A;B) = f/(A‘-B) dzr dydz

z=0 Q

= [7/ da:dydz]

z=0 |

= n(B;A)" o J

Hence from Theorem Al.1, the first variations of @ and N

2Re{g(ﬂa;H)} AX -

2Re{n(na;H)}

- 6Q"
&N

.

and the first variation of k¢ (H) is

QN — Q&N
N2

.2
&y =

from theorem A1.2. Now if H, is a st3tionary point of the tunctional k& then

&02 ' == 0 =

QH,)

N(]I-I’)(g‘Re{q(Ha;Ha)} - N(H,) 2Re{ (HmHa)} )

= Re{q(Hy;H,)} ~ k,Re{n(H;H,)}-= 0 = o

—- 66 -
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where kg, = k& (H,). When g( Hy;H,) and n( Ha;‘H.) are expa.nded', this becomes

L4

//((VxH)‘ (K“VxH.) + s(V-H,)" (V- H,)) dgdydz

z=0 Q
o |
- k;,/ /(H;-H,)dzdydz} = 0

Using the vector identxtxes

V.- (AxB) = B-(VxA)- A-(VxB)

(VU)-A = V.(UA) - U(V-A)
we obtain A
Ao ‘ : .
Re{ //(V-(H;X(K-IVXH.;) + H; - (Vx(K~'V xH,))
=0 §}

+ s[V-((V-H,)H) — (V(V-Ha))'H:])dzdy;iz

Ao

- k&/ /(H:'H,) d:r({yaz} = 0
z=0 Q .
. -}

an application of the divergence theorem yields !

»

Ao

Re{ / /(H; (Vx(K7'V xH,)) — s(V(V- H,)) - H; — k& H,)dzdyd:

z=0 Q —

+ f(n;x(ff-leH,)’ + (V-H)E)mdS} = 0 (A2
5

where S is the surface enclosing the volume of integration.

We will assume for the moment that H s zero on S but otherwise an arbitrary

vector in D. The surface integral is zero in this case and

// (B (Y x K7V x H,)

=0 Q

- s(V(V. H,)

) H - ko,(n,)n,)dzgzydz} = 0

- 67 -
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Now since H} can assume any complex value in the volume (2,0 < z < Ap) this
implies: %
Vx(K'(VxH,) - s(V(V-H,) - kLH, = 0 in Q
The volume integral of equation (A1.4) therefore vanishes and if we now let H, assume
any value on the surface S, then equation (A1.4) becomes
Re{ f(H; x (K~'VxH,) + (sV: H,)H;) -ndS} = 0

S

This ix.ltegral can be considered to consist of three parts:

Re{ j{(H;xK"(VxH,) + (sV-H,)H;)-ndS}
S
= Ref /(H;x(z{—lv§x H,) + (sV-H,)H)-nds)
A 2=0
+ Re{ /(H;x(K”VxH,) + (sV-H,)H;)-ndS} )
2 ®»
Ao , ¥

+ Ref /(H;x(K-IVxH,) + (V- B)H) nds )

aa
0<z2<Ap
= (A2.5)

Since
H(z,y,X0) = H(z,y)e™??* = H(z,y)e™??" = H(z,y)e™?° = H(z,y,0)
ALY

the first and second intégra]s on_the R.H.S. of (A1.5) are equal in magnitude but of

opposite sign (because the unit normal vector reverses direction), and therefore cancel

each other.

We have therefore

Re{ ¢ (H; x (K~'V xH,)) -ndS
[0 cm s

= Re{ /(H;x(I{”‘VxH,))*x}dS}’

< 50
< 0<z< Ao
= 0 '}&\
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Dividing this integral is into three integrals for each of the surface boundaries that

enclose the region 2 :

Re{ / (B x (K'Y x H,) + (sV- H,)B) -ndS}

o<8r<la “
Sz35A0
’ / : )
= Ref /(n;x(K-IVxH,) + (sV-H)H)-nds}

aq,
0<z<X0

1

+ Ref /((H;x(K-IVxH,) 4 (sV.H,)H])-nds}

+ Re /((an) (K'Y x B,) + (sV- H,)(E: - n) dS}

+ Ref /(( lim (v H2)) x (lim (VF K7V x H,)
' el ‘
0N+ (Jim (VFsV- H,)(Jim (VP HE - m) - rdgdz )
Roo0 R—o0
= 0
Note that for the third integral, the integration is performed over the entire ' lim r=R
surface, even though certain sections n%lt may not beIong to 2. This 1s possxble since

the H field is deﬁned as zero outside {2 as illustrated by the example in Figure Al.l.

"The integrand of the third surface 1ntegral is zero in Q as well because H;,H, €D

which implies hm (\/—H )=0, hm (\/-V xH,) =0 and hm (\/;sV H;)=0. If we
make H? zero on 9{s; but otherwme an a.rbkh'ary vector in D, then the second integral
vanishes and

Re{ _/(‘(nxn;) KTV XH,) + (V- H)(H; - m)dS } = 0

89: . ! 3 ' -
OSZSAO v .o

N
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Figure A1.1  The slab waveguide example of section 5.2 is u
integration over the 8., boundary. The boundary contour integration is performed over ,’
the 30, line segment, the semi-infinite 3 lines and the segment C of the circle r = R /

which is inside the 0 region. Since the integrand is zero outside 2, the integration can be ,
performed over the entire r = R circle (i,e. C U C). !

/

/
/

sed to illustrate the contour c’
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Since s H} - n = 0 on 02,, the second term in the integrand vanishes:

I
o

Re{ /((an:) - (K_IV(X H,)) dS}

an,
0<z< 0

~ —

Il
=

= Re{ /(H: - ((K™'V x H,) x n)) dS}

aq,
OSzSAo
rd

Since H? is arbitrary, this implies that the tangential component of V- H, is zero:
(VxH,) xn = 0 on 09,

This is the natural boundary condition on 912,.

If we now make H? zero on 92,, but otherwise an arbitrary complex vector in

D, then the first integral vanishes and

Re{ /((axH;) CKTNVXE,) 4 (sV-E)(H ) dS) = 0

N,
OSZSAO

Since H} x n = 0 on 0f,, the first term in the integrand vanishes:

Re{ /((sv-n,)(H;-n))ds} =0 -

an,
0< <o

Also, H* xn = 0 on 99, implies that H? is normal to the 8, boundary. This makes

H} - n an arbitrary non-zero complex number, and hence

sV-H, = 0 on 6Qo~ o
This is the natural boundary condition on BQO." /L//\ )
Q.E.D.
\ -
-7 - ’ /



" Appendix II

The Frequenéy Range of Spurious Modes

In this appendix, the result kg > /s 8 for the spurious solutions will be derived.

The spurious modes are the solutions to

sV(V-H) + kH = 0 in Q ’ (A2.1a)

H-n = 0 on 09, (A2.1b)

V-H = 0 on 89 (A2.1c)

lm VrBE = 0 " (A2.1d)

" lim VF(V-H) = 0 (A2.1e)
kf >0 (A2.1f)

where s > 0 and H € D (see equation (2.28)). Taking the curl of (A2.1a) and noting
that the curl of a gradient is zero, we obtain
sVXV(V-H) + kVxH = 0 in Q
= VxH = 0 mm £

The-sdlutions to (A2.1) are therefore irrotational and can be written as the gradient of

N
a complex scalar function ¥ as follows:

H(z,y,2) = C + ¥(z,y,2)
= G + ¥(z,y)eP f#0 )
A:y value of C; will a.llo;v H to satisfy (A2.1); the value C; = 0 is selected. Equations
(A2.1a) through (A2.1e) can therefore-be restated as follows: /
L. sV(VI) + kVP = 0 in Q
= V(V¥ + k—f-‘ll) = 0 in Q
= vy + ﬁ\ll = constant = T in 0
= [szlli + (—;- ~BHyle P = O, in 0 (j&2.2a)
v (Vi =¥ 8/0zi + 8/8yj)
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" - % _ 9 -ise
V¥ .n = on - an(¢e )
(6_111 e = ¢ on
on
oY
= = = 0 on
Ton » on
VY = (Vi - 52"!’)6_“9: = 0 on
= vtzw - ﬂZ‘/’ = on
lim Vr V¥ = 1_1‘;20 VT (Ve — jBvk) e — ¢
S lim (% - jBRk) = O
lim VrV2 = lm r(Vi - Tp)eT = 0

= rh_flgo\/;(vtzlﬁ - ) = 0

kZ >0
Equation (A2.2d) can be split into two equations:
A lim F Ve = 0
im iy = 0
Substituting (A2.3) into (A2.2e), we obtain also
lim r(Viy - f2) =
> Im(/FVH) - 8 lim (VP )
=  lim rViy =

] »

aga o
o0,  (A2.2b)°

o9, .
o, . (A2.2) .

(A2.2d)

(A2.2¢)

(A2.2f)

(A2.5d)
(A2.3)

Multiplying both sides of (A2.2a) by /7, taking the limit as r — oo and then substi-

tuting (A2.5d) and (A2.3):

; kel )
Clim Vr(IVE + (R~ )¢l

> ((m ViV + (T gy )

= 0 = lim /rC,
. r—oo,
- r ' ‘
= Cz = 0

[

C_T3-

I

/

lim +/rC

lim \/7— Cz
T—00




1

The constant C,; must vanish or else the R.H.S. is infinite in magnitude. Equation -

(A2.2a) becomes: {
Ay e i

[i4

N~

) 52 . ..
(Vi + (= -yl = 0 in Q
~ S -
g k2 ¢ '
= Vi + (jf’- = f%) = 0 in N (A2.5a)
— . | . , '
o Furl®: simplifications to (A2.2) can be made using
] k2 Towt
v Viy - B9 =\ - (X~ By +. 8% (from A2.5a)
o v ; .
k
= —2Ly
S .
AN
Making use of this relation and ko # 0, equations (A2.2¢) and (A2.2¢) become
Vipg — p = 0 on Of,
. k¢ .
b = —:9—‘ 0 on O,
= vy = 0 on 01, (A2.3c)
and t - ¢
% ¢ L b}
0 lim VAVI — B7%) = O
2
= lim /n ﬁ’—w = 0
r—00 3
= im ry = -0 - (A2.3e)
r—o00 K
_ In summary, equation (A2.2) simplifies to
2 k02 2 : .
Viy + (—S——ﬂ J¥ = 0 in £ (A2.5a)
_3_1/1 = 0 on 0R, (A2:5b)
2 an
s
’ Y = OX;)_n aQ, (A2.5¢)
"hm ViV = 0 (A2.5d)
r—oo R ’
1ir2° vry = 0 (A2.5¢)
s k& >0 i (A2.51)
- 74 -




For the special case of closed guides which are completely enclosed by 9, or- 88,
boundaries, it has been noted— [50] that the/solutiox.ls to equatiéns (A2.5a), (A2.5b)
and (A2.5¢) o:llly‘a,re equivalent to the TE modes of an equivalent homogeneous guide..

These TE modes are known to satisfy ky > /5 8. To prove this relation for open guides, ‘

Bl

consider now the following variational principle: 2 :

& ’

~

Variational Principle A2.1

Let S be the space of scalar functions u(z,y) which are
infinitely integrable in 2, satisfy Viu = 0 outside Q) are square
integrable and satisfy the prescribed boundary conditions:

\ . u = 0 on 00, (A2.6¢c)
. im VfVie = 0 g (A2.6d)

a4 o o 2.
. lim Vru = 0 (A2.6e)

then the stationary points u, of the functional

al

/ (Veu)'- (Vi) dzdydz ' .
] Flu) = 2 L u# 0 (A27)
/u'u dzdydz '
Q

are solutions to the differential equation:

o (
| Vu + F() = 0 in @ (A2.6a)
" MB W‘E(;re F, = F(u,) > 0 (A2.6f)
and satisfy tHe natural bqundary condition
% = 0 on 01, (A2.6b)
on : .

it addition to the above pfes;:ribed boundary conditions (A2.6¢c),
(A%'6d) and (A2.6e). "

ren =
Pn}of: i
in
First, we define -
Flw) Qu) q(u;u) .




ga;b) = /(Vg a)’ (Vi b) dz dy
A a - ° ™
\ ’ A
- nfa;b) = /a"bdzdy
Qa -
Since Q is positive semidefinite and N is positive definite, weshave F(u)(> 0. &ince
g(a;b) = [g(a;b)]*] and n(a;b) = [n(a;b)]*], the first variations on and N with respect
to an arbitrary change u, are: 4 . »
6@ = 2Re{g(ua;u)} '4 o
' ]
6N = 2Re{n(uq;u)}
also, the first }ﬂva.ria.tion of F' is
N p - Lo -%nN)y = 0 (N0
- N N L (
= 6Q - —Q—éN = 0 - ,
0 N .
.
= Re{ /(V,uu)‘- (Veu,) — Fu,)uju, drdy} = 0
. 4
4 ) “
_ the proofs of these\three results ar sxmxlar td those of Lemmas €Al 1 and Al 2, with
H and H, replaced wi Ug respectwely Settmg O0F = 0 to find the statxonar)
points u, , there obtains , ,
‘L 6F = = (6Q/\<—Q*6’18" (N #0)
¢ ’ |
= Re{ /(V,ua)ﬁ-(V,ua)‘ - Flus)uju, drdy} = .0
£
3
; using the vector identity V.- (UA) = (V.U)-A + UV,-A with U=u] and
., ’ h
™ A = V,u, , so that '
Ve (Vi) = (Val)-Va, + Vi,
. = (Veuy) Viu, = Vi(uzViu,) — uj V',:u, (A2.7)

L
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there obtains z
Re{ J(Vi-(usViu,) - u;Viu, — Flu,)ugu,)dzdy} = 0
4 .
Re{/ u;( Viu, + F(u,)u,)dzdy — }{( u; Vius)ondl} = 0 (A2.8)
Q 1 ’ C
where the divergence theorem has been used and C is the boundary contour enclosing
Q. Making u} zero on the boundary but otherwise arbitrary in ), the surface intégral -
vanishes and we have that all u, satisfy the differential equationy
" .
’ Viu + Fu)u = O ~ (A26a) -
! - v .
And therefore from '(A2.8) and (A2.6a)
. aod “ . ’
N f(u:V,u,)-n'dl = 0
o PR
This integral can be divided into three integrals for the different boundary types:
faVaynda = f@iVe)na
¢ C a9, ’
N i L t .
S - + /(‘u:Vtu,)-ndl //
M ) . .‘ . 8 - a1,
+  lim /(u:V{’u,)'ndl
R—oo
J . - ' r=R
x ¢ = 0 / )
& o ' " s
Since Vu is 0 outside 2, the full circle r = R has been included in the third integral,
/ ’ »
even though cértain sections of ‘this circle may not be in 2 (see Figure A2.1). The :
integrand of the. first integral is zero since u = 0 on d%,. The integ‘fand. of the third
integral is also zero since ( lim jus,u)r = (lim vrul)(lim v/7Vu) = 0. We are
r—co . L P00 700 !
therefore left with
Y
. :/(u;Vtu)“ndl = 0
aq, '
4 N —
3
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Siifee u is arbitx.-ary, this implies the natural boundary condition A

(V) -m = g:il = 0 on o9,
\
. R QE.D.

iBefore stating the main result of this Appendix, it still remains to prove that for
all admissihle 1 we have ¥ € §. Since H is infinitely integrable in 2 and zero outside
and there are no 1 functions for which H = Vpe—#* dc:es not exist, it follows that ¥ is

infgmitely integrable in (2-and that Vi = 0 outside 2. Now from the square integrable

!

property of H,

%

-

//H‘-H dzdydy < oo% v (271 # 22)
=z 0 ‘
" //(V\Il)'-V\Ild:vdydz

=a @,

L = / /(V(t,/)e_’ﬂ"'-V(tﬁe'Jﬂ‘) dedydz |
.- Paa

z=z1 N v o 1 {

22 < N r
= / b/ (Vb — 3B9)e™55Y" - (Vo — )= \dz dy dz
=z, ‘ 1 .

.

(:4'1 L z7) /( (Vep)* - (Vi) + B**y) dz dy,l < .°° ?\21 # 23)
J .

<

Al

y

substituting (A2.7) and (A2.63L)', then applying the divergence theorem,

- (Vep) +' @2¢g¢)dmdy - <& ‘oo "
s

= [y
Q

/( (Vep)™ - (Viy) + B*¢*¢) dedy ) ' ,
Q o . . -
.= /(Vz-(zﬁ“vfzb) ~TUrVR 4+ BYt) dedy
Q ’ » T

T

-

= [V - e - ) dedy
A .
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. \ 2 !
= /(V,-(z,’r*Vub) - %‘Lrl»‘«b)dxdy

a .
= }{(wv,z/))-ndl - -k—;’z—zﬁ*rbdzdy < o
Sy € "

In a manner similar to that in the proof of Variational Principle A2.1, using (A2.5b), '
(A2.5¢), (A2.5d) and (A2.5e), it ¢an be shown that the contour integral vanishes. Since
k2 > 0 (from (A2.5f)), :

‘ ‘ / P*pdrdy < oo
.. .
so 1 is square integrable. And since equations (A2.5¢,d,e) and (A2.6¢,d,e) are identical,

therefore 1 € S and all solutions to (A2.5) are also sta.tlonary pomEP"Vanatxonal
Principle/A2.1. The trivial solution ¢ = 0 is excluded since Y= 0 = V, };H 0 For

any spurious solution we have therefore , y
B L
i g° = F(¥). > 0 .
\ X
= ke > /sp \ -
: ) .
Q.E.D.
\ * o
®
4
\ ‘¢
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