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ABSTRACT 

-., 

Sheets of annealed commercial puri ty al uminium were 

rolled repeatedly in order to produce teh different strairl 

states ranging from ë "! 0 to about 2.6. The R-values at O·, 

45" and 90" from the rolling direction wcre measured during 

,1 tensile tests for the annealed sheot and the fi t'st two reduc-

1 

~ 

t ions. A back-extr,apolation technique was used to determine 

the R-valuo at zero tensile strain. 

Uniaxial tension and compression and plane strain 

tension tests wcre pûrEormed on eact'k sheet in order to esta-

blish the cor.'responding fIeld stresses. From there, sections 
<l 

of the rospective yiuld surLlces "tere construct8d i thesc are 

compared to the Hill ellipsoid derived from t~e rneasured RO 

and RgO values. It o~s shown that the behaviour of the sheet 

i s be t ter described by a gener-ali zed y ield cri te t" ipn wi th m ::III 

1.7 than' the conventional quadratic yiold surface. A, mod',-

f ied version of th is cri te(ion is proposed in order to take 

into account the planar ,anisotropy which has generally baan 

overlooked in the past when dealing with non-quadratic 

criterl.a. 

Th~ R-value at 45· 1s shown to be larger than bO~ RO 

and R90 for all sheets; thus AR <, 0, 90 that 45" earing is 

" expected. This Is in generai agreement 'Wl. th the predictions 

of thé CMTP analysis basad on experimental pole figures 1 

a1though 'the CMTP valués for R45 are always hLg~er thao those 

calculated from ihe generalized a~isotropic yield criterion. 
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rt i8 co'ncluded that better CMTP predictions require more 

detailed informatiott regarding the texture cornponents, in 
o 

particular the volume fr~ction of r each ideal orientatibn. 
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RESUME 

Une tOle d'aluminium recuit de puret~ commerciale a Gt~ 

lamin~e ~ plusieurs reprises afin d'obtenir dix ~tats diff~
> 

rents de d~formatibn allant de Ë = 0 ~ 2.6 environ. Les 

coef f icien ts de Lankford R( a) correspondant ~ des angles a ". 

o· 1 45· et 90" par rapport ~ la direction de laminage, ont 

~t~ rnesurês par des essais de traction simple sur la tÔle 

in!tia).e et apr~s les deux premi~res r~ductions. Une m~thode 

d'extrapolation a ~t~ util is~e pour d~terminer la valeur de R 

correspondant â une d~ forma t ion nulle en trac t ion. 

Des essais de traction et compression uniaxiales ainsi 

que de traction plane ont ~t~ effectu~s pour chaque tôle afin 

de d~terminer les contrain tes d' ~cQulement. Les surt aces 

d' ~coulement correspondantes on t àlors ~t~ cons tru i tes et 

cornpar~es avec l' ell ipse de Hill obtenue ~ part ir des valeurs 
o 

RO et RgO mesur~es auparavant. On voit que la caract~risa-

tion du comportement de la tôle est meilleure lorsqu'un 

critère g~n~ralis~ est utilis~, pour lequet' l'exposant rn est 

~gal ~ 1.7. Une version rnodifi~e de ce critère" est propos~e 

afin de tenir compte de l'anisotro~ie plane qui est g~nGrale

ment n~glig~e quand il s'agit d'un critêre non-quadratique. 

On trouve que R45 est sup~rieur ~ RO et RgO pour toutes' 
i"« 

les tôles, donc t.R < 0 et des cornes d'emboutissage ~ 45" 

sont pl:"~vi~ibles. Ceci est en accol:"d glObal avec les r~sul-

tats de la m~thode CMTP bas~e sur des figures de pOles 

exp~rimentales, bien que les valeurs R45 obtenues par le CMTP 

) 
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soient toujours sup8rieures a celles calcul~es par le crit!re 
o 

gGnaralisa. On conclut que pour obtenir de meilleures prêvi

sions par la m~thode CMTP, il faudrai t disposer de plus de 

dGtails sur les composantes de textures prêsentes dans la 

--tOle, en particulier ~les fractions volumiques de chaque 

orientation id~ale repr~sentant la texture. 
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INTRODUCTION 

The produc~ion of commercial purity aluminium sheet for 

deep drawing applications has been aimed at meeting t~o main 
D , 

requirements: (i) good drawability and (l'i) minimum eacing 

tendencies [1,2J. The relatIon bctween these chacacteristics 

and texture has been known for ~ long time, and the investi-

ga tions dea 1 ing wi th th i5 sub j oct have evol vl".,!d t'h ro'ugh the 

following stages: in the earlicBt pûriod it wùs confi,rmed 

that plastic anisotropy plays an import~nt role in determin-

ing the press formability of sheot mctalsi 
• {Il 

ln the next slage, 

it was clarifind that both the R-valu0 and thet-eforf;\, the 'deep 
\ 

\ ' 

drawability can bc ûstlmatcd from knowlcdgc of the p\roferred 
" \ 

orientations present: the lùst stage, known ilB ft\sxture 

tailot'ing,,", consists of .:lttomptlng to produce, by"me s of 
" 

fabricating proces::oes 1 for example, a" suitable b<{~.n e of 

annealing and rollirtg textures in order to assure the minimum 

possible earing tendency [3-5]. 
From a rnacroscopic point,of view,UWhitûley [61 has 

shown in his original analysis that when a cylindrical cup is 

drawn, the limiting drawing ratio (LDR) depend8 on the rela-
o • 

t1ve resistance to deformation (13) of two ceg10n8 1 the cup 

flange in which most of the deformation occurs, and the wall 

which must transmit sufficient force to cause defocmation in 

the flange. He then used Hill's quadratic theory of aniso-

tropic plastici ty to relate tJ to the more easily measured 

R-value. However, small deviations of the yiéld locus from 

'fi 
1 

./ 
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i( 

the ellipticai shape assumed in Hill's theor~ can cause 

subs tant iai errors in the calcul a tion of LOR (7). This is 

why, when the mathomaticai theory of plasticity is applied to 

sheet metai forming, it shouid be bai~l on' an experimental 

yield locus for the materi.l concerned [8~~ 
The aim of the present work was .1 characterize the 

anisotropy of an annealed commercial purlty aluminium sheet 

'/~ and to study 
---/ 

~brief review 

it5 development during cold rolling. 

of the literature, given in chapter 

After a 

one, the 

continuum the ory of anisotropy is prescntcd in chapter two, 

together with Hill's generalized criterion and the more 

recent 'continuum mechanics for textured polycrystals' (CMTP) 

( 
method. 

The experimental procedure is described in chapter 

three, and in chapter four it i5 shown that the aluminium 

sheet investigated has an 'anomalous' behaviour and 15 there-

fore better de5cribed by a non-quadratic criterion. In order 
, 

to ta'ké into account the planar anisotropy observed, a new 

cri terion i5 proposed. R (0:) values ba5ed on experimental 

pole figures and the CMTP analysis are also calculated. The 

latter are compared to the resul ts obtained by mechanical 

testing in Chaptar five, where comments on the direct 

measurement of R-value are given and a comparison between two 

non-quadratic yield criteria is also,made. 

( 
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CHAPTER 1 

LITERATURE REVIEW 

1.1) Oeep Orawing: 

When cups are drawn from anisotropie sheet, the rims 

develop undula t ions 'at pos i tions which are usua1Iy symme tric 

with respect to the rolling direction. These undulations are 

termed "ears", and their presence on a drawn cup is disadvan-

tageous because of the additional cost entailed in removing 

them and beciluse of the extra material rcquired. Because of 

this, any form of anisotropy was originally considered 

undesirable in deep drawing applications. Th en in l 9 50 , 

Lankford et al. [9] reported a good correlation between press 

performance and the drawing of an automotive fender and the 

product R times n, where R is defined as 'the ratio of width 

to thickness strain moasured in a strip tensile test (R ,.. 
/~ 

Ew l Et; sée paragraph 1.2 below), and n is the index in the 

Ludwik empirical stress-strain relation (cr n = K E ). white1ey 

[6] later showed both experimentally and analytically that 

for the drawing of cylindrical fIat bottom cups, the drawabi-

1 i ty depends on R aione. Thus anisotropy cpn be ~esirable, 

as long as iot is the thiekness direction which is resistant 

to flow (low Et)' and not a set of directions in the plane of 

the sheet. 

Al though there are severai types of drawabii i ty test 

[10], the most CORUllon and simplest is the Swift t:est'with a 
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fIat punch [11]. In t'his test, the drawability i~ expressed 
" 

as a limiting drawing ratio (LDR), which is the 1argest ratio 

of,blank-to-cup diameter that ~ay be' drawn successfully. 

1.2) The Plastic Strain Ratio (R): 

The plastic anisotropy of sheet metal_ is generally 

expressed in terms of the R( a) coefficient defined as the 

ratio of the width to thickness strain in a' uniaxial tensile 

test spec~men oriented at a degrees to the sheet ~o1ling 

direction. It has been proposed tha t the R coe ff ie ien t be 

measured at the deformation eorresponding to the 1imit of 

uniform elongation [9], or at 15% e1ongation [12). However, 

the strain ratio determined in this way does not eharaeterize 

the behaviour of the sheet, since its value changes during" 

the test due to the formation of fiber texture [13-17]. In 

order to obtain the value of strain ratio fully characteri-

zing the anisotropy of the examined sheet, it is necessary to 

measure strain ratio values at different degrees of strain-
~' 

v ing, and to extrapolate the function R = f{ e:) back to the 

initial state [18,19]. At zero strain, the ratio of plastic 

strains e:w/e t is equivalent to that of the incremental 

strains de:w/de:t • The advantage of working with the latter 15 

that it ean be derived from the theoretical yield function. 

1.3) Limiting Orawing Ratio (LOR): 

Whit~~ey's original correlation between limiting ~w-
" \ 

ing ratio and R has been eonfirmed by other workers [20-22]. 
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The basis for Whiteley's analysis is the relative resistance 

to deformation of two re<4ions, the cup flange in which most 

of the deformation occurs, and the wall which must transmit 

sufficient force to cause deformation in the flange (see 

Figure 1.1). If the blank diameter is too large, the force 

that must be transmitted by the wall wiil be excessive, 

thereby causing it to yield and fai!. A high R-value inc!i-

cates a high resistance of the sheet to thinning. Since 

drawing failures occur by necking of the wall by thinning, 
~ 

high R-values indicate a high wall strength. On the obher 
.. f 

hand, deformation in the Dange is primarily by circumferen-

tial contraction and a high R-value suggests a low resistance 

to width (circumferential) strain. The combined effect of 

stronger wall and weaker flange allows larger blanks to be 

drawn without failure. 

In his analys is [6], Whi teley assumed no work harden

ing, no thickness change in the flange, radially symmetric 

properties in the sheet Ji .e. no variation in R-value with 

direction in the plane of the sheet) and the validity of the 

Hill quadratic criterion in order to express LOR as a func-

tion of R alone. The analysis is summarized below: 

Consider the surface area of the sheet to remain 

unchanged, (see Figure 1.2), then 

5 

1 



c 

( 

') 
1/ 

" J 
-,,","=-_ ./.r 

t 4i <, 
-' 

Ji! 

o 6 

.. 

'ope • ('+R)!R 

figure 1.1 Schematic yield locus indicating loading paths 
important to deep drawing. The theory assumes 
plane strain (EZ a 0) in the flange. Yieiding of 

'the wall corresponds to plane strain, Ey • o. 

-

Because the strain ratio, R, ia measureQ on a 
third Ioading path (x-direction tension), predic
tions of drawability based on R are very sensi
tive to the yield locus shape.' 

, 

tJ 

Schematic illustration of partially drawn cup 
showing the coordinatê system and dimensional 
notation. 
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and, since dE :::1 Ob, 
Z 

'" 
dEx -dE r1dh/ p 

2 
:::II :::II 

Y 

, 
(1. 2) 

.. 
,-

The incremental work/done on an element at a distance p ~ 

from the centre 1S equal to its volume (2Tttpdp) times 
. 

the incremental 'work per unit volume (0 d f: + 0 dt: t-
\) X X Y Y 

OZdEZ>. The work don~ on the element is therefore 

dw ( 1. 3) 

The term (0 - 0 ) is now designated as of (the flow x y 

strength of the flange). With dEZ = 0 and ,~z = 0, 0y a 

- 0x' so Of = 2ox • 

Then the tota'! work pef' increment of punch travel is: 

dw 
-:::1 

dh 
( 1. 4) 

-. 
" 

Tke drawing force Fd (= °dW/dh) therefore has its 

largest value at the beginning of the draw~ where r • 

r 0' so: 

(1.5) 

Q 
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"\, where dO -and''''<:1.l are the blank and punch diameters 

respect i vely. 

In the'cup w~ll which must carry the force Fd(max), the 

axial stress a
x 

is Fd(max)/21tr
l
t, so that 

(1.6) 
ij' 

Assuming n = 0 (no work hardening), the wall starts ta 

neck as saon as i t yields. The drawing ,1 lmi t is thus 

reached when the stress reaches the flow strength of 

where dO is the largest blank diameter which can be 

drawn into a cup of diamete~ dl without the bottom 

"being torn out • 

Note that the flow strength of the wall la character-

lzed in terms of plane strain because the wall circumference 
,1 

Ir, 1 

Itself 15 prevented from shrinking by /the punch. Thus the 

LOR ls governed by the ratio of two plane strain strengths: 

" (1. 8) 

For an isotropie materlal, ~ • l, 80 the LOR ls equal to e • 
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2.72, but in practice it is lower because the theory neglects 

friction and th~ work of bending or redundant work. This can 

be taken into accoùnt by~ a deformation efficiency ~, leading 

to: 

.. 
ln (LOR) = ,,13 p.9 ) 

whe re " = • 7 to • 8 • 

At this point, Whit,eley used Hill's anisotropie plasti-, 

city theory to relate f3 to the more easily measured R. From 

the Hill quadratic criterion [23], it can easily be shown 

that 

1> 

<1 /1 + R 
a f = ( a - ay ) ( e: = X x = 0) R + l z "2 

. (1.10) 

~ ~~ l + R and aw = a 0 = ( ) x ( e:y = 0, a = 0) 12R z + l 
(1.11) 

.. 

where X is t,J1~ uniaxia1 tensile yield stress. Substitution 

of the above two relations into the definition of ~ (Equation 
D , 

1.8).leads to the prediction that 

.. 
t 

13 = ICR + 1)/2 (1.12) 

so that 

,1 
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!n(LOR) - ~~ - ~ ICR + 1)/î ( 1.13) 

Note that, in rea1 sheets, the R-va1ue actual,ly varies with 

direction; as a result it is better to use the average strain 

ratio R in equations 1.12 and 1.13. R is defined here as R = 
(Ra + 2R45 + R90 )/4, where Ra, R4S and R90 are the strain 

. 
ratios at a = O·, 4So and 90·, respectively. The theoretica1 

curvas for equation 1.13 are shown in Figure 1.3 and.it"can 

be seen that the expetimenta1 data cannot be fitted by a 

unique curve for which ~ is constant. 

There have been more rigorous analyses of cupping which 

a1ldw for both work hardening and thinning or thickening of 

the flange [10,22]. These, however, also rely on Hill' s 

quadratic theory to characterize the flow behaviour, and 
1 

predict a greater dep~ndence of LDR on R than is observed 

experimentally. 

Probab1y the larges t source of error is the use of 

8i11's quadratic crit~rion ta characterize the anisotropy. 

In fact, small deviations of the actual yield locus from the 

elliptical shape assumed in the Hill theory can cause sub

stantial errors in equatian (1.12). This is because measure-

ment of the strain ratio R is equivalent to estab"lishing the 

slope of the yie1d locus for a loading path in uniaxia1 

tension, whereas f3 is the ratio of the f10w stresses along 

two other loading paths [7]. 

la 
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Correlation between ,limiting drawing ratio for 
cylindrical fIat bottom cups and average strain 
ratio. Solid points are from Whiteley [6], open 
points from Lloyd [20], and crosses from Wilson 
and Butler [211. The theoretical curves for 
Equation (1.13) do not fit the data. 
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1. 4) Crystallographic Basis of the Dependence of 

Dèep-Drawability on Normal Anisotropy: 

The validity of equation L 12 depends sensitively on 
& 

the exact shape of the yield locus for the reasons men.oned 

in the prev ious sect ion. The Hill quadratic theory must, 

therefore, be regarded only as a simple and very useful engi-

neering approxima tion for describ ing anisotropie behav iour 

[7]. In fact, the experimentally deterrnined yield loci are 
~ 

often not elliptical, even for cubic metals. Yield loci can 

also be calculated on the basis of a crystallographic analy-

sis [24-27]. Sorne of these, wh ich lead to correlations 

between LDR and R in much better agreement wi th experimental 

results, will now be described. 

The early analysis of Taylor '[28] of the deformation of 

polycrystals, together with the later developments by Bishop 

and Hill [29], h51ve provided a basis for predicting plastic 

anisotropy from texture in FCC and Bec metals. Figures 1.4 

and 1.5 are the result of computer calculations based on the 

Bishop and Hill analysis for FCC metals. The basic method of 
\ 

calculation is described by piehler and Backofen [24] • 
.. -

Textures with rotational symmetry about an (hk1] direction 

normal to the sheet were approxima ted by averag ing M vs. r 

curves for individual orientations differing by l or 2 degree 

Here M is the Taylor fa~t;.or defined 

as 

M • dw =- ~ (ax - ra + (r-1) a ] 
'td EX. Y z 

(1.14) 
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Figure 1.4 
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Ftgure 1.5 
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1.000 
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Orientation dependence of the calculated 
ratio R/R + I for rotationally symmetric 
in cubic metaIs with [hk!] normal to the 
,[ 7 J. 

u 

13 

strain 
textures 
sheet 

Calculated variation of the anisotropy parameter 
~ with orientâtion for ,rotationallX<">"sYlJUtletr1c 
textures in cub1c metals with [hklJ normal to the 
sheet [7]. 
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where x, y and z are the length, width and thickness direc

tions in a tensile specimen cut from the sheet. The ~ values 

are taken as equal to the ratios M(r=l)/M(r=O), and the r 

values expected experimentally are assumed to correspond to 

the minimum in M vs. r curves, such as the ones shown in 

Figures 1.6 and 1.7 [30], where M represents the average M 

def ined above. 

The ~ values calculated in this way are plotted in 

Figure 1. 8 vs. the calcul a ted R-val ues for 47 orien ta t ions 

over the basic orientation triangle. The relation between ~ 

and R according to Hill's quadratic criterion (equation 1.12) 

is aiso shown. It is clear that, for R :> l, equation 1.12 
, 

predicts tOG much dcpendence of ~ on R. The crystailographic 

calculations can be used instead of the continuum theory to 

predict the dependence of ~ (and therefore LDR) on R. This 

does not lead to an analytical relationship but is defined by 

the trend l ine of Figure 1. 8. It shouid be noted that the 

theoreticai curves are for Fee metais assuming {Ill} < 110 > 

slip (or {110} < III > slip for Bee metaIs), and the fact 

that the points for Hep zinc and titanium lie sorne distance 

from the curves should not be considered'problematic in view 

of their entirely different slip systems [31,32]. A practi

cal impl ication of these crystal10graphic calculations is 

14 
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Figure 1.6 

Figure 1.7 

d', +dh 

Dependance of M on r for ro11ing and transverse 
direction tension tests in a sheet of ideal [112] 
(1IO) texture. Expected behaviour corresponds to 
lowest M values [30]. 

Dependence of M on r for rolling direction 
tens ion tes ts of sheots wi th Ideal r 110] (Ill) 
texture, with randomly oriented grains, and with 
equal mixture of ideal [110] (Ill) and random 
components. The presence of SOt randomly 
oriented grains shifts the minimum M from r • l, 
(R • -) to r • 0.7 (R - 2.33) (30). 
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triangle for cubic metais with rotationally 
symmetric textures. The solld 11ne ls Equation 
1.12, based on Hill's theory. Clearly this over
estimates the dependence of p on R for R > 1 
[31 ] • 

c Figure 1.9 Correlation between 1imiting drawing ratio and 
average strain ratio. Experimental points are 
the sarne as in Figure 1.3. The theoretical 
curves were developed by aubatituting the R-P 
relationship for cublc metals fram Figure 1.S 
into Equation 1.13. Note the improved fit, 
exeept for hep Ti and Zn (31] •. 
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that the further irnprovernent of R-value through texture 

control can be expected to lead to only modest irnprovernents 

in drawabili ty, Le. to improvements considerably below those 

expected from the Hill theory. Even when R = CD (pure {UI} 

texture, see Figure 1.4) the LOR should only reach abou t 2.48 

when ~ = 0.75 (see Figure 1.9). 

" 
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( CHAPTER 2 

ANALYTICAL YIELD SURFACES 

2.1) Bi11's Quadratic Theory: 

Hill ['23] formulated a quantitative treatm'ent of 

plastic anisotropy without direct regard to its crystallogra~ 

phic basis. He assumed a homogeneous material characterized 

by three mutually orthogonal planes of symmetry, the inter-

sections of which are known as the principal axes of aniso-

tropy. In a rolled sheet, these principal axes are the 

rolling (1), transverse (2) and through-thickness or normal 

( 
(3) directions. The theory assumes that there is no 

Bauschinger effect (hence linear terms must not be included), 

and that the superposition of a hydrostatic stress does not 

influence yielding (h~!Jce only differences of the normal 

components can appear). 

The proposed quadratic yield criterion has then the 

form: \ 

(2.1) 

where F,G,H,L,M and N are constant,s which characterize the 

c anisotropy. 

- '....;. 
.t • 
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2.2) Relation Between Stress and Strain-increments: 

If attention is restricted to cases involving only the 

norma!' stresse,$, 0'1' O2 and (13' the yield surface May be 

represented as a cylinder whose axis is equally inclined to 

> the al' 0'2 an.,d a
3 

axes (Figure 2.1. a) • No 1055 of general i ty 

is incurred in a two-d imensional section on the 0'3= 0 plane 

(Figure 2.1.b). Any stress state for which 0 3 * 0 is repre

sented on such a lÇcus by an equi;a1ent stress state, (ai, 

aj> = (0'1 - 0 3 , ~2-
\ 

( 3 ) state only by \he 

a3 , 0), which differs from the (al' 

hydrostatic components [33,34]. 
......... -

The strain which o'Ccurs 
", 

during yielding must obey the 

flow rule, 

\-, 

af ( O'ij ) 
deij =- d~ 

ô O'ij 
(2.2) 

which means that, the strain vector must be normal to the 

yield locus (Fig. 2.l.b). 

Applying'. this flow rule, the strain increments are 

then: 

(2.3.a) 

+, 

f 
df:22 :II dX[F( ~ 0'33) + H( a22 - aIl)] (2.3.b) 

(2.3.c) 
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Figure 2.1 a) The yield surface of a material in which 
yielding i8 not sensitive to hydrostatic stress. 
Tl\e locus is a cylinder wi th an axis equally 
fnclined to the three normal stress directions. 

b) The a3 • 0 section of the above locus. The 
vectors representing the plastic strains on 
yielding are normal to the yield locus at the 

, point of yielding. 
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If, however, there is a shear stress component 0
12

, 

there must automatically be a shear strain increment as 

weIl: 

(2.3.d) 

2.3) Determination of Strain Ratio R from the Hill 
+il 

Parameters: 

The R value is defined as the ratio of incremental 

strains in the width and thickness directions in a tensile 

specimen pulled at an angle ct from the rolling direction in 

the plane of the sheet (see Figure 2.2). If dtyy and dEzz 

• (are the strain increments in the width and thickness direc-

tions, respectively, then: 

(2.4) 

The stress tensor during idealized uniaxial testing, 

expressed in the specimen axes, ls: 

ITxx 
0 j t a)XYZ =- 0 

0 1 

and in the principal axes of anisotropy, ft becomes: 

21 
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Syst .. of coordinate axes for rolled sheet and~ 
ten.ile specimen inclined at an angle œ to the 
rolling direction. 
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rh -1 wh.ere T is thè transformation matrix, and T its' inverse: 
, 

cos 0: -sina 0 cos ex sina '0 
~ - ~;fi -1 

T'= sirl ex cosa "and T = -sin ex cosa 0 , 
'1 

0 0 0 0 0 0 

thén, 'IÎ 

2 sina 0 0xxcos a °xxcos a °11 °21 ~31 '<I.l , 
2 

[0] 123 = 0x cosa sinex °xx sin a 0 = °12 °22 " °32 x 6 
" . , 

"'. 0 0 0 °13 °23 °33 

~ 

Now Equations 2.3.a to 2.3.d become: 

[

0 2 . 2 2 , 
dE11 = dÀ 0xx B(cos a - Sln a) + G cos aj (2.S.a) 

2 2 2 c ~ 
[F sin ex + B(sin a - cos a)] p (2.S.b) 

[-G c05
2a,..:'P sin2 a] 

\ 

° N cosa sinex xx 

Again transforming back to the xyz system, 
----1 Ld E ]XYZ = T [d E] 123 T, 

(2.S.c) 

(2.S.d) 

(2.S.e) 

< 

" 23 

f 



c 

( 

C· 

" 2 2 
d EXX' .. cos a d ~l.l + sin a d E22 _~ 2 cos <X sim a d E12 

dE
xy 

= -sina cosa dEIl + sina CQSa'dE22 
'+, (cos

2
a - sin

2
aL d&12 

,Q 

(2.6.a) 

(2.6.b) 

(2.6.c) 

(2.6.d) 

i" . 
. '(;.6.e) 

, 
Then, substituting 2.5.a,b,c and d into 2.6.b 'and c, we get: 

dEvv 
R(a) .. --"'-L 

dEZZ 

(2.7) 

Thus, the R( a) values can be written, for a = O·, 45· anQ 

90·, as follows: 
, , 

RO .. H/G (2.8) 

\} 

R90. • H/F (2.9) 

24 
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N 
R45 = F+G 

1 -2 

-
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2.4) Determination of Hill Parameters: , 

25 

• 
( 2.10) 

In order to calculate the values RO' R~~ and R45 

expressed in equations 2.8 to 2.10 above, it is necessary to 

determine the four Hill parameters F, G, H and N. 

requires at least four experimental tests. 

This 

" " 

i) Uniaxial tension: 

When loading is restricted to plane stress, the Hill's crite-

C. b rlon ecomes: 

(2.11) 

The yield stress along an x-axis inclined at an angle a ê 

from the rolling direction in the plane of the sheet can be 

expressed as a function of F, G, H and N by writing: 

./ 
aIl = a xx cos 2a 

.~ ç-" 1 

. 2 ,.~ 
(2.12) a

22 = a Sln a xx 

0-

If x, y and x45 are the yield stress along the directions a la 

0, 90· and 45· respect i vely, i t can eas i ly be shown, by sub- 0 

stituting equations 2.12 into equation 2.11, that: 



( 

( 

i 
1 
1_-

· ~ 

G + H • 1/x 2 

F + G + 2N 
2' , 

= 4/x 45 

ii) Uniaxial compression: 

26 

( 2.13) 

In this test, the only applled stress ls 033 along the 

through-thickness direction. 

to: 

Here Hil1's criterion reduces 

( 2.14) 
~' 

If, Z i9 the yield stress in this test, then: 

F + G = 1/z2 (2.15) 

iH) Plane strain tension: 

In plane strain tension along a principal direction in 

the plane of the sheet, aIl the shear stresses (°
12

, 023' 

(13) and the normal stress (033 ) are zero, and Hi11's criteJ-' 

rion reduces to: 

(2.16) 

'.,\ ",""\ .. 
'- ' 
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For t'he test along the transvers; direction, d Ell • 0 by 

af 
definition and thus, -a = O. Therefore, differentiation 

0' Il 

wi th respect to 0'11 y ields: 

or (2.17) 

Substituting equation 2.17 into èquation 2.16 final1y gives: 

H + G _,..2 = Pl2 
FH + FG + GH - v22 

( 2. 18) 

where P' is the plane strain yield stress in the 2-direction. 

Similarly if P is the plane strain yield stress in the l 

direction, it can be shown that: 

H + F (2.19) 
FH + FG + GH 

Finally, the 6 equations developed from the tests described 

above are summar~zed as follows: 

F + G = 1/z2 (2.20.a) 

G + H = 1/x 2 (2.20.b) 

F + H :II 1/y2 (2.20.c) 

", 
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F + G + 2N 

H + F 
FH + FG + GH 

H + G 
fH + FG + GH 

~~2 
:: p 

= p,2 

28 

'. (2.20.d) 

(2.20.e) 

(2.20.f) 

It is now possible to solve for F, G, H, and N by using the 

above 6 equa t ions. Leaving out equation (2.20.d), which is 

the only one where N appears, there remain 5 equations 

(2.20.a, b, c, e, f) and 3 unknowns (F, G, li). This suggests 

that ten diEferent systems of equations may be solved, but 

since some tests are more reliable than others, only 3 

sys tems should be sol ved (see Resul ts chapter). 

The final va lues ~ of F, Gand H wi Il be an average of 

the values determined from the three systems, and using these 

values, the parame ter N can then be found from equation 

2 • 20 d. The val ues so de termi ned can in turn be subs t i tu ted 

into etAuations 2.8 to 2.10 to find RO' R90 and R4S. 

2.5) Special Case of Rotational Symmetry: 

When rotational symmetry is assumed in the plane of the 

sheet, with 0'3 = -0, the Hill yield criterion reduces to: 

.c 
where C1 is the yield stress in a uniaxial tensile test in u 

.. 
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any direction in the plane of the sheet, and R is the ratio 

of the width plastic strain increment te the thickness 

plastic strain increment. 

An important consequence of equation (2.21) is the 

relation between the yie1d stress in an equal biaxial tension 

a and R, that is: u 

, 
(2.22) 

Many authors [35-39] have investigated the relationship' 

between ab' au and R in oeder to check the validity of Hll1's 

criterion. Since a and R vaLy with direction, the averarJe 
u 

values a ëlnd Rare ']enerëllly taken tram the values obtained 
u 

in severai unlaxial tests performed .:lt varlOUS angles with 

respec t to the roll i ng di rec t ion. As can be seen f rom equa-

tion (2.22), the ab/au ratio 15 expected lo lie on the same 

side of unit y as R. This gives rise ta what Woodthorpe and 

Pearce [37] have named "the anom.:llous behaviour of alumlnum". 

They measured R val ves ta be less than one while they found 

~b/~u ta be greater tha~ one. Figure 2.3 shows results of 

un iax i al tens ion and balanced b 1 ax ia l ten'S ion carr l(~d ou t by 

Pearce [ 38] on annea led r immed s tee l hav i ng an ave rage 

R"value of 0.38. Tt is' seen that the exper imental curve 1s 

above the uniaxial curves, whereas the predicted curve falls 

weIl below the uniaxial curves. Me llor and Parma r [39] have 

s ta t e d th a t the the 0 r y 0 for 't hot ra pic pla s tic i t ~ do es 
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Figure 2.3, Work hardening characteristics for annealed 
rimmed steel. Measured average r-value Is 0.38. 
Curves 1,2~J are experimental curves in simple 
tension at O·, 45· and 90· to rolling direction, 
respectively. Curve 4 Is experimental curve for 
balanced biaxial tension. CUrve 5 la balanced 
biaxial curve predicted from average r-value and 
correaponding work hardeninç characteristic 
[38 ]. 
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not ~explain the behaviour in biaxial tension where thè 

R-val ue is less than un i ty. Di llamore [40], argu ing from a 

crystal plasticity point of! view, has concluded that the 

orthotropic theory is only likely to give reasonable correla-

tions for R-values b~tween 1 and 2. 

2 • 6 ) Hill 1 S Ge ne rai i z e der i ter i on : 

Hill [41] has proposed a new yield criteriQn, 
. 

which 

will accommodate the results fo~ balanced biaxial tension, 

and which is of interest for those materials having R-values 

less than unity. The criterion for plane stress, assuming 

that cthere 'is no planar an isotropy, is: 

where y is the yield stress in uniaxidl .tension, R is the 

usual strain ratio measured in unlaxial tension, and m lS a 

new parameter which must be determined, experimentally. For 

the yield ,locus to be convex 1 m ;> 1. When m < 2, the locus 

is elongated in the direction of balanced biaxial ten~~;ion. 

The effect of the ~arameter m is shown in Figure 2.4 • 

. ' 
2.7) CMTP (Continuum Mechanics of Textured Polycrystals): 

The CMTP approach, cômbining aspects of both the conti-

~U~rand crystal plasticlty analyses, WdS proposed r~cently 

by M~ntheillet et al. [42] and applied by Lequeu et al. (4'3J 

in order to predict ~he plastic strain ratio R(a) for 

" 
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specifie ideal orientations. 

The CMTP analysis is only applicable to strongly 

textured cubic polycrystals which display a single or limited 

set of Ideal orientations. For reasons that will be seen in 

the discussion, only the analysis based on the quadratic 

yield criterion is summarized here. For each Ideal orienta-

tion, the <100> directions are taken as the principal axes of 

anisotropy. The Hi Il parame ters are adj us ted 50 tha t they 

give a best fit to the appropriate yield surface of the 
\ 

single crystal representing the Ideal orientation. 

shown tha t: Il 

a F=G=H= 
6't 2 

c 

and L = M = 

It was 

(2.24) 

whe-re a = O. 4 9 ~:1nd ~ = 0.66 and 'tc is the cri t ica!' resol ved 

shear stress of the crystals. Thus the CMTP yield criterion 

can be expressed as: 

F($) 

-or, setting a =: 1/2 and f3 "" 2/3 and taking .ft> 't as the unit c 

of stress, as: _.-
/-

F($) 3 (52 8 2 52) + .1 (52 52 52) ICI 1 = ï Il + 22 + 33 3 12 + 23 + 31 

, . ' 
(2.25) 
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where Sij are the deviator stress components. 

). 

2.8) Prediction' of Rea) by the CMTP Method: 

Suppose that the rolled ,sheet has one single ideal 
\ 

orientationv {hk.t} <uvw> •. Let the superscripts S,C, and xyz 

represent the sheet (RD, TN, ND), crystal <100>, and tensi~e 

specimen axes, respectively. Let Tl be the matrix for trans

formation from the crystal to the sheet. 

[r I ul nI] ~ 

Tl = r 2 u2 n
2 

r
3 " 

u
3 

n
3 

where rI u/!u2 + v 2 + w2, nI h/.42 + k
2 + J.2 = = 

r 2 = v/!u2 + v 2 + w2, n = 2 k/~2 + k 2 + J.2 
, ' 

w/!u2 2 2 r 3 = + v + w , n3 = .v~2 + k2 + J.2, 

and + + + u = n x r 

Then, let T2 be the matrix for transformation from the' sheet 

to the specimen. 

r~sa -sina 

~J T :II Sl.na COsa 
2 

0 a 0 

, " 

-
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~O 

0 

Therefore the matrix for transformation from the crystal to 

the specimen Is: 

::1 

b i = -ri sina + ui cosa for 1 :; l, 2,3 1 
( 2.26) 

where ai = ri cosa + ui sina 

. 
The stress tensor in the crystal axes can be expressed as: 

which leads to: 

a 2 
l a l a 2 

[a ]c 2 
::1 a a l a 2 a 2 

a l a 3 a 2a 3 

G~a where [a ]XYZ = U 

a l a 3 
a 2a3 

2 a 3 

o 
o 
o 

Applying the normality principle to the CMTP yiéld criterion, 

we obtain: 

3 ----2 l 2 2 
- lt -'2 ,3 al a 2 "j'a l a 3 2 1 ~ 

[d&]C ::1 2dÀa 2 321 2 
'3 a l a.2 - a -- '3 a 2a 3· 222 
2 2 3 2 l 
'3 a l a 3 '3 a 2a 3 -- a --2 3 2 
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and finally 

'5 
L (a t) + 1. * * 3" 3 ~ 

[de]xyz d À. 0' 
5 L(a~b, ) 5 r (a ~b~)-l * = 3" "3 l l 1. l 

5 L(a~n,) 5 r (a ~b ,n, ) 5 L(a~n~)-l 3" l 1 "3 l l l 3' l l 

where, the swnmatians over the index i are extended fram 1 ta 

3. 

The strain rate ratio is therefore 

de: 
R( a) =-.:t:i.. 

d EZZ 

o 53 l{a~b~)-l 
l 1 

= ~5-\, -":;'2-2~-
-3 L.(a,n,)-l 

l l 

---~-- ....... 

and finally, with th'e aid of 2.26, and after symmetry 

cônsideratians (R(-a)' = R( a), and R( 'Il-a) = R( a», this leads 

to: 

' ......... 

1 \" \ 4 ~4 2 2 ,2 42 2 ~ 
- L( l' + ri - 2u

1
,r

1
,)sln 2a + ~!u1,rl')cos 2a - 3/5 

R(a) ~ ~4~~~ __ ~ __ ~~~ ______ ~~~~~~ __ ~ ____ __ 
Ic .i n ~)cas2a + lCU ~ n~}SiR2a - 3YS 

.-' 
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CHAPTER, 3 

EXPERIMENTAL PROCEDURE 

3.1) Experimental Material: 
't? 

The material investigated was commercial purity aluma.-
» 

niurn 1100 supplied by Alcan Internàtional Ltd., Kingston 

Laboratories, Kingston, Ontario; its chemica1 composition is 

listed in table 3.1. Optica1 metal10graphy showeo that it 

was produced by hot rolling and had elongated grains. On 

receipt at McGill, it was annealed at 550°C for one hour, a 

process which transformed the microstructure into an equiaxed 

_ form (see Figure 3. 1), and' led to a more or 1ess random tex-

ture (see Figure 3.2). 
. 

The elongated grain structure of the as received 

material was easily revea1ed by Keller's _reagent (2 ml HF 

(48%), 3"ml Hel (conc), 5 ml HN03 (conc), 190 ml water) [44] 

after a careful mechanical polish. However, this reagent was 

,not sui table for the observation of the annealed structure. 

For this reason, another metallographic technique [45] was 

used. After the usual mechanical polish, the annealed speci-

men' was again polished electrolytically in a solu t ion consis-

ting of 5% perchloric acid (70% HCI0
4

) in pure ethanol. The 

solution was contained in a stainless steel vessel which 

acted as a °cathode, and was chilled by melting ice. During 

the one to two minutes of polishing under a current density 

of 0.5 A/mm 2 , the specim~1n .. was rotated in order to avoid'pit 

37 
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Figure_ 3.1 

''t. 

a) Optica1 micrograph of as 
1100. 

r 

150pm, ! 

) 
receive(luminium 

150pm, 

Figure 3.1 b) Optica1 micrograph of aluminium 1100 annealed 
at 550·C for 1 hour, and examined under po1arized 
light after anodic oxidation. 
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Figure 3.2 b) Texture of aluminium 1100 annealed &t 5S0·C 
for l hour. 

39 



( 

( 

formation. 
" 1 

The polished specimen was then ';,an-ddized using 

Barker's reagent (4 ml HBF
4

(48%), 200 ml water) at ambient 

temperature under 6lbou t 20 V de for 40 to 60 seconds, and 

observed under a microscope wi th crossed polarizers which 

finally revealed the grains as seen in figure 3.lb. 

The sheet was initially around one inch thick (25.7 mm) 

and was cold rolled repeatedly in order to obtain ten differ-

ent strain states ranging from an equivalent strain -E = o to 

about 2.6 (see table 3.2). The equivalent strain for each 

sheet of thickness T is defined as: 

- 2 e: = 
l3 

where T is the thickness of the initial sheet (25.7 mm). o 

Si Fe Cu Mn Mg Ni Zn Ti 

/°.1581°.693/°.0631°.025/°.01°1°.003/°.013/°.0251°.007IBal·1 

1 1 1 1 1 1 1 1 1 1 1 

Table 3.1: Chemical Composition of Al 1100 (99.0% Al) - wt.% 

• 
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Stage of 
2 T 

Deformation Thickness T (mm) - (~) € :s _ ln 
/3 T 

0 25.70 0 

1 20.35 0.26 

2 16.40 0.52 

3 13.15 f> , 0.77 
r, 

4 10.45 1. 03 l' 

5 8.45 1. 28 

6 6.60 1. 56 

7 5~30 1. 82 

8 4.25 2.07 

9 3,,35 2.35 

10 2.70 2.59 

Table 3.2: Stages of Deformation of the Sheet 
ü 

o 

3.i) Types of Specimens: 

For each deformed sheet, as for the in i tial shee t, the 

fo110wing three types of tests were performed: 
) 

. i) uniaxial tens ion a10ng the roll ing, t,r,pnsve rse and 45· 

directions; 
c 

i i) plane 5 train tension along the roll ing and transverse 

directions; 

iii) uniaxial compression along the sheet normal' direction. 

41 
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Each test was repeated at least twice to ensure repro-

ducibility. The specimen geometries are shown in Figures 

3.3. a and 3.3.b. The uniaxial tension specimens were cut 
-{, 

according to the subsize type described in ASTM standard, 

de-s 19 na tian: A370. The d imens ions of the plane s tra in 

specimen were taken from D.P. Clausing's publication [46]. 

As for the '!.t. • compL-esslon specimens, the usuaI geome try was 

adopted, the height of the specimen being 1. 5 times ,its 

d iameter. For the first three sheets, the height of the 

compression specimens was taken as the thickness of the 

sheet, but for the subsequent sheets, the thickness was tao 

small to permit the use of a diameter equal ta two-thirds of . 
the ch ickness. For this reason, composite specimens were 

made so that the diameter was maintained larger than about 10 

mm. For example, for the last sheet of 2.70 mm thickness, 

six cylinders were stuck together with super glue in order to 

obtain a compos(te specimen 16.20 mm in height and 10.80 mm 

in diameter. In addition ta the difficulty of machining and 

handling very small specimens, a further reason for not 

employ ing them is tha t the accuracy of load and d imens ion 

measurement is not as good as for~ Iarger specimens. 

3.3) Apparatus: 

The various tests were aIl carried out at ambient 

temperature on an Instron universal testing machine. 'l'his 

machine incorpora tes a highly sensi tive electronic weighing 
.. 

system wi th a load cell that uses strain gaug,és for de tecting 

" 
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and recording tensile and compressive loads. The moving 

crosshead is operated by two vertical drive screws and a 

pOSl tional servomechanism for good accuracy and flexibility 

of control over crosshead motion. The chart of the recorder 

is driven synchronously at a wide variety of speed ratios 

o (wi th respect to the crosshead) enabl ing measuremen t of 
u 

o 

sample extension or cOl1traction to be made wi th a large 

choice of magnifications. Because of this synchronous opera-

tion and i3 10w inher:ent deflection of the road cell as weIl 

as of the system as a whole, the time ax is of the chart is a 

fairly accurate measure of grip position and sample extension 
{I 

o 

or contraction. The accuracy of the overall load weighing 

system is ± 0.5% of the indicated load or. ± 0.25% of the 

recorder scale in use, whichever is greater: for aIl load 

ranges. 

AlI 
\ . 

the tests were carrled out at a constant crosshead' 

speed' v of 2.5 mm/min. As can be seen below, this is equiva-

lent to a strain rate Ê of 1. 32 10-3 -1 to 1. lB 10-3 -1 x s x s 

in the case of uniaxia1 tension and 2.12 x 10- 3 s -1 to 2.35 x 

10- 3 s-l in the case of uniaxial compression. 

For uniaxial tension, 

" ë: v 
= L = 

v 
6L 

where LO i~ the gauge length and 6L is the extension. 

If v = ·0.042,3 mm/s (2.5 mm/min) , 



o 

o o 

f) 

J 

6L = 0 at the beg~nning of the test 

and 6L = 4mm a t the end, then 
" Il 

• .0423 
E = 32 = 13.2 x 10- 4 s-l at the beginning of the 

" test, and 

Ê = .042 = Il.8 x 10-4 s-l at the end. 36 
o 

001ng the same for the compression tests, where in most 

cases Lo :::: 20 mm and 6L :::: °2 mm, we find: 

è: :::: .0~~3 :::: 21.2 x 10-4 s-l at the beginning of the 

test, and 

-' 

.0423 -4 -1 
18 ::::"23.5 x 10 s at the end.-

Obviously this variation in strain rate is small and 

unimportant for tthe following reasons: (i) we are primarily 
. " 

concerned here with the yie1d stress, which is unaffected by 

the above considerations; and (ii) as the strain rate sensi-

tivi~y 9f aluminium is low at room temperature, the effect of 

the strain rate decrease 'during straining is small in any 

event. As for the effect of the difference in strain rate in 

tension and compression (that in compression being typica11y 

45 
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twice as high as that __ in tension), this is agai,n small for 

the sarne two reasons. ' 

3.4) Measurement of Yield Stress: 

The yield stress wâs determined by taking the 0.2% 

offset "on the load/displacement curve (see Figure 3.4) and 

dividing by the original cross section of the specimen. The 

0.2% offset is determined in the following manner: First the 
" 

total extension of the specimen Xs is found by writing, 

" 

(suppos ing the de f1ect ion of the mach ine is negl ig ible) • 

Here Vs is the velocity of one end of the specimen (or cross-
-

head) and v ,that of the paper (or chart). Then the total 
p 

percentage extension es is equal to Xs divided by the gauge 

.1ength, and the 0.2% extension (distance OA on Figure 3.4) i5 

equa1 to xp multiplied by 0.2% divided by e • 
s ' 

eg: x = 120 mm p 

x ,. 6 mm s 

. , 

. , . es J,6/30 = 

120 x 0.2% 
then xO• 2(:a 'OA) = 20% = 1.2 mm 

20% 

The 0.2% offse~ is found by drawing a 1ine from A parallel to 

the loading 1ine; i t crosses the curve at point B and a 



o 

'\ 

~ 

'" 

u 
co 
!1 

" ,1 
1 

1 
1 

yield load 

III , .. 
1 

1 

, 1 
./ 
1 

Q 

~~~---xp ,. 

o 
" 

~ 

.. 

Displacement .. 
Figure 3.4 Load vs. displacement curve record during 
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projection of this point on the load axis i5 then ta ken (se~ 

Figure 3. 6) • 

3.5) Direct Measurement of R-value: 

The res istance to thinning, or R-value, was determined 

• in th~ rolling, transverse and 45· directions for the first 

three sheets by deforming the uniaxial tension specimen by 

increasing, amounts and measuring the width and thiekness 

after unloading. Sorne investigators have taken this value as 

being the ratio of the width to thickness strains, Ey and €z 

respectively, at the limit of uniform elongation during the 

uniaxial tension test [9], or at 15% elongation [12]. How-

ever, this R-value cannot be compared to any theore t ica1 

value since /;\:. 
l' varies during elongation and do es not charac-

terize the behaviour of the undeformed sheet (see Figure 
0 

3.5) • As can be seen from this figure, it is not easy to' 

extrapola te the curve to zero strain because the error 

increases as the deformation decreases (note the error bars" 

and see the error analysis below). 

This problem is overeome by plotting Eyy vs. 

taking the slope of the curve at zero strain. This ls easily 

done sinee the curve has to go through the orig~n (Frgure 

3.6) • This slope de: Id e: i5 indeed the current R-value, yy zz 

which can be compared to the theoretical value expressed as a 

-fûnction of the Hill parameters in Chapter 2 • 
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Figure 3.5 Dependence of strain ratio Rs(at /~z) on elon
gation strain. Note that error ~~rs ~ecrease 
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Figure 3.6' Width vs. thickness strains as measured in 
tensile test. The strain rate ratio 
R( -d ~Vy/d czz ) ia taken as the slope of the curve 
at the origln. 
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3.6) Error Analysis on Experimental R-value~: 

If 

then, 

~(Wo/w) .tIl Wo - .ln w 

= m( toIt) =.tIlt - ln t ' p 0 

, 

~R.= (1 ~~o 1 + I~I> 6w + </ ~~o' + 1 ~~I 6t 
<fi 

l = 

(-1...-= + w 
O· 

M (L = R w 
0 

1) 
w 

1 
---t-) 6w 

w.ln.2 
t 

/).w 
+ 

Rn ( toIt) 
Q 

+ .!) /).w 
.ln(w /w) w 

0 

(L + 1) 
~n(w /w) 

0 

t t ( ~n ( t 0 / t) ) 2 0 

(-1 + 1) ~t 
+ .ln ( toIt) to t 

Example: 

to = 6.09 mm 

w = 6.00' mm o 

'" 6t 

~w = /).t = 0.01 mm (the accuracy of the micrometer). 

lst strain increment 
0' 

t :1: 6.02 

W :II 5.93 ~= R 0.285 + 0.-222 ,. ,.507 = 50.7%, 

/' 

j 

1 

1 .. 

50 
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2nd -strain increment 

t = 5.92 

~'\èW=5.82 AR 
R= 

3rd strain increment 

t = 5.65 

0.111 + 0.11-8 = 0.229 m 22.9% 

" 
w = 5.54 AR 

R 
= 0.0435 + 0.0455"i11 0.089 = 8.9% 

... 

As can be ~ seen, the error decreases wi th increasing ·deforma-

tion. 

.. 
. , 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

Determination of the Experimental R-value: 
"l, 

4.1 ) 
..,'1 

The experimental R-value was measured directly for the 

first three sheets during uniaxial tension tests in the 

rolling, transverse and 45° directions. Each tensile speci-

men was deformed to an increasing interval of strain and 
/ 

unloaded after each interval in orde,r to remove the elastic 

s train; then the thickness and width were measured, and the 

specimen was reloaded to a further strain. This procedure 

was repeated as many times as necessary to obtain sufficient 

points to plot curve, or until the 1 imi t of a e: vs. 
yy 

€: 
ZZ 

uniform elongation was reached. Note that for the sheets 

rolled to large~ strains (~ > .52), the limit of uniform 

elongation was reached more and mor~ rapidly after the 

elastic limit, 'thus rnaki'ng it more and more difficult to make 

a large enough number of measurements of width and thickness 

s train before neck ing occurred. Therefore .this method was 

~bandoned after the first two rolling reductions. 

For each specimen, the points corresponding to the 

measurements were reported on a graph having e: as zz e: and yy 

the y anù x axes, respectively, and fitted with a second 

degree polynomial us ing the leas t squares technique. The 

fact that the error on the strain decreases as the strain 

increases (see Chapter 3) was taken into account by putting 



o 

o 

. 
o 

mor~ weight on the points as the strain increases; this i5 

equivalent to saying that the higher strain points are more 

reproducible. The yrve was made to go through the origin, 

which it must do since the specimen is a polycrystal, by 

putt.ing much more weight on this point. 

\ fitted to the data has the form: 

where b3 is very close to zero, then 

If the polynomial 

(4.2) 

This is a systemat'ic way of determining the R-value, and it 

is obviously much better than drawing a curve and taking the 

slope at the origin by hand, since there is always an error 

on the experimental points. The R values were determined in 

this way for the three sheets at angles a = o! 45- and 90·. 
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The program to do th is is called RZERO (see Append ix A). The 

resul ts are shown in Figure 4.1. a to 4.1. i. 

4.2) Yield Stress Measurement 

For the original sheet and the ten subsequently 

deformed sheets, the yield stress was measured during uni-

axial tension and compression tests as weIl as by means of 
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o plane st~ain tension tests. U~iaxial tension (UT) was ~ 
~ 

carried ,out - in 'oth~ rolling, transverse and a :::a 45- direc-
. . 

,tions; plane strain tension (PS,T-) in the roll ing and -trans-
(. -

verse di:;:ections only ~ and f ina'lly uniaxial compress ion (UC) / 

solely in the sheet plane - normal direction. In each tes t, 

the 0.2% yield stress was determined. The yi~ld stress data 

" for each type of test were fitted, using the least squar4,s 
\ . \ 

technique, with a Ludwik-hardening law: 

\ 
a == .. l 

r~ 
where E is the equivale~t rolling 'str.ain and a

O 
is the yield 

-- - Âl 

O /-... stress for E: = O •. 'l'he larameter,s a êlnd n as weIl as the 

. '.>/' ~orrelation coefficient ~r the f,itting of each data set are 
\ 

listed in table 4.1. 

\ 
(] 

Î l, , 
UT( a:'=90) UTe a~45) PST( a==O) PST( -a:-90) 1 UT( a:=0) - uc 

. 
i 

.a(~104) 1. 84.15 
1 

84.61 
1 

83.71 1~.2.15 1 
93.01 

1 
93.68 

1 . 
n 0.477 ,- 0.438 0.465- 0.430 0.453 -0.417 

, 1 

r 0.986 0.977 0.991· 0.980 0.984 0.971 
J -

-----
) , 

, r 

Table 4.1: Results of least sguares fitting used on yield 

stress data 

• 
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The hardening curves for'all size types of test are shown in 

'Figure "4.2. Note th?t this type of fitting is necessary' in 
1 

order to minimize. the scatter wh-en calculating the R values 

1 a ter. 

4.3) Construction of the Yield Locus: 

The plane stress yield locus can be constructed from 

the yield stresses mea::-:ured during the various '. tests. Five 

points can be plotted on such a locus: the two uniaxial test 

measurements represented as A and B on the two axes; the uni-

axial compression resul t, which is equivalent to biaxial 

tension, and is shown as point C on the locus i and the two 

plane strain tension results, shown as points D and E. 0 

corre s pond s to the test where de:
22 

= 0, Le. with extension 

along the Il direction, and E corresponds to that in which 

dE
Il 

= 0, i.e. to extension along the 22 direction, see 

Figure 4.3. On th~ same figure ~s shown the theoretical 

yield locus, with R = .90, construeted from the computer 

program shown in Appendix B. 

It can be seen tha t there is a discrepancy between the 

theoretical and the experimental loci: the quadratic Hill 

theory underestimates the stress in biaxial and plane strain 

loading. Thus the anomaly reported previously [37] for 

commercial pu~ity aluminium is confirmed here. 



~ 

,...-4 , , 

"'" '" . 1" 

,~ 

~ 

/' , 

\ 
\ 

>..... 
tS' 

2 ...... 

Figure 4.3 

~ 

E 
C~EXPERI"ENTAL LOCUS 

HILL'S LOCu!\ ~:'-: 
(R = 0.90) 

1 

t 

(j,IV 
~ 

~5 

..... 

2 

-( 

Theoretical (quadratic) and éxperimental yield 
loci. 

[~ 

~ 

,\ 

0\ 
0\ 



-----~--------------

... -
tJ 4.4) Determination of R(a) from the Hill Quadratic 

Cri terion: 

In order to evaluate the R(a) values from the quadratic 

criterion" the four parameters F, G, H and N must be deter

mined, and this requires at least four test results. Off aIl 

the simple tests, the only one leading to an equation which 

includes the N parame ter is the uniaxial tensile test at CI * 
O· and *90°, and for simplicity, the one opted for was CI = 

4S~. For the other three parameters, five further tests were 

per~ormed: two uniaxial tension tests, two plane strain ten-
> . " S10n ~ ,tests and one uniaxial compression test. In fact, only 

three of these five experimental values are needed, but since 

the plane strain condition is not exactly satisfied, and 

since the uniaxial compression test is not very accurate 

because of friction, it was decided to carry out aIl five 

tests and to treat the data with an averaging procedure. The 

ave'raging was done by considering only the following three 

systems of equations: 

- two·uniaxial tension + one plane strain tension 

- two uniaxial tension + other plane strain tension 

- two uniaxial tension + uniaxial compression. 

Note that two uniaxial tens ion resul ts are emplcyed in each 

system because they are the most reliable ones for the 

reasons mentioned above. 

The R-values for CI = O·, 4So, 'and 90· were calculated 

67 
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from the parameters F, G, H and N as explained in sections 

2 • 3 and 2. 4 • The values for the first three sheets were 

compared to those measured ,ditectly and found to be higher. 

This again indicates that the experimental and fitted (Hill-
1 

based) yielâ loci are different. We therefore conclude that 

the quadratic criterion does not adequately describe the 

behaviour of the aluminium sheet, and that a more generalized 

criterion must be used. 

4.5) Generalized Hill Criterion 

i ) Planar isotropx: 
, 

Assumi ng planar isotropy, the general ized Hi 11 cri te-

rion can be written as follows: 
"'" 

2( 1 + R) (Jm 
u 

"-

In~rating the expressions for bath 0ps 
, 

ra t io) can be f ound t!'O be: 

= 21-m(1 + R) [(1 + 2R)1/m-1 + 
(1 + 2R) , 

and 

( 4.3) 

the 'stress 

(4.4) 

Having determined (Jps' au and R (aIl averages of experi

mental values at a = 0 0
, 90 0 and 45°), the above equation can 

now be solved numerically. A computer program was written 

(see Appendix C) for this purpose, and gives the results 

summarized in table .4.,2. 
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( 
Sheet R crps/Ou m 

1 1 1 

IOriginal (€ = 0) 
1 0.90 1.20 1. 68 1 

\lst rolled (Ë = .27) 1 0.76 1.15 1. 73 1 

f2
nd rolled (E = .52) 1 0.67 1.14 1.66 

1 ~ 
~Y 1 1 

Table 4.2: m values calculated from program 

* An average value of m was taken equa1 to"1.7 and, 

assuming that it is a materia1 property, it will be kept 

( constant for aIl the rolled sheets, even though this cannot 

be justified due to the absence of experimental R values for 

the heavily rolled sheets. Note that pl anar isotropy was 

assumed only in order to simpl if y the problem and to calcu-

late m to a first approximation. Once the value of m is -- l 
known, the Hill gener-alized criterion can be r-eformulated in 

its most general for-m, which corresponds to planar-

anisotropy. 

~ ii) Planar anisotropy 

In the literature [47-49], planar isotroPl is usually 

assumed in order to describe the anomalous behaviour in terms 

of a generalized yi~ld criterion. Although such a criterion 

.. ( does permi t an R-value to be def ined which is comparable to 

*A graphical solutio~ for m is also shown in Figure 4.4 
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the experimental value, it cannot reflect the variation of 

this parameter with direétion in the sheet which corresponds 

to the earing behaviour. 

To solve this problem, a new criterion is proposed 

here which takes into account the planar anisotropy. In 

other words, a criterion is employed which permits the 

average R-value as weIl as its variation in the plane of the 

sheet to be predicted, or described. 

* 

This criterion 1s the 

following one : 
~-' 

( 4.5) 

Applying the norrnality rule and transforrning the coordi-

as was done before in ChaPte~ nates to the specimen axes, 

it can be shown that: 

[ G 1 F '" + G rl l m -1 + H 1 rl - rl / m/ (~ - rl

l
)] vI v2 vI v2 v2 v 

.... 
- 2cosa si~'è:t NG

I2
rn - l }/ {-(F+G) / Fa

l 
... Ga

2
/ m- l } 

\, 
( 4.6) 

*In this criterion, the superposition of a hydrostatic 
stress does not influence yielding. ' This was checked by 
-considering the case where (J3 is not zero, a form similar to 
the Hill generalized planar lsotropy criterion (equation 4.5 
in ReL 41). 

• 
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50 that: 

R, 
45 

1 
N 1 ;::---

(F+G)m - "2 

In order to determine the above R values, the same pro

cedure as that in section 2.4 can now be employed in order ta 

calculate the parameters F, G, H and N ·of the new cri terion 
, 

(equation 4.5). The equations developed from this procedure 

are Ifsted below: 

(4.8a) 

( 4. 8b) 

( F+G)m 2N m' e 4. 8c) + = (2/x 45 N 

(F+G )m == l/zm ( 4. 8d) 

1 m 

(tf'-l + rrn-1)m-l 
= ~ ( 4. 8e) 

H(F + G)m 

1 m 
~-1 m-l 

+ F tt' (4.8f) = 
H(F + G)rn 

• 
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The following three systems of three equations were solved 

numerically. 

i) System 1: Equations 4.8a, band d 

ii) System 2: Equations 4.8a, band e 

i il) Sys tem 3: Equa t ions 4. 8a, band f. 

For each syste~, the parameter N is calculated by sub-

The computer pro-stituting fo."r F and G 'lin equation 4.8c. 

grams called/ NEWl, NEW;! and NEW3 solving systems 1, 2 and 3 

. 1') . /. d' d ~es~ectlve \ are glVe~ ln~ AP~en lces D, E, an Po Average 

values of .each of the fhree -strain rate ratios obtained from 

the three systems were taken and are plotted in Figure' 4.5. 

4.6) R(a) from Experimental Pole Figures and CMTP Analysis: 

It is weIl known that the ,rectystallization texture of 

commercially pure aluminium consists of a cube component 

{100} <00 1>, componen ts of tlrt.,-";~ll i ng texture {Il 0 } <112>, 

c {112}<11l>, {123}<634> and {llO}<OOl> and a 

volume of other random componen ts [50- 5 3]. 1 

" 

q . 
rela t 1 ve large 

The above main 

components are shown in Figure 4.6 as weIl as on each of the 

experimen tal {Ill ,} pole. figures shown in Figure 4. 7a to k. 

Despite the limit~d information provided by these pole 

figures, an attempt was made' to identify the components 
, 

p~esent and quantify their volume fractions in each case (see 

Discussion, 5.3). The volume fractions so determined are 

plo~ted in Figure 4.8 as a function of rolling strain. These 

-- . 
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are aiso given in table 4.3. ' 

Since it is not straightforward to include the random 

texture in the CMTP analysis,' it was decided to divide up the 

amount of this- component more or less proportionally among 

the other components so that the total always adds up to 

100%. The fractions obtained in this way arc listed in table 

4.4. It is these values of the latter table which were used 

in the CMTP analysis. The corresponding R( a) curves pre-

dicted using the CMTP method are shown in Figures 4.9.a and 

4.9.b. 

) 

, 
\ 
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Figure 4.6 Location of {Ill} poles for the main ideal orien
tations; one component of each' orientation is 
shown. 
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" , 
rigure 4.9 a) Re Ca) curves, predicted by the CMTP method for 

stra1ma 1 • 0 to i • 1.,.28., Volume fractions of, 
texture cOllponents fo'*" each case are thoae listed 
in Table 4.4. 1 
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," CHAPTER 5 

. " 
..... DISCUSSION 

5.1) Extrapolated R-value: . 

In th,is section it is intended to 'justify the polyno

mial fit used in Chapter 4 in order to determine the R-value 

a t zero strain. To do this let us ~ irst constder a typical 

Rs vs. EZ curve (Figure 5.1) ~ whe~e Rs' = Ey/€Z aRi Eyand €z 

. are the width -and toickness strains, respect,ively. 

The curve -in figure 5.1 decreases progressively until -- , 
R> 

i t becomes assymptotic to a certain value corresponding to , 

the stabilized tension texture. 0 This type o~ curve can be 

described ~y an exponential function as follows: 

(5.1) 

Renee if the experimen~a~ data are f~tte;-C~~- this 

87 <il 

curve using the least squares' tech~iquè, the constant~ A, B~ 
, ) 

and C can be found, and the RS value at zero strain, which 1 

characterizes ,the sheet prio.r ~ any deformation, can be / 

determined. ,By examining the abov~furve' and the equation ./ 
/' ' , 

describ!ng it (equationus.l), it can readily be seen that: 

,1 
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R ' .. A' + C ,at &z :1 01 i. e. A + C is the value of R s . s 

charactefi,zi'ng th~ sheet prior to tensile deformation1 

,and 

ii1) dRs/dtz al -AB'at tz ='01 i.e. B is a measure of how 

fast the curve decreasea (the curve decreases faster as 

8 gets larger)'. 

In order to und~rstand -the dr~back of this exponential 

fit, it is necessary to write down the main equations used in 
1 , 

, '1 

the Jeast squares method. ' Basically, this methoQ consists of 
J 

trying to make the curve pass through the dat~points so~that 
'. 

(~the sum o'f the magni tudes of the residuals under the curve 
""1 

will be equal to the sum of the. magni tude of those above the 
'? 

, 

curve. (A residual ls the distance between a data point and 
( 

lJ 

the curve). In other words, it is desired to minimize the 

following: 

N 

S - l 
i-1 

'" -8e 
:. [Ae zi + C _ R ]2 

l ~i 
(5.2) 

where wi is the weig~~ or reproducibi1ity of point 1 and N is 

the number of data points. 
- - - cj;) 

Di fferentiation of equation (5.2) GO wi th. respect to A, 8 t 

and C resul ts in the follow:tng: 

-BE -Be 
!! - 2I~ [Ae zi + C - R Je zi. 0 &A.1 1 si '5.3) 

• 0 

,'-

, i 
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Dèvelopment of the abovce equatibns" laads to: 
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Proceeding by ~ubstitution'results in the 'following: 
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( 5 .. 3a) 
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'( 5 .Aa) . 
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( 5.6) 

( 5.7) 

( 5.8) 

Equation 5.8, where the only" unknown is B, can now be solved 

by the secant method., The program, ca'1led EXPO, which uses 

this method to solve for B, then A and C, is shown in the 

Appendix G~ \ 

Normally, for most furictions, the f'oot can be found by 

this method even if the interval of the root is not known a 
" 

priori. But for this function (Equation 5.8), one needs to 

have a good idea of the magnitude of B; otherwise, for every 

interval given, a different solution is obtained. To illu ... 

strate this problem, a sketch is given in Figure 5.2. 

The resul ts from the EXPO program fQr three., sets of 

data are also shawn in Table 
.//7 

zero strain is seen 5.1: R ~at s 

to be in good agreement with the resul t from the polynomi~l 

fit. , 
'\f> 

., 

!L'~;!;' - --
", ., ~'" . - "''' 
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(l. 

B 

10 4 LOS 
Q) 

ROI 10 20 1.29 

l 2 .83 
(il 

, 
l 6 .97 

AlI 5 10' 3.90 

10 20 6, .. 46 
-

, 
l 6 .97 

~ T21 5 10 4.00 

10 20 7.21 

"" 

A' c 

{ .,,!,o-

.99 -.26 

.82 -.09 

1.23 -.50 

2.68 -1.70 

.72 .26 

.48 .51 

3.98 -3.35 

1.02 -.38 

.60 +.04 

1 1 1 

I
A+cc=R >IR value !rom 1 

s polynomial fit 

.73 

.78 .75 

.73 

.98 

.98 .88 

~99 

.63 

.64 .64 

.64 w 

Table 5.1: Examples of Rs -values from exponent.ial fft 

It is worth noting here that, despite the tact that a 

different'B (and hence a different A and C) is obtained for 

'" every starting interval [BI, 82], the sum A + C ~s always 

constant. This is normal, since most data points, are in the 

vicinitt of zero, and there are none at large EZ. Therefore 

the curve always starts -at a more or less constant value and 

becomes assymptotic at a value which depends on -the ini t'iai 

s~ope. 

For this"r.eason it was thought better to use a polyno-.. 
mial fit of degre.~ l~ss than tne number of data points so 

i, 

that there is a unique solution. As the exponential function 
, " 

can always be approximated by a flnite degree' polynomial, 

, J 
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equation (S.l) can be written: 

E 
Rs • -Y • A (1 - BE + ... ) + C 

EZ Z 

or, Ey • (A + C) EZ ABE
2 
z (5.9) 

Equation (5.9) is the second degree polynomial used 

"t:hapter 4 in order to fit the ( Ey , EZ) data and find 

slope at the orig in. Note that the. slope at the origin 

th~curve representing equation ( 5 .9) is ~ 
dtz • R = A .+ 

which is equal to Rs at O. 

5.2) Comparison of the o Non-Quadratic Hill and Bosford 

Criteria: 

in 

the 

of 

C, 

For the complete analysis of sheet metal forming, an 

anisotropie yield cri terion must be assumed. To be useful 

for engineering purposes, it must reasonably descr ibe the 
." 

material behaviour but be .traightforward enough so its para

meters can be evaluated by simple mechanical tests. Although 

several non-quadratic criteria have been proposed in the 

past, only two are comparen here and the limitations of one 

of them are pointed out. 

The two considered are (1) a criterion suggested by 

Bosford in 1979 [54], and (li) one of the four special cases 

of Hill's 1979 generalized cri~erion [41]. These are given 

in equations 5.10 and 5.11 respectively. 

94 
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c- -

·(5.10) 

(5.11) 

In order to study planar anisotropy, these two criteria 

must be modified. The first criterion does recognize planar 

anisotropy but is restricted in its present form ta loading 
1 

a10ng the principal axes of anisotropy. Attempts to general~ . 
ize this formulation to include a shear stress term 012 w~rè 

made by Hosford in his 1985 paper [~S], but lead ta ari 

"unreasonable" formulation. This can be shown by considering • 
- 1 

95 

a 45- tension test, for which the criterion can be rearranged". 

and wr i tten in the following form: 

Q 
(5.12") 

where P, R, and 0 are the strain rate ratios, in the 90-, 0:· 

and 45- directions, respective1y, and Yo'is the yield stress 

along the 1 direction (" - O·). For a 45- tension test 

(where al • °2- a12 - Y4S/2), the flow stress should be: 

-

[ peR + 1) ]1/a 
Y45 • 2 2ëo + 1)(R + P) - y o (5.13) 

According to Hosford, for the criterion"· ··giv~n in 

<v' ,,-

i Il 

" Il' 

,,~ f 

,1\ 
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-
(5.12) to be' reasonable, it must include the p1anar isotropy 

case. Bence he arg'ued that i'f pla~ar isotropy is assumed <,P 

But, from =, R .' Q), one ~hould bbtain Y45 = Yo for any a. 

equation (5.13) above, it is 'seen that this is 
o 

true only if 

a = 2, whlch·is not a satisfactory conclusi 

Now, the $~cond criterio~ (equation 5 "is qgns idered 

in turne When planar an\isotropy is assum,e (RO:l: R
90

) and a 

shear stress term <112 ls included, the criterion can be re-
ù , 

written as follows: 

IF,<1~" '+ Ga~m +oBI al - a2 /
m 

+ 2Nai2 = 1 
, ' 

(5.14) 

Note that this ls' 'the f'unction used in order to calculate RO' 

R45 and R~O' in ~he Resu1 ts chapter (Chapter 4). 

For" this formulation, the expressions for R and the 
, 

yield stress", (y) values at a = O·, 45· and 90· are l isted 

below. 

( i) 

RgO 
H - FGm- 1 

= 
"e!' + FGm- 1 

( i i) 

R45 
:= "N 1 - "2 (F+G)m , , 

( ili) 

" 
, , 

o 

-_ ... --
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, n 

n'o 1) 

1 ) l/m Y( 0) . ( 
pin + H 

, " (Iv) 
, \ 

, , 

Y('90) . ( 1 )l/m 
r:f1 + H 

(v) " 

. ' 

Y( 45) • 2( 
1 )l/m 

(F+G)m + 2N 
(vi) , 

............. In whàt follaws, a similar type of' check' is per~armed " 
c " 

as was done far Bosfard' s cri terlan above. From equations 

(1), (ii) and (iii), when we' set RO = RgO = R45 , ,the follow

Ing re~ation ls obtained, 

" (5_,15)' 

Then, .substituttrrg this Into equation (vIf), ft can', be'" seen 

that: 

1 .. 

o ' 

"t! 

, " 

• ( 1) l/m 
pM + H '. 

", 

and remembering that F • G (since RO '. RgO)' then 

o 

Y( 0) Y( 45) for any,m. 
'\ ) 

". 

- Il ,J 

,,' , 

t 
: $ 
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"" nTherefore;, it' cari,' b,~ :'conËl~'ed t~~i: 
) ) '\" 0 , 

, ' !l 1 0'/ ,~' ) 1 

tn~s )Or~t.rion', (5",14) "ls' • 
II ù~ W û t ' 

s:a~i~factot:'y for: pr~dJ<?tihg "the" R:v~l'ôe. a:t '~"5o'";" .. Ho~';v~r'" in 

d irectioi1'~' other than" , 45· f, wh~re', shear _ co, potteonts are ~lso 
n" ' l ~'Q r ') ~ 

p'reaent, ttie c'riter :~ un'~at,,:isfactory :since, if 
r ( 1 0 ~ 

planar ,iaotropy c isr assumed'", th~ expqri~n!: m 
, " 

equal' t6 2. This "ia illuatrat'ed befow' b~ ,d taking lX ~ '-", •• \, 
1 ,Il 0

0 
0 0 

~, , 

R( 3C) 
l , l [ 

'g" ' 
o ' , " 

, , 
" , 

, Q" 

n , If ~~' ~et: R("O) :& , , 

r , ()l'l, r 

, 1 0 Il ~ 

, , 

"'2:~-m,~ H ", ,," 

" , 

and;. 

" , 

" "Q _ L 

, , 
,,' 

, " li 

" 

, , 
" ,,~,? n ..,.J ~ ~ 

"" 

6 COd 

o 

,,' u 

" 
"' 

(5.19) 
, , 

,J 

, ' cl 

, , . , 

, . 

loI) tl llo t", " R'" \ n,D,,)j 

"" :,' Fina,ll'Y, "aetting Y( 3'0) './ Y( 0), ",," ,,,,,,,', ~ p" ,"'", n"',,"'" 1 

l, ' 

~ '" r !j r ~ /;J < 

0, 

_t' ~ , "n 

, t ""~' ,C~)m,,+ "; "("2,4,""7" 
" c 0 

n 

24~m) 'cq)m" .• l 
~ 

, , 
" , 

'or 3{'2)~ + ~ 24 n;_ 2~-1\\" ,,( l3)rR • 
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, " 

, J ' 

"~5.20) , 

L\1 (II 

l' \ n 

"'Fo~.equati<?n" (5.20) to,De,,,',,valid," m m,':lst,:b~ eq~al to "2. ;,,°",,0' 
! "n' " 
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... 
Having shown that the present " rsion of H1l1's crite-

, 

I rion (equation 5.14) is not satisfac ory for aIl tests'giv!ng 
t . . . . 

rise to shear stress terms, it can nevertheless be,., stated-~ 

that for R-value predictions at O·, 90· and 45-, it 

perfectly suitable. 

5. 3) Compar i son of Cal.cul a ted R-v al ues wi th CMTP 

pred ictions': 

" 

is -• 

The agreement between' the R( a) values determined by 
" ( 

,c mechanical testing and the CMTP predictions based on experi-
. . 

mental' pole figures is' only quaI i tative. Nevertheless, the 
, , ' 

t~o methods give similar results. for the follo~ing quantities 

(see Figure 5.3). 

i) The R-values at 0- f,nd 90·, which both decrease wi th 
~v 

rolllng stra,in 1 

& 'ii) R45' which ia larger than RO and R90 in aIl the experi-
1 

ments, as weIl as in the predictionsi 

l1i) RgO' which is larger", tha~ RO and becomes less than RO 

at a rolling strain of about 2 (experimentaIly) and 

about 1.5 (CMTP method). 

However 1 the CMTP R-values are a1,ays higher than the 

experimental ones., The most important discrepancy i~t 45·, 

and as can be seen from Figures 5.3 a to C, this becomes 1 

larger'as the rolling s~!,ain ls inc~eased~ The reasons for.:." 

this discrep~ncy can be summarized as follows: 

.. 
t J 
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1 

b) Comparison of the ~xp.rimental R(œ) values 
vith tho •• calculated using the CMTP method, 
ah.et roll.d to a ·strain i • 1.28. 
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i) F!rst, there is the experimental error in the measure-

ment of ~he strains and ~ld s~resses. This remains 

the smallest source of error, especially for the first 

three sheets"for which the extrapolation procedure was 

'used in order to determine the R-value at zero strain. 

ii) Second, there la the basic limitation of 'the CMTP 

iii) 

method in that approximating the Bishop and Hill pOly-

ledron by a smootyounded yield surface can l~ad. -ta 

more or less significant errors in the details of the 
- fi 

strain rate tensor which are related to small differ-
1 

ences between the crystallographic and CMTP yield loci. 

For examplë, for the cube texture, ·the pre~iction is 

good at O· and 90·, but there is larger error in the 

directions (eg. 45·) where there is shear [56]. 

Thi:r;d, the largest source of error is certainly the 

i~nerently serni-quantitative nature of texture 

characterfzation by means of pole figures and ldeal 

orientations. The problems that arise· from this form 

of description are obvious when it is seen that, for 

example, for the {111}<112> and {554}<225> texture 
-

componentà, which ar& very close in a pole figure, the 
, 

--

R-va.lues differ considerably Ceg. 1.61 and 2.l4"p 

respectively at o::a 90·) [43]. 

The discrepancy found in our resul ts can be reduced if 

the amount of the ,brass texture is decreased and the 
./ 

op~opor~ion of the cube texture increased for the 

heavily rolled sheets. In fact, in (Ill) pole figures 

.-
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such as those det~~mined in.thè present" study, in which 

the out~r part is miêsing, these two texture components 

can be easi1y mistakèn for each other because they both 

involve,,- polestl in" the central 
~ 

J 
region of the figure. 

Also, apart from the cube texture, the only rolling 

texture co~ponent which can lower the R-value at,45· is 
o 

the Goss texture [43] • Howe~r, this component ls 

certainly not observed in ei ther the annealed or the 
. 

lightly deformed sheets. It may become important ln 

the heavily rolled s~eets,~ ~s shown by Pochet.tino [57], 

who reported..J a volume frac tion of around 10%. This 
-

observation is not in contradiction wi th our partial 

pole figures since the Goss component ls rather close 
. 

to the copper texture i~n the central part of the (Ill) 

pole figure. However, even if 15% of this Goss compo

nent is included in the CMTP calculation, only a small 
, t' 

, decrease in R45 ii obtained Csee Figure 5.4). 

o 

Iv) Fourth, some textures have been reported [56] which May 

be ca1led 'anomalous textures', because they lead to i 

<. 1 and ab/au) 1. For example, the texture (-.4048, 

.90~0, .150.3) [.9128, .4083, .0084] results in R • .92, 

and' ab/aU :II 1.02. Such a component would be falrly. 

ëonsistent- with our experimental results, but un~ortu-
o 

onate1y it is not easi1y identified in the pole figures. 

v) Fina1ly, the CMTP predictions could be much i'mproved if v 

the volume fractions of a large number of Ideal orien-
o M - "\ 

tations were known, such as can be obtained froID COOF 
"....-

- : 

-
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~' methods of texture representation. 

Il 

5.4) Sorne Comments on the Texture of the Present Al Sheet: 

Although sorne investigators have reported O· and 90· 

earing in annealed commercial purity aluminum' [58,59], it is 

generally known that the earing behaviour of a given sheet is 

d irectly dependent on- the relative proportions of the cube 

and tretained rolling' textures. The main factors which 

influence the annealing texture are the previous rolling 

texture, the annealing temperature and the irnpurity content 

[2] • \\ 

For the aluminium sheet investigated, it 
, 
was ·found 

experimentally that ~~ is larger than both RO ~nd R90 , and 

thus 45· ear ing is ex~cted. Moreover, the CMTP analysis 

predicts ,~ sarne. resul t since, as can be seen from the pole 

figure, the cube texture which would give r Ise to O· and 90· 

earing is not predominant. There are two reasons 'for this. 

First the Iron cohtent is higher than that of other commer

cially pure Al sheets [60,61], and it 'has been reported 

[62,63] that a high Fe ~ content inhibits the growth of the 

cube component. Second, the shee,t investigated was annealed 

at a fairly high temperature (550·C), and this is believed to 

suppress the formation of the cube texture even more. In 

fact, D.J. Jem~en and N. Hansen [60] have reported that,an 
~ . 

increase in annealing temperature from 250· to 300·C results 

in a decrease in the amount of' cube 'texture and an increase 

in the amount of retained rolling texture. 

'0 

, 
• 
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CONCLUSIONS 

As a resul t of this study, the following generâl 

conclusions were reached: 

1) The anisotropy coefficient c,baracterizing' the real beha-

v iour of a rolled sheet i5 the value correspond lng "to· zero 

deformation and not the one measured at the limi t of uniform 

elongation. This is why the extrapolation procedure should 

be used on the wid th vs. thickness strain (Ey vs. EZ) curve 

record,d from tensile tests in order to determine the slope 

at the origin dEy/d EZ' It is this extrapolated value that 

can be compared to the one obtained from the application of 

the yield criterion and normality rule. 
o~ 

• • 
2) The present sheet ia characterized by • anomalous 1 beha-

viour in that the aver~ge R-value is les,s than unit y while 
, 

aps/ou > 1.15 or ab/ou> 1. This is consistent with earlier 

reports [37] regarding such commercial puri ty Al sheets. As 

a resul t,- - tts behaviour is better described by a generalized . 
. 

than a quadratic criterion. Asauming planar isotropy as a 

first appro~mation, the exponent m of the criterion is found 

to be ~qual to. 1.7. A more general cri terion which takes 

planar anisotroP!( into account is proposed. Su.ch a cri terion 

8 la useful because the prediction of earing is as important as 

li that of drawabllity. 

3) By usinq this new yiel.d locus fitted to the experimental 
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yield" stresses, R( a) values (and hence earing and drawabil i ty 

tendencies) can be pred'icted even for heavily rolled sheets 

where R-va·lues cannot be measured directly due to plastic 

instability. 
" 

4) Thé R-values at a = O·, 45° and 90· decrease continuously 

with rolling strain and this ls ln agreement with what is 

reported experimentally [37] as weIl as theoretically [64] 

for F ç C metals. 

1 

5) The R-values at 45° are larger than both RO and R
90 

for 

all rolled sheets; thus 6R<0, 50 that 45° earing 15 expected. 

Even though this ls in fact generally observed for cold 

rolled Al, i t ls not usually the case for the annea led sta te. 

In our case ~R <0 even for the orlg inal annealed sheet, 
, 

apparently because the cube texture which gives rise to O· 

and 90· earing (LlR>O) is not predominant. This can be seen 

from the corresponding pole figure, the features of which are 

probalHy associated with the high Fe content and the high 

temperature at which the sheet was annealed [62,65 J. 

6) The CMTP predictions (based on incomplete pole figures) 

are not always in full agreement wi th the experlmental 
'oi 

resul ts. For the prediction~ to be improved, more detailed 

information regardlng the texture components is required, 
<0 

including either the volume fraction of each Ideal component, 
e 

or the full CODF.~ 
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APPENDIX At FORTRAN PROBRA" 'RZERO' 

USING A NU"-E~ICAL "ETMOD (ORTHOGONAI.IZATION "E'THOD) IN aRDER 
TO.FIT A POLYNOMIAL TO TH~ E%~COR X) AND E~~(OR y) DATA PHTS 
AND FIND THF $LOPF AT THE ORIefN WHICH IS dEyv/dEzz-R 

\ , 

IMPLICJT R[AL*SCA-H,L-Z),INTfBERCJ,J,K) 
CO"HON 9, OF.L T~, .JJJ ' 
EXTERNAt F \ 

113 

DIMENSION W (10') ,'X (30) , Y<1 0) ,1\<1 Ch JO> ... FI (10,10 )'GA'( 10 )'BF.To( 10) , 
,.AAC 10),19( 10) ,cc 10) ,I( \0) ,XXC 10), YYClO) ,TOC 10) , 

DATA W/'OiDo,~.no".no,~.nO,7.Do,e.~0,9.bo,lO.DO,11.DO,1'.Do~ 
READ(!IS,.>II 
D04r-j,Jl 
READ(~,.)X(t),Y(I) 
X(I)-X(l)/l.n~ 

.y(t)·Y(t>/l.D~ 

~ r.ONTINliE 
KTRY-1 
WRITE(6,17) 

17 FORMAT('SCALE':n)F.~E'TWFF.N TICK MARKS(>F'HAX/S.7'>E'3KAX/J.7~') 
READ (9, *) DEI. TA 
SCAl.F-nEL.TA*1.n+4 

1~ WRlrf.t(~,2), 
2 FORHAT('nE'GRFE' OF POLYNOMIAl.') 

"EAO(9,.>JJ 
JJJ-J • .l+1 
GA(t)·O.DO 
IET(l)-O.DO 
A(~,t)-O.DO 

DO ~ r-bIl 
GAct>·aA(t>+W(I) 
FI(1,1)-1.DO' , 
A(~,l)-A(~,t)+W(t)*X(I) , 
IET(l)-~ET(l)+W(I).X(I) 

S r.ONTINUE 
. A(?"J)--A(2,1)/GAej) 

A(l,l)-t.DO 
A(2,'-)-I.DO 
A(I,2)-0.DO 

__ . DO" J-l,II 
FIC2,t)-XCr)+AC~,1) 

6 CONTINUE 
DO 8 J-~, JJJ 
GAeJ)·o.no 
IET(J)·O.D()' 
DO 7 'r-t. II 
BET( J) .IFT( .. I )+w( r ).XC r) .FIT .. I, r) **2 
GA ( .J ) .0" ( .1) + N ( t ) *F l ( .J , t) **2 

7 CONTINUE 
IF (J:FQ.JJJ) 00 T08 
AA ( .1+ t ) -- '8F:T (.J) IGA (J) 
88CJ+I)--GA(J)/GA(J-!) 

., , .~ ., 

/ 

,;0 



.. 

Jo 

o 

-' 

o 
... 

IF(J.EQ.JJJ) GO TD 8 
DO 10 t-t, II 
FI(J+l,I)-XCI).FIeJ,I)+AAeJ+l).FleJ,I)+'RCJ+l).FI(J-l,1) 

70 CONTINUE 
B r.ONTJNlIE 

DO tO ,J-t ,JJJ 
C(J)aO.no 
DO 9 Yat,II 
CeJ)~CeJ)+WeI)*Y(I>*Fr(J,J' 

9 CONTYNUE 
C(J)aC(J)/GA(J) 

10 CONTtNUE 
DO l20 .. '-l,2 
DO 119 K-J,6 
AeJ,K)aO.DO 

119 CONTtNUE 
120 CONTINUE 

DO 1 ~ Ja3, JJJ 
DO 11 KlII~, J"IJ 
AeJ,K)·A(J-j,K-l)+AACJ).A(J-l,K)+RR(J>*AeJ-2,K) 
IFCK.BT.J) AeJ,K)·O.DO 
1 F C K • EQ .... I) A ( ... ft K) a j • no 
,A(J,1)·A~CJ)*A(J-l,1)+88CJ).A(~-2,1) 

11 CONTINUE 
1 ~ CONTINUE 

DO 2:ï .. 1-1, ,J .. IJ 
B (.J) -o. DO 
DO JO t(= .... JJJ 
B(J)-B(J)+~(Kt*A(K,J) 

30 CONTINUE 
25 CONTYNUE 

WRITE(6,99)R( l ) ,'H2) .B(~n 
WRtTF.(6,998)B(4),8C5),8(~) 
WRJTF.(6,999)RC1),RCS),RC9) ~ . 

99 FORI1ATC4X, 'Bl=' ,Dl~.~,tJX, '8~.' ,013.5, tJX, "J.J,D't3.~) 
998 FORI1AT(4X,'R4·'.D1J.s,13X,'B~·',~13.S,13X,'~6·',D13.~) 
999 FORI1AT(4X,'B7.',D13.S,t3X,'88.',D13.5,13X,'B9.',Ot3.~) 

103 
XI-O,.DO 
X~-Xt+t.D-3 
X3-Xl+~.D-3 
IF(Xa.GT.X(IJ» ao T~ lOS 
Fl-FeXl) 
F2-F(X~) 
IF(F2.LT.Fl) GO TO III 
Fl-F(Xa) 
SI-(F2-F1 )/eX?-Xl ~ 
S2-eF3-F~)/(X~-X2~ 
XI-X2 
GO Tt) 103 
WR 1 TF. e 6, 2 1:,J) lé 1 

... 114 

111 
112 FOR"ATC'CURVE nFCRFASJNG AT r3-',Dl:,J.~,':POLYNO"IAL FIT NO BOOD') 

,,, "" " , , 
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80 TO 333 
CONTtNUE 
TESTI-F(O.I'O) 
TEST:!-F (3. DO) 
TESTl-F (S. no) 
WRJTF,(6,aeS)TEST1,TFST2,TF.sT3 
FORMATC4X,'Tl-F(0).',njl.~,'X"T2.FC3.',D13.S,2X,'T3.F(~).',n13.5) 
WRITEC6,t07) ." 
FORMATC'PRINT l TO PLOT THF. CURVF') 
READ (9,.) KPLOT 
IF(KPLOT.OT.l) 00 TO 333 
WRtTE(6,tOe) 
FORMAT('PRINT , IF ~OTTOH CURVE') 
REAOC9,.)KPOS 
CALL Pl.OTON 
IF(KPOS.F.O.l) no TO 130 
CAll PLOT(l.,S.a,-J) 
GO TO 131 
CALL PLOT(l. ,'1. ,-3) , 
IFCKTRY .AT. t) no TO 201 '" __ 
CAU AXS (O. ,O. rl 'HfJ (*-10"-4), -12,5.7,0. ,0. , SCAl E', 0, o. ,1. ) 
CAlL AXS(O.,O.,t2HE2 (.10 •• -4),t2,l.7,90.,O.,SCAlEiO,O.,1.) 
CALL AXS ( '.7,0. , 1 H , -1,3.7,90. ,0. , SCAL E', 0 , o. ,1 • ) 
CAU. AXS ( 0 • , :1 .7, 1 H , t , ~ • 7,0. , ° . , SCAI. E ,0,0. , t t ) 

DO 200 J-l, II 
xx<t)-X<t)/DELTA 
YYCJ)·YCI)/DFLTA \ 
CALI. r.tRr.U~(XX(!) ,yy(!), .035) 
CONTI~lIE 
CONTINUE 
DO 74 ~I.l ,.J .. l~ 
CONTtNUE 
CAU. FNPlOT ( 0 • , xx ( lIt, 1 , F ) 
CALL ENDPLT 
KTRY·KTRY+l 
WRtTF.(6,20~> ," > 

FORMAT('PRINT ,1 TO TRY ANOTHFR POLYNOMIAL') 
REAO(9,.>KK ' , " 
IFCKK.F.O.l) ao TO 1 
STOP ;' 
END 
RIAL FUNCTJON F.8(X) 
IKPlJCIT R~AL'8(A-H,L-Zl 
INTEGER J 
COMMON ~(lO),DELT~;JJJ 
Y-O.DO 
DO 110 J.', .. I .. IJ 
U.X'OEI. TA 
Y·Y+~(J)*U*.(J-l) 
CONTtNUE 
YY·B(l)+Y 

, F·YY /OEL TA 
RE!lIRN 
END 

, , . ' 

t" e" 

, 
- ~~I ) 

, ' 

) .. - .~.~~ ,J ~ _'~'"". _"".\.. "l~",!'I~.t. __ ,I."k'.~'! _ ~_~,-~l_A~~.' _~~~--'_ t _~ _~O~.:~ __ .~ ,~.,.. n.4 ~._!,~",,,,,, ,,_,~ 
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ccc 
ccc 
ccc 
ccc 

APPENDJX 81 FORTRAN PROGRA" '"DaTA' 

INTERSECTION OF HILL'S ELLIP80ID BV VARIOUS PLANFS 
PLOTTIHB OF (SIGHA1,SIO"A2) VIELD LOCUS 

DI"ENSION ORDmOO),ORn'CSOO),ORD3(SOO),ORD4(SOO) 
DtHF.NSION· ABS (50(f), ABS~ (SOO > , ABS3 (~()O > , A984 C 500) 
DIMENsrON XCS 0) ,Y(500) 

CCC --- ' . 
C FNTRY OF HUL '8 COEFFJCrENTS 

~c ~ l 
1 REAn(9,*>F,G,H 

WRTTEC6,tOO)F,G,H 
100 FORMAT(5X,'F- ',F9.J,SX,'O- ',F.9.3,SX,'H- ',F.9.3/> 

READ<9,*>N 
ccc 
'ccc 
ccc 

:!1 

2 
CCr. 

3 ,..,..,.. .... , 

4 
ec~ 

30 

J 

JNTERSFCTJON ~Y THE PLANf X-O 
c 

TEST-CF+G)/CF*H+F*S+O*H) 
e IFCTF.:ST.(IE.O>f31l Til 2 

o 

WRITE(6,21) ~ 

FORMAT(/l ox, 'HJL L COEFFJCIENTS INCORRE"CT ') 
BD TO 1 
CALl nE'GRF.2CN, (F+~), CG+H), CF*G,+lf.H+F*H), F,ABS1 ,ORDl) 
INTERSECTION BY TH~ PLANE Y-O 
TEST-CF+G)/CF*A+A*H+F*H) 

, IF ( TF.:ST • BE. 0) Ail TO 3 
WRITEC6,21) 
GO TO i 
CALL.nEGRE2(N,CF+G),CG+H),CF*B+B*H+F*H>,G,ARS',ORD2) 
tNTERSF.CTtON BY THe: PI.ANF. l=~ . 
TEST-(F+H)/CF*a+F*H+A*H) 
IFCTF.ST.GE.O)f31l Til 4 
WRITE(6,21 ) 
GO TO 1 
CALl nEGRF?CN,(F+H),(G+H),(F*G+F*H+A*H),H,ABSl,ORD3) 
tNTERSECTtON P,Y THF. PI.ANF. X+Y+Z-O . .-
TEST-CF+A)/CF*A+~*H+F*H)/'. 
IFCTEST.BE.O)GO Til ~ 
WRITF.C6,21) 1 -,' 

GO TO 1 
ALPHA-SQRT(TFST) 
DO JO Y-t,N 
IP·2*N+I-I 
ABS4( I).Al.PHA*(-j .+FL.OATU-l >.'./Fl.OATCN-l» 
DISCn6.*«F+G)-~.*(F.B+U*H+F.H)*Aa94(t)*ABa4èI» 
DISç-AB8CnrSC) . 
ORD4(r)-Cl.132*CF-G~*A~S~(r)+snRT<DISC»/(FtB)/3. 
nRD~CIP)=(1.1~~*(F-A).ABS4(t)-SQRTcOtaC»/(F+a>/3. 

• ___ .'_1., .•• :~', _. ___ .' 
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.f' . ' 
, "," -it- ... 

" 

o 

ccc 

:!OO 

10 

300 

0400 
0401 

3 

66 

RESULTS 
READj". )" 

--

IIF (".[Q.O) ao TO 401 
IIR t T'! ( 6,200) 

. , 

FORMAT ( ~X, 121 ( , *' ) ISX, '.' ,2X, 'ABS! ' , 3X, ,*, ,2X, ',ORDl P' ,2X, , *' , 
.~X, 'ORJl!N' ,,-X, '.' ,:!X, 'ABS2' ,lX, '.' ,2X, 'ORD2P' ,2X, '.' ,2X, 
• 'ORD~N' , 2X, '*' , 2X, 1 AJrS~' , 3X, '. ' , 2X, 'ORn3P' ,2X, '.' , 2X, , ORD3N' , 
.2X, '*',2)(, 'ABS4' ,lX, '.' ,:!X, 'nRD4pv ,2X, '*, ,:!X, 'ORD"H' ,::!,X, '*, 
• /SX , l :? 1 ( , *' » 

DO 10 t - 1, N ~ 
IP-'*N+l-I " 
WRI.TE (6, 300)AASl < I) , ORfttc I) ,ORDl (IPh ABS:H l ) , ORD2 (1" 

.OR02<IP) , AIS:! ( I) , ORD3 < 1) , ORDJ CI P) , A8S4 ( r) ,\OR004 (I ) , ORD04 ( 1 P) 
FORHATCSX,'*',l2<F9.3,'*'» 
WR 1 TE C 6, 4(0) 
FORHATCSX,J21C'*'» 
CAl.'- SIGMA1<A8S1 ,ORDI ,N) 
STOP 
END 

. SUBROLITINE OE'GRF:?( N, Tb T:?, T3, T4, y, Z> 
DIHF.NSION.YCt),ZC\) 
ALPHA-SQRT<Tl *T2/T3) 
DO 3 t-1,N 
IP-2*N+l-1 
Y (-1 ).AL PHA*< -1 • +FLOAT < 1-1) *,. /Fl.OATC N-l ) ) 
DISC-Tl/T~-YCt)*Y(t)*Tl/T2/T2 
DISe-ARS (nI SC) 
Z ( J ) • ( ( T ,,/ T:! ) :ft Y ( l ) + S Q RT ( ft1' SC) ) 1 ( T l/T 2 ) 
~(rp)g«T04/T'-)*Y(I'-SQRTCOtSC»/CT1/T2) 
RETlIF(N - .-
END c 

SUP.ROllTINf 8.1GHA1(X,Y,N) 
DIMF.NfitON XCO ,y(1) 
CALL PL OTON 
,CAl.!. PI.OT ( 04'.!5, 4 .!5, -3) 

.- CALL PlOT(4.0,O.0,?) 
CALL SYMBOl (3. ~,O t OS, 0.1,11 HSraMAJ -Axr S,O. 0,6) L/

CALL SY"BOl(O.OS,J.9,0.t,ttHStaHA~-AxtS'OfO,6) 
CALl. PlOT(O.0,4.0,3) 
CAU. 'PI.OT CO. 0,0.0,2 ) 
CALL PL OT e 2*X ( 1 ) , 2*Y e 1 ) ,3) 
DO 66 1-1,H 
X ( 1 ) -2*X ( 1 ) 
ye t ) -'-.Y el' 
CALL PLOTeXCI),Y(J)", 
DO 67 I-t,H 
X(I+N)--Xel) , 
Yet+N)--Y(I) '. 
CAlL pl.OTeXU+N) ,Y(I+H),2) 
CAl.L ENDPl T 
RETURN 
END 

--
'_"L'~;" •• 

c • 
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ccc 
ccc 
ccc 
ccc 
ccc 

., 
1 

10 

1t 
15 

APPFNDIX C: FORTRAN PRDGRAH 'GFNHfLL' 

TO FJND H KNOWJNG Q AND R,BY USING THE SFCANT "ETHOD 
FR OH FORH 2 OF GEN.HtLL PLANAR t90TROPY CRtTERtON: 
(S1+S,") **H+ Cl +:?*R) * ~ Sl-S') **1'1-2*( l+R) *fmt.H 

IHPl.JCIT RFAL *SCA-H,I.-Z) ,INTFGER(I) 
COHHON R,a 
WRITF(i,,4) " 
FORHAT('Q- ,R- ,Hl- ,1'12-') 
R~AD(9,*)a,R,Hl,H2 
WRITF.C6,*)Q 
WRtTE(!.l,*>R 
I=-1 
Ft-FeH1 ) 
F:!-F (H=-') 
HN-OU *F'-H,"*Fl )/( F2-Fl) 
FN-F'( I1N) 
Hl-H2 
M2-HN . 
IF(I;GTf.lO)GO TO 11 
I-YU 

, . 

.' 

IF(nAflS(FN> .GT.1.D-6) GO TO 10~ 
WRITF.C6,1~>r,FN,HN ~ 
FORHAT('JTFRATë-',I~,JX,'FN-',D1'.4,JX,'HN·',Dl'.4) 
WR.tTF:, C lu t::!) 
FORHAT( 'PIHNT 1 TO TRY AGAJN') 
REAI)(9,*)A . 
IF(A.F.Q.j.) GO TO, 1 

, STOP 
END 
FUNCTJON F(") 
IMPl.tctT RF.A'-*9CA-Z) 
INTF.t:lFR 1 
COHHONoR,a " 

118~ 

F=( 1. DO-M) *DLOG C ~. rH» +DL.ClR Cl. nO+R) + (H-l • DO) *Dl OC.H (1 • TlO+2. flOtR) * 
1*Cl.DO/CH-l.DO»+ï.DO)-DlORCt.DO+2.DO*R)-H*DLOO(Q) 

RETURN 
• END 

.-



· , 
,Ji, -

ccc 
ccc 
ccc 
ccc 
ccc 
ccc 

8 

10 

C 

"11 
14 

'APPENDIX !':FORTRAN PROGRAH "NEUS' 

TO CALCULATE PARAHETERS C,A,I AND N,THEM R~O AND ~4~ 
FROH THE PROPOSED BENE~AL PLAHAR ANtSOTRo~tTERtON: 

-2fCSIJ)_'AS1J+BS'2,**"+CISll-S7,t**H+'NS12**"-J. 
lAT BY9TENCDATA:91,B2,S~S,SP1U) . 

IHPlICIT RFAL*SCA-H,J-l),IHTFGER,(l) 
COMMON Xl,X~,XXt,M,N,P,Q,r.P,CPP 

1 WRJTFC6,?) 
~ FORHAT<'Xt,X~,XXt,X45') 

REAnC',*)XJ,X',XX2,X45 
H-17. 0-1 ~ 
Cl-l.D-J 
C2-t.O-4 
H1I l.nO/(H-1.1'I0) 
P-t.DO/H 
a-P/N 
t-l 
Fl-FC Cl), 
F2-FCC2) 
CP-CCJ*F'--C2*Fl)/CF'--Fl) 
CN-DABSCCP) 
FN-FeeN) 
IF CDABS,CFN).LT.l.D-El) GO TO 'l1 
Cl-~2 • 
C2-CN 0 

Fl-F2 
F~-FN 
IFCI.GT.1S) GO TO 11 
l-t+1 
WRITF(~,*)I,FN,CP 
GO rI) 10 
WRITFCb,l4) , 
FORHAT~( 1 F SOLlJT r ON 1 ) 

WRITFC6,*)1,FN,CP 
, AA--CH+Xt*. C -H) 
" BB--CH+X2**C-H) 

IFCAA.l T.O.DO.OR.BIt.LT.0.I'I0) AO TO SO, 
AA-AA •• P 
B8-JJ**P . 
RO-CBB*AA.*CH-l.nO)-CP)/C-AA**H-BB*AA •• CH-l.DO» 
R90-(AA*BB**CH-t.DO)-CP)/C-88**H-AA*88**(H-l.DO» 
IFCRO.l.T.O.!'O.OR.R90.L T .O.DO) GO TO 50 
WRtTEC6,.)RO,AA 
WRITEC6,.)R'O,ItB 
HN-C(2.nO/X4S)**M-tAA+BB>.*M)/2.DO 
R4S"HN)CAA+B8).*M-S.D-1 
WRITF(6,*)R4S,HN 
REA 0 ( 9 , • ) t 1 \, 

K 1 ~, • , . ., 

.1.19 

," 
" 



o 

o 

IF(II.FQ.l)BO ~O 1 / 
00 TO SS _ ~ 

SO CONTINUE 0 ~ 
1-1 
Cl-ClIS .DO 

'\ C~-C2/!5. DO 
Gl-GCC1) 

o G~-r;(C:D 
CS~ Cpps (Cl *G?-C2*G 1 ) 1 C G~-G~) 

CNNaJ)ABS ( CPP > 

ccc 

51 
'19 

GN-G(eNN) 
IFo (DABS(GN).LT.l.I'I-en GO TO ~1 
Cl-C~ • 
C2-CNN ' l 

GlaG~ 
G2-0N 
IF (I.GT.l'> GO TO 51 ~ 
1-1+1 
WRITF.(~,*)r,GN,CPP 
GOoTO S2 
WRITE'(~, 29> 
FORHAT('G SOLUTION') 
WRJTF(~,*)r,GN,CPP 
AA--r,PP+ X t ** ( -H ) 
BB--CPP+X~**(-H) 
-1F(AA.1 T.O.DO.OR.flfI.l T.O.DO) GO TO 60 
AA-AA**P 
BBIIB8**P 
RO- (BB*' .. \** (tt-1 • no) -cpp > 1 (-AA**H-Itfl*AA** (H-l • DO» 
R90=(AA*BB**(H-t.P.O)-CPP>/(-98**H-AA*8~**(M-1.DO» 
1FCRO.lT.0.OO.OR.R90.1 T,O.DO)GO TO 60 
HN=«~.DOïX4~)**H-(AA+B9>**H)/2.DO 
R45·-~.n-l+HN/(AA+flB)**H 
WRITI!:C",*)RO,AA 
WRITE'(6,*)R90,~B 

WRtT~CA,*)R4!5,HN 
GO TO S5' 

60 CONTINUE 
1-1 
Cl-Cl/4.DO 
C2-C2/4.DO 
Hl-HCC1) 
H2-H(C2) 

~2 CP~P-(Cl*H2-C2*Hl)/(k2-Hl) 
CNNN-DABSeCppp) 
HN-HeCNNN) 
IF eDABSCHN).LT.l.I'I-B) on TO 61 
Cl-C;~_ 
C~-CNNlt . 
Hl-H2 
H2 .. HN 

... , ...... L. . •. , ......... :.': •• ",' 

- ...... n'" ,,-

• , 
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61 
63 

IF~I.OT.15) 00 TO ~1 

1-1+1 
00 TO ~2 
WR tTF. < 6,63) 
FORMAT < ' H SOl.UTrON') 
WRtTF.C6,*)Y,HN,CPPP 
AA--CPPP+Xl**<-M) 
BB--CPPP+X2**C-M) 
AA-AA**P 
88-aa**p 
HN-(C~.DO/X4~)**M-<AA+B~)**M)/?PO 
RO-CBB*AAS*CM-t,OO)-CPPP)/C-AA**H-SI*AA**CM-l.00» 
R90-eAA*SB**<M-l.nO)-CPPP)/C-BB**H-AA*RR**CM-l.DO» 

. R"~= C -~. D-1) +HN/ C AA+8J» **M 
WRITF.( 6, *)RO, AA 
WRtTe:< 6, *)R90, BB 
WRITE(6,*)R4~,HN 

- t 

5!5 CONTtNUE 
REAP(9,*HJ 
IF(tJ.EO.1)"GO TO 1 
STOP 
END . 
FUNCTrON F (C) 
IMPI.yr.IT RF.AL~aeA-Z> 
1 NTFGf'R 1 
COMMON X1,X~,XX1,H,N,P,O,CP,CPP 

O-DABS(-C+Xl**C-M» 
E-DA~SC-C+X2**(-H» ~ . 
F-CC**N+E**N>**Q-XX1*eC**p)*CO**P+E**P) 
RETtlR~' 
END 
FUNCr10N OCC) 
IMPI.IC'tT RF.AL*8eA-Z) 
INTFAf'R 1 
COMMON Xl,X2,XX1,H,N,P,O,CP,CPP 
n-OABSC-r,+Xl**C-Mt) 

o • 

E-DABSC-C+X2**C-M) 
a-«C**N+E**N)**O-XX1*CC**P>*CD**P+F.**P»/CC-CP) 
RETURN 
END 
FUNeTION HeC) 
IMPltCIT.RF.AL*SCA-Z) 
INTEOER 1 
CO"MON Xl,X',XX1,H,N,P,O,CP,CPP 
O-DABSC-C+X1**C-H» 

"'-"l~ .,-V 
" > 

E-DABS C -C+X'** ('-H) ) . 
H-(CC**H+r**N>**O-XX1*CC**P).(D**P+E**P»/(C-CP)/(C-CPP) 
RETYRN M 

END 

" 

" " 

. . . 
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APPENDIX ~: FORTRAN PROGRAH 'NF..,2' 

ccc 
CCC u 

cct; 
CCC 
ccr. 
cet 

ta CALCUlATE PARAHETF.RS C,A,S AND N,THFN RO,R90 ANn R~S 
FROM, THE PRopnSED GF.NER~L PLANAR ANISOTROPY C~IT~RION: 
~F (~J .. 1) -"AS1l +ftS'-'-"**t1+C l S11-822 t**H+2S 1 :t**H-l 

( 

8 

c 

C 11 
e 14 

11 
e 

~HD SYST~H(DATA~SI~S~,S4~,SP~) 

IHPtJCJT RFAl*a(A-H,J-7),tNTFGER 
COKHON Xl,X~,XX2,H,N,P,Q,r.P,cPP 

l ,WRI TE' ( 6,2 ) 
2 FORKAT('Xt,X~,XX~,X45') 

READ(9,*)Xl,X?,XX',X45 
"-t7.0-1 
Cl-1.n-3 
C2-t.D-4 ~ 
H=l.DO/(K-l.DO) 
P-l. DO/li 
Q=P/N 
t-l 
Fl-F(Cl) 
F2-F(C2) ~ 
CP-(r.l.F~-C?*Fl)/(F2-Fl) 
CN-DABS(CP) 
FN=F (Cth 
IF (l'-ARS (FN) .l T .1. n-ED GO TO l1 
Cl-C2 
C2=CN 
Fl11'F2 
F2=FN 
!F<1.GT.l5) (Hl TO 11 
1=I+1 
WR1TF.C6,*>J,FN,r,P 
GO TO 1 <> 
WRITF(6,l4) 
FORHATC 'F SOLUTIOH') 
cONtrNuE 

WRtTF-(A,.>t,FN,CP 
AA--CN+Xl ** < -H) 
BB-etCN+X'-** (-H) 
WRITF(i,,13) 

Ct) 

,~ 

.. 

122 

13 FORMATC2X,'* C * A * ft * N Q * 'RO * R90 * R~S * ,,') 

C 

IF(AA.LT.O.DO.OR.BB.lT.O.DO) GO TO SO 
AA-AA**P 

o 

BB-98**P , 
RO-(SB*AA**<H-l.nO)-CP)/(-AA**H-BS*AA**<H-1.DO» 
R90-CAA*SB**(H-l.DO)-CP)/(-9S**H-AA*99**<H-l.00» 
~F(RO.lT.O.Do.aR.R,o.LT.O.DO) Gn TO SO ' ' 

WRtTE(6,*>RO,AA . 
, URITE C 6, *) R90Ql BB 
HH-(C~.DO/X4S)**"-(AA+89)**H)/2.DO 
R45-HN/(AA+AR)**"-~.D-1 



0, 

12 

1 

WRITE(6,12)CP,AA,JB,HN,RO,R90,R4S 
FOR"AT(?X",',4('7.S,'.'),3CFS.3,'./» 
REAIU , , • ) J 1 
1'(II.EO.t)OO TO 1 
BO~TO '5 / 
CONTINUE 
1-1 
Cl-Cl/S.DO 
C~-C~!I!5. DO 
01-tHC1) 
02-I)(C2) 

5~ CPP.CC1*02-C2*Gl)/CG2-Gl) 
CNN-DABS(CPP) 

ccc-
C S1 
C 19 

51 
c 

C 
C 
C 

60 

ON-(lI(CNN) 
IF (nARSCGN).lT.l.n-e) GO TO '1 
Cl-C~ 
C2-CNN 
01-B~ 
02-BN 
IF (I.GT.1S) GO TO 51 
I-t+l 
WRITf.C6,*>I,GN,CPP' 
00 TO 5:! 

WRITE'( 6 d 9) 
FORMAT('a SOLUTION') 

CONTINUE 
~RIT~(~,*>t,GH,CPP 

AA--CPP+Xl •• (-M' 
SS--CPP+X2.*(-M) 
!F(AA.lT.o.nO.OR.~~.lT.O.DO) GO TO 60 
AA-AA**P 
BB-~~**P , 
RO-(~~*AA**<H-l .nO)-CPP)/<-AA**H-BB*AA"<H-l .DO» 
R90-(AA*SS**CH-t.DO)-CPP)/(-88*.H-AA*88**(H-l.OO» 
IF (RO.l t • o. no. OR. R90.l. T. O. DO H~O TD 60 
HN-«~.DO/X4~)**H-(AA+8B)**H>/2.DO 
R4~--5.n-l+HN/(AA+BB>**H 

WRITJ;:(6i.>RO,AA 
WRITf(6,*)R90,~B 
WRITF.(6,*)R4~,HN 
WRITF(6,J~>CPP,AA,R~,HN,RO,R90,R4S 
00 TO 55 
CONTINUE 
1-1 
Cl-C1/4.DO 
C2-C::U4.DO 
Hl-H(CU 
H~-H(C:!) 

62 CPPP.(Cl*H~-C'*Hl)/(H~-Hl~ _~ 
CNNN-DA8S (CPPP) --~:-~ 
HN-H(CNNN) 1 q 
IF (~ABS(HN).LT.I.n-8) ao T061 \ 
Cl-C~ 

... 

,. -
- - ---------~~ 



.lu· 

, , , 
" , 

,,,, 

,,0 
' ' 

" '0 

i.t<.t 

, 

C2-CNNN 
Hl-H2 
H2-HN 

, IFC1.aT.'l5) GO TO 6
0

1 
1-1+1 
GO TO ~2 

C 6t WRtTF.(6,63) 
c 6~ FORMÂTC'H SOLUTrON') 

61 CONTINUE 
C 

C 
C 
C 

''>- 00 

'0 

WRITEC6,*>I,HN,CPPP 
AA~-CPPP+Xl**(-H) 
B8z-CPPP+X~**C-H) 

AA-AA**P 
, BB-BR**P , 

.' 

HN-CC2.nO/X45>**H-CAA+BR)**M)/2cno 
RO·(B9*AA.*(M-1.00)-r.PPP)/C-AA**M-B8.AA**CH-1.DO~) 
R90-CAA*RR**(H-1.DO)-CPPP)/C-BB**M-AA*BB**CH-1.nO» 
R4~.C-3. t'I-1>+HN/CAA+B8)**H ' 

WRITF'(6,,*)RO,AA 
WRtTF.C6,.>R90,BB 
WRITF(6,*)R4~,HN 

WRtTF.(6,1~)CPPP,AA,B8,HN,RO,R90,R4S 
55 CONTrNUE 

REAO(9,*>IJ 
IFCIJ.(a.l) ao TO 1 
STOP 
END 
FUNCT10N F(C> 
IMPltCIT R~AL*9(A-Z) 
!NTFSF'R 1 
COMMON X1,X2,XX2,M,N,P,Q~CP,CPP 

" D-DABS(-C+Xl**C-M» 
E-nARS(-C+X?**<-H» 
F·(C**N+D**N)**Q-XX~*(C**P)*(t'I**P+F.**P' 
RETLIRN 
END 
F'UNCTION aCC) 
IHPI;tI:I t RF.AI.*a (A-Z) 
INTE'GE"R 1 
COMMON Xl,X2,XX~,M,N,p,n,cp,cPP 

<l, ' 

D-DABS(-C+Xl.*<-M» 
,E-DABS(-C+X'.*(-H» '"tf 
G~«C'*N+D'*N)**Q-XX2*(C**P)*CD**P+F.**P»/(C-CP) 
RETIJRN 
END 
FUNCTION H(C) 
IHPLtCIT R~Al*8CA~Z) 
IHTF'GF'R '1 

, COMMON Xl",)(2,XX2,M,N,P,Q,CP,CPP 
D-OABSC-C+Xl.*(-K» 

J 
.. 

E-DABSC-C+X2**(-H» 
H-«C'*N+D.*N)**a-XX2*(C~*P)*CD**P+F**P»/CC-CP)/(C-CPP) 
RETfJRN 
END 
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APPfNDIX F: FORTRAN PROORA"~NEW3' 

SAHE AS NEW' AND NFW3.3RD SY8TfK(DATA:Sl,S~,S45,83) 

IHPl ICIT RFAl .• tH A-H, .• -%" INTERER (1) 
COMMOH Xl,X2,X3,H,N,P,Q,JP 

1 WRITF (6,2) 
~ FnR"Ar('xt,X~,X~,X~S') 

READ(9,.)Xl,X~,X~,X4S 
Xl·t~I)l>/Xl 
X:!-l 1 ftO/X2 
X3·t~DO/X3 
X4:S-1.nO/X45 
"-t7~D-l 
Jl-j,ft-] 
J2-t~O-4 
N-l.nO/(H-l.ftO) 
P-t.Dl>/H 
O-P/N 
1-1 

'F1-FCR1) 
F2-FCI~) 
BP-CR1*F2-R2*Fl)/(F'-Fl) 
IH-l11.B8 C 9P) 
FN-FCRN) 
IF (ftAltS<FN).LT.1.D-9) GO TO 11 
Jl-a:! 
B2-RN 
Fl-F:! 
F2-FN 
IF(r.aT.!~) GO TO II 
I-t+! 
GO TO 10 
WRtTF.Coir14) 
FORMAT< 'F satuTI0N') 
WRIT~CA,*)t,FN,BP 
AA-X~-ItP 
CC-X~**H-ap**H 

• • • 

11hllP 
RO-CIB*AA**<H-l.nO)-CC>/C-AA**K-Jtfl*AA.*CH-l.nO» 
R90.CAA~BB**CH-t~DO)-CC)/C-BB*'H-AA*88'*(H-l.00» 
WRITF(~,.)RO,AA ' 
WRtTF.(6,.>R90,CC ---
HN- n,. nO'X4~) *.H- (AA+BR) *.H) /2. DO 
R4~·HN/(AA+B9)**H-~.O-1 
WRITF(6,.)R45,HN 
Re:AO ( 9 , * II 1 
IF(I!.F.O.l)Ga TO 1 
STOP 
END 
FUHcrI0N F(R) 
IMPI. te t T R~AI.*9 (A-Z) 
INTFGE'R 1 
COHKON Xl,X,.X~,H,N,P,Q,flP 
F-CX3-B> •• M-9.*H-Xt •• M+X2 •• M 
RETURH 
END 
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• 
APPENnrx ~: FORTRAN PROORAH 'FXP~" 

Ta FIT TO THt Ri AND ~z DATA AN EXPONFNTIAL FUNCTION: 
R~-A~F.XP( .B~~)+C ,ANO FIND R. AT 7.F.RO (-A+C) 

IMPlICJT RFAl*~<A-H,.J-Z),rNTFaFR (1) 
EXTF.RHAL !;=", 
COHHON W,x,V,~,rI 
DIHFNS!ON W(20), XClO),Y(jO),S(lO),S$(!O) 
DATA W/20~DO,3.DO,4,nO,5~90,6.DO,7.n~,9.nO)9.00,tO.no,tl.DO! 
D~TA S/9*O,nO/ ' 
DATA S1;/9*O~DO/ 
REAn(9,*)~j,B:! 

TE';T-2.DO*B2 
DO ") 1-'\9 
SS ( t > --0 • rto' 
REAn(~,*)II ,-
DO !5 t. t ,II , 
REAn(~,*>X(I)!Y(I),W(I) , 
r.t1NTINUE 
IT.1 
Ft-FCB1) 
F2-F(B?) 
IF (~',FQ.Fl) ~o TO ~~ 
BN·(B1*F~-~~*Ft)/(F~-Fl) 
FN~F' (~N) , 
WRITF(6,*)1T,FN,BN 
IF(OABS(Ft+F~).LT.F:!) AO TC ~o 
IF (BN.'e;T.TFST) BN-"N/l.Jl:' 0 

T.F o( SN. LT • 1.1)-2) ~N.!5*BN 
IF <nA~S(FN).lT,~,n-~> e;o TO'20 
Bl-!:! 
B:!·~N 
IF<rT.Gr.40) ao TO ~o 
IT-11+1 
GO TO" 15 
CONTtNUE 

,GO TO 28 
90-B1 
B'1-R2 
B2-~D 
GO TO 5 
CONTINUE 

," , 

: ' , " 

0' 

IF (nA~S(FN).aT.lf"-~) GO TO 25 
P-BH 

'" 

, ' 
, é 

" 

" , ' 

WRITF(~,*)JT,FN,P " ' , 
Da 30 X-t,6 • ," 
SS(l>·SS(l)+W(J)*X(!)**~*DF.XP(-~*p*xcr» 
S9(2)-SS(2>+W(t)*X(t)**2*D~XP(-P*xtI>> 
SS(3)-SSC3)+W(J>*V(I>*X(J>*DEXP(-P*XCI)', 
SS(4)-SSC4>+W(t)*X(t)**3*O~XP(-2*P*X(t)~ 
SS(S)-SS(S)+W(J>*X(!)**3*DF-XP(-P*X(J» 

" ' 

J '" ~ 

0, 

• 8" 

., TI 0" 01 

< '" , " 

0" 

, , 
II 0, 

/ 

0, , 
, L ,,-.60 

, , , 

,0 

- ---~,---'-------------



''''' r" 
1 

" 

c< , 

SS~~~-S.(6)+W(I)*Y(I)'X(I).*,*~rXP(-p.x(r» 
SSC')-S9(i)+W(t)*X(Y)'*2*D~X~(-P*X(tl) 
SI (tH -SI ( e > +W (1 ) *X ( r > **2 ,,' 
SSt9)-SSC9)+WCY>*YCt)*XCI) 

,30 CONTINUE, ' 
A.(SS(3>'SS(S)·SS(~)*~S(9»I(SS(1)*SS(e)-SS(~)*SS('» 
AA'(9S(6)*SS(8)-9~(S)*SS(9»/(SS(4)*SS(8)-SSCS)*SS(7» 
C.SSC')/~S(A)-A*SS(7)/SSCe) 
CC-SB(91/SSCA)-AA*RSC1)/SSCS> 
WR'I TE (,. , * ) A, C 
WRYTE( 1", * )AA, CC-
STOP 
EHD " 

" FUNCTION' F (ff) "", 

'IMPLICIT RFAL*eCA-H, .. 1-7hINtF.GER, (1) 
COf1HllN W ( H» , X ( 1 () , y ( 10>', S (,",) , 1 1 

• DO 4 r.!, 9 
4 $( t) -O. 0 

DO j 0 r-j, 6" ' 

.' , 

S(1)·S(1)+w<r>*xeJ)**2*DF.Xp(-,.a.x(!» 
S(2)~S(2)+W(t)*X(t)'*2*bExpe-8*X(I1) 
S(~)·S(3)+weI)*Y(!)*XCJ)*D~XP(-B*X(I»' 
S(4)cSC~)+W(t1*X(t)**J.DEXPC-2*8'X(t» 
S(S)·S(S)+WCI)*X(r)*'3*DF.XP(-~*x(r» 
S (,..) -S CA) +llJ< t) *y (t) *x (t) **~'*DF.XP (-8*X ( 1) ) 
S<7)·S(7)+W(I)*X(I)**~*nFXP(·9*X(r» 
S(9)~Sr9)+W(t)*X~I)**2 
S (,9).~ (9 r+w (r ) *v ( r) *x cr) 

10 r.ONTtNVE , 0 

F-e ( 1 ) *a ( (3) *.~*s (,,) -t; C , ) *5 (8) *S (:'i) *~ (9') ~S C,) *S (7) *S (6) *s (Et,) 

.-S(4)*9(3)*S(~)**~+S(4)*S(9~*S~2)*S(9)+SC5)*S(7)*S(3)*S(9) 
RETltRN ' 

" END 
c , 

l ' 
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