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Abstrad 

" \ 

The finit,e element method is extended to the modal aIlalysis of open die1ectric 
.... 

wavegùides with the use of inftnite elements which preserves the linearity of the method. '\ 

Previously, infinite elemerus jncorporating a single radially decaying trial function were 
~ ~./I 

us~d. Since the 'decay length has to be optimized for each w'ode by me~s of an outer 

iteration loop, these are called optimized 8in~ methods. 

In the met~od of this thesis, called the multiple fized decay method, each infinite 

element incorporates several radially decaying exponential trial functions. The outer 

optimization loop is eliminated and all modes corresponding 'lo a given phase constant 

are calclllatecf in one pass of the solver. In addition, these·infinite ele~ents improve the ,-

accuracy by yroviding more degre~s of freedom with which to model each mode. 

The three component curl-curl functional is used with a penalty term to eliminate 
1 

spurious modes from the propagating mode frequency range. 
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Sommaire 

\ 

La méthode des éléments finis est étendue à l'analyse modale de guides d'ondes 
~.p 

ouverts diélectriques en utilisant des éléments infinis ce qui préserve la linéarité de la 

méthode. 

Aup~a~t, les éléments infinis incorporant une s~ule forCon d'essai de décrois­

sance radiale étaient utilisés. Etant donné que la longuèur de la décroissance doit être 

optimisée pour chaque mQde au moyen d'une boucle d'itération externe, celles-ci sont 

appelés méthodes optimisées de longueur unique. 

Par la méthode présentée dans cette thèse, appelée la méthode de longueur mul­

tiple fixe, chaque élément jnfini incorpore plusieurs fonctions d'essai exponentielles à 

décroissance ,adiale. La boucle d'optimisation externe est donc eliminée et tous les 

modes c?rrespondant à une constante de phase donnée sont calculés à la fois. De plus, 

ces"éléments infirp,s améliorent la "'précision en offrant plus de degrés de liberté pour 

modéliser chaque mode. 

Une formulation variationelle à trois composantes est utilisée avec une fonction 

de pénalité afi~ d'éliminer les modes indésirables de l'inter"lle de fréquence de modes 
\ 

propagés. 
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Introduction and Literature Survey .. 

• 

1. Introduction 
\ 

Waveguides which employ dielectric materials as a transmission media include . .' 

devices of currerît interest such as opticaI fibres and planar guides. They are used as 

low-loss carriers of ,communication signaIs' over long distances or as components of pla­

nar circuits at frequencies ranging from millimeter-wave to opticaI. TypicaI unbounded .' . 
dielect~ic wavegui~ cross-sections are shown in Figure tl. The- importance of the~e 

devices in the field of communi~ations has pro~oked considerable research into the de-

"" velopment of numerical ~ethods .for their anaIysis. Indeed, the task of dèsigning a 

dielectric waveguide can be made easier and less costly if its high frequency behaviour 

can be predicted prior to its fabrication. 

~ 

The electromagnetic waves which are carried by unbounded dielectric waveguides 
1 

Jwithout radiation loss are called surface waves and they assume distinct field patterns 

called modes. Each mode has a eut-off frequency which is the lowest fr~quency at whjch 

it will propagate and remain guided. The mode with the lowest eut-off frequency j 
called the fundamental mode. The modal wave properties that are of the most int~rel' 

'" 
to the designer of dielectric waveguides are the dîspersion characteristics and the field 

distri}:>utions. The ,dispersion characteristics of a mode are usually presented in the 

form of a dispersion curve which is a plot of the llormalised frequency (or free-space . 
wavenuIDoer) ko versus the phase constant f3 for each mode of interest (see Figures 5:2, 

5.4, 5.6). Given the dispersion curves. of the fundamental mode and the next lowest 

mode of a particular device for example, the frequency interval ig which conversion of 
J 

energy from the fundamental mode to higher modes cannot occur can be determinedj it 

is the interval between the eut-off frequencies of these two modes. The phase and group 

velocities of the modes cao also be determined from th~ dispersion curves. , ~ . 
A knowledge of the field distribution of a mode is also importantj it can in~icate 

~ 

for example the extent to which the energy of the surface wave supported by the guide " , 
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~s concentrated in the core region. lt can ~so be used to estimate ohrÎric losse; suffered. 

by the guide, if they are small, witl?- a perturbation method (first the fields o~ an equiv­

alent lossless guide are calculated, then these values are used to calculate the losses by 

comidering any finite conductivity of the dielectric materials-or existing conductors) . 

Various useful dielectric waveguide struc~utes have been proposed or fabricateL 

which because of the exploitation of desirable properties or the manufacturing process, 
J 

Èlave irregular shapes or permittivity ~distributions. Finding a closed-form analytical ( 
j 

expression for the modes of most these unbounded guides is usually impossible unless 

the waveguide geometry and~rmittivity profile are identical with the coordiriâte curves 

of a coordinat~ system in whi~ the Helmholt~ ,equ'ation is separable. The o~ly recourse 

for solving the general dielectric waveguide problem is th~ application of a nurnerical 
'> 

method. 

ft 

This' thesis presents a numerical method for the modal analysis of a generaJ .., --
, .. '<' 

class of translationally-.symmetric dielectric waveguides. This class includes transver-

sally unl~mded dielectric guides wit4 arbitr:.arily-shaped cross-sections and arbitrarily-
. 

inhomogeneous permittivity profiles. It is restricted however to sourc~ess, lossless, 
\ ~ 

isotropie guides with uniform permeability J1. = J1.0. Ali conductors are assumed to be 

perfecto For brevity, members of this class shall be 'referred to in thi~ thesls simply as 

open guides. .. 
. 

The numerical method employed is the finite elem~nt method using a three COffi-
';'") 

pon~ent magnetic vector functional ,and using infiJtite elements to handle the unbounded 

r:a:ure of open guides. It yield~ the fre'Wenci~s of the modes which correspond to a 

given phase constant value (these can be used to plot dispersion curves) and the field 

distribution. 

2. Literature Survey 

The body of literature related to the modal analysis of translationally symmetric .. 
4ielectric waveguides is enormous. This survey will therefore be limited to numerical 

methods which are capable ef modelling any open guide as defined above. The vari-

. 
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, 
ous methods will be categorised according tù whether the final appro~mate numerical 

problem is linear or non-linear (defined below), and according to the particular scheme c 

adopted to model the infini te exten~ surrounding the core region. 

In the following, linear methods are defined as those in which the final algebraic 

problem cau be reduced to the generalised eigenvalue problern, Ax = >'Bx. These meth-
,. ~ 

ods can benefit from speciallsed, efficient algorithms [1,2] which return an exhaustive 

list of the~nvalues., 

With non-linear methods, the finLgebraie problem has the form det( C) = 0 b 

where the elements of the rnatrix C are non-linear functions of the free space wavenum­

ber ko. Methods of this type must use computationally costly root-finding algonthms 

and the resultmg solutlOns must then be checked carefully to ensure that none of the 
" 

roots have been miss~d 

2.1 Linear Methods 

2 1.1 The Finite Element Method 

The finite element method (FEM) [3,4J conslsts m divlding the problem reg~n 
1 

mto small sub-domains over which trial function expansions are definecV The unknown 

coefficients in the expansions are determined by a variational method in whlch the trial 

functions are inserted mto a functional whose stationary points are solutions to the 

defining differentlal equations. 

The FEM was applied to the modal analysls of closed homogeneous waveguidc 
4 

problems by Silvester 15] who used polynomial trial functions and a functional for the 

scalar Helmholtz equation Because of its great flexibihty and relative simpliclty, the 

FEM has sinee been applied extensively ta a wide variety of closed waveguide prohlems 

[6,7,8,9,10]. The following methods extend the FEM to open guides while preserving 

linearity. 

The Virtual Boundary Techruque 

Yeh et al applied the Ullp10dified F, to the modal analysis of open waveguides 

in 1975 [11]. The modelling of the illfinite extent was performed by simply sUlTounding 

-4-
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the guide with a perfectly conducting cylinder, called a virtual boundary, whose radius 

was large relative ta the dimensions of the core. The entire problem, that is the interior 

of the core and the exterior regi-on betweEf the core and the conducting cyli~'dt was 

then meshed wit~ regular finite elements and the modes were solved using a Ez - Hz 

functional. The authors noted that a gradual increase in the radius of the cylinder 

resulted in a convergence of the calculated' modes to the actual solutions. This effect 

was greatest near cutoff where the exterior fields decay very slowly and thus the radius 

, , ~f the cylinder had to be made very large to obtain accurate results. 

A similar me1Jrod was employed by lkeuchi et al. [12] who added an outer 

iterative laop which gradually increased the radius of the virtual boundary (on which 

Ez was constrained to be zero) until the maximum value of Hz on the boundary became 

smali rebtive to its maximu~ value in the entire region. I~ this way the inaccuracy due 

to the presence of the artificiaI virtual boundary could be estimated and the solutions 

could be obtained ta any desired level of accuracy except near eut-off where the region 

to be meshed became prohibltivefy large. 

Welt and Webb [131 chose the locatIOn of the virtual boundary for arbitrarily ~ 

shaped guides by first calculating the field decay rat~ for an equivalent homogeneous 
J~ , 

dielectric rod and placing the virtual boundary where its field was negligible. This 

methoCl was found to be suitable for all the cases studied. 

In ;JI applications of the virtual bound~y method, an ffuprovement of accuracy 

is obtained at the expense of an increase in the mesh size, especially near eut-off. This 

and the concomitant increase in computing time' and memory requirement are the major 

drawbacks of this method 

Scalar Ballooning 
1 )-

The ballaoning method was first applied by Silvester et al. [14] to open boundary 

• Laplace field problems. ln this technique, the finite interior region is meshed with regular 

finite element~ while the exteflor region is meshed iteratively in successive identical 

annulus-shaped regions. Each iteration doubles the exterior mesh area but does not 

increase the global matrix size. A q~asi-infinite area can therefore be modelled in only 

-5-
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a few (about eight) iterations. 

Chiang [15,16] applied the'srune method to weakly gui ding fibres using an 'ap­

proximate scalar functional. The pre-supplied ~onstant which is usually {3 or (3/ ko with 
) 

the other methods is nei ther for this method. It is rather a variable chosen specially 

to eliminate the eigenvalue, variable ko from the functional contributions of the exterior 

mesh. This allows for the recursive meshing and global matrix assembly of the outer an­

nuli A t the present, this method cannot be applied to the general open guide problem 

which ~equires a vector functional and cannot be accurately approximated ~ a scalar 

functional. 

Conformal Mapping 

By conformally mappmg the quarter plane into a half-circle, Wu and Chen [17J 

were able to transform the infini te extent surroundin, a waveguide into a finite,region, 

The FEM was then applied to discretise the finite region, and accùrate results were 
1 . 

obtained with an Ez - Hz formulat'n. This particular application of the conformaI 

mapping method is limited however to guides having a plane of symmetry. 

Combined. Fmite Elements and Infinite Elements 

, 
compOllent vector functional. 

The main disadvantage of this method' is that the correct value for the parameter 

which specifies the infini te element decay rate cannot be determined before the problem 
.; . 

is solved, nor can it figure as one of the unknown variables to be solved for, because of the 

non-linear dependence of the functional on the decay parame0r value. If a generalised 

eigenvalue solver is to be uspd, the decay parameter must be supplied beforehand as a 

-6-
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fixed constant. Sinee the ~eeuracy~of the solution~ near the eut--Off is eritically dependent 
~ 

on the value of the decay parameter, Yeh and al80 Rahman and Davies found it necessary' 

to optimize the deeay parameter for each mode through the addition of an outer iteration 
.; 

Ioop to the FEM program. In this thesis, not one, but a range of exponential decaying 

trial funetions is used in each infini te element, allowing the variational principle to 

weight them to match the actual decay as closely as possible without optimization. 

2.1.2 Finite Differences 

In the finite differenee method the problem region is first diseretised into a rect-

angular grid of nodes Then the differential operators of the functional or the defining • 

equations themselves are approximated using differenee caleulus ;.,~ produees an al­

gebraic system of equations. Sehweig and Bridges [24] applied this meth~d to open 

gUIdes by approximating the integrand of the Ez - Hz funetional with fini te differences. 

Since the problem was enclosed in a perfectly eondueting box as in the virtual boundary 

method, the aecuracy near eut-off was compromised. -- ~ 

,. 
A major disadvantage with the fini te differenee method is that if the mesh must 

.... 
be refin~ in a small region, extra nodes must be added along the length of the entire 

problem region which inereases the matrix problem size unnecessarily. With the FEM, 

the mesh can refined locally in a small region and the modelling of oblique boundaries 

is faeilitated sinee the nodes are not constrained to lie in a rectangular grid. 

2.1.3 Telegraphist's Equations 

This method consists in enclosing the open gu\de in a~arge rectangular waveguide 

and appro~imating the mdde~ hr a linear rornbination of}he modes of an equ!valent 

homogeneous reetangular waveguide. The Telegraphist 's equations are derived directIy 
" . 

froI~ MaxwelI's equations and the orthogonality properties of the elosed w,eguide 

modf.'s [25,26,27]. This method is similar to a virtual boundary teçhnique i~that the 
• 

problern is enclosed in a perfectly conducting boundary; it is therefore inaccurate near.· 

the eut-off frequencies of the modes. 

-7-
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- 2.2 Non-Linear Methods 

2.2.1 Point Matchlng 

• 
First applied to homogeneous unbounded rectangular waveguides by Goell in 

1 

1969 [28], the point mat ching method involves expressing the longitudinal electric and 

magnetic field cOznPonents (Ez and Hz) in the interior and exterior regions of the guide in 
• 

~ truncated series of Bessel functions which are solutions to the Helmholtz equation. 

The unknown coefficients of the series are found by mat ching the tangential components 

of these field e~pressions at N .points on the i~rface of the two regions arid solving the 

resulting characteristic eqt.iation for the eigenvah-\es. 

The method has been applied to unbounded guides having more exotic shapes 
. 

[2~,30,31,32,33] and composite" dielectric profiles [34,35]. lts application to the general 

open guide is not straightforward however: increasing the number of matching points, 

whieh adds more terms to the truncated series representation of the fields, will not 
. 

necessarily cause the eigenvalues to converge to the exact solutions in the general case 

[29,36]. -Problems such as this in establishing the validity of the series representation 

make the point matching method difficult to apply to open guides. 

'. 
2.2.2 Integral Equations 

• J!\-

By constructlng equivalent electric and magnetic current densities fr m the in-

homogeneities of the dielectric fibre, de Ruiter [37J arrived at a set Qf surface integral 

equations similar to those representing free-spe.ce electromagnetic fields with volume 
~ 

source terms. To solve for the modal free-space wavenumbers, a system of equations is 

derived by applying the mOJil1ent method and a point-matching technique. 

, l 

Greenls funct.ions were used in the derivation. and therefore the integral equations 

contain~d Hankel functions whose argûment was the free-space wav:enumber. Thus the 

problem was non-linear and was solved by an iterative complex zero search algorithm. 

e r ~ 
I:or the analysjs of an open guide consisting of one homogeneous die!ectric cylin-
, , 

der of arbitrary shape embedded in a single medium, Su [38] devised a met~od in which . \., , 

the integral equations are d~rived from Green's second identity. As with previous scalar 
~ 0 , 

-- 8-
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integral equa~ion methods, the resulting equations c~>Dta.in a contour inteiral which is 

difficult to evaluate since the closed contour includes 'Green's func~ipn singula.rities. 

/ 
2.2.3 Finite EI~ment Hybrid Methods 

Va.'rious schemes have been proposed to couple the FEM with other methods 
01 

mor~ suited to unbounded regions. They combine the fiexibility of the FEM in handling 

arbitrarily-shapèd and arbitra.rily-inhomogeneotls fini te regions wibh the superior ability 

of other methods in modelling hornogen~ous infini te regions. 

Combined Finite Elements and Function Expansion 

Oyamada and Okoshi [39J divided the fibre into two regions separated by a circu-

\ lar boundary. The finite region inside the circle contaÏns all the inhomogeneities of the 
~ . 

fibre while the exterior region is homogeneous and unbounded. An Ez - Hz functional 

similar to that of Yeh [11) is used to solve for the modes of the combined region. The 

contribution of the interior region to the functional is supplied by regu1a: finite elements. 

For thecexterior region, the Ez and Hz variables are expanded into two truncated series 

of modified Bessel functions which are then substituted into the. functional. 

By relating the Bessel function wêigoh~s to the nodal field values on the circle 

through a discre'te Fourier transform, the functional for the combined region can be . . 
express~d in ·terms of the nodal fie~d values in the interior region and the free space 

wavenumber only. Due to the presence of the Bessel functions, the functional is a non- ' 

linear function of the free-spa.e wavenumber ko. For this reason, a non-linear root 
, , 

~ iinding technique must be used to. fins:! the modal solutions which are the minima of the 

functional. 
l 

Instead of thé Ez - Hz functional, Wu_and Chen [40] eIIJ.ployed a variational 
_ ..... t, 

principle based o~ the reaction co~cep.t (41)[42J. which solves for the scattered field from '" ~ . '" , 

an oblitluely Üluminated dielectric waveguidé. This method is otherwise very simllar to . ' . 
that of Oyamada ~d Okoshi (above) except that the kodal'frequencies are the poles 

'of the scattering coefficients. 
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Combined Finite Elements and Integral Equations 

Integral equation methods suell as the one presented by Su [38] (ab ove) are able 

to efficiently model the infini te cladding surrounding a homogeneous guide but -they 

cannot be applied to inhomogeneous guides for lack of a convenient Green 's function. 

By using finite ele91ents in the interior' region combined with integral equations, Su , 

[43] effectively eliminated two drawbacks of the previous method. First, inhomogeneous 

core regions could be 8:ccommodated with the application of the FEM, and second, the 

hybrid method did not ~equire the integration of a contour integral containing Green's 

function singularities. The method, however, remains non-linear. 

3. Thesis Summary 

The remainder of this thesis is organised as follows. Chapter 2 presents, for the 

general lossless reciprocal anisotropic open guide case, th~ theory required later for the 

Finitejlnfinite Element Method 9f Chapters 3 and 4 in which only isotropie guides are 

considered. Chapter 3 is an introduction to the finite element method for closed guides . 
and Chapter 4 extends this method to open guides through the use of infini te elements. 

Chapter 5 contains" results for several open guide examples; Chapter 6 is the conclusion. 

Appendices 1 and Il contain.proofs required by Chapter 2. 

,-

/ 
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Chapter Two 

Open Waveguide Theory 

1. The Problem Definition 
\ 

.Consider a dielectric waveguide with a given cross-sectional geometry and per-
, 

mittivity profile. The guide is translationally symmetnc along the z axis; the transverse. 
J 

plane is the x ... w plane. The geometry may inc1ude unbounded homogeneous regions (if 

the guide is open) d conductors. Figure 2.1 is an example of an open dielectric wave­

guide. In the transv e plane, the problem geometry is given the symbol n. In some 

cases, such as the on in Figure l.Ia, the 0 surface may consist of the entire x-y plane. 

The problem c include three types of boundaries. AlI conductors are assumed 

to be perfect; the skin depth is therefore zero and only the contours of the conductors, 
\ 

represented by an~, need be considered. The problem can also include perfect magnetic 

conductors contours ana which are used to exploit symmetry and reduce the prohlem. 

The last contour, 8000 , is used to constrain the fields at r = 00 where r = y'x2 + y2. It , 
is defined as anoo = n n ( lim r = R) which is the part of a circle of infini te radius, 

R-oo 
centered at the origin, that is inside the problem regiop. 

/ 

The materials w~ich compose the guide can be anisotropie but are assumed to 

be lossless and reciprocal everywhere. The permittivities of all materials are assumed to 

he independent of frequency over the range of frequencies considered. The perm.eability 

is ùniform everywhere and equal to that of free-space. 

-- , 
In the transverse plane, the homogeneous regions can be eithex: finite or infinite. 

The core region is defined simply as the smallest regio~ which includes ails fini te homo­

geneous regions .. The guided modes of the guide are defined to be the electromagnetic 

waves with time and z dependence e}(wt-/3z) (where w and (3 are real numbers) and 

whose power fi?w is in the positive z direction only. Also, the energy of guided modes 
-

" \' 

is confined to the core region of the guide which implies that the energy densities of the. 

magnetic and electric fields, and therefore the field components, decay' with d.istance 

from the core. The guided modes can he' thought of as heing excited Dy a source at. 
1·& -. 

-11 -
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Z = -00 and propagating without loss sinee time t = -00. , 
Let ei = ei(x, y, z, t) and hl = hj(x, y, i, t) represent the electric and magnetic 

fi 
fields cor~esponding to the i ch mode supported by a given open guide. The mode has 

J 

phase constant f3, angulax frequency w, and normalised frequency kOi defined as follows: 

f3 
211' 

(2.1) -
À 

w. - 211'/ï (2.2) 

kOi 
..,;. 

(2.3) -
C 

where c = 1/ VJ1.0EO is the speed of light in vacùo, f. is the freque.ncy of mode i ana À 

is the wavelength. 

The problem considered in this thesis is as follows. Given a pre-supplied value of 
~ 

the phase constant f3 and a description of the geometry and material properties of an 

open guide, determine vthe normalised frequencies (kOI , k02 , ••• , kop ) and magnetic field 

distributions (hl, h2 , ••• ,hp) of the p lo,west guided modes (i.e. kOI :$ k02 =::; ... =::; kop ). 

In developing the necessary theory and later determining the modes of a particular 

waveguide, it is assufIled that the waveguide in question is indeed capable of supporting 
- f • 

guided modes. A proof of the existence of guided modes for the general open guide case 

will not be attempted. 

As the theory willlater demonstrate, if the electric field distribution is required, 
) 

it is morè convenient to determine the modal magnetic field distributions (hl, h2 , ... ,hp) 

first and then to 'calculate from these the (el, e:z, ... , ep ) modal electric field distribu-. 
tions. 

... 
2. The Field N otat10n 

Since -the fields of all modes are harmonie in both ti:r;pe- and the longitudinal 

eoordinate z, e and h can' be expressed as the real 'Parts of complex fields as follows: 

e(x,y,z,t) = Re{E(x,y,z)eJ ..... f } = Re{E(x,y)e}( ..... t-.8z )} 

(2.4) 
h(x, y, z, t) = Re{H(x, y, z )eJ ..... t } = Re{H(x, y )ej ( ..... t-.8 z )} 

- 12-
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ln these relations, the variables (E, H) and (E, H) are implicitly deftned as three com­

ponent vectors having complex valued components and representing the (x, y, z) and 

(x, y) dependence of the fields respectively: 

E(x, y, i) - Ex(x,y,z)i + Ey(x,y,z)j + Ez(x,y,z)k 

H(x,~) - Hx(x,y,z)i + Hy(x,Y:fz)j + H:(x,y,z)k 
, 

E(x, y) - Ex(x,y)i + Ey(x,y)j + Ez(:zr;lt.)k 

H(x,y) - Hx(x, y) i + Hy(x, y)j + Hz(x, y) k 

Although only the transverse dependence (E(x, y), H(x, y» of the fields is unknown, the 

theOl'Y derived in this chapter will b~ in terms of (E, H) for notational convenience. The 

finite and infinite element t~eory of Chapter 3 will make use of the (E, H) functions. To 
1 

facilitate integration later, the (E, H) fields are defined as being identically 0 outside n. 

3. Maxwell's Equations and the Constitutive Relations 
, ~ 

The theory of open waveguides begins with Maxwell's equations [44,p.17) for 

sourceless problems expressed in terms of the (E, H) variables: / 

\7xE - -jwB 

\7xH 

\l·D o 

\l·B o 

and the constitutive relations [44,p.21]: 

B = 

D 

ft H = 

{ 
eE _ = 

KE = 

'" 

fr(X, y) fo E 

K(x, y) fO E 

fer isotropie media 

for anisotropi~ media 

(2.5) 

(2.6) _~ 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The relative permittivity tensor K is a real symmetric matrix {45,p.314) for lossless 

reciprocal dielectric mt-lia and therefore can be diagonalised by a rotation of the coor­

dinate axes: 

/ 
- 14-
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The scalars ""n, Kyy, K.~'1: > 0 are called the principal dielutric constants of the material., . ; 

, They are also the eigenvaluesof K, sinee the coordinate transformation is unitary 

[46,p.235]. The eigenvalues. of K-I are R~%, R~y' R!% > 0 (because KE = KE => 

K-I E = kE ). Since the eigenvalues of K-l are non-zero and positive, it follows that 

K- 1 is positive definite [46';p.250]. This rès'l\lt will be required by Variational Principl~ 

2.1 (see below). 

4. The Perfect Electcic and Magnetic Conductor Boundary Conditions 

The open guide cross-section n can include perfect electric conductor boundaries 
., 
an6 and perfect magnetic conductor boundaries ano. The an6 boundary condition 

follows from the physics of perfect conductors [44,p.36] whereas the ano boundary, also 

known as a symmetry wall, i8 an useful mathematical artifice which will be employed 

to reduce the problem size by exploiting symmetry. 

In terms of the (E, H) variables, the boundary conditions are: 

nxE - 0 on ôn 6 (2.11) 

) . n·H - O· on an Il (2.12) 

n·E - 0 on ano (?.13) 

nxH - 0 on ano (2.1}!) 

5. The Continuity Relations 

From the integral forms of (2.5),(2.6),(2.7) and (2.8), and the underlying physics 

the continuity conditions 

n x El - n x E2 (2.15) 

n x Hl - n x H2 (2.16) 
( 

~ 

n· Dl - n·D2 (2.17) 

n· BI - n·B2 (2.18) 

, can he .derived[47,p.149]. They apply along any s~rceless boundarY.between two ma-
( . 

terials where n i5 a unit vector normal to the bound!u"y and (El, E2 ) and (Hl, H2 ) are 

-15 -
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the fields infinitesimally close to the boundary on either side of it. The last two becofne, 

upon substitution of the constitutive relations (2.9) and (2.10): 

J 
, 

f 

(2.19) 

(2.20) 

where KI, K 2 is the relativ ermittivity tensor on either side of the boundary. Since 

flo is a constant, the second relation becomes: .. 

n· H2 (2.21) 

~ 
Normal H is therefore continuous along any material boundary whereas normal E 15 

discontinuous if the permittivity of the two materials is different. 

6. The CUl:l-CUrl Equation in H 
/ 

Since the H field, from (2.16) and (2.21), is continuous across any material bound­

ary, it is more convenient nwnerically to specify the problem in term. of H only. Ëy 

substituting an expression for E t>btained from (2.6) into equation (2.5) applying the 

constitutive relations we can derive: 

\i' x ([( -1 \1. x H) - k~ H - = 0 (2.22) 

This is the anisotropie vector Helmholtz equation or curl-curl equâtion in H . .. 

7. The Far-Field Boundary Condi tions 

Consider the boundary value problem specified by the perfect electric and mag­

netic eonduetor boundary congitiQns and the vector Helmholtz equation in H. This 

boundary va1~e problem will admit solut~hose field components grow radi~ 
These are not guided modes rur they must be eliminated from the solution space by , 
im.~'Sing additional constraiJlts on the solutions in the far-field region. ~ 

~ determine suitable 'Ilar-field boundary conditions, consider any transverse slice 
, " 

Zl 5 Z 5 Z2 of.a give~isotropic open guide wher<:' z] :f Z2. Let the energy stored in the , 

- 16-
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" 
elect~ic and magnetic. fields inside the slice' be denotea by È. Sihce the mathematica1 

model beiIig developed is for physical guides excited by sources having finite power 

output, it is reasonable to require that & he finite. The se.u:ch for modes will therefore 

be restricted to those which satisfy 

( 
B··H' + 1-' -2-) dx flydz = 

, 

= 
H··B 

1-' -2 - ~r dr dif> dz 

< 00 
,,1 

The integration is carried out over the entire transverse plane, not just n. This is 

justified if the fields outside n are defined to be,zero. For tills integral_t? con~erge, the 

following two conditioI1f are suff1cient, though not necessary: 
1 

lim ;r E = O.:} lim Jr V x fi - 0 from (2.5) 'if w ::/= 0 
r--..oo r-+oo 

(2.23) 
and lim Vr H - 0 

r-oo 

In order to eliminate solutions which grow radia.lly, the constraints of (2.23) will 

be adopted as tl}e far-field boundary conditions since they only admit fields which deca'y 

radially. It will be as~\lllle~ that these far-field eons!raints are valid· for anisotropie ~pen 

guides also and that their impo~ition does not result in the omission of ~id guided, 

modes. ~ 

It is also necess"Q' to elirllÎnate those solutions which propagate radilJlly our 
side the eore. For isotropie guides, th~s can be done by requiring that the transverst,. 

, '" wavenumbèr k~ = Er; kJ~ /32 be ..Eurely imaginary in each infini te region i (see [48,p.292]). 

This relation is imposed on the solutions to the problem examples in Chapter 5 whieh 

are all isotropie. Setting k; = j h, we have 

> 0 '(2.24) 

The ease h = 0 corresponds to modes at cut-off and is not considered. 
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8. The Variationa.l Principle 

The solutions (k01 , Hl)' (k02 , H2 ), ••• , (kop , Hp) of the above curl-curl differential 

equation with boundary conditions (~.12), (2.14) and (2.23) can be obtained with the 

following variational principle [49,50]: 

Variational Principle 2.1 

'{ Let V be the space of complex three component vector functions 

H(x,y,z) =.H(~,y)e-lI~Z (f3 f. 0) which are infinitely differentiable m 

n, zero outside n, square integrable and satisfy the prescribed boundary 

conditions: 

Hxn -

sB·n == 

hm vrH == 
r-oo 

lim Jr \7 x H -
r-oo 

lim Vr s \7. H 
r-oo 

0 on 

0 on 

0 

0 

0 
, 

âno 

ôn~ 

(2.25a) 

(2.25b) 

(2 25c) 

(2.25d) 

(2.25e) 

Then the statlOnary pomts H. of the following functional for posItlve 

definite K, s ~ 0 and H =1- 0 

Ào J J ((\7 x Ht J{-I(\7 x H) + s(Y"~ Br(Y'· H)) dxdydz 

:=0 n 

l j(H' H)dxdydz 
(2.26) :=0 n , 

are solutions to the following dIfferential equatlOn 

\7 X J{-l \7 x H - sV(Y' . H) - ko
2

1
H == 0 10 n (2.25f) 

where kil = ki.(H) 2: 0 (2.25g) 

and sa~isfy the following natural boundary conditions: 

(\7xH,)xn 

s\7· BI 

(2.25h) 

(2.25i) 

in addition to the above prescribed boundary conditions (2.25a,b,c.d.e) 
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The stationary points are the H( x, y, z) functions at which the first variation of 

k~ (H) vanishes (see Gelfand and Fomin [51]). Note that if ko :j:. 0, equation (2.25h) 

is equivalent to the electric wall boundary condition from (2.6). The proof of this 

variational p;inciple is given in Appendix 1." If s is set to zero, then this reduces 
, II. 

to Berk's variational principle [52,53] which, when used in the fini te element method, 

is known to yietd spurious, or unphysical, modes in addition to the physical modes 

[54). To determine the source of these spurious modes, the comments made by Webb 

[55) concerning the stationary points of the above variational principle for the closed 

waveguide case will be adapted for the open waveguide case 88 follows. Consider the 

following two sets of equations: 

'V x K -} V x H - kg H 

Hxn 

(\7 x H) x n 

lim Jr H 
r-oo 

hm Vr (V x H) 
r--oo 

k 2 
0 

and 

s (V (\7 . H) + kg H) 

H· n 

V'·H 

lim .Jr H 
r--oo 

lim vr (V' . H) 
r--oo~ 

k 2 
,0 

= 0 

= 0 

= 0 

= 0 

= 0 

>0 

- 0 

- a 

- 0 

- 0 

- a 

>0 

m 

on 

orl4 

ID 

on 

on 

n 
ano 

an6 

n 

an6 

ano 

(2.27a) 

(2.27b) 

(2.27c) 

(2.27d) 

(2.27e) 

(2.27f) 

(2.28a) 

(2.28b) 

(2.28c) 

(2.28d) 

(2.28e) 

(2.28f) 

As We\:'b demonstrates, the solutions of (2.27) and those of (2.28) are stationary. points 

4", of VariatlOnal Principle 2.1. The static s?lutions for which k~ = 0 are not considered. 

The divergence-free solutions of equation (2.27) are the physical modes Qf the guide 
\ 

whereas the solutions of (2.28) are irrotational and do not correspond to any physical 
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modes. Since the frequencies of the solutions to (2.28) scale with s, there will be 

infinitely many of these solutions as s approaches O. This is the origin Qf the spurious 

modes whieh oceur with Variational Principle 2.1 when s is set to zero. 

From (2.24), the guided modes of isotropie guides satisfy k6 < /32/Erl . It is 

shown in Appendix 2 that the spurious mode satisfy the relation k6 > sf32. Therefore, 

if we set s = 1/Er\, the solutions obtained with Variational Principle 2.1 will be free of 

spurio'lS modes in the interval ko2 < /J2 / Er;. This technique will be used to eliminate 

spurious modes from the numerical solutions of isotropie guides. , 

It remains to justify the imposition of the boundary condition H· n = 0 on an" 
oi1' the physieal modes in Variational Principle. 2.1. This can be done as follows: 

From (2 11): (\7 x H) x n - 0 on ana 

=> K- l (\7 x H) x n - 0 on ana 

[\7 x X- l (\7 x H)] ·n - 0 on an" 
=? H ·n - 0 on ana from (2.22) if ko2 =1= 0 

r 

This boundary condItion is therefore consistent with the physical mode equation which 

are solutions to, (2.27). 

- 20-
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Chapter Three 
(, 

The ConventionaI Finite Element Method 

1. The Isotropie Guide Case 
/ 

The finite element method (FEM) will be presented in this chapter. Chapter 3 

applies the FEM only to the core region of isotropie dielectrie guides and Chapter 4 
" 

extends the technique to handle the infini te regions by introd~eing a new type of infinite 

element. The theory of Chapter 2 is L:Plicable to the more general open anisotropie , / 

, -
guides, but because the anisotropie c e was not implemented in code, the numericaI 

method presented in th~ next two chapters is restrieted to isotropie guides only. This 

restriction is not imposed by the FEM; this method has pr~viously b~en applied to 

lossless anIsotropie closed guides composed of materiaIs having permittivity tensors 

that are diagonal [6,561 and non-diagonal [10,23,57]. 

The boundary value problem for isotropie open guides iil the same for anisotropie 
{ 

open guides except that all occurrences of the relative permittivity tensor K are replaced 

by the sealar f r . The modes of isotropie guides cau be aIso determined with Variational 

Principle 2.1, in which K is again replaeed by f r . 

The ~M the~;y pertaining to the vector Helmholtz problem is weIl established 

and therefore its presentation in this chapter is brief. Only the concepts that are rele­

vant to this thesis are elI!phasised; many references to more detailed treatments in the 

literature are provided. ~or an, in:roduction to the fini te element metho'd, the read~r is 
referred to Zienkiewic~ [3] or Silvester and Ferrari [4]. 

2. 1 he U nknown Field Components 

One advantage ·of restricting the consideration to isotropie guides is that the 

number of unknown field components is h~ved. To demonstrate t~is, we first decompose 

- 21-

.. ' 



/ 

) 

c-

the components H into real and imagin~ parts: 
'j:J 

H 

-' 

Hzr + jHz, 

Hyr + jHyi 

H.rr + jHz, 

where flzr ,Hri ,Hgr ,Hg. ,Hzr anJ Hz, are real valued functions ote x, y, z). Substituting 

tliese fields into the isotropie Helmholtz equation (2.22): 

Hyr + jHy, 

The assumption of homogeneity (i.e. Er = constant) has been made in this deri vation 

since, as shown later, the FEM mesh defines a piecewise homogenéous problem region. 

By equating real and imaginary parts on both side~ ~tain identical equations in 

the variables (H.zr,Hyr,-jHZI )- and UHz.,jHga,H zr ). It is therefore necessary to solve 

for only haIf the components, and the transverse field H (recaIl that H = He-JP.r) is 

redefined as: 

H(x, y) 

where Hz, Hg and(Hz are real valued functions. This. simplification is not possible in 

the generaI anisotropie guide case. 
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3. The Rayleigh-llitz Method ~ 
, . 

The functional of Variational Principle 2.1 l~nds itself readily to the applica-

tion of a numerical procedure called th~ Rayleigh-Ritz method or the direct method 

)8,p.162][51,p.193]. This technique is used,to locate approximations to the stati0I?-axy 

points of the curl-curl functional irl the space spanned by the N lineaxly independent 

vector functions 

which axe called tr;ial functions. The trial functions must individl:la.lly satlsfy the 
, , 

essential bqundary conditions stipulated by Variational Principle 2.1. In order to locate 

the statio,nary points, H is written as a weighted sum of the trial functions: 

[

al T [ 81 1 a2 H2 
· . · . · . 

aN HN' 

H 
N 

L a.H. 
1=1 

and then substituted into the kl (He-J /h ) functional (2.26). The unknown weights a. 
- 2 2 2 

are determined by setting the derivatives :!~, :!~ , ... , ::! to zero which is equiya}ent to 

taking the first variation of ko2. From this a generalised eigenvalue problem-Aa = vBa 

can be derived which yields N ei~envalues lin and eigenvectors an: 

1 < t ~ N 

The objective of this thesis is.to obtain the p lowest modal frequencies but 
'If 

the It_8.yleigh-Ritz method cannot guarantee t~is for any choice of eial functions. To. 

demonstrate this, consider the trial function space spanned by the trial fun_ctions (HI = 

HI +1 ; 1 $ i :5 N), where (Hl, H2 , ••. ) axe the actual soluti,ons in increasing eigenvalue 

order. The eigenvalues obtained with the Rayleigh-Ritz method axe then (Vi = k~(t+l) = 

k5(H i+1e:-J ,8Z) ; 1 S i :5 N) which are not the lowest )V-eigenvalues (the fundamental 

mode is missing). As shown by this example, the ability of the Rayleigh-Ritz method 
l ' 

to approximate the first p modes can depend strongly on the choice of trial fun-ctions. 
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When this method is applied to the analysis of open guides, t~e number and variety of 
, 

trial functions should he such that each actual mode can be modelled to an arhitrarily 

close approximation.· 

4. The Finite Element Method 

The FEM is a special case of the Rayleigh-Ritz method where a finite problem 

region n! has been subdivided or meshed into L non-overlapping subregions such that 
, , 

.....,. 
and QI n n J = 0 if i 1:- j 

To each sub-region i there corresponds one or more trial functions which are zero outside 
, 

Q,. The term finite t.lement refers to a partict.lar choice of the subregion shape and 

the accompaning trial functions defined in its interior. Many types of fini te elements 
." 

have been proposed in the literature (see Zienkiewicz). In this thesis, the triangular 

finite elements of Silvester [59] are implemented. As an example of problem region 

subdivision, the core region of the coate'd cylindrical open guide of Figure 3.1 a) is 

meshed with triangular elements in Figure 3.1 b). Note that the curved edges must be 

approximated with line segments. This introduces an error in the results which can be 
6 -

reduced by using smaller elements. 

The permittivity is constant inside each triangular element to facilitate the in-
C) • 

tegration of the 'functional (see section 7). If the permittivity in any region of the 

original problem varies continuously. then it must he approximated in discrete steps by 

homogeneous elements. This approximation can again be improved by using smaller 
• elements. 

5. Triangular Finite Elements 

Triangular elements possess a local coordinate system (see F~gure 3.2) in which 

the position of a point P i8 given by the relative areas ((1, (2, (3), called zeta coordinates, 

of the triangles formed by joining P to the three vertices with line s~gments. Th~t is 

area of the triangle 23P 
area of the triangle 123 
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area of the triangle' 31 P 
èi.l'e8. of the triahgle 123 

area of the triangle 12P 
area of the triangle 1~3 

\ ' 

The trial functions associated with triangular finite elements are called a-polynomials 

and each is a function of the ,zeta coordinates' ( (1 , (2, (3) . The number of a-polynomials 

defined in each element subregion is no = (n + 2)(n + 1)/2 where n is called the order 

of the elementj no is the number of polynomials required to form a complete set of n'" 

order trivariate polynomials in each element. 

The a-polynomials functions are interpolatory at no regularly spaced points 

called nodes in the triangle; that is each function has unit y valJe at its particular 

node and is zero at all ether nodes. Figure 3.3 illustrates how the nodes are positioned 

for element orders 1 to 4. Each node and corresponding a-polynomial is designated by 

both a single index and a triple index. 

For each order n, the no a-polynomials are defined [59] .in terms of the triple 

indices as follows: 

(3.1) 

where PdO = r 
Il (ne - q + 1) 

9=1 q 

1 if 1 = 0 

if 1 ~ 1 

1 
\ 

6. The Field Vector Trial Functions 

Ins~de each tri~gular element, the H field is written as-- a 'Yeighte~ sum of no 

-'vectar trial functions Hi in which each of the three components of H is assigned its~pwIi 

a-polynomial trial function at every node: 
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, 
H 

no 

I: [au; a«(1'(2,(a)i + al, a«l'(2'(3)j 
1=1 

no 

L [aix i + alyj - jau k]a«l,(2,(3) 
1=1 

where the single index Hode numbering instead of the triple index is usecl (see Figure 3.3). 
\ 

The scalar components of the [ a,xi + a1yj - jaazk] vector are the unknown weights. Since 

the a-polynomials are interpolatory, the vector [a,zi + a1yj - j a,zk] is the vector value 

of H at node z. Another prot>erty of the a-polynomial trial functions is that the value) 

of H along any edge depends only 'on the vector weights of the nodes located on that 

edge. Elements that abut each other therefore have the same trial function values along 

the entire length of the shared edge: Elements which satisfy this property, which is 

necessary for the continuity of H, are called conforming elements. 

7. Local Matrix Assembly 

The next step in the Rayleigh-Ritz procedure is to insert the trial functions into 

,- the functional 

= 

À
o • J J [(\1 x (He-J.8Z

)) *. €~ (\1 X (He-J .8Z
)) + s(\1 . (He-J.8 Z »)* (\1 . (He-J.8 Z

))] d~dyd: 
:=0 0 

Ào J J (He-1tJ1*· (He-J .8 Z ») dxdydz 

z=o 0 

In the FEM code, the integration of the curl and divergence terms in the numerator of 

the functional and the magnitude tetm in the denominator are performed separately and 

one node pair at time. Consider for example the node pair Cu, v) of element 1 j insertion 
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of the trial functions associated with these nodes into the three integrals gives: 

~v 

T 

~o aux a vx 

J J (\7 x {Hue-J/I:)r· :r (\7)c(H v e-J/I:»)dxdydz - a uy M UV 
a vy 

z=o n, 
" au: av: 

T 

~o aux av:r J J (\7. (Hue-)/lZ))* (\7. (Hve-J/l Z
)) dxdydz ...... a uy 

Nut) a vy 

:=0 n, 
a UZ a VZ 

T 

~o au:r avx 

J J (Hue-"-)/tZ)* (Hve- )/tZ
) dx dy dz - a uy 

OUII avy 

z=o n, 
a UZ aIl! 

where 0.1 is the element subreglOn and the (MUV, NUv, OUV) matrices are given by 

M UV -

N UV -

"'0 J 2 7;" /t er .. er" d:rdy 
n, 

~: fi - 88~N 88~" )dxdy 
n, 

>'0 fi 8er 7;" (-/tWo.,)lÜ:dy 
n, 

~ JBOU 8er d o Br Tt- xdy 
n, 

À JBOU Berl! d d o By BX X Il 
n, 

Ào1<-/lO" 8:l )dxdy 
n, 

"'0 J(-~ 80")d d <r y 8:r x y 
:1.0 ft 80 <;- (,/1er .. W)dxdy 

n, n, 

"'0 fi/l2 8er 80")d d <; o"ov+W <1: X y :: J( -per" ~ )dxdy 
,h, n, 

>'0 fi BO 7;" (-/t7;- 0 v)dxdy ),0 J( ~ BOy + BOu 8°")d d 
<r y 8y BX 8X x '11 

n, n, 

~ JBO .. 80" d d o 8x 8y x y >.oJ( -/l8~l O.,)dxdy 
n, 

À JBOu 80t! d Q. o 8y B'I/ x y 
n, ~ 

Aoft-/lou B~yU)d:cdy 
n, 
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The elements of these matrices are integrated by converting the variables of integration 
./J 

from the (;c, y) to the ((l, (2) variables and then making use of the following matrices: 

1 1- (2 

2 f J au av d(ld(2 

(2=IJ C=o 
.:> 

1 '[' . 
2 f Bau Bov 

B(p B(" d( 1 d(2 

C=o C=o 

1 1- (2 

2 f J Bau 
B(p av d( 1 d(2 

(2=0 C=o 

The details of how these matrices, called univ.usal matr~8 , can be calculated are given 

in references [59] and [60]. The universal matrices need only be computed pnce and then 

stored in a sequential disc file for retrieval during the execution of the FEM program .• 

\ 

8. The Application of the Boundary Conditions 

The above HI trial functions do not satisfy the essential boundary conditions 
~ "'... \ ... 

of Variati~uil Principle 2.1 which require that the trial fields be tangential f,o electric 

condu~tor surfaces and normal to magnetic conductor surfaces. In the ~nite element pro­

gram, the imposition of these boundary conditions occurs only after the (MUV, NUv, OUV) 

matrices are calculated because it i~ computationally more convenient. They are im­

posed by modifying these matrices to arrive at the same matrix equation that would 

have resulted if trial fun ct ions satisfying the boundary conditions had 'been used from 

the start. , 
- 31-
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As an illustrative e~ample, consider the node pair ('U, v) where the field at node 

'U is not constrained by any boundary copditions but node v lies on a âno' boundary 

surface. The integral of the curl term for instance yields: 

>'0 J J (~x (Hue-J {1Z))*. :r (~x CHve-1PZ )) dxdydz 

z=o n, 
T 

= 

Since the H field is normal to the âno boundary surface at node v, the unknown vector 

[a,xi + atyj - )auk] can be expressed as a normal vector: 

, 

H Inode v 
= avr i + avy j - J avz k = a vn n 

1 

where n = nx i+nyj. This implies that avx = avnn x , a vy ~ aVnn Y1 and avz = 0, so that 

by resolving the trans~rse components into a single normal componeMl'and eliminatmg 

a vz , the integral becomes 

>'0 J J (~ x (Hue-J.B Z »)* . tL (~ x (Hve-J.B Z ») dx 4y dz 

%=0 n, 
T 

[

Mll nx + M12 n y] 
M2l nT + M22 ny a vn ( • 

M31 nx + Mn ny 

The 'modified MUV matrix has snly one column. For cases where the fields are con- . 

strained on t'he node u as weH, a 'Similar manipulation must be performed on the rows 

of the modified li/uV matrix. The type of manipulatiMl depends on the applied bound­

ary condition. AH 'nodes are ~sumed to each belong to one of five categories labelled 

"F", "S", "Y", "0" and "Z", as shown in Figure 3.4. The "F" nodes are not COll-
• 

strained by any boundary surface and retain ail- three weight variables (aux, au y '. au: ). 

The "S" nodes are located on a straight electr.ic conductor and therefore their transverse 
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components (aux, aU!!) are resolved into a single tangential component aul and the a UI 

cornponent is retained. The "Y" nodes also lie on a an. boundary but at a location 

where two boundary lines meet at angle other than 1800
• Since two tangential compo­

nents cannot co-exist at one point, the transverse components are simply eliminated for 

this case and only the auz component is kept (this is an approximation since the actual 
( 

field may be singular at this point). 

f The "0" case occurs ~ere two ano boundary lil'les meet at 1800 or where a 

ano and a an;, boundary line meet at 900
• In this case the transverse components 

are resolved into a single normal component aun and the aUt component is eliminated 

as was shown in the above example. Where two ano boundaries or a ano and a ana 
boundary meet at angles other than 1800 or,90° respectively, the "Z" case occurs and 

all components are eliminated . 

.r 

9. Global Matrix Assembly " 

--By. combining all the contributions from each node pair in every element; the k~ 

functional for the entire finite problem region nI can he obtained: 

where (A, B) are the global matrices of t~e discretised problem and 

the 

or consisting of all unknown x,y,z ,normal or tangential component variables. 

nown variable associated wi th Ci. particular no de ,is cou pIed algebraically only to 

variables of the other elements that contain the node. The A and B matrices 

are thw$ s se. To locate the stationary points of this functional, the derivatives of 

k~ witb respect to each unknown variable are taken and set to zero; this yields the 

following generalised eigenvalue 'problem: 

This is be s9lved numerically by an eigenvalue solver program (see Chapt~r 5). The 

approximate modal normalised frequencies are the square roots of the eigenva!ues and 

the H field distribution is given ~ the eigenvectors. 
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Chapter Four 

Infini te Elements 

1. Elements for the Infinite Regions 

.; 

Finite elements cannot be used to me,sh the infinite transverse regions surround-

ing an open guide but infinite elements, which are elements with infinitp- area, can be 

used. Many infinite elements have been proposed [18,19,20,61,21,62] for solving detet-
" . . 

ministic (i.e. non-eigenvalue) u~bounded problems in other disçiplines of engineering 

su ch as fluid dynamics and mechanics. The shape most used in these refer~nces is the 

flared parametric infini te element shown in Figure 4.1 which results from the mapping 

of a semi-infinite strip in the ç-.,., plane. The trial functions' selected by each author ,. . 
are much more varied however, sinee they are specially ~seleeted to reflect the actual 

)--

solution 's asymptotic radial behaviour which depends strongly on the type of vtoblem 

being solved. Infinite elements suitable for extending the FEM to open guides, which 

present additional difficulties, are discussed next. The resulting method is call~d the 

Finitejlnfinite Element Method. 

2. The Infinite Element Mapping and the Azimuthal Trial F\!nction 

P~ametric infini te elements [19] are chosen for this thesis because their flexible 

, shape can be used to mesh a wide range of problem geometries. To avoid having the 

semi-infinite edges 1 and 2 intersect, the angles 81 and 82 in Figure 4.1h are required 

to he greater than or equal to ,900
• The mapping function which maps any point in the 

ç-.,., plane into the x-y plane is: 
:) 

x - xIC~77)(l-ç) y = YIC~'7)(l- e) 

+ X2 C~ 1])(1 - e) + Y2 C ~ '7 ) (1 ~ e) 

X3C~7J) ç Y3C~ '7) ç 
(4.1) 

+ + 
1 

+ X4C~7J) ç + Y4C~'7) e 
Because it makes the integration of thê irlfinite elements easier (see section 5), the 

{ '-
mapped irifinite elements are constrained to be symmetri cal , that is the anglés 81 and 

1 1 
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92 must be ~qual. Sin ce the infini te element adjoins a triangular elem~t on an edge 
, 

with n +01 nodes, the' infini Le element _also has n -+ 1 nodes along that ed~-fumbered 

locally as shown in Figure 4.1h. Just as for triangular elements, one intetpolatory 

vector trial function is associated with each node. F~r each component oj~ilie field at 
.1( 

node i, the trial function is of the form tPJ(,.,),(e) ; the "7 and e dependence are thus 

separate. As shown later, ,(0) = ~onstant and therefore along the edge shared with 

the finite element, each component varies as tPl("7)' To achieve field continuity with the 
1 

adjacent triangular element for any values of the nodal weights (aix, a,y, au), each tPl (7J) 

function should have the same variation along the shared edge as the corresponding, Q­

polynomiâl in the tri~gular element. By defining the local coordinates "71 = (1 + "7 )/2 . . 
and "72 = (1- "7)/2, which are equivalent to the corresponding triangular element zeta 

coordinates, the required tP functi0n can he written 

tP.(7J ) 
1-7] 1+"7 - P.-1 ( -2-) Pn+1-.( -2-) 

- p."-d7JJ) Pn+l-I("72) i=1,2, ... ,(n+l) 

{ /1, (nv -rI) , if 1 > 1 
where P,(v) -

1 ~ ifl = 0 
""-? 

which is similar to equatlon (3.1). The remaining part of the variation of fi is described 

by 1'ce) which is called the radial trial function. 

3. The Radial Trial Functions 

The choice of radial trial functions must take into consideration the solution's 

actuaI radial behaviour. The interval 0 :5 r :5 00 cao be thought of as consisting of two 

parts, near field and the far field or asymptotic region. 

The main difficulty in solving the unbounded Helmholtz eigenproblem is- that 

the actual asymptotic radial field behaviour is not known hefore the problem is solved. 

!l'rus difficulty is not éncQuntered in open çleterministic problems such, as the Laplace 

problem for which the asymptotic field behaviour is known. If 11 fini te/infini te elemel1t 
, . 

scheme is used, the correct radial trial functions cao therefore be ineorpo'rated in the 
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infinite elements. ~lternatively, a number of other approach~ can be employed, suc.h 

as ballooning fl4,16]t or coupling the FEM to a surface intégral method [63,64}. 
- , 1 

For the scalar Helmholtz eigenproblem described by the differential equation 

\12 </> + (€rkfi - f32)</> = 0, this difficulty can be circumvented. It is possible to recast 
~ , 

this problem [15] by making h = v'f32 - Erek~, the known quantity (instead of (3) where 

fre is the rel~tive permittivity in the ext-erior, and by modifying the scalar functional 

a.ccordingly. This makes the asymptotic field behaviour known in advanee, sinee it is 
\ 

specified by h. The same techniques available for handling the unbounded exterior 

region in the deterministic case can therefore be used. 

This particular strategy is not applicable to the vector Helmholtz eigenproblem 

because thé integr~nd of the funetional eontains terras in f3 as weIl as (32. To overcome 

this difficulty, Yeh et al. [22) used the FEM with parametrie infini te elements which 

incorporated a radial trial function of the form 'Y = e-Cl'r where Cl: > O. The asymptotic 

field behaviour is therefore speeified by the deeay length lia which is globally defined for 

the whole problem._ Because the correct decay to specify is unknown, an outer iteration 

loop was added to the FEM whieh optimized the Cl: parameter for each mode of interest. 

Rahman and Davies [23] employed similar elements whose decay was specified in 

the {/; direction by e-x/ L: or the y direction by e-y/L/I or both by e-x/L.,-y/L II • The 
î 

total number of L decay lengths for the entire problem can be greater than one but 

only one was assigned to each element. Th1i.decay lengths were optimized in an ou ter 
f' 

iteration loop, as with Yeh et al .. Methods such as these which employ infinite elements 

incorporating a single optimized exponential deeay in each element will be referred to 

as optimized single decay (OSD) methods. 

Although it was formulated for the scalar Helmholtz problem, the two techniques 

proposed by Hayata et al. [t35] are OSD methods which iterate to the optimal exponen­

--tial decay parameter efficiently by using either the previous eigenvectors or the previous 

eigenvaIue to calculate the next estimate of the decay length. 

The radial trial functions used in this _thesis m~e the above decay length ùpti­

mization lo<?p unnecessary and conserve the simplicity of the FEM. These trial functions 
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are of the form 

"Y ( e, ao , al, ..• , aq-l ) ao e-E/Lo + al(e-eIL
l _ e-E1Lo ) 

, 
+ ". + a(q_l)(e:-F./L(Q-l) _ e-(/Lo) 

where the decay lengths (Lo,Lll'" ,L9-1) specify a suffici~ange of deçays to al- - i 

low the "Y trial functiôn ta adequately model the asymptotic behaviour of all modes 

of interest simultaneously. These decay length$ are not optimized so the method is 

ealled the multiple fi:ted decall (MFD) method. The addition of the unknown variable'!> 
. r 

(al, ... , ag -1 ) d~s increase the problem size relative to the OS!? method, and therefore 

also the exectltion time of the eigenvalue solver but this is offset by the removal of the 

outer optimization loop and the fact that all p modes are found for in one execution of 

the solver. 

The MFD triai funetions aIso pl'ovide superior modelling in generaI of the actual 

radial field behaviour beeause the fields are a linear eombination of q exponential deca'ys 

instead of just one in the case of the OSD method. For example, the modelling of 'field 

variation in the near field region is improved with the MFD method, since a certain .J 

nwnber of radial trial functions wiHr short decay lengths cau be made available ta 

supply fiexibility in approximating the fields near the core. The superior modelling 

ability of the MFD method i~ parti<;ularly pronouneed near the eut-off frequencies of 

the modes as tlle empirical results of section 5.6 demonstrate'. 
, -' 

4. ,The Full Trial Function 

Combining all the azimuthal tP,(1J) functions and the radiai MFD i(e) function 

into a single expression, there ,obtain:s: 

n+l 

H(1], ç) - L tP.(1J)(liz i + Il,,j - i"Yi:k) (4.2) 
i=1 

q-1 

where, ~ - a e-e/Lo 
10X + L aimz (e- E1 Lm _ e-e/LO) 

m=l 

-i-l 

/il/ - a' e-e,/Lo 
10y + L a,my (e-UL.m _ e-eILo) 

m=l 
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q-l 

"Yi: = aio% e-f./Lo + L aimr'(e-f./Lm - e-ULo ) 

m=l 

For e = 0, the nodal trial functions reduce to "Yu: = aioz, "Yiy = aioy and "Yi: = a.o:. The . 
unknown variables _{ aiox, a.oy , a,o:) are therefore the values of the field components at 

the (n + 1) nodes of each infinite element. 

~ust as for triangular elements, the trial functions are modified by the application 

of the electric or .magnet~c conducting wall boundary conditions on any of the three 

edges. As before, this modification occurs aiter the integration of the functional by 

resolving the unknown variable components into normal or tangential components, or 
,-

the removal of componehts (see section 8 of Chapter 3). Note that these trial functions 

also satisfy the required far-neld boundary conditions (2.25c), (2.25d) and (2.25e). 

5. The Integration of Trial Function Terms 

Let n' be the order of the tri ular elements. When the trial functions of (4.2) 

are inserted iq.to the kJ (H e - ) tJ:) functio 

denomjnator consist of a series of terms of t 

and expanded, both the numerator and 

1 

-1 0 

where u -

v = 
w -

and J = 1 :~é::J 1 is th~ Jacobian of the map .'., ""' ~"...m the (x, y) to theQ'(e,7]) domain. 

For the mapping of equation (4.1), it can e s 0 

J < = 

where JI > 0 and J2 > 0, and th!refore the general functional,term l is 

100 J J e-elL eu 7]v (JI + J2e + J37]}W de d7] 

-1 0 ,) -
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A simple method of determining this integral does not exist 88 in the case of triangular 

elements for which universal matrices CM be defined. However, if w = 0, w = 1 or 

J2 , J3 = 0 the integration of 1 CM he performed using the simple formula 

100 if vis odd J J e-~I L C' 1]" de dT] 
-1 0 if vis even 

If w = -l, the l integral is 

For this integral, a Gauss cubature integration scheme [21] and a semi-closed exact 

formula were attempted. Both were found to be inadequatè because their accuracy was 

not uniform over aIl possible values of L and 1 ~ 1. ~he innaccllfacy in the semi-closed 

exact formulh was due to the round-off error that occurs in the sUIIlIIUition of very large 

terms of near equal magnitude but opposite signs. 

found to be too slow because of the high orders of Gau - egendre and Gauss-Lagu.erre 

quadrat!lre that are required to achieve acceptable accuracy. 

To resolve these difficulties, the integrand is simplified by imposing J3 = 0 which 

is the same as requiring that the infinite element shape be symmètrical in the x-y plane. 
- ~ 

The following semi-closed formula can then he u~ed [66,p.321): 

o if v i~ odd 

\: - 41 -
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where Ei is the e2:ponential integral fun~ion [66,p.927]: 

1 
Ei (-2:) e-Z ~(_l)k (k -1)! + Rn 

L...J xk 
k=l 

n! 
where IRnl < -xn+l 

for x> 0 

The use of symmetrical infinite elements does Dot restrict the problem geOmetry,;ince 

any prohlem region meshed with asymmetrical infini te elements can he converled to a. 
• 

symmetrical infinite element mesh with the addition of triangular ~lemeDts. Figure 4.2 

shows an example of this conversion. Such a scheme increases the number of unknown .... ' . ' . 
varia.bles but simplifies the integration code considerably and improves the accura.cy. 

f 
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Chapter Five 

Results 

1. The Fortran Program 

The program "OMAX" was written in Fortran to implement the MFD method 

• presented in Chapters 3 and 4. Two auxiliary programs, UNIMAT and MATPST, were 

also written to generate the reqùired universal matrices. 

The OMAX program accepts a data file as input which describes the {3 values, 

the problem mesh, the boundary conditions and the material permittivities. For each 

fi value, it assembles the global matrices, solves the geperalised eigenvalue problem and 

outputs a list of the first p eigenvalues. li requested, OMAX will also gener~te a file 

with plotting information that can be used to display field intensity graphs or transverse 

field vector plots. 

---The q fixed decay lengths (Lo, L1 , ••• ,Lq-l) that are supplied to the trial func-

tions of each infini te element are selected automatically by the OMAX program using 

the parameters-q, Cd and N nl (see below) which are supplied in the input file. In the 

examplesr q is set to either 5 or 6 with goo<:l results. Increasing q causes OMAX to 

allocate more radial trial functions to each infinite element which tends to reduce the .. 
error in the results but also increases the computation time. 

The decay length selection algorithm starts by calculating an estimate L~in of 

the shortest decay length required to model any moàe for a particular choice of the 

phase constant (3. Let frm&x and frmin be the maximum rel~tive permittiVlity of th~ 

problem (usually located in the core) and the minimum relative permittivity (usually in 
-' 

the infini te region) respectiv.~ly. N~w for an open guide ~onsisting simply of a circulaI' 
. " 

homogeneous êore (of any radius) of relative permittivity f rmlLx surrouncled by a cladding 

ofrelative permittivity -frmin, the following relation holds [67 ,p.367]: \. 

[max(h) ]2 (frmu - f,.min) ki 

where h = .; {32 - frki is the transverse wavenumber anywhere in the cladding. P~tting 
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this in têrms of max(h) and (3only, 

[ma.x(h) }2 (1 - ~ ){32 
Errn&x 

The asymptotic radial ~ha~our of the fields of this guide is :fi; [48,p.297}, aIfd there-, 

fore an estimate Lmin of the shortest decay length is ~ 

1 1 
- -

max(h) (1 

Starting with this estimate, the decay lengths are generated by repeated multi-.. 
plication by the coefficient Cd: 

The user,selected parameter Cd thelefore controls the distribution of the decay lengths. 

For all the test exampIes, it is set to the value 10 .. This value causes OMAX to specify 

decay lengths whicli are very large relative to the core dimen:'ions of the guides, and 

thus permits the modelling of the modes very near to eut-off. 

Since the fields may have features which are smali in companson to max(h), the 

user can specify a number N n ! of near-field decay lengths. These are also gener~te~ 

from L~in by successive division by Cd. In summary, all decay lengths are generated by 

the formula: 

i = 0, l, ... ,(q-1) 

Most of the computation time is spent assembling the' in~te element global matrix " 

contribution and solving the generalised eigenvalue problem. Although the global ma­

trices are sparse, a dense matrix solver is used. The solver is comp~ed of EISPACK 

routines [~ ~hich convert the generalised eigenvalue problem to a standard eigenvalue ~ 
, -

problem, tridiagonalise the resultil1K matrix 8lLd then use Sturm sequ~ncing to locate 

the eigenvalues. 
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2. The Slab Waveguide 

As a simple e pIe and test of the MFD technique, consider the problem of ,de-

odes with no y variation of the slab waveguide shown in Figure 5.1a. 

The guide consis of a homogeneous dielectric film with relative permittivity trI = 3 

and thickness t, dep€)~d on a conducting plane located at x = O. The surrounding 

homogeneous cladding "nk relative permittivity €r2 = 1. An analytical expression for 

the Ez component of the TM solutions is [44,p.1l4]: 

) 

sinkdx 
for 05 x < t 

sin kdt 
Ez = -hz e 

f<?r x;::: t -ht e 

where kd and h are the transverse wavenumbers satisfying the equations 

(5.1a) 

(5.1 b) 

(5.lc) 

The modes are the simultan~ôûs solutions to equations (5.lb), (5.le) andAhe charac" 

teristic equation 

(5.ld) 

It is impossible to apply the infinitejfinite element method to this problem in its un­

modified form. The problem has no core region of finite size that can be meshed with 

finite elements and infinite elements that extend in the +yor -y direction cannot be 

used, sinee their trial fields deeay in these directions whereas the actual solutions are 

y invariant from (5.1a). To overcome these difficulties, two perfect magnetic conductor 

boundaries (an o ) are plaeed as shown in Figure 5.lb at y = 1r} which prodùéeS a core 

region and permits a mesh like that of Figure 5.le with 20 finite elements and a single 

infini te element to be used. The actual solutions do decay in the +x direction for x ;::: t, 

50 that infinite elements extendin~ in that direction can be used. The modified guide 
o 

supports the following TE and TM modes: 
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J-.. , 

TM modes: H~- = 0 
" 

sinkelx 
'for OS x <t . k t coskmy sm el 

E~ - e-b 

-:=tiï cos km Y for x >t 
e 

m - 0,1,2, ... .(5.2a) 

, 
TE modes: Ez - () 

COSkdX • k for o <x <t k sm m'Y cos dt 
Hz -

f 
, 

-lu: 
e . k x >t -:=Tiï sm mY e 

m - 1,2, .... (S.2b) 

where k _ mll' 
m - b (S.2c) , 

which are simultaneous solutions of the following equ~tions 

k~ €rl - [32 + k3 + k2 (5.2d) -m 

k~ €r2 - [32 h2 + k2 
m (5.2e) 

kdt tan kdt - fTl ht (TM modes only] (5.2f) 
fT2 

kdt eût k,jt - ... ht (TE modes only) (5.2g) 

The frequencies of the TE and TM mQdes with m > 0 ean he made arhitrarily . ----:: ----

large by reducing b-(from (&.2cj,-ihiSîncreases-thevalue ofthe constant km in (5.2d) and 

(S.2e). The lowest eigenvalues are thus the desired TM modes with no y dependenee 

(m = 0). 

The results from the OMAX program with secpnd order triangles and 6-"âeeays . ..-. - . 
are shown in Figure-S.2j the normalised /3 versus V coordinates are used. The solutions 

to equations (5.2d,e,f) are also shown as the solid Hnes. Very close agreement is obtained--
, 

for the lowest modes from eut-off to the highest fr~quencies shown on the graph. 
1 _ 
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3. The Circular Dielectric Waveguide 

The next example is the weakly-guiding circular waveguide of Figure 5.380 with 
• 

interio! and exterior refra.ctive indices of nI = ~ = 1.53 and n2 = .;e;; = 
1.50 respectively, and radius a. The closed-form analytical solutions to the modes 

of this,ruide, -designated TMou, TEou, EH"u and HEv~' (where 'U, v = 1,2, ... ), are 

given i~[68,p.225J. To reduce the J)roblem size, only one quarter of the problem is 

mJshed as illustrated in Fi~ 5.3b; the mesh is composed of 12 triangular and 4 

infinite el~~ents. AlI modal H fields have <p dependence e jvtjJ and therefore it can be 

shown th~t they all satisfy either the perfect electric eonductor (an,,) or the perfect 

magnetic conduttor (an o ) boundary conditions on the symmetry lines (the x and y 

axes). The correspondence between the applied boundary conditions and the resulting 

modes ls shown in Table 5.1. The OMAX program was run with third order elements 
.-/ 

for ea.cb of the three pairs of boundary constraints in tbe table producing t.he results 

in Figures 5.4a,b,c. The largest global matrix size was 335 which occurred when both 

edges were set to the an" bound~}ype. The analytical solutions are shown as the 

solid lines. The results. are most a.ccurate at eut-off and towards the higher frequendes, 

and the maximum error in ko is 0.03%. 

Table 5.1 

Boundaxy Conditions 
Resulting Modes 

edge 1 edge 2 : 
. 

ano ano TMo:, EHvu, HEvu (v. even) 

an$ an$ TEou , EHvu, HE vu (veven)" 

ano an" -, EHvu, HEvu (v odd) " 

4. The Square Dielectric Waveguide 

Using a point-matching method, Goel1~8] calculated the dispersion curves of 

the modes of the square waveguide of Figure 5.5a f~hich no exaet analytical solutions 

are available. As for the circular waveguide, a quarter mesh was used and the three 
\ 

pairs of edge 1 and 2 boundary conditions were applied separately. The point mat ching 
, . 
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result5 are shown in Figure 5.6 as the solid lines while the OMAX results appear as the 

circles, squares and triangles. 

With the boundary conditions on edges 1 and 2 both set to 80.0' the execution 

time for each fi value cycle was 12 minutes on a VAX 8650 and the size. of the global 

matrices was 338. 

5. The Effect of Varying the Parameter s 

It i5 mentioned in Chapter 2 and proved in Appendix 2 that spunous modes 

satisfy ko > ..;sfi. To confirm thTs relation, the OMAX program was executed for 

the square waveguide problem of the previous example by fixing the value of fi at 20 

while varying the s parameter between 0 and 2. In Figure 5.7, each column of crosses 

represents the modes, both spurious and phys1cal, that result from the exeeution of 

OMAX; for a partJcular value of s. The total number of modes III each column 1S 217 
" 

(thls is the order of the global matnces) but only those whlch satisfy bko < 22 4 are 

shown. 

Figure 5 7 shows how the spunous modes grow in frequency as s increases, 

d whereas the frequencies of the physical modes remain nearly constant. Since ft;; = 1.5, 

..JE;; = 1 and b = 1, the spurious modes are eliminated completely frpm the propagating 

range bfi / ~ < bko < bpi y'f,;, or 13.33 < bko < 20, wh en s reaches unity. Reference 

• lines at s = 1 and bko = 20 are included in the figure. 

Note that for this elimination method to be effective, all the essential bounèiary 

conditions of Variational Principle 2.1 m\lst be applied. Using a similar method, Rah­

man and Davies [49J describe Jtn open channel waveguide example (on page 927) which 
Il 

requires that s be set to 104 for the eliminatlon of spurious modes. This may be due to 

an incompl~te application of bo 

.. 
- 6. A Companson of the MFD nd OSD Techniques ~ 

':Çhe dra~k of the OSD method is that the si~gle ~ecay length L must be 

optimized, particularly netl.r eut-off 
, Thi~ ::;;s.trat~ in Figure 5.9 in Whi~ the nor· 

~ .~". " 
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o 

malised frequency of the fundamental mode is plotted versus the decay length L (solid 

lines) for the OSD method applied to the square waveguide tnesh of Figure 5.8b. Ea.ch . 
curve represents a different value of f3 which ~es between 1 and 3.75. The néed for 

optimization is made appare~y the severe variation of the frequencies with decay 
'. ~ 

length. 

The results of the MFD method applied to the mesh of Figure 5.8a are included 

for comparison (horizontal dashed lines). Even though the mesh is smaller, the results 

of the MFD technique compare very weIl with"those of OSD. 
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Chapter Six 

Conclusions 

Computational analysis and design tools for arbitrarily-shaped and arbitrarily­

inhomogeIieous unbounded dielectric waveguides (i.e. open guides) are of current in­

terest sinee analytical closed forro solutions are usually not available and determining 

the required modal characteristics-through experiment is expensive and laborious. This 

thesis presents a numerical technique for the modal analysis of open guides in which in­

fi~ite elements-are used to extend the finite element method to unbouJlded guides. This 

technique preserves the linearity of the finite el~ment method and allows the problem 
" ' 

to ~e transformed algebraically into a generalised eigenvalue problem which yields the 

first p modal eigenfrequencies in one pass of the sol ver .. 

Previously, the optimized single decay (OSD) method was employed which has the 

disadvantage of requiring that the decay length be optimized separately for each mode 

of interest. In this thesis, the multiple fixed decay (MFD) method is introduced which 

supplies each infini te element with' a weighted sum of decaying trial functions with fixed 

decay length. The outer optimization loop is etminated ~d each mode is approximated 

more closely since the infini te elements dispose of more dégrees of freedom. 

Further imp'rovements can be made to the "MFD technique by incorporat/ng- a 
1 - • 

" 
sparse sol ver into the code, since the matrices' generated by the integration of the func-

tional are sparse. The integration itself could be improved by developing an error bound 
• 

for the exact integration of asyrnmetrical elements, thus removing the present restriction 

of symmetrical shape on the infini te eleme:gt;s. 

, 
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Appendix 1 

Proof of Variational Principle 2.1 

Let V be the space of c!mplex three component yector functions H( x, y, z) of the . 
form' 

H(x, y, z) - H(x, y)e-Jl1z - [Hz(x,y)i + H,,(x, y)f + Hz(x, y)kJe-j~.r 

which are infinitely differentiable in 0, zero outside 0, square integrablé and satisfy 
, , 

houndary conditions (A1.3) (see below). The norm is deftned as 

>'0 1 

11H 11 = [J J ( H'· H J dz dy dz ]2 
%=0 n 

Two prelirninary resu1t~that are required for the main proof are' presented tirst. Let 

F(H), Q(H) and N(H) he functionals which map from V into the set of real numbers. 

In particular, let Q and N be 

Q(H) - q( H; H) 

N(H) - n(Hi H) 

. , 
where q and n are sesquilinear forms and therefore satisfy the proper~ies 

q( A j B) - q( B ; A)* 

n( A; B) - n( B ; A)* 

where A and B are arbitrary vector functions in V. 

(A1.1) 

(Al.2) " 

Let the symbol 6F represent the tirst ratiçn of F(U) with respect to an 

arhitrary change Ha EV, that is "_. 
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Lemma Al.l 

Prool: 

The first variations of Q and N are given by: 

fJQ - Re{ q(Ha; H) } 

fJN = Re{ n(Ha; H)} 

The change in Q due to a change Ha is: 

QCH + Ha) - QCH) 

- q(Ha + Hi Ha + H) - q(H; H) 

- q(H; H) + q(Hj HB ) + q(HB ; fi) 
+ q(Ha; Ha) - q(H; H) 

- q(Ha j Ht + q(Ha; H) + q(Ha j Ha) (from A1.2) 

- 2Re{ q(Ha; H)} + q(Ha;Ha) 

_ 8Q + O( IIHaIl 2
) 

=> 6Q = 2 Re{ q(Haj H) } Q.E.D. 

Lemma A1.3 

Proo!: 

li F = QIN (N 1= 0) then the first variation of Fis: 

fJF = .bQN - Q8N 
N2 

Writing Q = F N, the change in Q due to a change Ha is: 

, 

,. 

= [F(H) + bF + O( I/Hal/2) J[N(Hf+ 8N + O( IIHal/2)] - F(H) N(H) o' 

= F8N + bF N + 8F8N + O( IIHall2) 

_ fJQ + O( IIHa112) 

and sinee the term 6F ON is of orders of IIBa Il greater than one, we obtain li 

" hQ - ~N + hFN 
') 

:::} 6{ , (6Q - F8N) 
(N 1= 0) - N 

( 

8QN - Q8N 
(N :f 0) - N2 
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~e can now proceed wit~e main result -of this Appendix, the proo{ of Variational 

Principle 2.1. The boundky ~nditions that are satisfied by any H E 1) are 

<) 

Hxn - 0 on ano (A1.3a) 
. 

sB· n - 0 on ana (A1.3b) 

Hm ..;rH -
r-oo 

0 (J\1.3c) 

lim Vr (\7 -x JI) 
r-oo 

- 0 (A1.~d) 

lim s..;r (V . H) 
r-oo 

- 0 (A1.3e) 

The functional of Variational Prineiple 2.1 is 

k~ (H) 
Q(IJ) q(H;H) 

- N(H) - n(H;B) 

Ào J j" (('\1 x H)*· I<11('\1 x ~ + s (\7. H)· (\7. H») dxdydz 

%=0 n = Ào J J (H· . H) dx dy dz 

\':=0 n 

where 

Ào 

q(A j B) J J ('\1 x A)·· I<-\\1 x B) + s (\7. A)* (\7. B) ) dxdydz 

%=0 n .. 
and 

Ào 

n(A; B) J J (A •. B) dx dy dz 

%=0 n 

The matrix I<-l is positive definite and s ~ Oj the functional Q(B) = q(H; H) is 
< 

therefore positive semidefinite. The funetional N(H) = n(Hj H) is identical tù the nor~n 
• '1' 

which is positive definite. We therefore have kJ (H) > O. 
! 

. Now sinee K is r~al sy~metric and therefore Herm~, we have KH = K and 

I< K-l = 1 =? /{H [{-1 = 1 ::::} K(K-1)H = 1 ::::} ~ K-1 = (K-1)H , anfl 
'\ 
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therefore K-1 is Hermit~an as well. Using this result, it can be shown that q and n 

satisfy (A1.2): ,. 
Ào • 

q(A iB) / /((\1 x At· K-1(V x B) + s~V. Aj* (V· B) ) dxdy dz 

z=o n 
Ào [/ J ((V x Bt . K- 1(V x A) + s (V· A)* (V . B) ) dx dy dz ]*--

z=o n 

- q(B i A)* 

!<d 
~ , 

n(AjB) = 

Ào 

= [J !(B*.A) dxdydz]* 
z=O fi . 

- n(B jA)* 

Rence from Theorem A 1.1, ~he first 'variations of Q and N \ 

... 6Q·· = 2Re{ q(HaiH)} ) . 
6N = 2Re {n(Ha;H)} 

and the first variation of k~ (H) is 

6QN - Q6N 
N2 

from th~9rem A1.2. Now if Ha is a stiftionpxy point of the iunctional ki then 

o => 

1 ( ~>' . Q(H,,) .) 
N(H,,) .. Re{q(lIa,H,,)} - N(H,,).2Re{n(Ha1 n,,)} - 0 
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where k6; = k6 (B,,). When q( Ha; ~,) and n( Ha~ H,) are expanded~ this becomes 

.. ~O' 

Re{ / J (V x Ha)* • (K~lV X H,) ~ s (V. Ha)· (V. H,)) d:r; dydz 

%=0 n 
~o ' 

- ,. k:, J J (H: . HIf ) dx dy dz } o 
%=0 n 

, . 
USlng the vector identities 

we obtain 

~o 

V· (A x B) 

(VU)· A 

B . (V x A) - A· (V x B) 

V· (U A) - U (V· A) 

Re{ f J (V. (B: x (I(-lV x B,) + H:· (V x (K-1V X H,,» 
:=0 n 

+ s [V . «V· H,,) B:) - (V(V· H,I» . H!]) tix dy dz 

~o 

k~1I J J ( B: . HII) dx ay az } o 
%=0 n 

an application of the divergence theorem yields 
'l7 
1 

~ 
~o 

Re{ J /(H: ·(V x (K-1V X H,,») - s(V(V. H,,» . n: ki. HIf ) dx dy dz 
%=0 n 

+ f(H:X(I<-lVXH/J) + (sV.HIf)H:).ndS} o (A2.4) 
s 

where S is the surface enclosing the volume of integration. 

vVe will assume for t~e moment t~at H: ~ zero on S but otherwise an arbitrary 

vect~r in V. The surface integral is zero in this case and 

Xo 

ReL! f ( H:· (V x J(-~(V x HII » 
:=0 fi 

k~1f (H,) HIf ) dx ~Y dz r = 0 
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Now sinee U: can assume any complex value in the volume (0,0 :5: z $; Ào) this 
~ 

implies: 

In n 
--

The volume integral of equation (A1.4) therefore vanishes apd if we now let Ha assume 

any value on the surface S, then equation (A1.4) becomes 

Re{!(U:X(K-1V,XHIl! + (sV.U,)B:).ndS} - 0 
s 

This integral can be considered to consist of three parts: 

Re{ f(H:XK-1('VXH,) + (sV.HIl)H:).ndS} 

s 

Re{ j (B: x (K-1V;x Ha) + (sV· Ha) H: ) . n dS } 

o 
z=o 

+ Re{j(H:X(K-I'VXH,) + (sV.H,,)H:).ndS} 

o ~ 
>'0 Y" 

Since 

+ Re{ J (B: x (K-IV X HIl ) +' (sV· H,)H:). n~S} 
ao 

O:Sz:SÀo 

= '0 (A2.5) 

B(x, y, >'0) = H(x, y)e-J .8>'o = H(x, y)e-)271' = H(x, y)e-)O = B(x, y: 0) 
... 

the first aq,d second integrals on. the R.H.S. of (A1.5) ar~ equal in magnitude but of 
, 

opposite sign (because the unit normal vector reverses direction), and therefdre cancel 

each other. 

We have therefore 

Re{ f (H: x (K-IV x Ha») . n dS} 
s 

Re{ J (H: X (J(-l'V X HIl ») , ~ dS r 
o 

ao 
°:S:9·o 
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Dividing this integràl is into three integrals for each of the surface boundaries that 

enclose the region n : 

Re{ J ((H: X (K-IV X H,) + (sV. B,)H:) . n dS} 

80 
O$z$.\o / 

Re{ J (H: X (K-IV X B,) + (sV· H.)B:) . n dS} 

00. 
O$z$.\o ,. 

+ Re{ J ((H: X (K-IV X H,) + (sV· H,)H:) . n dS} 
anD -' 

O$z$.\o 

+ Re{J~oo J t (H: X (K-IV X H,) + (sV· H,)H:) . r rd4>dz} 

r=R 
0$4>$271" \ 

j,lO$z$.\o 

Re{ J ((n x H:) . {K-IV X B,) + (sV· Hrl (H: . n») dS} 

an, 
O$z$.\o, 

+ Re{ J ((n X H:) . (K-1V X H,,) + (sV· B,) (H: . n») dS} 

+ Re{ 

o 

800 

O$z$.\o 

J (( Hm (JrB:» X (lim (Jr K-IV X B,y) 
R-oo R-oo 

r=R 
0$4>971" 
O$z$Ào + .( lim (Vr sV· H,») ( lim (Jr H: . n») . r d4>dz} 

Il ..... 00 R-oo 

Note that for the third integral, the integration is performed over the entire . lim r = R 
,R-oo ' 

surface, even t~ough certain sections '-~: may 'not be~ong to n. This is possible sinee 

the H field is defined as zero outside n as illustrated by the example in Figure A1.1. 
~ 

The integrand of the third surface integral is zero in n as weil because H: ,B, E 'D 

which implies lim (ylrH:) = 0, lim h,rrv x H .. ) = 0 and lim (y'r sV·, H:) = O. If we 
r ..... oo r-oo r-oo 

make H: zero on ano, but otherwise an arb~rary'\vector in 'D, then the s~cond integral 

vanishes and 
,,-""" ,.11 

Re{ . J (cn x B:) . J(-I(V x H .. ) + (sV. H,)(B: . ~» dS } = 0 

~ 8n, 
., O$z$.\o 
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1 . Figure AI.I The slab waveguide example of section 5.2 is used to illustrate the contour C' 
integration over the anco boundary. The boundary contour integration is performed over " 
the an. line segment, the semi-infinite an !ines and the segment C of the circle r = R 1 

which is inside the n regiott. Since the integrand is zero outside n, the integration can be " 
performed over the entire r = R circle (i.e. C U C'). " 
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o 

SiÏlce 8 H: . n = 0 on 00., the second term in the integrand va.ni~es: 

Re { J ( D X H: ) 
80, 

O~z$Ào 

Re{ J (H: . «K-1V X H,,) x n)) dS} - 0 
80, 

O::;z$Ào 

o 

Since H: is arbitrary, this implies that the tangential component of V . H" is zero: 

(V x H .. ) x n = 0 on an" 

This is the natural boundary condition on an". 
,-

If we now make H: zero on an", but otherwise an arbitrary complex vector in 

V, then the mst integral vanishes and 

Re{ J (Il x H:) K-1(V'x H,,) + (sV· H,,) (H: . n» dS} - 0 
an o 

O$z::;>.o 

Since H: x n = 0 on ano , the first term in the integrand vanishes: 

Re{ J (sV· H,,)(H: . n)) dS } 
800 

0::; ~).o 

o 

AIso, H: x n = 0 on ano implies that H: is normal to the ano boundary. This makes 

H: . n an arbitrary non-zero complex number, and hence 

This is the natural boundary condition on ano. 

Q.E.D. 

\ 
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- Appendix n 
, 

T4e Frequency Range of Spurious Modes 

In this appendix, the result ko > .fi /3 for the spurious solutions will be derived. 

The spurious modes are the solutions to 

s V (V' . H) + k~ H - 0 ln n (A2.1a) 

H· n - 0 on âna (A2.1b) 

V' ·H - 0 on âne) (A2.1c) 

lim JrH - 0 (A2.1d) 
1'-00 

lim .fi (V' . H) = 0 (A2.1e) 
1'-00 

k2 
0 >0 (A2.lf) 

where s > 0 and H E 1) (see equation (2.28». Taking the curl of (A2.1a) and noting 

that the curl of a gradient is zero, we obtain 

s V' x V (V' . H) + k~ V x H = 0 III n 

=> ,/ X H o 10 n 

Th~utions to (A2.1) are therefo~e irrotational and can be written as the gradient of 

a co'inplex scalar function \}I as follows: 

H(x,y,z) Cl + 'II(x,y,z) 

Cl + ~(x,y)e-}PZ " 

• 
Any value of Cl will allow H to satisfy (A2.1)j the value Cl = a is selected. Equations 
(A2.1a) through (A2.1e) can therefore·be restated as follows: ~ 

L-.. sV (V2w) + kl ViI! - 0 III n 

=> V (V 2 iI! + kl 'II) - 0 III n 
V 2 '11 + kl 'II 

s 

- constant C2 III n => 

=> 

s 
~ . 2 

[V
t
2 1fJ + (ko _ ,82) 1fJ]e-J,8z - C2 III n (A2.2a) 

s 

v- (V; :::'" â/âx i + â/8yj) 
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V 2w - (\lt
2 tfJ - rP'IjJ )e-J!3 z = 0 

=> \lt2?jJ - {i2?jJ = 0 

lim ..;; Vw - lim ...jT (\lttP - j{i,pk) e-J !3 z = 0 
r-oo r ..... oo 

=> lim .;r ('VttP - j (itjJk) - 0 
r-oo 

lim J-rV2W lim V'r (\I/2t/, - (i2tfJ) e-}fJz = 0 
r-oo r-cc 

=? lim .;r (\1,2 tP 
r-:HX) 

(32tP) = 0 

k; > 0 

Equation (A2.2d) can be split into two equations: 

lim .;r VttP o 
r ..... oo 

lim ..;r tP o 
r-oo 

Substituting (A2.3) into (A2.2e), we obtain also 

lim ...jT (\I~tfJ - j32tfJ) 
r-oo 

=> lim (...jT\I;J) - (32 lim ( Vr tfJ) 
r-oo r-oo 

=> lim Vr \I;t/J 
fL-+OO 

on 80.. 

on an. 

on ano 

on ao.o '. 

= 0 

= 0 

= 0 

(A2.2b) 0 

, 
(A2.2c) 

(A2.2d) 

(A2.2e) 

(A2.2f) 

(A2.5d) 

(A2.3) 

(1\2.4) 

.. 

Multiplying both sicles of (A2.2a) by Vi, taking the limit as r --. 00 and then substi­

tuting (A2.5cl) and (A2.3): 
&. 

, ' lim Vr ([V;t/J + (kl - (32) t/J]e-J~: ) 
r-oo S 

Hm J;C2 
r-oo 

.. 
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The constant C2 must vanish or else th~ R.H.S. is infini te in magnitude. Equation 
(A2.2a) becomes: ~ ,~ .. ) ~ 

in 

In n (A2.5a) 

.. Fur.r sImplificatIOns to (A2.2) can be made using 

It 

'Ji1/J (32.,p -:\. k2 
_(-2...._ 

s 
(32) .,p +/p21/J (from A2.5a) 

~ ~ 

_ k! 1/J = 
s . 

~aking use of this relation and ko =f. 0, equations (A2.2c) and (A2.2e) become 
" ~. 1 

"V~~, -. (321/J - 0 on ân~ 

\ , 

=> 

and 

lim ~\1~.,p - tJ2.,p) 
r-oo 

::} r v'Ti kl 'ljJ 
lm 1-r-oo S 

::::} lim .fi 'ljJ 
r-oo 

In summary, equation (A2.2) simplifies to 

\l?w + (kg _ (2) .,p 
s 

ô.,p 
= 

4- ôn 

.,p = 
hm Jr\lt.,p = 

T-OO 

lirn Vr 'ljJ = 
r-oo 

tJ 
k; > 0 

~. 
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ôno 

1 

(A2.3c) 

(A2.3e) 

. 
(A2.5,a) 

(A2~b) 

(A2.5c) 

(A2.5d) 

(A2.5e) 

(A2...5f) 
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, 

J' 

". 

For the -special case of closed guides which are completely enclosed by ôn, or· ôna-
- ,-

boundaries, it has been noted [50] that the solutions to equations (A2.5a), (A2.5b) 
1 

and (A2.5c) only-are equivalent to the TE modes of an equivalent homogeneous guide .. 

These TE ,mode$ are known to satisfy ko > VS fJ. 1'0 prove this relation for open guides, 

consider now the following variational principle: 
, 

Variational Principle A2.1 

Let S he the space of scalar functions u(x, y) whi_ch are 

infinitely integrable in n, satisfy Vtu :::: 0 outside n~ are square 
integrable and satisfy the prescribed boundary conditions: 

" " 
'\ 0 anD \. u - on 

lim 0\ltu - 0 ., 
r-oe .. 

lim ..fi u - 0 
r-oo , 

then the stationwy points Ua of the functional 
.. ' ... ' 

, 

F(u) = 

J (\li U )*' (Vtu) dxdydz 

n 

J u* u dxdydz 

n 

are solutions to the differential equation: 
.~ 

. \ V,u :he;"(U~, : :(U,i; >11 0 

and satlsfy 'ud natur~quQ,dary condition 

aUa 

an = 0 

(A2.6c) 

(A2.6d) 

(A2.6e) 

(A2.7) 

(A2.6a) 

(A2.6f) 

(A2.6b) 

IIi additIOn to the above prescrihed boundary conditions (A2.6c), 

(A~~6d) and (A2.6e). • ,,;,...,.,.~-' 

First, we define --
F(u) 

Q(u) q(u i u) 
- N(u) - n(uju) 

v 
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.. 

~ • where . 
q(a j b) J(Vt ~r' (Vt b) dxdy 

n - ~ 

n(ajb) - / ~* bdxdy 

. n > ~ 
Since Q is positive semidefinite and N is positive definite, we .rhave F( u) O. tiince 

q(a; b) ;[q(ajb)1*1 andn(a;b) = [n(a;b)J*J, thefirst variationsofQ and N 'Yit respect 

to an arbitrary change Ua are:, 

, 
'1 

also, the firsot variation ot-F is 

oF 

=> 
a 

6Q 

6N 

2 Re{ q(ua ; u)} 

2Re{n(Ua jU)} 

1 Q 
-(6Q - -oN) 
N N 

6Q - Q hN 
N . 

o 

o (N #- 0) 

Re{ JC\1tUa)*. (Vtu,) - F(u s) u; u, dx dy} - 0 ,. 

n ~ ~ 

the proofs of these 'hree results ..;,\' ~iml1ar td those of Lemmas tl.l ":'d A1.2, ':.,ith 
\ . 

H and Ha replaced wi ~_._ Ua respectively. Setting 6F = 0 to find the stationary 

points U 6 , there obtàins 

.8F 

( 

=> 

= 

'\' _ :)' li 

~(8Q L-~) = 
N- Y· N 

8Q - Q oN - 0 1 
N 

o 

'Re{ j(V tUa );: (V tU6) '- F(u 6 ) U: U6 dx dy } 

n 

) using the v~ctor identity 

A = V#u" ,80 that 

(V' tU:) • V' tUs , 

\7t· (u: \7tu,,) 
.-

- 76-

+ 

- , 

"'V2 
Ua tUs 
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(N =1= 0) 

0' 

(A2.7) 
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a 
.., 

=} 

('< 

, . 

there obtains 

~Vt.(U:VtU.) . ·V2 
- Ua tU, F(u,)u: u,) dx dy} - 0 

. Re{ f U:,( \7~u, + F( u,) u, ) dx dy f( u;Vtu,)· n dl } - 0 (A2.8) 

(1 c 

where the divergence theorem has been used and C is the boundary contour enclosing 
. 

n. Making u: zero on the boundary but otherwise arbitrary in n, the surface intégral 

vanishes and we have that all ~, satisfy the differential equation\ 

(A2.6a) . 

And therefore from (A2.8) and (A2.6a) 

f ( u: V tU, ) • If dl - 0 . 

) c. r " 
This integral can bE; divi~d int~ three integrals for the different boundary types: 

, f ( u: "'tu", ) . n dl = j ( u: \7 ~u, ) . n dl 

( c ano 
1 

f \ + j('u:Vtu,).ndl 

) . an. 

+ lim . J (u: \7 t\l, ) . n dl 
R-oo .. r=R 

= o (-
~ , 

Since \7 tu is 0 outside n, the full circle r = R has been included'in othe third integral, 
1 . 

even though cèrt~n sections of't~is circle m~y not be in n (see Figure A2.1). The ;, 

integrand ~f the, first integral is zero since u: = 0 ori an,. The integ"fancl of the third . 
integi'al is also zero sinee (lim ,u:Vtu)r = (lim v!ru:)( lim v'TVu) 

. r ...... oo ~ \ r-+oo r-:+oo "1 
= -o. We are 1 

therefore left with 
) 

• 
. f (u:\7 tu)"ndl o 
an. 
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1 
J 

..... : ~ .... :: 
;-"';~h .. .':',I.::' 

, ' 

" " 

r 

Siûœ u: is arbitrary, tllls implies the natural boundary condition 

Ôu 
('Vtu). n ...:. - '= 0 ôn ôn on 6: 

\ 

" .. . 
r 

\ 
Q.E.D. 

~ Before stating the main result of t~is Appendix, it still remains to prove that for 

all admissible 'I/J we have 'I/J ES. Since His infinitely integrable in n and zero outside n 
and there are no tP functions for which H = 'Vt'I/Je- flz does not exist, it follows that t/J is 

1 

infiiitely integpable in fi-and that 'Vt'I/J = 0 outside n. Now from the sq~are integrable 

property of H, 

lJ < dxdyd~ 
1 

=} '] Jc'Vift)"'. 'Vi dx dy dz 

Z=ZI {} .i~ • 

, Z2 

J J('V('l/Je-~~z' * ~V,('l/Je-)flZ) dxdydz 

Z=ZI n \ 0 

Q • , 

J j«Vi"p - jf3"p)e- j {jZ)* . ('\1t t/J - jf3"p)e-Jllz ldx dYdz 
l . 

Z=ZI • 

• - ' (~l L zi) j (('V,,p)' , ('V,,p) + pt ,p0,p ) dx dy,' < ao 

{} -

j((\1,,p)". (y,,p) ~ Q2,pl,p) dxdy : < 00 

n • '" . , l 
'=> 

substituting (A2.7) and (A2.6.a)', then applying the divergence theorem, 

J ("('Vtt/J)* . ('Vt'I/J) + 1!2t/J*t/J) dx dy 

n 

.. = J ( Vt . ("p*VttP) - ';P*'V,2'I/J + f32t/J*'I/J) dx dy' 
'"Y' 

{} ) 

J ( \l, . ("p * '\lt t/J ) t/J * ('\l;"p f32tj; ) dx dy • 

fi 
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1 

, J Cf\J, . (t/,*V,,p) 
Tc2 . 

- ...2.. "p*tjJ ) dx dy 
s 

n 

- f ( t/J*VttP ) . n dl J Tc2 - ; .,p*t/J dx dy <00 

1 c {} 

In a manner similar to that in the proof of Variational Prineiple A2.1, ~sing (.J\2.5b), '>r 

(A2.5e), (A2.5d) and (A2.5e), it tan be shown that the contour integrl"l vanishes. Since 

k~ > ci (from (A2.5f), . 

J ,p*t/J dx d~ < 00 

{} 

so'IjJ is square integrable. And sinee equations (A2.5c,d,e) and (A2.6c,d,e) are identieal, 

therefore 'IjJ E S and all solutions to (A2.5) are also stationary poin~ariational . . ~ .. ): -~--.:. 

Princi~2.1. The tri~ial solution 'IjJ = 0 is ex:luded sinee t/J '= 0 => Vt ~ H = 0 FOl; 

any spurious solution we have therefore 

o 

=> > 
., 

, -, 

Q.E.D . 
.. 

\ 

,-
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