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Abstract

The increased use of unmanned aerial vehicles (UAVs) in the public and private domains requires

increased emphasis on their safe use. Recent research in the Aerospace Mechatronics Lab (AML)

at McGill has worked towards a collision recovery system for quadcopter UAVs in order to enable

the safe, autonomous recovery of the vehicle after a collision has occurred. This thesis continues the

design of a complete collision recovery control system by investigating the effects of a collision on a

quadcopter’s Inertial Measurement Unit (IMU) sensors and through a comparison of conventional

and novel attitude estimation algorithms with the goal of providing an improved attitude estimate

during a collision. An approach to modify simulated IMU data to match the effects of a quadcopter

collision on experimental data is developed. This model is then used to validate attitude estimation

algorithms in simulation, prior to their evaluation using experimental data. The algorithms under

investigation are a Multiplicative Extended Kalman Filter (MEKF), an Unscented Kalman Filter

(UKF), a complementary filter, an H∞ Filter, and novel adaptive varieties of the selected filters. The

novel adaptive estimation algorithms are derived to better estimate the attitude during a collision.

The algorithms are compared in simulated normal flight as well as during a simulated collision

of a quadcopter with a wall to show which estimation algorithm provides the best quadcoptor

attitude estimate in all conditions. The estimation algorithms are then evaluated experimentally,

first by comparing attitude estimates generated using post-processed sensor data, then, the two

estimators with the best performance are implemented onboard the quadcopter. Results show that

there are observability issues experienced along the yaw axis due to the sensors available, causing

degradation in gyroscope bias and yaw angle estimation. The adaptive algorithms offered some very

small improvements when compared to the conventional algorithms and the robustness of H∞ filter

caused it to be detrimental to performance in this scenario. The MEKF and adaptive H∞ filter were

implemented in the collision recovery control loop and garnered an improved attitude estimate after

a collision when compared to the generic algorithm which comes with the flight controller software.
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Abrégé

L’utilisation augmenté des véhicules aériens sans pilote (UAVs) dans les domaines public et privé

nécessite un accent accru sur leur utilisation sûre. Des recherches récentes dans le Aerospace Me-

chatronics Lab (AML) à McGill ont travaillé vers un système de récupération de collision pour les

UAV quadrirotor afin de permettre une récupération autonome après une collision. Cette thèse

poursuit la conception d’un système complet de contrôle de la récupération de collision en étudiant

les effets d’une collision sur l’unité de mesure inertielle (IMU) d’un quadrirotor et par une compa-

raison d’algorithmes d’estimation d’attitude conventionnels et nouveaux dans le but de fournir une

estimation d’attitude améliorée au cours d’une collision. Une approche pour modifier les données

IMU simulées pour faire correspondre les effets d’une collision est développée. Ce modèle est utilisé

pour valider les algorithmes d’estimation d’attitude en simulation avant leur évaluation à l’aide de

données expérimentales. Les algorithmes à l’étude sont un filtre multiplicatif de Kalman étendu

(MEKF), un filtre Kalman “unscented” (UKF), un filtre complémentaire, un filtre H∞ et des variétés

nouveau adaptables des filtres sélectionnés. Les nouveaux algorithmes d’estimation adaptative sont

dérivés pour mieux estimer l’attitude lors d’une collision. Les algorithmes sont comparés dans le

vol normal simulé ainsi que lors d’une collision simulée d’un quadrirotor avec un mur pour montrer

quel algorithme d’estimation fournit la meilleure estimation d’attitude de quadrirotor dans toutes

les conditions. Les algorithmes d’estimation sont ensuite évalués expérimentalement, d’abord en

comparant les estimations d’attitude générées à l’aide de données de capteurs recemment acru, puis

les deux estimateurs ayant les meilleures performances sont implémentés à bord du quadrirotor.

Les résultats montrent qu’il existe des problèmes d’observabilité rencontrés le long de l’axe du lacet

en raison des capteurs disponibles, ce qui provoque une dégradation dans l’estimation du biais du

gyroscope et de l’angle de lacet. Les algorithmes adaptatifs ont offert des améliorations très faibles

par rapport aux algorithmes classiques et la robustesse du filtre H∞ causent une dégradation de

la performance dans ce scénario. Le MEKF et le filtre adaptatif H∞ ont été implémentés dans la

boucle de contrôle et ont obtenu une estimation d’attitude améliorée après une collision par rapport

à l’algorithme générique fourni avec le logiciel de contrôleur de vol.



iii

Acknowledgements

First and foremost I would like to thank my supervisors, Professor Inna Sharf and Professor Meyer

Nahon. Their guidance and the opportunities they have given me have been invaluable. Their

experience never failed to enlighten my mind and lighten my workload.

This research was fuelled by two previous students in the AML, Fiona Chui and Gareth Dicker,

whose enjoyable company and help made my work fly by. A special thanks is deserved by Gareth

for his help as a pilot, and his endless supply of deep philosophical questions.

A big thanks to the other previous students in the AML, Khoi Tran, Waqas Khan, and Patrick

Abouzakhm, who were always helpful in answering my pestering questions. Also a huge thanks to

the current students in the AML, Eitan Bulka, Bassam Ul Haq, Josh Levin and Luc Sagniéres, who
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Chapter 1

Introduction

Recently, Unmanned Aerial Vehicles (UAVs) have become more prevalent in industry and public

sectors as new uses for them continue to arise. UAVs find use in search and rescue, photography,

visual surveillance and are used by hobby enthusiasts all over the world [1]. The most common

types of UAVs are multirotor, fixed wing, and a hybrid of the two.

Multirotor UAVs use a set of propellers to generate vertical thrust, manoeuvre and hover. The

most common types of multirotors have four propellers (quadcopter) or six propellers (hexacopter).

They tend to have shorter flight times and distances than other varieties of UAVs but their ability

to hover and move laterally make them more manoeuvrable. Quadcopters find the majority of their

use in photography and surveillance due to their ability to hover in one spot.

Fixed wing UAVs generate lift using wings and control surfaces, using one or more propellers to

develop airflow over the wings. They vary in size from those with wingspans similar to medium size

passenger planes, to wingspans under half a meter. Fixed wing UAVs generally have much longer

flight times as the use of wings and control surfaces is more efficient for generating lift than using

propellers directly for lift. They find use in delivery, search and rescue and other applications which

require travelling over long distances.

Hybrid UAVs are a combination of both multirotor and fixed wing UAVs. They use the thrust

from propellers to take off and land, and also have wings to generate lift while moving horizontally.

Their ability to take off vertically and generate lift efficiently for long flights makes them versatile and

allows many potential applications. Hybrid designs are usually more complex and will sometimes

rotate their propeller housings or wings to facilitate a vertical take off. Due to the complexity of

combining both multirotor and fixed wing designs, functioning hybrid style UAVs are not as well
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developed as either multirotor or fixed wing UAVs, but many companies are currently working on

designs for use in package delivery, medical supply delivery, and humanitarian aid.

With the use of UAVs increasing, whether they are flown autonomously or manually, crashes

will occur. As federal laws on the use of UAVs around the public and in regulated airspace evolve,

mitigating the effects of collisions is likely to be one of the main issues in legislation [2], [3]. While

much research focuses on collision avoidance for UAVs, research is also being carried out on collision

recovery [4]. With the goals of increasing public safety and protecting valuable hardware, recent

efforts at McGill’s Aerospace Mechatronics Lab (AML) have addressed modelling collisions between

a quadcopter and environment as well as the design of collision recovery controllers [5], [6]. In

general, the goal of a control algorithm is to successfully transition the system from its current

state, to a desired state. A system’s state can include any information about the system, such as

position, orientation, temperature, etc. Control algorithms use an estimate of the current state of

the system, along with a desired state to compute the actuation the system needs to achieve this

desired state. The majority of conventional control algorithms do not detect collisions, nor are they

designed to deal with collisions; therefore, UAV collisions can be catastrophic to the system and

dangerous to bystanders. Generally, designing a control system is regarded as a conjoint problem

where the overall performance of the system is dependent on the accuracy of the state estimate,

and the stability and efficiency of the controller.

As the true state of a system cannot innately be known, an estimate of the state has to be

computed using models and measurements of the system and known inputs to the system. Any

system which requires knowledge about its state must be equipped with a set of sensors whose

measurements can be combined to compute the state. The measurements provided by sensors

are not perfect due to noise in the system and inaccuracy in the sensors. Also, sensors do not

always provide direct measurements of the states which are useful for control of the system. State

estimation algorithms combine all available measurements to obtain the optimal estimate of the

system’s internal state. Differences in the performance of state estimation algorithms occur as

the majority of algorithms make assumptions about the type of noise the sensors experience, and

approximate non-linearities in the system. Algorithms which do not make assumptions about sensor

noise also exist, however they can be computationally expensive.

The previous work on collision recovery controllers at the AML focused on attitude stabilization
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of a quadcopter equipped with safety bumpers or a protective frame following a collision with a wall

[6]. In order to facilitate stable attitude control of UAVs, whether during normal flight or following

a collision, an accurate estimate of the UAV attitude must be provided to the controller. This thesis

focusses on providing an attitude estimate for quadcopters experiencing a collision with a wall.

The design and implementation of an attitude estimation algorithm is dependant on many

factors. Quadcopters are highly unstable systems and require the attitude estimator and controller

to run at high rates (typically 100 Hz). As quadcopters also require high thrust to weight ratios,

they tend to have fairly limited computational resources - most of their weight capacity is dedicated

to batteries. Due to these factors, the computational complexity of attitude estimation algorithms

is an important issue for their use onboard quadcopters. The non-linearity of attitude estimation

also largely influences the implementation of estimation algorithms. Another important factor in

determining an effective state estimation algorithm is the sensors available onboard the vehicle. The

majority of UAVs come equipped with an Inertial Measurement Unit (IMU) which is composed of a

3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetometer. In line with finding a collision

recovery solution which can be implemented solely using conventional sensors onboard a quadcopter

or other UAV, this thesis looks into the effects of a collision on IMU data and investigates attitude

estimation algorithms that have potential to provide improved performance during a collision.

1.1 Literature Review

There are many ways in which the attitude of a vehicle can be defined or parametrized. In

order to accurately estimate the attitude of a UAV, an adequate attitude parametrization must

be used. The most commonly used methods to represent the attitude of an object in 3D are

Euler angles, quaternions and the Direction Cosine Matrix (DCM) [7]. Euler angles are fairly

common and easy to understand but experience singularities in certain orientations. As aggressive

manoeuvres likely to occur during collision recovery require an attitude representation with no

singularities, the use of Euler angles is avoided. Quaternions are a 4-parameter representation of

attitude which have no singularities but have a unit norm-constraint that must be enforced. The

DCM is a 9-parameter attitude representation which also has no singularities but the DCM must be

orthogonal. As orthogonalization of a matrix is more computationally intensive than normalization

of a vector, using the quaternion provides better computational efficiency [7]. Since the collision
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recovery controller that has been developed in the AML is a quaternion based controller, this review

focuses on quaternion based attitude estimation algorithms.

The quaternion norm-constraint and the non-linearity of attitude estimation has spurred the

development of a variety of attitude estimationn algorithms [8]. Probably the most popular and

widely used algorithm in attitude estimation is the Extended Kalman Filter (EKF). It uses a first

order Taylor series expansion of the non-linear state and measurement equations to linearize the

system about an operating point (usually the current state of the system) and then applies the

Kalman Filter (KF) directly [9]. The extensive use of the EKF stems from the fact that the KF

is the best linear unbiased estimator for systems with Gaussian noise. Two modified versions of

the EKF have been designed to properly handle the quaternion norm-contraint. Estimating the

error quaternion, which linearizes to a 3 component attitude error vector, instead of estimating

the regular quaternion, limits error due the quaternion norm-constraint [10]. This version of the

EKF is called the Multiplicative EKF (MEKF) as the error quaternion is multiplied by the current

quaternion value to update the quaternion estimate, as opposed to the additive method used in a

conventional EKF. The other method for preserving the unit norm is the norm-constrained Kalman

filter derived by Zanetti et al. [11]. Zanetti et al. use Lagrange multipliers to derive a Kalman filter

which enforces a norm-constraint on a subset of the state. The performance of the norm-constrained

Kalman filter is shown to improve upon that of the MEKF under certain conditions.

While EKFs provide a first order approximation of a non-linear model, Particle Filters (PF)

directly use the non-linear model and estimate a system’s state by propagating a random set of

state samples through the model in order to generate the state’s posterior probability density

function, from which the most probable system state can be extracted [12]. Though this technique

does not lose any accuracy to linearization, or assumptions about the type of noise in the system,

it can be very computationally expensive and is not always suitable for implementations on flight

controllers due to their limited computing resources. The Unscented Kalman Filter (UKF) is the

middle ground between the EKF and PF. It assumes the system has Gaussian noise and passes a

small set of optimally chosen points through the non-linear system, which provides a state estimate

accurate up to a second order approximation of the non-linear system [13]. Modified versions of

the UKF, which conserve the quaternion norm-constraint by estimating an attitude error vector,

instead of the quaternion, or by using Lagrange multipliers, have also been developed [14], [15]. A
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version of the UKF which propagates the Cholesky decomposition of the state covariance matrix

instead of the full state covariance, called the Square Root UKF (SRUKF), has been shown to

increase the numerical stability of the algorithm, as well as decrease its computational complexity

[16]. Some EKFs and UKFs are said to have a similar computational complexity of O(n3), where n

is the dimension of the state vector, but in practice the complexity of UKFs tends to be higher than

that of EKFs as UKFs use multiple state samples to compute the state estimate [16]. Comparing

the computational complexity of EKFs and UKFs to a PF is difficult as the complexity of a PF

depends largely on the number of particles used. For smaller state vectors, fewer particles are

generally needed to provide an accurate state estimate, but for larger states the number of particles

can increase based on the filter design, resulting in high computational demands [17]. However, it

can be said that as a UKF mimics a PF with assumptions that allow an optimally selected number

of particles, PFs are more computationally complex than UKFs.

A choice required for attitude estimation algorithms is whether or not to use a dynamics model

in the algorithm. Attitude estimation provides an opportunity to avoid the use of a dynamics model

by propagating the attitude using a measurement of the angular velocity directly in the attitude

kinematics, as opposed to algorithms which use a dynamics model to generate the angular velocity

and propagate the quaternion [10]. The use of a dynamics model in an estimation algorithm can

sometimes improve estimator performance if an accurate model of the system is available. However,

using a dynamics model requires an approximation of the process noise covariance, which can be

difficult to obtain. Using a measurement in the attitude kinematics avoids this issue as a sensor’s

noise covariance is much easier to approximate. Another issue with using a dynamics model is that

any inaccuracies in this model could degrade performance [18]. Using a dynamics model would also

require significant changes to the estimation algorithm if it were to be portable between different

vehicles.

The filtering techniques mentioned above assume a stochastic system and usually provide a state

estimate by making assumptions about the system’s noise characteristics. The majority of non-linear

techniques do not come with proofs of their optimality or stability due to their approximations of

the system’s non-linearities. State estimation can also be approached using the observer paradigm,

which assumes a deterministic system and generally comes with provable asymptotic stability. Non-

linear attitude observers have recently become popular methods for attitude estimation due to their



Chapter 1. Introduction 6

simplicity, small computational cost and guaranteed stability [19]–[21]. One of the more popular

non-linear observers due to its efficacy is the complementary filter, named so for its resemblance

to a classic complementary filter [19], [22]. The computational complexity of non-linear attitude

observers tends to be significantly lower than that of KF based algorithms as non-linear observers

do not involve any covariance propagation or multiplication of large matrices.

The choice of an attitude estimation algorithm depends on the computational complexity of the

algorithm, the vehicle’s sensors, the sensor’s noise characteristics and the vehicle’s use. To carry

out accurate state estimation during a collision, the effects of a collision on quadcopter’s sensor

data must be quantified. Through examining experimental quadcopter collision data, it was found

that flexibility in the quadcopter bumpers and structure causes vibrations throughout the vehicle

after an impact. This manifests itself as increased noise or oscillations in the inertial sensors of

the quadcopter, which decays as the vibrations are damped. With this foresight, state estimation

algorithms which are robust to varying noise characteristics are explored in this thesis.

As the design of Kalman based filters allows for manipulation of the process and measurement

noise covariances, adaptive filters which modify the covariance values during a crash are investigated.

Sebesta and Boizot [23] derive an adaptive EKF scheme onboard a quadrotor in order to increase

sensitivity to large perturbations. Their scheme uses the estimator’s innovation term to trigger

covariance adaptation in order to put more trust in the sensors as opposed to the dynamics model

[23]. Other papers present adaptation schemes that vary the noise covariance matrices based on the

innovation in order to detect and adapt to sensor and actuator faults [24]. Qi and Han develop an

adaptive UKF that adapts the process noise covariance matrix using a gradient descent technique

to match the measured innovation with the predicted innovation [18]. They show that the adaptive

algorithm is able to provide a better estimate than the standard UKF when the system model

parameters are changed during simulation.

Besides Kalman based estimation techniques which adapt the noise covariance, some filters are

designed to be robust to errors and changes in the system parameters. The H∞ filter is designed

to minimize the ratio of the mean square estimation error to the sum of the mean squared initial

error and mean squared system noise, providing a guaranteed bound for the H∞ norm. There are

a variety of methods to develop a filter which bounds the H∞ norm. Xie et al. derive an H∞

filter using algebraic Riccati equations [25]. Previous Riccati equation H∞ estimation solutions
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were not robust to model parameter errors but Xie et al. represent model uncerainties by a scaling

factor making their H∞ filter more robust. Li and Fu derive an H∞ filter which uses Linear Matrix

Inequalities (LMI) to make their filter robust to both model and noise uncertainties [26]. These

derivations of H∞ filters are very problem specific, as their derivations depend heavily on the system

being estimated. The game theory formulation of the H∞ filter (also dubbed the min-max filter)

provides a state-space based filter that can be shown to reduce to a conventional Kalman filter as

the H∞ norm bound is increased towards infinity [9]. Chee and Forbes derive a norm-constrained

H∞ filter for use with attitude estimation, and show its improved performance when faced with

errors in the system parameters [27].

One of the more extensive surveys of non-linear attitude estimation techniques is provided by

Crassidis et al. [8]. The survey covers a wide variety of estimators and details their advantages.

While the survey provides no direct comparison of estimation algorithms in of itself, its exhaustive

comparison of papers sums up the general applications and performance of attitude estimation

algorithms. It gives evidence that the EKF is a simple, effective and flexible tool that performs

well in the majority of situations. It shows that the UKF will provide increased performance over

the EKF given large initial condition errors or highly non-linear systems. The PF is outlined as

an effective tool when the noise of the system is non-Gaussian, but has been relegated to these

niche scenarios due to its computational complexity. Another survey provides an experimental

comparison of an EKF to complementary filter and another non-linear observer [28]. It shows that

the EKF outperforms the complementary filter in most cases but that it comes with a significant

increase in computational complexity.

1.2 Objectives

This thesis aims to find the attitude estimation technique which provides the most accurate

state estimate during a quadcopter collision. A method to model the effects of a collision on IMU

sensor data is required for simulation and a model approximating these effects is developed. Novel

adaptive attitude estimation algorithms as well as robust estimation algorithms are evaluated to see

if they can provide improved performance when the sensors experience anomalies due to a collision.

A comparison of existing attitude estimation algorithms is done along side these novel algorithms in

order to evaluate their performance as well. In particular a comparison is made between an MEKF,
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a UKF, two novel varieties of adaptive UKFs, a Complementary filter, an H∞ filter and a novel

adaptive H∞ filter. While particle filters could be effective at dealing with anomalies in sensor noise

due to a collision, they are not investigated here as it is likely that they are too computationally

heavy to implement onboard a quadcopter. A norm-constrained version of the EKF and H∞ filter,

as well as a SRUKF are also compared to the conventional versions of each filter to see if they can

provide improved performance for attitude estimation using the given hardware.

1.3 Estimator Evaluation

The estimation algorithms’ performance is evaluated by comparing their performance first in

simulation, and then using experimental data. In simulation, the estimators are compared in a

Monte Carlo framework, during normal (i.e. collision-free) flight as well as during a collision. The

evaluation of the estimators performance using experimental collision data is done using two met-

hods. In the first method, the quadcopter’s state is tracked during a collision using a Vicon motion

capture system. The Vicon state estimate is then compared to attitude estimates computed by post

processing the sensor data using the specified attitude estimation algorithms. The Vicon system

provides a very accurate attitude estimate and is taken as the true state, allowing a computation

and comparison of the error in each algorithms’ attitude estimate. In the second method, a Monte

Carlo framework is used to compare the best performing estimators by implementing them onboard

a quadcopter with the collision recovery controller. The estimators’ performance is evaluated by

comparing the time it takes to recover from a collision, as a better attitude estimate should lead to

a quicker and more consistent recovery. The platform used for the experiments is Navi, a custom

quadcopter which uses a Pleiades Spiri frame. The quadcopter has been retrofitted with a Pixhawk

flight controller, an ODROID single board computer and custom designed bumpers in order to

withstand collisions.

1.4 Thesis Organization

The thesis has the following structure: Chapter 1 introduces the thesis, its motivation and

relevant background information. Chapter 2 details the dynamics, sensor, and kinematic models

used in simulation and by the estimation algorithms. Chapter 3 explains the basic estimation
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Figure 1.1: Spiri Quadcopter
UAV

Figure 1.2: Custom Navi
Quadcopter UAV

algorithms as well as their adaptive counterparts. Chapter 4 contains the simulation parameters and

discusses the simulation results. Chapter 5 details changes in the implementation of the algorithms

when using real sensor data then presents and discusses the results of the two methods used to

compare experimental data. Chapter 6 concludes the thesis and discusses possible future work.
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Chapter 2

System Modelling

In this chapter a dynamics model of a quadcopter is presented and the quaternion kinematics

and conventions are detailed. The sensor models are stated along with an evaluation of the effect of

a collision on sensor data. Modifications made to the sensor models in order to better simulate the

effect of a collision are derived. While all the models given in this chapter are used for simulation

purposes, the quaternion kinematics and basic sensor models are also used in formulating the

attitude estimation algorithms in Chapter 3.

2.1 Quadcopter Dynamics and Kinematics

The modelling of quadcopter rigid-body dynamics is well documented [5], [29]. The MATLAB

simulation used in this thesis builds upon the simulation environment developed by Chui [30] and

Dicker [31] which was used in their research to develop a quadcopter collision dynamics model and

a collision recovery controller. The quadcoptor dynamics are modelled and simulated using an

inertial frame F i and a body frame F b. The body frame is located at the center of mass (CM) of

the quadcopter with the inertial frame following a North-East-Down convention. The dynamics of

the quadcopter are modelled using the Newton-Euler formulation for a rigid body, and incorporate

the forces arising due to impact or contact with the environment. The translational dynamics are

modelled as:

mv̇ +mω×v = FG + FT + FC (2.1)
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Figure 2.1: Coordinate frames used in dynamics and kinematics models

and the rotational dynamics are modelled with:

Iω̇ =

4∑
j=1

rTj
×FTj + MT + MΩ + MC − ω×Iω (2.2)

where F and M are the applied forces and moments and v = [u v w]T and ω = [p q r]T are the

linear velocity of the CM and angular velocity of the quadcopter, all expressed in F b. For the forces

and moments, the subscripts G, T , Ω and C denote gravitational, thruster, gyroscopic and contact

respectively. The exact definitions of these can be found in [5], and it should be noted that the

moments due to aerodynamic drag and propeller flapping are neglected here. The platform specific

parameters m, I, and rTj are the mass, moment of inertia matrix and position of the thruster

locations relative to the center of mass, respectively. The operator × denotes the skew symmetric

matrix and is defined as

a× =

⎡⎢⎢⎢⎢⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤⎥⎥⎥⎥⎦ (2.3)

The position of the CM of the vehicle is propagated using the velocity kinematics as:

ṗ = Cv (2.4)
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where the position, p, of the quadcopter’s CM is expressed in F i and C is the rotation matrix,

which is defined shortly.

As already noted in Chapter 1, a quaternion is used to parametrize the attitude of the vehicle

as it provides a singularity free attitude parametrization. It is singularity free partly because it is

subject to the norm constraint qTq = 1. The Hamilton convention [32] is used for the quaternion

which is related to the axis of rotation, a, and angle of rotation, φ, by

q =

⎡⎢⎣ cos φ
2

a sin φ
2

⎤⎥⎦ =

⎡⎢⎣ q0

ϱ

⎤⎥⎦ (2.5)

The quaternion is propagated by the angular velocity of the vehicle as:

q̇ =
1

2
q ⊗

⎡⎢⎣ 0

ω

⎤⎥⎦ (2.6)

where the ⊗ operator represents quaternion multiplication and is defined by:

q ⊗ p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
p (2.7)

with q1−3 corresponding to the components of ϱ in Eq. (2.5). The rotation matrix is derived from

the quaternion using:

C(q) = (q20 − ∥ϱ∥2)13 + 2ϱϱT + 2q0ϱ
×

where 13 denotes the 3 × 3 identity matrix and the above rotation matrix rotates components

of a vector in F b to those in F i. The quaternion which corresponds to zero rotation is q =

[1, 0, 0, 0]T, making the corresponding rotation matrix the identity matrix. A discretized

version of (2.6) based on a power series expansion is used to propagate the quaternion between

time step k− 1 and time step k in the estimation algorithms derived in Chapter 3. The discretized

quaternion kinematics are:

qk = Ω(ωk−1)qk−1 (2.8)
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where

Ω(ωk−1) =

⎡⎢⎣ cos (0.5ψk−1∆t) −ψT
k−1

ψk−1 cos (0.5ψk−1∆t)13 −ψ×
k−1

⎤⎥⎦ (2.9)

and the scalar ψ, and vector ψ, are computed with:

ψk−1 = ∥ωk−1∥ (2.10)

ψk−1 = sin (0.5ψk−1∆t)ωk−1/ψk−1 (2.11)

Here ∆t is the time between steps k − 1 and k [10].

As the quaternion can be difficult to visualize and interpret, it is useful to convert it to a set of

Euler angles. Euler angles are a 3-parameter parametrization of rotations and they correspond to

a sequence of three rotations about a particular axis of the frame being rotated. The rotations can

be applied in many different combinations, but here we use the convention of first applying a yaw

rotation (rotation about the z-axis), a pitch rotation (rotation about the y-axis), and then a roll

rotation (rotation about the x-axis). The conversion from quaternion to Euler angles is therefore

[33] ⎡⎢⎢⎢⎢⎣
φE

θE

ψE

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
atan2

(
2(q0q1 + q2q3), (q20 − q21 − q22 + q24)

)
sin−1

(
− 2(q1q3 − q0q2)

)
atan2

(
2(q1q2 + q0q3), (q20 + q21 − q22 − q23)

)
⎤⎥⎥⎥⎥⎦ (2.12)

where atan2(x, y) is the inverse tangent function which appropriately computes tan−1(x/y) if the

angle (x/y) is outside the range −π/2 and π/2.

2.2 Sensor Models

2.2.1 General Sensor Models

In order to properly validate state estimation algorithms in simulation, the data from the sensors

which are used must be simulated. Sensor data is simulated by corrupting the true values which

the sensors are measuring with noise. A simple and common method used to model Micro Electro

Mechanical (MEM) IMUs is to corrupt the true value of the sensor with a random walk bias term

and a Gaussian noise term [19], [34], [35]. More complicated error terms can be introduced, such as
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misalignment, non-orthogonality, and scale factor errors, but these tend to be accounted for during

sensor calibration as they are generally constant after a sensor suite is assembled [34]. Sensor noise

comes from vibrations in the system, and electrical noise caused by circuitry and motors. Bias in

IMU sensors can be due to many causes, such as, changes in temperature, mechanical stress, or

changes in start-up conditions. Changes in sensor bias during a flight, or while a vehicle is powered

on, tends to occur slowly. The largest error in a sensor bias estimate will occur when a vehicle is

powered on, as a large bias could have developed while the the vehicle has been turned off and there

is not an easy way to estimate initial sensor bias. Here, since the experimental flight time is short,

the change in sensor bias during a flight is likely to be very small. Thus, the sensor bias during a

flight can simply be modelled as a constant value and an algorithm’s efficacy at estimating sensor

bias can be garnered from the algorithms ability to converge toward the initial bias values.

The basic sensor models assumed in this research are:

ua = v̇ + CTg + ba + ηa (2.13a)

ug = ω + bg + ηg (2.13b)

um = CTµ+ bm + ηm (2.13c)

where ua, ug and um are the accelerometer, gyroscope and magnetometer measurements, ba, bg and

bm are the corresponding sensor biases, and ηa, ηg and ηm are zero mean Gaussian noise variables

with covariances σa, σg, and σm, all defined in F b. In simulation, the earth’s magnetic field,

µ = [.302 0 .950]T (2.14)

is defined in F i and corresponds to the magnetic field vector in the area of Montreal, Canada, com-

puted using the International Geomagnetic Reference Field model [36]. It should be noted that in

experiments, the local inertial magnetic field value is estimated using magnetometer measurements

with the method discussed in Chapter 5. The gravitational vector is

g = [0 0 − g]T (2.15)

where g is earth’s gravitational acceleration constant.
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2.2.2 Effects of a Collision on Sensor Data

The effects of a collision on sensor data were investigated in order to determine if the sensors

registered anything beyond the conventional sensor noise, sensor bias or motion of the vehicle during

a collision. The investigation showed that the inertial sensors (accelerometer and gyroscope) were

significantly affected by a collision whereas the effect on the magnetometer was minimal. The

gyroscope and accelerometer appeared to measure vibrations in the system caused by the collision.

These sensors are more susceptible to vibrations as they are inertial sensors, as opposed to the

magnetometer which is an electromagnetic sensor. In order to investigate anomalies in the sensor

data caused by the collision, the components of the sensor data which correspond to the sensor bias

and motion of the vehicle were removed from the sensor data. To remove these components, the

sensor data was passed through a highpass FIR filter, removing the low frequency data associated

with sensor bias and vehicle motion. While it is possible that passing the sensor data through a

highpass filter may remove low frequency anomalies caused by the collision itself, this is thought to

be unlikely. It is more likely that any anomalies in the sensor data caused by the collision occur

in the high frequency range due to vibrations in the vehicle after the collision. The highpass filter

was designed using MATLAB’s filter design tools such that the filter transition band was between

5 Hz and 10 Hz, with the passband frequency being 10 Hz. The conventional high frequency noise

which occurs in the sensors was not removed in this investigation as removing it may have resulted

in the removal of anomalies caused by the collision. As the conventional sensor noise tends to

have a constant mean, it is easy to tell which parts of the filtered sensor data can be attributed to

conventional noise, and which are caused by the collision, without separating the data.

The sensor data used for this investigation was from a set of 72 collisions, with a wide range

of impact velocities and impact angles. The sensor data for the collisions had some similar trends

across many different data sets but there were also some unique anomalies, likely due to the variety

of impact angles and velocities. An examination of the most frequently occurring sensor collision

response was used to develop a method to corrupt the true sensor data in imitation of a collision.

The effect which occurred most frequently and consistently in the inertial sensor data during and

after a collision was a decaying ’vibration’. As illustrated in Figure 2.2 with the highpass filtered

x-axis gyroscope data, the sensor appears to experience a decaying vibration which is accompanied

by an increase in noise. In Figure 2.2, the collision occurs in the filtered data at the peak, around
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Figure 2.2: High pass filtered x-axis gyroscope data during collision. Dotted red
lines mark the times of collision in the unfiltered data (7.2 seconds) and the phase

delayed time of collision in the filtered data (7.5 seconds).

7.5 seconds (marked by a red dashed line). In the pre-filtered data, the actual collision occurs at

around the 7.2 second mark (also marked by a red dashed line), however the FIR filter causes a

phase shift in the data of about 0.3 seconds, causing the collision data to appear around the 7.5

second mark in Figure 2.2. In between the actual time of impact at 7.2 seconds, and the phase

delayed filtered time of impact, at 7.5 seconds, an increasing oscillation of the measurement can

be seen. This oscillation is likely caused by the FIR filter, as it appears in the majority of the

filtered sensor data, but not in unfiltered data. After the collision the measurement oscillates and

is seen to have significantly more noise than before the collision. While this type of sensor response

is only shown for the x-axis of the gyroscope, it also occurs along the other axes as well as in the

accelerometer data, although the noise and oscillations have varied magnitudes. In the data set

illustrated in Figure 2.2 it can be seen that after the collision the noise in the measurement appears

to increase, and it looks as if there are oscillations in the data. In some collisions, the oscillations

are much more distinct, and less noisy, as in Figure 2.3 which shows the filtered z-axis accelerometer

data from another collision.

In Figure 2.3 it can be seen that the sensor measurement experiences a distinct peak during

the collision which oscillates and decays. Again you can see a phase shift of about 0.3 seconds
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Figure 2.3: High pass filtered z-axis accelerometer data during collision. Dotted red
lines mark the times of collision in the unfiltered data (6.85 seconds) and the phase

delayed time of collision in the filtered data (7.15 seconds).

caused by the filter, with the collision occurring around 7.15 seconds in the filtered data (marked

by a red dashed line), while the collision actually occurred around 6.85 seconds in the pre-filtered

data (also marked by a red dashed line). The same sort of oscillations occur between the actual

and phase delayed time of collision as is seen in the previous filtered data of Figure 2.2. The

difference between the two data sets in Figures 2.2 and 2.3 is that the sensor data in Figure 2.3

shows a distinct oscillation which decays, whereas the measurement in Figure 2.2 is a lot noisier and

the oscillations that occur are at a lower frequency. It can also be seen that the measurement in

Figure 2.3 is also oscillating before and significantly after the collision (for example between 5.5-6.5

seconds). This oscillation during normal flight is thought to be caused by the bumpers and frame of

the quadcopter vibrating due to the rotation of the quadcopter propellers. The kinds of anomalies

described in Figure 2.3 also occur along other sensor axes, in both gyroscope and accelerometer

data for some collisions.

It is thought that the anomalies observed are due to vibrations caused by the collision. A data

set which shows a noisier response, similar to that of Figure 2.2, is thought to have many different

modes of vibration occurring, at a variety of frequencies, resulting in the data appearing to be

noisier. A data set which shows a distinct decaying oscillation, similar to Figure 2.3, is thought to
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Figure 2.4: High pass filtered x-axis magnetometer data during collision

have one dominant vibration occurring. Since each collision occurs at different angles, velocities and

at different points of impact, various modes of vibration may be excited in the vehicle, resulting in

the varying sensor responses that were observed. There were also other anomalies that would occur

in the sensor data, but they were much less frequent or consistent in nature.

As for the magnetometer, its data would sometimes show an abrupt increase in noise during

or after a collision, as seen between 7-8.5 seconds in Figure 2.4, which shows the filtered x-axis

magnetometer data, but this occurred inconsistently and no clear pattern to the anomalies in the

magnetometer measurements were apparent. Any instantaneous anomalies in the magnetometer

data at the time of impact, similar to those shown in Figure 2.4, were orders of magnitude smaller

compared to the anomalies in the accelerometer and gyroscope.

2.2.3 Modelling Sensor Collision Anomalies for Simulation

From the sensor data it can be seen that the quadcopter appears to experience a series of

decaying vibrations. A collision is likely similar to applying an impulse to the system, or a series of

impulses. It is thought that the reason why the vibrations would sometimes appear clearly in inertial

sensor data and other times very noisily is likely due to the natural frequency of the quadcopter,



Chapter 2. System Modelling 19

the angular velocity of the propellers, the characteristics of the impact, and the sampling time of

the sensors. Depending on the characteristics of the impact (velocity, angle, duration and point of

impact) different modes of vibration would occur in the quadcopter, resulting in different effects on

the sensor data.

Two methods were considered to simulate the effect of collisions on sensor data. One was to

corrupt the sensor data with a set of decaying sinusoidal vibrations; the other was to increase

the covariance of the Gaussian noise used to corrupt the measurements by a decaying factor. It

was thought that the first method, corrupting the data with a set of sinusoids, was too complex,

as the frequency, magnitude and number of sinusoids would heavily depend on the characteristics

of the collision and the effect of these variables would significantly impact the results. In order

to accurately model the collision in this way an extensive vibrational analysis of the quadcopter

during a collision would need to be performed. The second method was chosen as it was simple to

implement and adequately corrupted the sensor data during a collision. As such, the covariances

for the accelerometer and gyroscope noise are modelled as

σa = σ̃a0 + σ̃ace
−tc/τ (2.16)

σg = σ̃g0 + σ̃gce
−tc/τ (2.17)

where tc is the time elapsed since the crash and tc = ∞ before the crash occurs, τ is a time constant,

σ̃ac and σ̃gc are the maximum crash covariances, and σ̃a0 and σ̃g0 are the normal operational

covariances for the accelerometer and gyroscope, respectively. Using this model, the sensor noise

covariances are set to a standard value during normal operation. When a collision occurs, the noise

covariance is increased by a value which decays to near zero over several time constants, leaving the

noise covariance back at its original value. The value of the crash covariance and the rate at which

it decays are kept constant between simulation runs and are chosen based on the peak values which

occurred during more aggressive collisions. The magnetometer covariance is kept as a constant

(which is the standard approach to modelling noise), as the effect of a collision on magnetometer

data was significantly less than it was for the two inertial sensors.

The modifications to the sensor models made to more realistically simulate a collision are used
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to generate sensor measurements for the simulations in Chapter 4. The simulated sensor measure-

ments are used within the estimation algorithms derived in Chapter 3, in the place of real sensor

measurements. While only the basic sensor models given in Section 2.2.1 of this chapter are used

directly in the derivations of the attitude estimation algorithms presented in Chapter 3, the adaptive

algorithms are specifically designed to better handle the modifications made to the sensor models

due to collisions.
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Chapter 3

Attitude Estimation Algorithms

In this chapter, the attitude estimation algorithms under examination are detailed. First, general

information which applies to all estimators is given. Then the equations for the attitude estimation

algorithms are presented in order of increasing conceptual and computational complexity. First, the

complementary filter and MEKF are derived, followed by the H∞ filter and its adaptive version.

Then the equations for the UKF are given and equations for two adaptive versions, a high gain

Adaptive UKF (AUKF) and a covariance matching AUKF, are derived. It should be noted that the

adaptive H∞ and UKF algorithms are specifically designed in an attempt to improve performance

during a collision. In the final section of the chapter, the Pixhawk attitude estimation algorithm

is presented. An important part of the evaluation of the estimation algorithms is a comparison of

these algorithms to the attitude estimation algorithm that is stock in the Pixhawk firmware.

The firmware used onboard the Pixhawk is the PX4 flight stack, an open source codebase

available on GitHub [37]. Another codebase is also available for use with the Pixhawk, the ArduPilot

flight stack, but the PX4 flight stack is used here as it is more modular and easy to incorporate

custom code into. The PX4 flight stack is also useful as it offers an estimation scheme which uses

separate estimation algorithms to estimate attitude and position, making it easy to replace the PX4

attitude estimator with an alternative algorithm. As it is important to evaluate the efficacy of the

PX4 attitude estimator during collisions, the PX4 attitude estimation algorithm has been extracted

from the code and presented in this chapter for comparison.

An estimation algorithm which is portable between vehicles is desired; thus, the implementation

of the algorithms in this thesis avoids the use of a dynamics model in order to provide portability.

All state estimators considered, including the Pixhawk algorithm, use the sensor data similarly:

the bias corrected gyroscope values are used in the discrete time quaternion kinematics, Eq. (2.8),
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to propagate the attitude while the accelerometer and magnetometer measurements are used as

attitude vector measurements. This means that a prediction of the accelerometer and magnetometer

measurements are made, and a correction factor is generated based on the difference between the

predicted and measured vectors. The states estimated by the algorithms are the quaternion and

gyroscope bias:

x̂ =

⎡⎢⎣ q̂

b̂g

⎤⎥⎦
while the angular velocity estimate is found by taking:

ω̂ = ug − b̂g

Here, an overhat signifies that a variable is an estimate of the true value, and variables without

overhats correspond to the true value. Of the sensor biases, only the gyroscope bias, bg, is estimated

since the gyroscope measurement is propagated through the quaternion kinematics and bias in the

sensor will accumulate over every time step, resulting in significant drift and error in the estimate.

While the accelerometer and magnetometer biases have an effect on the estimate, the errors caused

by them do not accumulate and only result in a slight offset. Estimating the accelerometer and

magnetometer biases could also result in observability issues as the state vector would be significantly

larger than the number of measurements available; therefore, these biases are not estimated.

Using the accelerometer measurement as a vector measurement can also present a problem

when the vehicle is undergoing significant linear acceleration. If the vehicle is accelerating in any

direction, the accelerometer measurement will be dependent on the linear acceleration as well as the

gravitational vector and this could result in significant error as the current sensors do not permit

a method to accurately estimate the linear acceleration of the vehicle. Thus, the accelerometer

measurement is only used when the following condition is satisfied:

g − abnd ≤ ∥ua∥ ≤ g + abnd [m/s2]

where abnd is a value selected based on tuning. The bound on the accelerometer measurement is

applied to all of the estimation algorithms, except for the PX4 estimator. All values used for initial

conditions, tuning parameters and noise parameters in the estimation algorithms are specified in
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Chapter 4 for use in simulation, and in Chapter 5 for use in experiments.

3.1 Complementary Filter

The complementary filter (named due to its similarities to a conventional complementary filter) is

a non-linear observer designed by Mahony et al. [19]. The original derivation of the observer uses the

DCM as its attitude parametrization but an equivalent method using quaternions is also presented,

along with a comparison showing the similarity between the complementary filter and a previous

quaternion observer. They present three versions of the complementary filter, two which require a

direct measurement of the attitude (or a prediction of it computed based on vector measurements),

and one version that directly uses vector measurements. The version used here is the third method

which is termed the explicit complementary filter. Mahony et al. prove the local exponential

stability of the error through the use of Lyapunov functions, showing that the filters are only

unstable for three sets of extreme conditions: a rotation of 180 degrees about any of the three

main axes, corresponding to when the error in the filter is at a maximum. The complementary

filter uses a correction term based on the accelerometer and magnetometer measurements, along

with bias corrected gyroscope measurement, directly in the quaternion kinematic equation. The

accelerometer and magnetometer correction term is a function of the normalized measurements and

a prediction of the normalized measurements. The complementary filter replaces ωk−1 in (2.8) as

q̂k = Ω(ug − b̂g + kpωmes)q̂k−1 (3.1)

where

ωmes = −vex

[
ka
2
(ūaûT

a − ûaūT
a ) +

km
2
(ūmûT

m − ûmūT
m)

]
(3.2)

The values kp, ka, and km are estimator gains, chosen by tuning. The vex[ ] operator is the uncross

operator, which converts a skew symmetric matrix back into a vector, the inverse of × given in

equation (2.3). The estimated measurements, ûa and ûm, are computed as

ûa = C(q̂k−1)
Tg/∥g∥ (3.3a)

ûm = C(q̂k−1)
Tµ/∥µ∥ (3.3b)
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and the values ūa and ūm are the normalized measurements. The correction factor, ωmes, is a

term which is perpendicular to the error between the predicted measurements and the actual me-

asurements, and it rotates the attitude estimate to help align the vectors. The gyroscope bias is

estimated using

˙̂bg = −kbωmes (3.4)

where kb is an estimator gain, also chosen by tuning. The bias at timestep k can be found using an

Euler integration scheme:

b̂g|k = b̂g|k−1 − kbωmes∆t (3.5)

The complementary filter requires a user selected, initial prediction of the attitude, q̂0, and the

gyroscope bias, b̂g|0.

3.2 Multiplicative Extended Kalman Filter

The EKF is one of the most used state estimation algorithms due to its proven performance

[8]. There are numerous variations of the EKF, none of which can be claimed as the definitive

“best”, although some are known to perform better in specific applications. The linear KF is

the best linear unbiased estimator for systems with Gaussian noise, but in order to apply it to

non-linear systems, the EKF linearizes the state transition and measurement equations about an

operating point. This approximation makes the few proofs of its performance limited to local

stability proofs, and proofs which require strict, difficult-to-satisfy conditions [38]. The issue with

using a conventional EKF to estimate an attitude quaternion is that the additive nature of the

KF measurement correction violates the quaternion norm constraint. The MEKF improves upon

a conventional EKF in estimating quaternions by estimating the error quaternion instead of the

full quaternion. This reduces the error due to the quaternion norm constraint as the measurement

update can be applied using quaternion multiplication, as opposed to the conventional additive

method. Another reason why the MEKF may perform better than a conventional EKF is that the

error quaternion will usually correspond to a small rotation; thus, the magnitude of the violation

of the norm constraint will be smaller than if the full quaternion is used [10]. This can also allow

for a reduction in state size as the scalar part of the quaternion error derivative linearizes to zero.
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One of the benefits of Kalman based filters, and stochastic estimation algorithms in general,

over non-linear observers is the use of a state covariance matrix to correct the state, which can

provide a direct measure of the accuracy of the current state estimate. As the MEKF estimates

the error state, the state covariance matrix corresponds to the likelihood of the error state, not the

likelihood of the actual state, thus its meaning is slightly more difficult to interpret.

The state vector of the MEKF is δx = [δqT δbT
g ]

T where δ signifies the error between the true

and the estimated state. The error quaternion is defined as:

δq = q̂−1 ⊗ q (3.6)

and the derivative of the error quaternion can be shown to be [10]:

δq̇ = −

⎡⎢⎣ 0

ω̂×δϱ

⎤⎥⎦+
1

2
δq ⊗

⎡⎢⎣ 0

δω

⎤⎥⎦ (3.7)

where δω is the angular velocity error and is defined as δω = −(δbg +ηg). The MEKF predicts the

current state based on the previous state and the gyroscope measurement as

ω̂−
k = ug − b̂+

g|k−1 (3.8)

q̂−
k = Ω(ω̂−

k )q̂
+
k−1 (3.9)

b̂−
g|k = b̂+

g|k−1 (3.10)

where the superscripts + and − denote the post-measurement correction values and pre-measurement

correction values, respectively. The state covariance matrix is predicted with:

P−
k = Fk−1P+

k−1FT
k−1 + Qk−1 (3.11)
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where P is the state covariance matrix, F is the linearized state transition matrix and Q is the

process noise covariance matrix. The linearized state matrix,

Fk−1 =

⎡⎢⎢⎢⎢⎣
1 01×3 01×3

03×1 13 −∆tω̂×
k−1 −∆t

2 13

03×1 03 13

⎤⎥⎥⎥⎥⎦ (3.12)

is found by discretizing and taking the first order approximation of (3.7) and (3.10), and is only

used to propagate the state covariance matrix, not the state itself. The filter requires initial guesses

for the quaternion, q̂0, gyroscope bias, b̂g|0, and state covariance matrix P0. The measurements, ŷk,

are estimated based on the current state estimate as:

ŷk =

⎡⎢⎣ ûa

ûm

⎤⎥⎦ (3.13)

ûa = C(δq)TC(q̂−
k )

Tg (3.14a)

ûm = C(δq)TC(q̂−
k )

Tµ (3.14b)

The term C(δq) is important to include in the above equations as it is used to develop the linearized

measurement matrix; however in estimating the measurements, it is taken as the identity matrix.

This is because the estimated error quaternion is based on the error between the estimated and

actual measurements, and thus before an estimation of the measurements is made, the estimated

error quaternion must correspond to zero rotation. The difference between the actual and the

estimated measurements, ϵk = yk − ŷk, is called the innovation. The innovation can be a useful

measure of accuracy of the estimation algorithm as a large innovation signifies large discrepancies

between the gyroscope and the other IMU sensors. The Kalman gain uses the innovation to compute

the error quaternion and gyroscope bias error. The Kalman gain is computed as:

Kk =

⎡⎢⎣ Kq|k

Kb|k

⎤⎥⎦ = P−
k HT

k (HkP−
k HT

k + Rk)
−1

(3.15)
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where R is the measurement noise covariance matrix, and H is developed using the linearized

measurement equations. The linearized measurement matrix is shown to be [10]:

Hk =

⎡⎢⎣ 03×1 (C(q̂−
k )

Tg)× 03

03×1 (C(q̂−
k )

Tµ)× 03

⎤⎥⎦ (3.16)

It is important to note, as is the case in the other Kalman based filters discussed in this thesis, that

yk, ŷk, H and R will change sizes depending on whether the accelerometer measurement is used or

not. The quaternion error and gyroscope bias error are then computed as

δq+
upd = Kq|kϵk (3.17)

δb+
g|k = Kb|kϵk (3.18)

Since the quaternion error term is assumed to be small, it can be approximated as δq+
k = [1 1

2δϱ
+
upd]

T,

which uses the small angle approximation on the definition of the quaternion. It is obvious that

this quaternion will not conform to the unit norm constraint as the scalar part of the quaternion

has a value of one, and is therefore a source of error in the MEKF. The error caused by this is

what motivates the use of a norm-constrained MEKF, for which the equations are detailed in the

following section. Also since the scalar portion of the error quaternion is approximated as constant,

it permits a reduction of the state vector size which can reduce the computational complexity of

the algorithm. In our implementation, we leave the state size as is because the full state is used in

the norm-constrained MEKF, and it is useful for comparison between the two algorithms. However,

in practice the actual state size is reduced by simply removing the scalar component of the error

quaternion, the first column of Hk, and the first row and column of Fk−1. The quaternion and

gyroscope bias estimates are then updated as

q̂+
k = q̂−

k ⊗ δq+
k (3.19)

b̂+
g|k = b̂−

g|k + δb+
k (3.20)
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Table 3.1: Equations for the MEKF

Prediction step: Correction step:

ω̂−
k = ug − b̂+

g|k−1 ŷk =

[
ûa

ûm

]
,where ûa and ûm are found using (3.14)

q̂−
k = Ω(ω̂−

k )q̂
+
k−1 ϵk = yk − ŷk

b̂−
g|k = b̂+

g|k−1 Kk =

[
Kq|k

Kb|k

]
= P−

k HT
k (HkP−

k HT
k + Rk)

−1

P−
k = Fk−1P+

k−1FT
k−1 + Qk−1 δb+

g|k = Kb|kϵk

δq+
upd = Kq|kϵk

δq+
k = [1 1

2δϱ
+
upd]

T

q̂+
k = q̂−

k ⊗ δq+
k

b̂+
g|k = b̂−

g|k + δb+
k

P+
k = (1 − KkHk)P−

k (1 − KkHk)
T + KkRkKT

k

The quaternion is renormalized after this update, in order to correct for the norm constraint violation

of the error quaternion. Finally the state covariance matrix is updated as

P+
k = (1 − KkHk)P−

k (1 − KkHk)
T + KkRkKT

k (3.21)

The consolidated prediction and correction equations for the MEKF are presented in Table 3.1.

While in theory the state covariance matrix for the MEKF should remain symmetric, numerical

errors can cause its symmetry to degrade. It is sound practice to enforce symmetry in the state

covariance matrix at the end of each time step by using P+
k = 1

2

(
P+
k + P+

k
T
)
.

3.2.1 Norm-Constrained MEKF

In order to better handle the quaternion norm constraint, Zanetti et al. use Lagrange multipliers

to create a modified version of the Kalman gain which enforces the quaternion norm constraint

[11]. They show that in some situations their norm-Constrained MEKF (CEKF) can give results

comparable to a UKF and that it outperforms the classic MEKF. The CEKF uses the same basic

algorithm as the MEKF, but recomputes a partitioned and constrained version of the Kalman

gain before updating the quaternion and the state covariance matrix. It computes the constrained
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Table 3.2: Equations for the CEKF

Prediction step: Correction step:

ω̂−
k = ug − b̂+

g|k−1 ŷk =

[
ûa

ûm

]
,
where ûa and ûm are found

using (3.14)

q̂−
k = Ω(ω̂−

k )q̂
∗
k−1 ϵk = yk − ŷk

b̂−
g|k = b̂+

g|k−1 Kk =

[
Kq|k

Kb|k

]
= P−

k HT
k (HkP−

k HT
k + Rk)

−1

P−
k = Fk−1P∗

k−1FT
k−1 + Qk−1 δb+

g|k = Kb|kϵk

δq+
upd = Kq|kϵk

δq+
k = [1 1

2δϱ
+
upd]

T

Norm constraint step:

Wk = HkP−
k HT

k + Rk P∗
k = (1 − K∗

kHk)P−
k (1 − K∗

kHk)
T + K∗

kRk(K∗
k)

T

ϵ̃k = ϵTk W−1
k ϵk δq∗

k = K∗
q|kϵk

K∗
q|k = Kq|k +

(
1

∥δq+
k ∥

− 1

)
δq+

k

ϵTk W−1
k

ϵ̃k
q̂+
k = q̂−

k ⊗ δq∗
k

K∗
k =

[
K∗

q|k
Kb|k

]
b̂+
g|k = b̂−

g|k + δb+
k

Kalman gain from the original one using:

Wk = HkP−
k HT

k + Rk (3.22)

ϵ̃k = ϵTk W−1
k ϵk (3.23)

K∗
q|k = Kq|k +

(
1

∥δq+
k ∥

− 1

)
δq+

k

ϵTk W−1
k

ϵ̃k
(3.24)

K∗
k =

⎡⎢⎣ K∗
q|k

Kb|k

⎤⎥⎦ (3.25)

where the ∗ operator denotes the norm-constrained version of a variable. The constrained Kalman

gain is then used to update the quaternion in the same manner as for the MEKF. The full algorithm

for the CEKF is given in Table 3.2.

3.3 H∞ Kalman Filter

The H∞ or ‘minmax’ approach to state estimation can prove useful when an accurate model of

the system is unavailable or when the noise statistics are unknown. H∞ filters have been shown to
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provide a better state estimate when there are errors in the noise and model parameters [9], [27].

There are many different approaches to developing filters which provide some bound on the H∞

norm [39]. The minmax approach, originally derived by Yaesh and Shaked [40], uses a game theory

framework where the adversary is trying to maximize an objective function using disturbances and

sensor noise, and the designer is trying to minimize it.

The minmax H∞ filter is a state space based filter which satisfies

sup
ηk

∑N
k=0 ∥ek∥22∑N
k=0 ∥ηk∥22

< ξk (3.26)

where sup is the supremum and e = x − x̂ is the state error. Here η corresponds to the noise of all

the sensors, so the estimator provides a bound on the ratio of the state error to the system noise.

The design of the H∞ filter is such that it reverts back to a basic MEKF when the value of ξk is set

to ∞. The algorithm computes the Kalman gain in order to satisfy (3.26) as

D1 = (P−
k GT

k (1 − GkP−
k GT

k )
−1Gk + 1)P−

k HT
k (3.27)

D2 = HkP−
k GT

k (1 − GkP−
k GT

k )
−1GkP−

k HT
k + Rk + HkP−

k HT
k (3.28)

Kk =

⎡⎢⎣ Kq|k

Kb|k

⎤⎥⎦ = D1D−1
2 (3.29)

where G is a user-defined matrix which incorporates the bound ξk and can be chosen to only apply

the H∞ bound to a subset of the state. The value of G is chosen as Gk = 1
ξk
diag(14, 04×3) in

order to only bound the quaternion. In order for the solution to this H∞ filter to exist, the value of

ξk must be chosen such that

1 − GkP+
k GT

k > 0 (3.30)

1 + HkP+
k HT

k > 0 (3.31)

where > 0 implies the matrix is positive definite and the state covariance Pk must also be non-

singular. If these conditions are not met the filter may diverge. The state covariance update

equations are also modified to enforce the H∞ bound. As the values of Hk and Pk change at each

timestep, a value of ξk is chosen through tuning such that it will satisfy the conditions for all likely
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Table 3.3: Equations for the H∞ filter

The prediction step of the H∞ filter is the same as the MEKF (Table 3.1)

Correction step:

D1 = (P−
k GT

k (1 − GkP−
k GT

k )
−1Gk + 1)P−

k HT
k

D2 = HkP−
k GT

k (1 − GkP−
k GT

k )
−1GkP−

k HT
k δq+

k = [1 1
2δϱ

+
upd]

T

+Rk + HkP−
k HT

k q̂+
k = q̂−

k ⊗ δq+
k

Kk =

[
Kq|k

Kb|k

]
= D1D−1

2 b̂+
g|k = b̂−

g|k + δb+
k

ϵk = yk − ŷk Lk = (1 − KkHk)P−
k GT

k (1 − GkP−
k GT

k )
−1

δb+
g|k = Kb|kϵk P+

k = (1 − KkHk + LkGk)P−
k (1 − KkHk + LkGk)

T

δq+
upd = Kq|kϵk +KkRk(Kk)

T − LkLT
k

Hk and Pk. The equations for the H∞ filter are given in Table 3.3. A norm-constrained version of

the H∞ filter has been derived by Chee and Forbes [27] but the equations will not be presented as it

follows a similar methodology to the CEKF. However, the filter has been evaluated for a comparison

with the conventional version in Chapter 4.

3.3.1 Novel Adaptive H∞ Kalman Filter

The novel Adaptive H∞ Filter (AH∞F) is proposed here with the knowledge that the H∞ filter

reduces to an MEKF as the H∞ bound approaches infinity and that the robustness of the algorithm

causes a loss in performance when the system parameters are well known [9], [27]. This is the general

trade off seen with robust algorithms; there is only a performance improvement when part of the

system is not accurately defined, otherwise, conventional methods can perform better. With this

in mind, the AH∞F is designed so that when the estimator has a large innovation for a significant

amount of time, the H∞ bound is lowered from infinity so that the system has some guaranteed

bound on the state error. As the sensors experience increased noise and other anomalies during a

collision, the innovation will be larger, which will activate the adaptation, bringing about a more

robust estimate after a collision occurs. The AH∞F activates its adaptation by summing the norm

of a scaled innovation term over a series of time steps and if this sum is over a chosen threshold,

it decreases the H∞ bound from infinity. Likewise, if the summed innovation term is below the

threshold, the H∞ bound is increased towards infinity, bringing the estimator back to its original
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form. The innovation sum, Id,k, is used to trigger and perform the adaptation as:

Id,k ≥ β → 1

ξ k
= min

(
1

ξ k−1

+ e,

(
1

ξ

)
max

)
(3.32a)

Id,k < β → 1

ξ k
= max

(
1

ξ k−1

− e, 0

)
(3.32b)

where the innovation sum is computed by:

Id,k =
k∑

i=d+1

∆t∥Γϵi∥22. (3.33)

The value of k − d is the number of previous time steps for which the innovation is used and the

value of e sets the rate at which the adaptive gain changes when the summed innovation is over a

chosen threshold, β. The H∞ bound is changed incrementally, as opposed to just having an adaptive

term that is either on or off, as it is thought that this will provide a smoother transition for the

adaptation. A max value for 1
ξ k

is also defined by
(
1
ξ

)
max

so that the adaptation does not cause

the H∞ bound to change too much. The matrix Γ is a diagonal matrix that acts as a scaling factor

in order to weight the measurement errors.

3.4 Unscented Kalman Filter

The UKF is designed to better approximate the non-linearities of a system by passing a set of

optimally chosen points through the non-linear equations of the system, then computing a weighted

average of the points to get an estimate of the state. UKFs have been shown to provide better state

estimates for highly non-linear systems and systems with large initial estimate errors [14], [41]. The

issue around using a conventional UKF to estimate quaternions is again due to violations of the

quaternion norm constraint. The weighted average of the UKF sigma points used in computing

the state estimate is additive in nature and cannot preserve the quaternion norm constraint. In

order to avoid this, Crassidis [14] estimates an attitude error vector which can be summed without

issue. The algorithm converts the attitude error vectors to and from error quaternions in order to

propagate the sigma points and perform any measurement updates.

The UKF assumes the system has Gaussian noise and uses the state covariance to generate an

optimal distribution of points to pass through the non-linear system equations. The sigma points at
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the start of each timestep are generated by creating a modified state vector and covariance matrix

using the noise mean and covariance as

x̂+k =

[
δpT

k b̂T
g|k η̂T

]T
(3.34)

P+
k =

⎡⎢⎢⎢⎢⎣
Px|k 0 0

0 Q 0

0 0 R

⎤⎥⎥⎥⎥⎦ (3.35)

where δp is the estimated error attitude vector, and η̂ is the mean of the noise variables (which is 0

in this case). At the beginning of each timestep the value of δp is assumed to be zero. Similarly to

the MEKF, the state covariance matrix is dependent on the attitude error vector and is not directly

related to the quaternion estimate. If the algorithm were estimating the quaternion instead of an

attitude error vector, generating the sigma points would be another source of error as it is an additive

process causing the quaternion sigma points to violate the quaternion norm constraint. Thus, the

sigma points are generated for the attitude error vector, and converted into error quaternions. The

conversions to and from the attitude error vector, δp, from and to the error quaternion are given

by Eqs. (3.36) and (3.37) respectively:

δp = f [δϱ/(a+ δq0)] (3.36)

and

δq0 =
−a∥δp∥2 + f

√
f2 + (1− a2)∥δp∥2

f2 + ∥δp∥2
(3.37a)

δϱ = f−1(a+ δq0)δp (3.37b)

where the values of a and f can be changed to correspond to different attitude error vector pa-

rametrizations. Here we use a value of f = 2(a + 1) so that ∥δp∥ is equal to the error angle for

small angles; then, a is chosen by tuning. The error quaternions can then be used with the actual

quaternion to propagate the attitude. The sigma points are initialized at the start of each time step

by

X k−1 =

[
x̂+k−1, X̂+

k−1 +
√

(n+ λ)P+
k−1, X̂+

k−1 −
√
(n+ λ)P+

k−1

]
(3.38)
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where n is the dimension of the modified state vector and λ is a function of a few parameters,

acting as a scaling factor that determines the distribution of the sigma points. Its value is defined

as λ = α2(n + κ) − n, where α determines the spread of the sigma points around the mean and

κ is another scaling factor, usually set to zero [42]. The upper case version of the state vector,

X̂+
k−1, corresponds to an n×n matrix of state vectors, as X̂+

k−1 =
[
x̂+k−1, x̂

+
k−1, ..., x̂

+
k−1

]
. The

√
P+
k−1

operator indicates the square root of the matrix, which can be computed in a number of ways. Here

we use the Cholesky decomposition of the matrix as it is a computationally efficient way to compute

a square root for symmetric positive definite matrices. The sigma point matrix is segmented for use

as

X k−1(i) =

⎡⎢⎢⎢⎢⎣
X δp

k−1(i)

X bg
k−1(i)

X η
k−1(i)

⎤⎥⎥⎥⎥⎦ (3.39)

where i specifies the column of the sigma point matrix and the superscript denotes which value of

the state vector it corresponds to. The attitude error vector sigma points are converted into error

quaternion sigma points using (3.37); then, the error quaternion sigma points are multiplied with

the current quaternion estimate as

q̂+
k−1(1) = q̂+

k−1 (3.40)

q̂+
k−1(i) = q̂+

k−1 ⊗ δq+
k−1(i), i = 2, ..., 2n+ 1 (3.41)

These new quaternion sigma points are propagated using the quaternion kinematics along with the

gyroscope measurement, gyroscope bias sigma points, and gyroscope noise sigma points, generating

a set of predicted quaternion sigma points as:

ω̂+
k−1(i) = ug −X bg

k−1(i)−X ηg
k−1(i) (3.42)

q̂−
k (i) = Ω

[
ω̂+
k−1(i)

]
q̂+
k−1(i) (3.43)

These are then converted into error quaternions, which can be converted into attitude error vectors,

and then these attitude error vectors are used to compute the predicted state and state covariance

matrices using the conventional UKF algorithms. The error quaternion and error attitude vector
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sigma points are generated by

δq−
k (i) = q̂−

k (1)⊗ q̂−
k (i) (3.44)

X δp
k (i) = f [δϱ−k (i)/(a+ δq̂−0|k)] (3.45)

The weighted average of these propagated sigma points gives the predicted state vector

x̂−k =
1

n+ λ

[
λX k(1) +

1

2

2n∑
i=1

X k(i)

]
(3.46)

which is then used with the sigma points to compute the state covariance matrix

P−
k =

(
λ

n+ λ
+ 1− α2 + c

)
[X k(1)− x̂−k ][X k(1)− x̂−k ]

T +
1

2(n+ λ)

2n∑
i=1

[X k(i)− x̂−k ][X k(i)− x̂−k ]
T

(3.47)

The value c is a scaling factor which weights the first sigma point in the state covariance calculation.

It is usually set to c = 2 when the prior of the noise is assumed to be Gaussian [42]. The rest of

the UKF follows the conventional UKF algorithm except the final update of the quaternion, which

again requires a conversion between the attitude error vector and quaternion. The full algorithm

for the UKF can be found in Table 3.4.

It should be noted that the algorithm presented here slightly differs from the implementation

presented by Crassidis, [14], as he presents a simplified version of the UKF which does not include

the noise covariances in the generation of sigma points. Instead, the noise covariance matrices are

added to the state covariance and innovation covariance matrices during their computation, using a

modified form of the noise covariance matrices which is developed based on a trapezoidal integration.

By doing this, Crassidis reduces the dimensions of the state vector and sigma point matrix, which

reduces the computational complexity of algorithm. Here, the conventional UKF algorithm is

followed as issues were encountered in getting Crassidis’ algorithm to perform consistently and

no comparisons of Crassidis’ simplified implementation to the conventional algorithm were found.

Other reductions in computational complexity can be realized by examining the lower triangular

structure of the sigma point matrix. For example, due to this structure, many of the attitude error

vector sigma points are identical, therefore the corresponding error quaternion sigma points will be

identical and the conversion between the two only needs to be computed once. Also, for similar
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Table 3.4: Equations for the UKF

Initialize:

x̂+0 =
[
δp0 b̂g|0 η̂

]T
, P+

0 =

⎡⎢⎢⎢⎣
Px|0 0 0

0 Q 0

0 0 R

⎤⎥⎥⎥⎦
Prediction step:

Note: at the beginning of each step δpk is set to 0. Generate sigma points:

X k−1 =
[
x̂+k−1, X̂+

k−1 +
√
(n+ λ)P+

k−1, X̂+
k−1 −

√
(n+ λ)P+

k−1

]
Convert error vector sigma points to quaternion sigma points:

δq̂+0|k−1(i) =
−a∥X δp

k−1(i)∥
2 + f

√
f2 + (1− a2)∥X δp

k−1(i)∥2

f2 + ∥X δp
k−1(i)∥2

δϱ+k−1(i) = f−1(a+ δq̂0|k−1(i))X
δp
k−1(i), q̂+

k−1(1) = q̂+
k−1

q̂+
k−1(i) = q̂+

k−1 ⊗ δq+
k−1(i)

Propagate quaternions using (2.8):

ω̂+
k−1(i) = ug −X bg

k−1(i)−X ηg
k−1(i), q̂−

k (i) = Ω
[
ω̂+
k−1(i)

]
q̂+
k−1(i)

Compute propagated error vector sigma points:

δq−
k (i) = q̂−

k (1)⊗ q̂−
k (i), X δp

k (i) = f [δϱ−k (i)/(a+ δq̂−0|k)], X bg
k (i) = X bg

k−1(i)

Compute propagated state estimate and covariance:

x̂−k = 1
n+λ

[
λX k(1) +

1
2

∑2n
i=1X k(i)

]
P−
k =

(
λ

n+λ + 1− α2 + c
)
[X k(1)− x̂−k ][X k(1)− x̂−k ]

T + 1
2(n+λ)

∑2n
i=1[X k(i)− x̂−k ][X k(i)− x̂−k ]

T

Correction step:

γk(i) =

⎡⎣ C
[
q̂−
k (i)

]T g

C
[
q̂−
k (i)

]T
µ

⎤⎦+

⎡⎣ X ηa
k−1(i)

X ηm
k−1(i)

⎤⎦, ŷk =
1

n+ λ

{
λγk(1) +

1
2

∑2n
i=1 γk(i)

}
Compute innovation and cross covariances:

Pyy
k =

(
λ

n+λ + 1− α2 + c
)
[γk(1)− ŷk][γk(1)− ŷk]T + 1

2(n+λ)

∑2n
i=1[γk(i)− ŷk][γk(i)− ŷk]T

Pxy
k =

(
λ

n+λ + 1− α2 + c
)
[X k(1)− x̂−k ][γk(1)− ŷk]T + 1

2(n+λ)

∑2n
i=1[X k(i)− x̂−k ][γk(i)− ŷk]T

Compute Kalman gain and update state:

Kk = Pxy
k (Pyy

k )
−1

, x̂+k = x̂−k + Kk(yk − ŷk)

Use δp+
k with (3.37) to generate error quaternion δq+

k then update quaternion and

the state covariance:

q̂+
k = q̂−

k (1)⊗ δq+
k , P+

k = P−
k − KkPyy

k KT
k
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reasons as the MEKF it is good practice to enforce state covariance matrix symmetry at the end of

each time step as P+
k = 1

2

(
P+
k + P+

k
T
)
.

3.4.1 Square Root UKF

The SRUKF improves upon the conventional UKF by propagating the Cholesky decomposition

of the state covariance instead of the actual state covariance matrix. This ensures that the state

covariance matrix will be symmetric positive definite, increasing numerical accuracy of the algorithm

[13]. The SRUKF uses a QR decomposition of the weighted sigma points in order to update the

Cholesky factor of the state covariance. It then performs a Cholesky update (or downdate) on the

R matrix of the QR decomposition, which is required to be done separately as the weight of the

first sigma point vector might be negative (which could cause issues with the QR decomposition).

The SRUKF implemented here follows the algorithm used in [43], which more closely resembles the

algorithm of the conventional UKF, than the original derivation of SRUKF presented by Van Der

Merwe and Wan [13]. This is mostly due to issues encountered while getting Van Der Merwe and

Wan’s implementation to perform consistently.

The SRUKF initializes the Cholesky decomposition S+
x|0 =

√
Px|0 and generates the sigma points

at each time step as

S+
k−1 =

⎡⎢⎢⎢⎢⎣
S+

x|k−1 0 0

0
√

Q 0

0 0
√

R

⎤⎥⎥⎥⎥⎦ (3.48)

X k−1 =
[
x̂+k−1, x̂+k−1 +

√
(n+ λ)S+

k−1, x̂+k−1 −
√
(n+ λ)S+

k−1

]
(3.49)

Here, the values of
√

Q and
√

R are simple to compute as the matrices are diagonal. Then, the

Cholesky decomposition is updated using the propagated sigma points and predicted state by

Supd
k = qr

{√
1

2(n+ λ)

[
X k(i)− x̂−k

]}
, i = 2 : 2n+ 1 (3.50a)

S−
k = cholupdate

{
Supd
k ,

[
X k(1)− x̂−k

]
,

√
λ

n+ λ
+ 1− α2 + c

}
(3.50b)



Chapter 3. Attitude Estimation Algorithms 38

where qr {A} gives the R matrix of a QR decomposition of A and cholupdate {R,X, b} gives the

Cholesky factor of A+ bXXT where R = chol {A}. The measurement sigma points are computed in

the same manner as for the UKF, but the innovation covariance is instead computed using a QR

decomposition as

Syy−
k = qr

{√
1

2(n+ λ)
[γk(i)− ŷk]

}
, i = 2 : 2n+ 1 (3.51a)

Syy
k = cholupdate

{
Syy−
k , [γk(1)− ŷk] ,

√
λ

n+ λ
+ 1− α2 + c

}
(3.51b)

Then the Kalman gain is computed as

Kk = Pxy
k /(S

yy
k

T
)/Syy

k (3.52)

and the Cholesky decomposition of the state covariance is updated using

U = KkSyy
k (3.53)

S+
x|k = cholupdate

{
S−

x|k, U, 1
}

(3.54)

where S−
x|k is the block of S−

k corresponding to the state.

3.4.2 Novel High Gain Adaptive UKF

The novel high gain AUKF is based on an adaptive EKF designed by Sebesta et al. [23].

They show their estimator is more responsive to aggressive manoeuvres and disturbances than a

conventional EKF. However, their design is computationally demanding as it requires integrating

an initial value problem several times in order to modify the adaptive gain. In the simplified version

derived here, the same innovation measure that is used in the AH∞ filter is used to trigger the

adaptive part of the filter. A single adaptive gain term, Gk, is used to scale the noise covariance

matrices. The scaling method is designed to increase the noise covariances for the gyroscope and
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accelerometer. The value of Gk changes at each time step based on

Id,k ≥ β → Gk = min (Gk + e,Gmax) (3.55a)

Id,k < β → Gk = max (Gk − e, 1) (3.55b)

where Id,k is found using (3.33), and the other variables have the same effects as their counterparts

in (3.32). The adaptive filter then replaces Rk and Qk with

QG
k = ∆GQk (3.56)

RG
k = δGRk (3.57)

where ∆G and δG were chosen as

∆G = diag[Gk, Gk, Gk, G
−1
k , G−1

k , G−1
k ] (3.58)

δG = diag[Gk, Gk, Gk, 1, 1, 1] (3.59)

so that they increase the noise covariance for the inertial sensors. This method also decreases the

noise covariance of the gyroscope bias, as this was found to yield better results.

3.4.3 Novel Covariance Matching Adaptive UKF

The second novel adaptive method modifies the measurement noise covariance matrix R by

adding a term based on the difference between the measured innovation covariance and the estimated

innovation covariance. This method modifies the measurement noise covariance using the following

terms:

RG
k = Rk +

1

d

k∑
i=k−d

(S̃i) (3.60)
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where

Sk = (ϵkϵ
T
k − Pyy

k ) (3.61)

S̃k =

⎡⎢⎢⎢⎢⎣
s̃11 . . . s̃1j
...

. . .
...

s̃i1 . . . s̃ij

⎤⎥⎥⎥⎥⎦ (3.62)

s̃ij =

⎧⎪⎨⎪⎩ sij for sij ≥ 0 & i = j

0 for sij < 0 | i ̸= j
(3.63)

The value of d again sets the number of previous time steps for which data is used and the same va-

lue of d is used in simulation for all adaptive algorithms. Equation (3.60) modifies the measurement

noise covariance matrix using the average of the difference between the predicted and measured in-

novation covariance matrices. Equations (3.61)-(3.63) compute the difference between the predicted

and measured innovation covariance matrices, and then sets any off-diagonal or negative entries to

zero. While this does not adapt the gyroscope noise covariance, it still modifies the accelerometer

noise covariance to account for the increase in noise from crashing. This method will also slightly

affect the magnetometer noise covariance, but in theory should keep it around the same value. Since

this method uses the innovation covariance Pyy
k to modify Rk, it requires less tuning than the high

gain AUKF which needs more user-tuned parameters.

3.5 PX4 Complementary Filter

The PX4 flight stack is an open source professional autopilot software which offers a split archi-

tecture for providing attitude and position estimates, allowing the attitude estimator to be easily

replaced and compared with custom code. The PX4 attitude estimator is a type of non-linear

observer, also dubbed a complementary filter in the code comments. As it is open source code,

the documentation for the estimation algorithm is scarce so the algorithm presented here has been

reverse engineered from the PX4 code.

The PX4 complementary filter is structured similarly to the complementary filter detailed in

Section 3.1. One main difference is that the PX4 filter uses the magnetometer reading to only

correct the vehicle’s yaw. This is done in some estimator implementations as the magnetic field
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reading can be significantly influenced by high currents and metallic objects near the vehicle which

can catastrophically corrupt the pitch and roll estimates [44], [45]. This practice can be wasteful if

there are no significant disturbances to the magnetic field reading, but can be beneficial to stability

if there are. As the roll and pitch of the vehicle can be ascertained using the accelerometer, the

magnetometer measurement can be used to correct the less critical of the three Euler angles, the yaw,

which generally can not be obtained from accelerometer data alone. The PX4 filter is also different

in that it uses the accelerometer reading regardless of whether or not the vehicle is experiencing any

linear accelerations. While this would provide more measurements to use for estimation purposes,

the measurements would be less accurate in this application.

The PX4 filter propagates the quaternion almost identically to (3.1) as

q̂k = Ω(ug + b̂g + ωmes)q̂k−1 (3.64)

however, with a simpler correction term:

ωmes = kaû×
a ūa + kmµ̂b (3.65)

The values ka and km are tuning gains, ûa is the predicted gravitational vector (computed as

in equation (3.3a)) and µ̂b is a correction term generated from the magnetometer reading. In

particular, the magnetometer correction term is computed using the knowledge that the inertial

x-axis lines up with magnetic north. The correction term rotates the magnetometer reading into

the inertial frame (Eq. (3.66)), and then uses the tan inverse of its x and y components to find the

error between the predicted and actual inertial frames (Eq. (3.67)). It then rotates the correction

factor into the body frame in order to apply it (Eq. (3.68)):

µ̂i = C(q̂k−1)ūm (3.66)

eµ = atan2(µ̂i|2, µ̂i|1) (3.67)

µ̂b = C(q̂k−1)
T

⎡⎢⎢⎢⎢⎣
0

0

−eµ

⎤⎥⎥⎥⎥⎦ (3.68)
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where µ̂i|1 and µ̂i|2 refer to the first and second values of µ̂i. The gyroscope bias is then updated

by

b̂g|k = b̂g|k−1 + kbωmes∆t (3.69)

where kb is a tuning gain.

The PX4 implementation uses special provisions for when the vehicle undergoes fast rotations.

In particular, the PX4 filter does not update the gyroscope bias if the magnitude of the gyroscope

measurement is greater than 10 deg/s and it modifies the magnetometer gain km, such that

km = km ∗min(∥ug∥/0.873, 10) (3.70)

if the magnitude of the gyroscope measurement is greater than 50 deg/s (or 0.873 rad/s). The

motivation behind increasing the yaw correction gain for high vehicle spin rates originates from

experiments conducted by the PX4 developers. These experiments showed that misalignment errors

in the gyroscope created large yaw deviations if using the gyroscope to propagate the quaternion

and the vehicle is spinning at high rates; it was found that in this situation better results could be

obtained by increasing magnetometer gain. The results of these experiments are unpublished in a

shorthand Dropbox document [46].
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Chapter 4

Validation in Simulation

The seven estimation algorithms presented in detail in Chapter 3 are first validated in simulation,

prior to testing them with actual sensor data or using them in the control loop of a quadrotor UAV.

This is done for a number of reasons: testing in simulation is vital to ensure the algorithms perform

as expected especially considering that quadcopters are inherently unstable and a poor attitude

estimate can result in catastrophic failures. As a large number of estimation algorithms are under

investigation it is not viable to implement and test them all experimentally. This is particularly true

in the case of attitude estimation for collision recovery, where the more experiments are performed,

the more likely the quadcopter will be damaged. Testing with simulated data is also important for

debugging the algorithms, as using simulated values makes it easier to control the data, and track

down where issues may originate.

The two main stochastic factors which affect the performance of state estimation algorithms

are sensor noise and Initial Condition (IC) error. Comparing the estimation algorithms using

a single or just a few sets of data does not always provide an accurate representation of how

well the estimation algorithms perform compared to each other, as the randomness may result in

uncharacteristic performance by certain algorithms. The estimation algorithms need to be validated

and compared across a large number of data sets, with a wide variety of IC errors. The Monte Carlo

method compares algorithms by averaging the performance of an algorithm over a large number of

data sets, using randomized values for ICs, disturbances in the system, or other stochastic variables

which may affect their performance. As the number of data sets increases, the average performance

across all data sets should converge towards a value from which the performance of the estimation

algorithms can be compared reliably.

In the simulations presented in this chapter, the performance of the estimation algorithms is
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compared when faced with random initial attitude estimate errors, random initial sensor biases

and random sensor noise. Errors in the initial state estimate can come from a variety of causes.

Generally, the initial attitude estimate for a vehicle is either based on an assumption about the

vehicle’s initial orientation, or it combines the very first set of sensor readings to form a guess of

the vehicle’s orientation. Many issues can contribute to initial attitude estimate errors such as start

up anomalies in the sensors, noise in the sensors, the vehicle may not be completely still during

initialization, or assumptions about the attitude may be wrong. The vehicle is also usually assumed

to have zero initial bias in its sensors, which generally is not true. Sensor bias can develop from a

change in temperature as the vehicle is moved from indoors to outdoors, from shade to sun, or as

the electronics heat up over the course of operation. Sensor bias can also exist due to mechanical

strain on the sensor, or calibration errors.

To validate and compare the estimation algorithms, three simulation scenarios are investigated.

In the first two simulation scenarios, the quadrotor takes off and then flies in a 2m square trajectory

over 60 seconds, then hovers for 15 seconds and the simulation ends. The first square trajectory

scenario has lower IC errors, whereas the second scenario has higher IC errors. The first scenario

compares the estimation algorithms performance in normal flight under what can be considered

as average initialization conditions (such as moving the quadcopter from indoors to outdoors on a

summer day), and the second scenario compares them under extreme initialization conditions (such

as moving from indoors to outdoors on a cold winter day). In the third simulation scenario, the

quadrotor is given the same low IC error as in the first scenario, it flies along the same square

trajectory but then crashes into a wall. The quadcopter impacts the wall at 60 seconds in the

collision scenario, and the simulation is ended after 75 seconds for consistency with scenarios one and

two. A scenario ending in a collision but with high IC error is not investigated as the hypothetical

scenario involving a collision is one where the UAV has been in flight for a while prior to it; thus, the

attitude estimate has had time to converge. In the simulations, the IC errors are generated from zero

mean Gaussian distributions where the standard deviation is chosen based on the Pixhawk sensor

data sheets, experimental sensor data and assumptions about the scenario. All three scenarios are

simulated using the quadrotor parameters and system dynamics from [5] and for the third scenario,

using the collision recovery controller from [6]. The trajectory and attitude controller for normal

flight are quaternion based waypoint controllers derived in [47]. In order to have a consistent
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Table 4.1: Sensor Noise Characteristics

σ̃a0 = 1 [m/s2] σ̃ac = 14 [m/s2]

σ̃g0 = 0.0018 [rad/s] σ̃gc = 0.1 [rad/s]

σm = 0.007 [G] τ = 0.25 [sec]

comparison of the estimators, the controllers use the true quadrotor states as feedback as opposed

to values from an estimator. Comparing the algorithms while using each algorithm’s estimate in

the controller feedback loop will be done in experiments in Section 5.3.

The initial attitude estimate error was chosen as q̂0 = [cos(φ0) a0 sin(φ0)]
T such that

φ0 = N (0, σ̃φ) degrees and a0 = a′0/∥a′0∥ where the three components of a′0 are chosen such that

a′0i = U(−1, 1), with U being the uniform distribution. The rotation axis is chosen from the uniform

distribution as the initial attitude estimate error is equally likely to be in any direction. The initial

sensor bias values are chosen as bs|0 = N (0, σ̃bs) where s ∈ {a, g,m} for the accelerometer, gyroscope

or magnetometer biases respectively. The noise characteristics used in the sensor models are given

in Table 4.1. The values for the ICs which vary for each scenario are given in Table 4.2 and the

values for the ICs which are constant across all scenarios are given in Table 4.3. The values of the

tuned parameters for each estimator are summarized in Table 4.4. Tunable parameters were chosen

based on the estimators’ performance in the low IC scenarios. They were chosen by using a small

set of constant IC values, and then varying the tunable parameters through certain ranges. A better

method for tuning the parameters would be to perform a set of Monte Carlo simulations for each set

of parameter gains investigated, but this would require a multitude of simulations which is beyond

the scope of this work. By using a constant set of IC error values while varying the parameters,

the effect of the parameters could be compared using a smaller set of data. The parameters which

provided the best results were then used for all simulation scenarios. The estimation algorithms are

provided data at a rate of 100Hz in simulation, which was chosen based on the sensor rates of the

logged data onboard the PixHawk flight controller.

4.1 Results

The results of the simulations are shown in Figures 4.1–4.6 and Tables 4.5–4.10. Figures 4.1,

4.3 and 4.5 present the average Root Mean Square (RMS) total angle error and the average RMS

Euler angle errors across all scenarios. The upper and lower graphs in each of these figures present
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Table 4.2: Scenario specific IC statistics

Scenario σ̃φ [deg] σ̃bg [rad/s]

1 Low Initial Error, Square 1 0.01

2 High Initial Error, Square 5 0.04

3 Low Initial Error, Crash 1 0.01

Table 4.3: ICs for all scenarios

CEKF and H∞ filters

Px|0 =diag[.025, .025, .025, .025 .001, .001, .001]

Q =diag[σ̃g011×4, σ̃bg11×3] R =diag[σ̃a011×4, σm11×3]

UKFs

Px|0 = diag[.025, .025, .025, .001, .001, .001]

Q =diag[σ̃g011×3, σ̃bg11×3] R =diag[σ̃a011×3, σm11×3]

All filters

σ̃ba = 0.05 [m/s2] σ̃bm = 0.005 [Gs]

Table 4.4: Estimator specific parameters

Complementary Filter
kP = 1 ka = 0.15

km = 0.25 kb = 0.25

UKF
κ = -6 a = 1

α = 0.5 c = 2

H∞ filter 1
ξ = 0.1

High Gain AUKF

Gmax = 5 d = 15

e = 0.25 β = 0.25

Γ = diag[11×3, 30 11×3]

AH∞ filter
e = 0.01 d = 15(

1
ξ

)
max

= 0.2
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the same data, but the lower graph omits the results of the complementary filter in order to provide

better scaling of the graph for the comparison of the other algorithms. Figures 4.2, 4.4 and 4.6

give the average RMS gyroscope bias error. Each of the scenarios uses data from 200 simulated

flights to compute the averages. For a given simulation run, the RMS Euler angle error is the RMS

of the difference between the true and estimated Euler angles. Tables 4.5, 4.7 and 4.9 present the

standard deviation of the RMS total angle and RMS Euler angle error averages corresponding to

the results in Figures 4.1, 4.3 and 4.5, respectively. Tables 4.6, 4.8 and 4.10 present the standard

deviation of the RMS gyroscope bias error averages which are presented in Figures 4.2, 4.4 and 4.6,

respectively. The RMS total angle error, δφ, is calculated as

δφk = 2 cos−1(δq0,k) (4.1a)

δφ =

√ N∑
k=1

δφ2k
N

(4.1b)

and the RMS gyroscope bias error is calculated as the RMS of the difference between the true and

estimated gyroscope bias for each of the x-, y-, and z-axes of the quadcopter.

4.1.1 Scenario One Results

Figures 4.1–4.2 and Tables 4.5–4.6 present the attitude estimation error statistics for scenario

one - a square trajectory with low IC errors - where it can be seen that the complementary filter

provides the least accurate attitude estimate, by a significant margin, with average total attitude

errors over 10°. The H∞, MEKF and UKF filters provide similar attitude estimates, with average

total attitude errors of 2.66°, 2.40° and 2.23°, respectively. The H∞ filter performed slightly worse

than the MEKF, which is expected under normal flight conditions due to its robust nature. While the

H∞ filter has a slightly worse average estimation error, Table 4.5 shows that its average estimation

error has the lowest standard deviation. This means the H∞ filter’s robustness slightly degrades

the accuracy of algorithm, but slightly improves its consistency. Table 4.5 also shows that the

MEKF has a slightly lower standard deviation than the UKF and that the complementary filter

has a much larger standard deviation than the other algorithms. The MEKF is shown to have

the best gyroscope bias estimate but by a small margin compared to the H∞ and UKF gyroscope

bias estimates. The standard deviations of the average gyroscope bias errors are very similar for
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Figure 4.1: Average RMS total and Euler angle error for scenario 1 (low ICs, no
collision) of 200 simulated flights. Red bars correspond to the lowest error. The upper
and lower graphs contain the same data but the lower figure does not include the

complementary filter data for clarity
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Figure 4.2: Average RMS gyroscope bias error for scenario 1 (low ICs, no collision)
of 200 simulated flights. Red bars correspond to the lowest error

the Kalman based filters, with the UKF performing slightly better, while the complementary filter

has the highest standard deviation. The results of the adaptive algorithms were not significantly

different from the results of the basic estimation algorithms during the square trajectory, and are

therefore omitted from Figures 4.1 and 4.2.

It can be seen that for all estimation algorithms the predominant attitude estimate error is along

the yaw component and that the estimate of the z component of gyroscope bias is significantly

worse compared to the others. The largest standard deviation in the errors also occurs along the

yaw component of the attitude and z component of the gyroscope bias. This is likely due to the

observability issues caused by the alignment of the gravitational vector with the body z-axis which

occurs frequently in this maneouvre. Hong et al. found that the gyroscope bias along the direction

of gravity tends to be unobservable when the vehicle is not experiencing large changes in attitude

or acceleration, on a vehicle equiped with an accelerometer, gyroscope and single GPS [48]. As

can be deduced from the results here, the use of a magnetometer as well as an accelerometer as

attitude measurements give a fully observable system. However, as the accelerometer vector tends

to be aligned with the yaw axis, it is likely that the pitch and roll angles are more observable than

the rotation along the yaw axis. Another factor that could contribute to the yaw estimate error is
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Table 4.5: Standard deviation of RMS angle error for entire flight of scenario 1.
Bold values signify the lowest values.

Algorithm
Standard deviation [°]

Total Yaw Pitch Roll

Complementary 8.73 8.60 1.70 1.09

MEKF 0.475 0.450 0.131 0.078

H∞ 0.436 0.413 0.120 0.073

UKF 0.530 0.503 0.143 0.089

the direction of the magnetic field vector. Since the value of the magnetic field vector used here

has a large z component, noise in the horizontal components of the magnetometer would have a

larger effect, as the signal to noise ratio would be smaller for the horizontal components of the

magnetic field. Future work could investigate if the use of a magnetic field vector from near the

equator, which tends to have a much smaller downward component can reduce the yaw error. It

is also noticeable that the pitch estimate is consistently slightly worse than the roll estimate, and

the y-axis gyroscope bias estimate is slightly worse than the x-axis estimate. The exact reason for

this is unknown, but some hypotheses are suggested. One possibility is that the direction in which

the magnetic field points also causes a smaller signal to noise ratio along the y-axis of the vehicle,

resulting in a larger error in the pitch and y-axis gyroscope bias estimate. Another possibility is

that it is a result of how error is propagated through the 3 sequential rotations of the Euler angles;

since the yaw rotation estimate has large errors, this error might cause error in the next rotation in

the sequence, the pitch estimate. However, a more thorough analysis is required to confirm any of

these hypotheses.

4.1.2 Scenario Two Results

The results for scenario two are shown in Figures 4.3–4.4 and Tables 4.7–4.8. The main difference

from the first scenario is that the complementary filter has very poor performance in estimating

both attitude and gyroscope bias, and appears to directly propagate the increase in the initial errors,

with its total attitude estimate error exceeding 45°. The MEKF and the H∞ filter both show an

increase of about 40% in the error in their estimates compared to scenario one, with total attitude
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Figure 4.3: Average RMS total and Euler angle error for scenario 2 (high ICs, no
collision) of 200 simulated flights. Red bars correspond to the lowest error. The upper
and lower graphs contain the same data but the lower figure does not include the

complementary filter data for clarity
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Table 4.6: Standard deviation of RMS gyroscope bias error for entire flight of sce-
nario 1. Bold values signify the lowest values.

Algorithm
Standard deviation [°/s]

X Y Z

Complementary 0.089 0.095 0.235

MEKF 0.025 0.029 0.074

H∞ 0.024 0.028 0.069

UKF 0.021 0.026 0.074

estimate errors of 3.46° and 3.58°, respectively. The UKF shows a slight increase in error compared

to scenario one, with a total attitude estimate error of 2.37°, but with a more significant increase

in the gyroscope bias estimate error. These results are mirrored in the standard deviations of the

attitude errors as the complementary filter shows a very large increase, the MEKF and H∞ filter

standard deviations almost triple, and the UKF attitude error standard deviation only increases

slightly compared to scenario one. The standard deviations of the gyroscope bias follows the same

trends between estimation algorithms as seen in scenario one, but all of the values are around 4

times larger than those seen in scenario one. These trends agree with the observations in literature

that the UKF is better at dealing with IC error and gyroscope bias compared to other estimation

algorithms [14].

4.1.3 Scenario Three Results

Figures 4.5–4.6 and Tables 4.9–4.10 give the error and standard deviation values from scenario

three, the collision trajectory. The figures contain two sets of values for the attitude and gyroscope

bias error: the average RMS error for the entire manoeuvre and the average RMS error during the

crash only. As we are investigating how the crash scenario affects the performance of each estimator,

the average RMS error during the crash is computed as the error from the instant the quadrotor

contacts the wall until the point when the attitude is stabilized by the collision recovery controller,

which tends to take approximately 0.6 seconds. The tables also contain standard deviation data

for the RMS error of the entire run and the RMS error of only the crash. In the tables and figures,

AUKF1 corresponds to the high gain AUKF and AUKF2 corresponds to the covariance matching

AUKF. In order to improve readability, Figure 4.5 does not show the values for the average RMS
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Figure 4.4: Average RMS gyroscope bias error for scenario 2 (high ICs, no collision)
of 200 simulated flights. Red bars correspond to the lowest error

Table 4.7: Standard deviation of RMS angle error for entire flight of scenario 2.
Bold values signify the lowest values.

Algorithm
Standard deviation [°]

Total Yaw Pitch Roll

Complementary 38.82 33.88 4.51 5.51

MEKF 1.34 1.28 0.367 0.222

H∞ 1.19 1.13 0.324 0.199

UKF 0.684 0.649 0.188 0.106

Table 4.8: Standard deviation of RMS gyroscope bias error for entire flight of sce-
nario 2. Bold values signify the lowest values.

Algorithm
Standard deviation [°/s]

X Y Z

Complementary 0.368 0.372 1.07

MEKF 0.115 0.129 0.353

H∞ 0.117 0.127 0.336

UKF 0.108 0.103 0.217
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total angle error and instead these are shown in Figure 4.7, which also includes the total angle error

from scenario one, so a direct comparison can be made.

It can be seen that the trends for the average attitude and gyroscope bias error, for the entire

manoeuvre match those of scenario one. The standard deviations also follow similar overall trends

to those seen in scenario one. The AH∞ filter performs slightly better than the regular H∞ filter and

performs similarly to the MEKF. The AH∞ filter provides a slightly lower standard deviation during

the collision recovery than the MEKF or H∞ filter, but has a slightly larger standard deviation

during the overall flight. The UKF algorithms provide the best average error, with the high gain

AUKF performing slightly better than the conventional UKF, and the covariance matching AUKF

not showing any significant improvement over the UKF. The UKF algorithms all have similar

standard deviations during the entire run and collision recovery. All algorithms have an increase in

the standard deviation along the yaw and pitch components during collision recovery compared to

the standard deviations for the entire flight. The increase in the standard deviation for the UKF

based algorithms is less than the increase in the EKF algorithms, though the standard deviations for

the EKF and H∞ filters are lower for the total run. The standard deviation for the roll component

actually decreases slightly when compared to the standard deviation in the error for the entire

run. It can also be seen that the standard deviation of the gyroscope bias estimate error decreases

during collision recovery. This shows that the algorithms are more consistent in estimating the roll

of the vehicle during collision recovery, but are less consistent in estimating yaw and pitch, with the

consistency of the UKF algorithms being the least affected by the collision. The results in Figure

4.7 show that the majority of the algorithms have smaller total angle error for scenario three than

scenario one when comparing the total angle error for the entire run. It also shows that the majority

of algorithms perform slightly better during the collision than during the complete manoeuvre. The

only estimator which performs noticeably worse during the collision is the complementary filter.

During the collision, the complementary filter produces a worse estimate for all three of the Euler

angles compared to the corresponding estimates for the entire run. It is likely that the increase in

the complementary filter error can be attributed to the increase in sensor noise during the collision.

As the complementary filter is a deterministic observer, its stability analysis assumes the system

has no noise and it would appear that here, the high noise values cause an increase in error in its

estimate.
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Figure 4.5: Average RMS Euler angle error for scenario 3 (low ICs, collision at end
of run) of 200 simulated flights. Red bars correspond to the lowest error. The upper
and lower graphs contain the same data but the lower figure does not include the

complementary filter data for clarity
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Figure 4.6: Average RMS gyroscope bias error for scenario 3 (low ICs, collision at
end of run) of 200 simulated flights. Red bars correspond to the lowest error

Figure 4.7: Comparison of average RMS total angle error for scenario 1 (low ICs,
no collision) and scenario 3 (low ICs, collision at end of run)
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Table 4.9: Standard deviation of RMS angle error for entire flight and crash of
scenario 3. Bold values signify the lowest values.

Algorithm

Standard deviation [°]

Yaw Pitch Roll

Total Crash Total Crash Total Crash

Complementary 8.27 10.65 1.51 1.88 1.09 0.520

MEKF 0.448 1.19 0.128 0.298 0.078 0.058

H∞ 0.418 1.26 0.120 0.325 0.074 0.060

AH∞ 0.470 1.173 0.134 0.290 0.082 0.058

UKF 0.555 0.984 0.155 0.264 0.101 0.100

AUKF1 0.571 1.00 0.160 0.271 0.104 0.101

AUKF2 0.555 0.986 0.155 0.264 0.101 0.100

Table 4.10: Standard deviation of RMS gyroscope bias error for entire flight and
crash of scenario 3. Bold values signify the lowest values.

Algorithm
Standard deviation [°/s]

X - total X - crash Y - total Y - crash Z - total Z - crash

Complementary 0.081 0.024 0.088 0.025 0.204 0.066

MEKF 0.023 0.006 0.026 0.013 0.063 0.045

H∞ 0.023 0.006 0.025 0.012 0.060 0.043

AH∞ 0.023 0.006 0.026 0.011 0.065 0.040

UKF 0.020 0.003 0.023 0.007 0.069 0.020

AUKF1 0.020 0.003 0.023 0.007 0.069 0.021

AUKF2 0.020 0.003 0.023 0.007 0.069 0.020
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The MEKF also has a slightly less accurate estimate during the collision than during the entire

run, but the difference is negligible at 0.01°. Both the H∞ and AH∞ filters show a slight improvement

in their total attitude estimate error during the collision compared to the error during the entire

run. While there is an improvement in the H∞ filter’s estimate during the collision, the H∞ filter

still provides an estimate which is worse than the MEKF, and the improvement garnered by the

AH∞ filter is not significant, only 0.02° better than the MEKF result.

There is a more significant improvement in the UKFs estimates during the collision compared

to the other estimation algorithms’ performance during the collision. Since the collision occurs after

the quadcopter completes the square trajectory, it could be that the decrease in error during the

collision is because the estimators have had time to converge. However, there is also a decrease

in the error for the total manoeuvre of scenario three compared to scenario one, as seen from

Figure 4.7, implying that the aggressive motion of the crash slightly improves performance. This

slight improvement can also be seen in the gyroscope biases when comparing the average gyroscope

bias errors for the entire run of scenario three, Figure 4.6, to that of scenario one, Figure 4.2.

The results show that, for the Kalman based algorithms, the aggressive motion of the quadrotor

during a collision improves the yaw and gyroscope bias estimates, while the attitude estimates along

the pitch and roll are slightly degraded. While the pitch and roll estimates do get worse when a

collision occurs, the increase in overall performance corroborates the earlier hypotheses that the

alignment of the gravitational and magnetic vector with the down axis contributes significantly to

the estimation errors in the yaw attitude component and gyroscope bias. It is hypothesized that

the shift in alignment away from the z axis of the gravitational and magnetic vectors during the

large attitude changes caused by a collision improves the observability of the biases and yaw angle,

resulting in an overall more accurate attitude estimate. However, while there is a decrease in the

overall average attitude estimate error during the collision for most algorithms, there is also an

increase in the standard deviation of the attitude estimate. This implies that there is a larger

spread of data during the collision, and that while on average there is a slight improvement across

all flights, the attitude estimates become less consistent - some collisions see an improvement in the

attitude estimate while some estimates become worse. It is possible that whether or not there is an

improvement in the attitude estimate depends on the motion during the collision. Some motions

resulting from collision recovery may improve the overall observability of the system more than
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Figure 4.8: Absolute Euler angle error for UKF during a single simulation flight.
First dashed red line marks the impact with the wall and the second marks when

attitude is stabilized

others. While it is beyond the scope of this thesis, it could be worthwhile to look into whether

there is a pattern that correlates to whether specific collision recovery motions, or control inputs

associated with collision recovery, result in an improved attitude estimate after a collision.

Figure 4.8 shows how the Euler angle error for the UKF develops over time during a single

simulation run. In this flight it can be seen that the Euler angle error increases and decreases

sporadically through the flight, likely as the vehicle flies through specific manoeuvres. Over the

duration of the entire run the yaw, pitch and roll errors can be seen to decrease, with the decrease

in the pitch and roll error being less significant than that of the yaw. This can likely be attributed to

the gyroscope bias estimate converging for all components. From the point when the impact of the

collision occurs (the first dotted red line in the figure) until the point when the attitude is stabilized

by the collision recovery controller (the second dotted line in the figure) a slight decrease in the

attitude estimate error can be seen. Towards the end of the collision recovery manoeuvre the roll

and pitch error increase. After the attitude is stabilized and the vehicle is hovering, the yaw error

begins to increase, while the roll and pitch errors steadily decrease. While this does corroborate the

hypothesis that the motion of the collision temporarily increases observability of the yaw, it can be



Chapter 4. Validation in Simulation 60

seen that the error is very noisy, and the short term trends of a single flight such as this can only

be taken as meaningful due to the results of the Monte Carlo simulations. It is also interesting to

note that the errors incurred due to the motion of the vehicle flying along the square trajectory can

be just as large as the error at the start of the simulation due to initial attitude and bias estimate

errors.

While some estimation algorithms did perform better during the collision, the adaptive algo-

rithms did not provide as significant of an improvement as was hoped for. The fact that the H∞

filter performed worse than the MEKF, and the AH∞ filter provided such a small improvement

implies that the collision does not cause significant enough noise problems in the sensor data to

warrant the robust trade offs of the H∞ filter. While the high gain AUKF did show a slight impro-

vement over the UKF, it is possible that all three adaptive algorithms would show a more significant

improvement over their non-adaptive counterparts if a dynamics model is used in the prediction

step of the algorithms. The adaptive high gain EKF presented by Sebesta et al. [23] on which

the high gain UKF is based, shows improved performance during aggressive manoeuvres using a

dynamics model in the prediction step. Similarly Chee and Forbes [27] show the H∞ filter improves

performance when the dynamics model used has large errors. It is possible that the adaptation

or robustness of these algorithms generates the most improvement when the estimator is impacted

by unmodelled disturbances or large modelling errors. Thus, by only using sensor measurements

in these algorithms, which was partially done to avoid these modelling errors, the improvement in

performance expected from adaptive or robust techniques is smaller or negligible.

Another factor that could reduce the effect of the AUKFs is the thresholding of the accelerometer

measurement. Since the accelerometer measurement is not used when its magnitude is over a certain

threshold, the adaptive algorithms would have less of an effect as the thresholding would cause

the accelerometer measurement to be ignored when there is significant noise or changes in linear

acceleration, as there are during the collision. Since one main goal of the adaptive algorithms is to

increase the noise covariance for the inertial sensors, the fact that the accelerometer measurement

is not used during the collision could limit their effectiveness.

It is also worth noting that the adaptive algorithms required a significant amount of tuning

in order to garner this small improvement in performance. Since the adaptive algorithms require

more tuning parameters, a set of well-tuned parameters that yielded good results in the adaptive
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algorithms was difficult to find. Furthermore, it was found that moderately small changes away

from these well-tuned parameters would actually cause a decrease in performance when compared

to the results of the basic UKF. This implies that small changes to the vehicle or system would

require extensive retuning or, if the changes occur without the knowledge of the user, it could result

in a poorer state estimate. This factor would make the use of an adaptive algorithm somewhat

impractical for the given scenario. Although their improvement during simulation was small, there

are many unmodelled factors during a collision that may further validate the use of the H∞ or

adaptive algorithms. As a collision is chaotic and hard to model, the comparison of adaptive and

conventional algorithms using experimental data may give different results.

4.2 Discussion

The simulation results showed that the aggressive motion of a collision increased observability,

improving the state estimate more than the destabilizing effect of the increase in sensor noise.

It was found that the Kalman based filters were much better at estimating gyroscope bias and

dealing with IC error than the complementary filter, and that the UKF performed the best in

these regards. The robust trade off of the H∞ algorithm proved detrimental to state estimation in

the scenarios examined and the adaptive algorithms provided minimal improvements compared to

their conventional counterparts. In addition to the results presented in Section 4.1, an investigation

was carried out into various modifications to the presented algorithms, as proposed in literature,

to evaluate the effect of these modifications on their performance. Two specific modifications

are explored in the following sections and the discussion is ended with several remarks on the

computational complexity of the filters.

4.2.1 Norm-Constrained Filters

An examination of norm-constrained versions of the MEKF and H∞ algorithms was carried out,

to see if the norm-constrained versions would yield any improvement over the conventional ones.

Zanetti et al. [11] show that in some situations their CEKF gives results comparable to a UKF and

that it outperforms the classic MEKF. In [11] it was found that the CEKF provided a significant

improvement over the MEKF when the sensor update rate was set at 1 Hz. The norm-constrained
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versions of the MEKF and H∞ filters were implemented in the present research and compared in the

given simulation scenarios of Section 4.1. It was found that while the CEKF and norm-constrained

H∞ filter did provide an improvement over their conventional counterparts, the improvement was

minor, on the order of a hundredth of a degree. It is thought that the CEKF provided a significant

improvement in [11] because of a very low update rate of 1 Hz, compared to the 100 Hz rate used

here. At an update rate of 1 Hz the estimation algorithms would have significantly larger error

quaternions and having larger error quaternions would result in larger error due to renormalization.

Here, as the sensor update rate is 100 times that used by Zanetti et al., the error quaternions are

much smaller, and as such, deviations from the norm constraint are less significant, resulting in only

a minor performance improvement.

The CEKF derived by Zanetti et al. uses the MEKF for its structure, but the MEKF already

provides an improvement over a conventional EKF by estimating the error quaternion. The MEKF

is termed an indirect filter as it reduces error due to the norm constraint by estimating the error

quaternion instead of the full quaternion [10]. A CEKF which estimates the full quaternion, termed

a direct CEKF, was also implemented in this study to see if enforcing the norm constraint while

estimating the direct attitude quaternion matched the performance increase provided by estimating

the error quaternion. It was found that the MEKF still provides a significantly better attitude

estimate than the direct CEKF.

4.2.2 Normalization of Attitude Vector Measurements

The effect of normalizing the accelerometer and magnetometer measurements in order to use

them as attitude vector measurements was also investigated. Since the only important part of

these measurements is vector orientation, any changes in magnitude could have a negative impact

when they are used to update the attitude estimate. Therefore, by normalizing the measurements,

the effects of magnitude changes are removed. Changes in the magnitude of the measurements

could be caused by a number of factors, such as, changes in the accelerometer magnitude due to

linear accelerations in the vehicle, or changes in the magnetometer measurement due to external

magnetic fields. In simulation, as the method used to corrupt the magnetometer measurement

will not affect its average magnitude, only changes in accelerometer measurement magnitude would

have a significant effect. The design of the complementary filter requires the accelerometer and
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magnetometer readings to be normalized by default, so here, only the effect on the performance

of the Kalman based filters is being discussed. While it was initially thought that normalization

of the measurements would improve the accuracy of the estimation algorithms, the results proved

to the contrary. It was found that when the accelerometer and magnetometer measurements were

normalized, the performance of the filters was much less consistent compared to versions which

did not normalize the measurements. It is thought that this reduction in performance is due to

the fact that the process of normalization changes the noise characteristics of the measurements.

The Kalman based filters work on the assumption that the noise in the system is Gaussian, while

normalization of the measurements would change not only the mean and covariance of the noise,

but the probability density of the measurement noise altogether. Review of previous research

which used normalized measurements in Kalman based filters shows that some effort has gone into

developing methods which combine normalized measurements to compute an attitude estimate,

then use the estimate directly in EKFs [49], [50]. The methods specifically discuss modifications

to the covariance matrices in order to better reflect the normalized noise. Investigation of these

methods could be worth while in the future as differences in magnitude between the predicted and

actual measurements could have a significant effect on attitude estimation.

4.2.3 Computational Complexity

Another important consideration in the choice of a state estimation algorithm is the compu-

tational complexity of the method. Using the timing features of MATLAB, a relationship of the

algorithm complexities relative to each other can be determined for the specific scenarios and al-

gorithm implementations. For the estimation algorithm formulations used here, it was found that

the MEKF and H∞ filters took approximately twice as long to execute as the complementary filter,

and the UKFs took about 13.5 times as long as the complementary filter. The SRUKF was also

implemented as a variation on the UKF algorithms, as discussed in Chapter 3, in order to compare

computation time and any increases in numerical accuracy. In all cases, it was found to provide a

negligible decrease in attitude estimation error (on the order of a hundredth of a degree) but with

a slight gain in the computational speed.

The rate at which the estimation algorithms were executed was also investigated to evaluate its

affect on the overall performance of each algorithm, and if the rate had any effect on the general
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trends found in simulation. The performance of the algorithms when executed at 200 Hz was found

to follow the same trends as at 100 Hz, but with a small decrease in the RMS attitude error for

all estimators (approximately 0.2 degrees). It is likely that the relationship between estimation

accuracy and estimator update rate is non-linear, and increasing the update rate beyond 200 Hz

is not likely to result in significant gains in performance. Evaluating the estimators’ performance

at a lower rate than 100 Hz was not considered worthwhile as this rate is easily obtainable on

conventional processing hardware on current UAVs. In a situation where computing resources are

limited, yet sensor data is available at a fast rate, using a less computationally expensive algorithm,

such as the complementary filter, with a higher update rate might prove more effective than using a

more complex algorithm at a slower rate. As is discussed in the following chapter, an implementation

of the UKF algorithm onboard the Pixhawk flight controller was not possible due to overloading of

the CPU. While it is not pursued in this work, this helps to show that a reordering of the relative

performance of the algorithms based on the execution rate would be useful.
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Chapter 5

Implementation and Experimental

Validation

The simulation results of Chapter 4 give insights into how the estimation algorithms will perform

when they are implemented using actual sensor data or in the control loop of a quadcopter. The

main issue with validating state estimation algorithms experimentally is that the true values of

the states are not innately known, so error in an algorithm’s state estimate can be difficult to

measure. In order to validate an estimation algorithm experimentally, a method to accurately

measure a vehicle’s state is needed, or methods must be devised to use another measure to compare

algorithms. In line with accurately measuring a vehicle’s state, the AML is equipped with a Vicon

motion capture system, which uses infra-red light and cameras to track a constellation of infra-

red reflective tracking balls, providing a very accurate estimate of the position and orientation of

the constellation. An alternative method to measure the effectiveness of an attitude estimation

algorithm during a collision is thought to be the time required to recover from a collision; if the

collision recovery controller has a less accurate attitude estimate, it will likely take longer to recover

from a collision. Thus, we compare the algorithms using two methods: post-processing sensor

data to compare an algorithm’s attitude estimate to the attitude estimate of the Vicon motion

capture system (Section 5.2), and comparing the time taken to stabilize the vehicle after a collision

when using an algorithm in the control loop (Section 5.3). Each of these methods to validate the

algorithms has sources of error but together provide a reasonable evaluation of the algorithms’

performance. The first section of this chapter, 5.1, is dedicated to the discussion of the methods

used to initialize and implement the algorithms when using real sensor data.
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5.1 Implementations with Real Sensor Data

Some aspects of the algorithms need to be handled differently when implemented using real

sensor data compared to when they are implemented in simulation. One of the main issues is the

initial state estimate. Since there is no information about the initial gyroscope bias, the initial

estimate for the gyroscope bias is taken to be zero. However, an initial estimate for the quaternion

can be approximated from the sensor values. Here the initial attitude estimate is computed using

the method which is implemented in the PX4 flight stack, but with a slight modification to increase

the accuracy of this initial estimate. A more accurate estimate of the initial attitude is required here,

as this estimate is used to compute an estimate of the Earth’s magnetic field in the inertial frame,

a value which is not needed for the Pixhawk algorithm. An accurate value of Earth’s magnetic field

in the inertial frame is required since it is used by the algorithms presented in Chapter 3 to predict

the magnetometer measurement in each estimation cycle. Therefore, using an inaccurate inertial

magnetic field value would result in a systematic error in the algorithms.

As the magnetic field is different in different parts of the world, an accurate value of the magnetic

field specifically in the flight region is required. This can be achieved in two ways: using the global

position of the vehicle with a model of Earth’s magnetic field, or using the attitude of the vehicle

with the body frame magnetometer measurement. If the vehicle travels a significantly large distance

during its flight, the global position of the vehicle, usually taken from a GPS, can be input into

a model of Earth’s magnetic field to compute the field at the vehicle’s location. This method can

have systematic errors resulting from the accuracy of the magnetic field model. The other method

is to rotate the magnetometer reading from the body frame into the inertial frame to compute

an inertial magnetic field estimate. This method could also be used for longer flights, but the

value of Earth’s magnetic field in the inertial frame would need to be recomputed after travelling

a certain distance. The method is also subject to error from an inaccurate attitude estimate or

noise in the magnetometer. Since there is no GPS data available, and the magnetic field is not

expected to change significantly because our flights will be short in duration and range, the second

method is used and an approximation of the magnetic field is computed based on magnetometer

measurements. As all of the experiments take place in the AML, a variation of the first method

was considered, which uses a predetermined inertial magnetic field vector based on the location of

the AML. This method was ruled out as it limits the location and portability of the algorithms,
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requiring any other implementations to update the magnetic field at each new flight location.

For the experiments conducted for this thesis, the initial attitude estimate is computed by taking

the average of the first 20 accelerometer and magnetometer measurements in order to approximate

the magnetic field and gravitational vector in the body frame. This is the main modification to

the PX4 method, as the PX4 method only used one measurement from each sensor to approximate

these values. Using multiple values to make the initial attitude estimate reduces the error due to

sensor noise. They are computed by:

µ̂b =
1

20

20∑
k=0

um|k (5.1a)

ĝb =
1

20

20∑
k=0

ua|k (5.1b)

These values are then used to form the basis vectors of a coordinate system, from which the rotation

matrix is computed as:

k̄ =
−ĝb
∥ĝb∥

(5.2)

i = µ̂b − (µ̂T
b k̄)k̄ (5.3)

ī =
i
∥i∥

(5.4)

j̄ = k̄ × ī (5.5)

Ĉ0 =

⎡⎢⎢⎢⎢⎣
īT

j̄T

k̄T

⎤⎥⎥⎥⎥⎦ (5.6)

Then the initial quaternion estimate can be extracted from the value of Ĉ0, following the methods

in [51], and an estimate of the Earth’s magnetic field in the inertial frame can be computed as

µ̂i = Ĉ0µ̂b (5.7)

which is used in place of µ when predicting the magnetometer measurement. Since the estimated

values for the gravitational vector and magnetic field are approximated by averaging the values over
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20 timesteps, the vehicle is required to remain motionless during this period. This is not difficult as

this period is only about 0.15 seconds, and occurs while the vehicle is still on the ground. However,

if the vehicle moves, the vectors will be skewed, resulting in inaccurate initial attitude and magnetic

field estimates.

5.1.1 Magnetometer Correction and Sensor Filtering

During the characterization of the sensor noise, it was found that the magnetometer onboard

Navi was significantly affected by the quadcopter’s electronics. It is well known that the magne-

tometer measurements can be affected by the magnetic fields generated by the propeller motors,

the power distribution board and the battery onboard a UAV. The only methods to circumvent

interference from these components is to move the magnetometer further away from them or to

use magnetically permeable alloys to reroute the magnetic fields generated by these devices. The

design of Navi does not allow for significant changes to be made to the position of the electronics,

so the magnetometer could not be moved far enough from the power distribution board and motors

to completely avoid interference. Attempts were also made to use magnetically permeable alloys to

reduce the interference caused by the electronics but again, the design of Navi did not allow for the

proper placement of these alloys, and their effects were minimal. To properly shield the electronics

(without blocking out Earth’s magnetic field) or to move the magnetometer far enough away to

discount the effects would require significant re-design of the platform, beyond the scope of this

work.

Another method to counteract the magnetic effects of the power electronics is to compensate

the magnetometer measurements based on the current flow out of the battery. As it was found

that the power distribution board was a big contributor to the interference, this method yielded

a significant increase in accuracy for the estimation algorithms. The magnetic field generated

from the electronics is linearly proportional to the current flow out of the battery, and thus the

magnetometer measurement can be compensated using a linear correction factor. The top graph in

Figure 5.1 shows the extent to which the magnetometer reading is corrupted by the currents through

the battery and power distribution board. The figure shows the magnetometer measurement as the

throttle is alternated between minimum and maximum thrusts three times, while the vehicle is held

stationary. Linear coefficients were found which map the current draw from the battery to the change
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Figure 5.1: Uncompensated (top) and battery current compensated (bottom) mag-
netometer measurements when propellers alternate between max and min thrust
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in magnetometer measurement by taking the average difference between the expected and measured

magnetometer measurement as a ratio to the change in the battery current at that instant. Here,

the battery current is available as a measurement and the expected magnetometer measurement is

based on the magnetometer measurement before the motors are throttled. These coefficients are

then multiplied by the measured battery current and subtracted from the magnetometer reading

to give its corrected value. The lower graph in Figure 5.1 shows the corrected magnetometer

measurement. While this method does correct the magnetometer measurement a significant amount,

there is still some error in the magnetometer. This correction also only accounts for disturbances

from the battery and power distribution board, which were found to generate the largest magnetic

field changes, but disturbances from other components may still interfere with the magnetometer

reading.

The PX4 flight stack also passes the accelerometer and gyroscope data through a digital lowpass

filter. The code documentation explains that this is done because the signals are insufficiently

filtered in the electronics. Therefore, consistent with the PX4 implementation, the accelerometer

and gyroscope data were passed through the same digital lowpass filter implemented in the PX4

attitude estimator.

5.2 Post-Processing Collisions with Estimation Algorithms

A series of quadcopter collision data sets have been collected during experiments in the AML

carried out over the time frame of April-May 2017 by Gareth Dicker. These experiments were done

in order to validate the collision recovery controller. These data sets include all of the sensor data

as well as an attitude estimate from the Vicon motion capture system. By tracking an asymmetric

constellation of tracking balls, the Vicon system can provide very accurate estimates of a vehicles

position and orientation. This is very useful for validating state estimation algorithms in experiments

as the Vicon’s measurements are accurate enough that they can be considered the ”true” orientation

and position of the vehicle. The issue with using the Vicon system for an attitude estimate during

a collision is that the Vicon tracking balls must be visible by the Vicon cameras, and the large

rotations caused by aggressive collisions sometimes prevent that. As this evaluation is focussed on

the estimation algorithms’ performance during a collision, loss of a Vicon attitude estimate can be

detrimental. Another requirement for accurate Vicon tracking is that the positioning of the Vicon
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balls must be constant relative to each other. This means that the Vicon balls must be mounted

in a rigid formation, which is again an issue during collisions. During a collision, the quadcopter

experiences deformation and vibrations which can result in a less accurate Vicon pose estimate.

The standard deviation in the attitude estimate of the Vicon while the quadcopter is stationary

and its propellers are rotating has been found to be 0.133°. Any change in the standard deviation

of the attitude estimate caused by errors due to deformation or vibrations of the vehicle as a result

of collision is difficult to calculate and is not computed in this work.

Another source of error with using the Vicon attitude estimate as the true vehicle state is due to

a communication delay between the Vicon data and other logged data. The communication delay

is due to the fact that the Vicon system computes the attitude estimate on an offboard computer,

sends it over wifi to an ODROID microcomputer onboard Navi which then sends the estimate to

the Pixhawk where it is logged with the sensor data. A correction is applied to synchronize the

Vicon data and sensor data in time but any error in this delay correction would cause a systematic

error. The delay in the communication pipeline was determined through experiments using the

Vicon system. These tests involved alternating between keeping the vehicle motionless and then

manually rotating it very aggressively. An estimate of the delay was then found as the difference

in time between when the Vicon estimate and when the onboard sensors register motion. The

average delay was found to be 0.07 seconds; thus, the Vicon data is shifted by this much when used

as the true state. The use of the constant delay value introduces some error into the evaluation

as the communication delay is not necessarily constant, it being dependent on the traffic in the

communication pipeline.

The Vicon system outputs the orientation of the vehicle relative to an inertial frame which is

defined in terms of the laboratory walls. Therefore, its attitude output must be rotated to utilize

the NED inertial frame which is used for attitude estimation in our algorithms. As the rotation

between NED and the Vicon reference frames depends on a definition of the NED frame, which in

turn depends on accelerometer and magnetometer data, this gives rise to another possible source of

error in the evaluation. This rotation is found by again using an estimate of the rotation from the

quadcopter body frame to the NED inertial frame based on equations (5.1)–(5.6). As this rotation

can cause systematic errors if inaccurate, and computational complexity is not an issue as these

computations are done after the flight is over, more complex methods of averaging the measurements
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to compute an estimate of the rotation from the body to inertial frame were examined. The main

alternative method that was investigated was one in which each set of measurements is used to

compute an attitude estimate for that instant, and then these attitude estimates are combined

using a modified solution to Whabba’s problem [52]. Whabba’s problem is a classic problem of

computing the most likely orientation of a body based on a series of vector attitude measurements.

However, this was found to give a less accurate result than simply averaging the measurements and

using the averaged values as the estimates. Thus, the simpler and more accurate method was used.

The Vicon attitude estimate, qViVb
, which relates the Vicon inertial frame, FVi , to the Vicon

body frame, FVb
, has the z-axis pointing upwards in both body and inertial frames, so it first must

be rotated so that the body frame has the z-axis pointing down. This is achieved with the following

quaternion multiplication:

qViNb
= qViVb

⊗

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.8)

where Nb
corresponds to Navi’s body frame, F b. Then an estimate for the attitude at time step q̂k

is computed using equations (5.1)–(5.6). Since we are post-processing the data, the initial attitude

estimate can be improved further by using all the measurements for which the vehicle is not moving.

For initializing the estimation algorithms, only 20 timesteps are used, since it is a relatively short

amount of time and it is reasonable to assume that the quadcopter will not be moving during this

initialization period. However, sometimes the quadcopter remains motionless much longer at the

start of a flight; this can be observed in post processing and more measurements can be averaged

in computing the attitude estimate used to rotate the Vicon inertial frame. The rotation from the

NED frame to Navi’s body frame, can then be used to estimate the quaternion from the Vicon

inertial frame to the NED inertial frame, as

q̂ViNi = qViNb
⊗ q̂−1

k (5.9)



Chapter 5. Implementation and Experimental Validation 73

The rotation from the Vicon inertial frame to the NED inertial frame can then be used to transform

the Vicon attitude estimate at time step k to use the NED inertial frame as

q̂NiNb|k = q̂−1
ViNi

⊗ qViNb|k (5.10)

The values of q̂NiNb|k then give an accurate estimate of the true quaternion relative to the NED

frame and these can be used to evaluate the accuracy of the estimation algorithms.

It can be seen from the methodology above, that the processes involved in using Vicon as the true

attitude of the vehicle has several potential sources of error. Therefore, the estimation algorithms

also need to be validated through actual collision recovery experiments which use the algorithms in

the control loop, as will be done in Section 5.3. Nevertheless although there may be some systematic

error when using the method of post-processing sensor data, it is still useful as it is closer to the

actual implementation than just simulating the collisions.

5.2.1 Experimental Set Up and Data Collection

The data set used for post processing the sensor data consists of 72 collisions, of which only 49

have little or no loss of the Vicon attitude estimate during the collisions. The data sets which lose

Vicon data during the collision tend to be collisions which are more aggressive, usually when the

vehicle experiences high yaw rates after impact. While these data sets are not useful for comparing

estimates during the collision recovery stage, they can still be useful to see how accurate the attitude

estimate is before and after more aggressive collisions.

A single data set contains data from the moment the quadcopter is armed, prior to take off, until

it is disarmed, when it lands. Therefore, each data set contains the take off, approach, collision,

recovery and landing of the vehicle. For the majority of a data set, the quadcopter is flown manually

by a pilot. The pilot has full control of the quadcopter, except during collision recovery which is done

autonomously, handing control back to the pilot after the attitude and height have been stabilized.

During a flight, the pilot attempts to keep the yaw of the vehicle such that the quadcopter impacts

the wall with two propeller bumpers parallel to the wall. This is done to reduce the yaw rotation

of the vehicle after an impact. When the quadcopter impacts the wall with only a single propeller

bumper, the vehicle can experience large moments and yaw rates. While the collision recovery
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controller can stabilize the quadcopter when there are large yaw rates, it usually takes longer to

stabilize and thus the quadcopter can travel far from the wall. This is avoided as the AML does

not have enough space in which to safely allow the quadcopter to stabilize, and the motors have to

be shut off using a safety override, resulting in an unsuccessful collision recovery.

The pitch and roll angles of the vehicle are limited by the attitude controller so that they do not

surpass angles above which the recovery controller cannot stabilize the vehicle. This limit is also

used to ensure that the impact angle across a series of collisions is varied uniformly. For this data

set, the max pitch and roll angles were varied between 15-18 degrees, such that an even number

of collisions were performed with a max angle of 15, 16, 17 and 18 degrees. For each data set the

pilot applies the maximum possible pitch command, ensuring that these maximum impact angles

are obtained. The pilot also starts the approach trajectory at different distances from the wall in

order to vary the impact velocity. From examining the Vicon position data, the collisions vary in

impact velocity from 1-4 m/s where the pilot tried to have a similar set of impact velocities for each

maximum angle value. This variety of angles of attack and impact velocities allows for a Monte

Carlo style analysis of the estimation algorithms.

In post-processing the data sets, the estimation algorithms were retuned to find the optimal

gains and initial conditions to get the best results. The algorithms were tuned by varying each

tunable variable through a set of values, testing the estimation algorithms performance using a

small randomly selected subset of the data (18 data sets), and then comparing the results for

different values of the tuning parameters. The values for the tuning parameters which gave the

best results are given in Tables 5.1 and 5.2. For parameters not included in these two tables, the

values used in simulation (Tables 4.3 and 4.4) also gave the best results when post-processing the

experimental data sets. The significant changes in some of the estimator parameters are discussed

in the following section.

5.2.2 Post-Processing Results

A comparison of the results of the estimation algorithms is given in Figures 5.2–5.3 and Tables

5.3–5.4. Figure 5.2 and Table 5.3 are similar to the earlier figures and tables and compares the

average and standard deviation of the RMS attitude estimate error for the total flight, and just

during the collision. Only the 49 data sets which have a Vicon attitude estimate available during
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Table 5.1: ICs for all scenarios

CEKF and H∞ filters

Q =diag[σ̃g011×4, σ̃bg11×3] R =diag[500σ̃a011×4, 100σm11×3]

UKFs

Q =diag[σ̃g011×3, σ̃bg11×3] R =diag[500σ̃a011×3, 100σm11×3]

All filters

σ̃ba = 0.05[m/s2] σ̃bm = 0.005[G]

abnd = 5

Table 5.2: Estimator specific parameters

PX4 Filter
kP = 1 ka = 0.25

km = 0.05 kb = 0.15

Complementary Filter
kP = 1 ka = 0.25

km = 0.05 kb = 0.15

H∞ filter 1
ξ = 0.1

High Gain AUKF β = 0.6

Figure 5.2: Average RMS Euler angles when post processing sensor data. Contains
the average RMS error for the whole run, and during the crash only; based on data
sets which have Vicon data during the collision recovery stages (49 flights). Red bars

correspond to the lowest error
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Figure 5.3: Average RMS Euler angles when post processing sensor data. Contains
the average RMS error for before and after the collision. Shows error for all data sets

(72 flights). Red bars correspond to the lowest error

Table 5.3: Standard deviation of experimental RMS angle error for 49 flights which
have Vicon data during recovery stage. Bold values signify the lowest values.

Algorithm
Standard deviation [°]

Yaw Pitch Roll

Total Crash Total Crash Total Crash

PX4 2.47 3.08 0.552 1.87 0.390 1.12

Complementary 2.50 2.98 0.492 1.53 0.354 0.885

MEKF 2.38 2.74 0.502 1.99 0.358 1.15

H∞ 2.60 3.03 0.493 1.98 0.359 1.15

AH∞ 2.59 3.09 0.489 1.98 0.360 1.15

UKF 2.48 2.86 0.521 1.84 0.363 1.03

AUKF1 2.41 2.76 0.481 1.82 0.338 1.01

AUKF2 2.48 2.86 0.521 1.849 0.362 1.03
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Table 5.4: Standard deviation of experimental pre and post collision RMS angle
error for 72 flights which do not have Vicon data during recovery stage. Bold values

signify the lowest values.

Algorithm

Standard deviation [°]

Yaw Pitch Roll

Pre-Crash Post-Crash Pre-Crash Post-Crash Pre-Crash Post-Crash

PX4 1.59 5.25 0.750 1.99 0.345 1.97

Complementary 1.82 3.88 0.725 1.84 0.320 1.95

MEKF 1.76 3.87 0.721 1.91 0.305 2.05

H∞ 1.89 4.01 0.726 1.90 0.329 2.04

AH∞ 1.91 3.96 0.725 1.90 0.331 2.04

UKF 1.81 3.94 0.702 1.98 0.340 2.11

AUKF1 1.81 3.91 0.700 1.89 0.339 2.08

AUKF2 1.81 3.94 0.702 1.98 0.340 2.11

the collision were used in computing the values in Figure 5.2 and Table 5.3. Figure 5.3 shows the

attitude estimate error up until slightly before the collision, and the attitude estimate error from

slightly after completing collision recovery until the quadcopter lands. All 72 data sets are used

in computing the values shown in Figure 5.3. Table 5.4 presents the standard deviation of the

data used in Figure 5.3. The figures and experimental data analysis now also include the results

of the PX4 algorithm. It can be seen from the figures that the trends are somewhat different than

those found in simulation, with the main difference being that the complementary filter performs

significantly better. Here, the complementary filter performed similarly to all the Kalman based

filters and the PX4 filter performs similarly to the other algorithms in estimating pitch and roll, but

has a worse yaw estimate, by an average amount of 1.32° over the entire flight test, compared to all

of the other algorithms. From Figure 5.3, it can be seen that the worse overall yaw estimate for the

PX4 algorithm is due to the collision, as its error is similar to that of the other algorithms before the

crash but worse by an average of 3.56° compared to all other algorithms after the collision. Table

5.3 shows that all the algorithms have similar standard deviations, with a larger standard deviation

during the collision than during the rest of the run. Another difference from the simulation trends is

that the state estimate during and after the collision is worse than the estimate before the collision

for all algorithms. The results in Figure 5.3 also show that after collision recovery is complete, the
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pitch and roll estimate errors are more similar, with the average difference between pitch and roll

errors for all algorithms before and after the collision being 0.36° and -0.12°, respectively. Also,

as seen in Table 5.4, all algorithms see a large increase in the standard deviation of their estimate

when comparing the standard deviation before and after the collision. Table 5.4 also shows that the

PX4 filter has the lowest yaw standard deviation before the collision, but has the largest standard

deviation after the collision. Besides the standard deviation of the PX4 algorithm along the yaw

direction, all algorithms have similar standard deviation values.

Some of the trends from simulation are still observed here as all of the filters produce a poor

yaw estimate, with the pitch estimate being slightly worse than the roll estimate (except after a

collision when roll error is higher). The trends between the Kalman based filters are also similar

to those found in simulation. The H∞ algorithms perform slightly worse than the MEKF, with an

average error increase of 0.08° across all Euler angles for the entire flight. The adaptive algorithms

again do not show significantly different performance from their conventional counterparts. There is

little difference between the EKF and UKF based algorithms, and the complementary filter actually

provides the best roll and pitch estimates during the collision, with average total flight errors of

2.47° and 1.24°, respectively. However the differences between the Kalman based algorithms and

the complementary filter are small, and given that the standard deviation of the Vicon system is

similar in magnitude to the differences in the averages and standard deviations of the attitude errors

between the algorithms, it is not possible to identify the algorithm with superior performance.

Figure 5.4 shows how the attitude estimate error for the UKF develops over a single flight. The

data is a flight from the set of 49 flights used in Figure 5.2 and Table 5.4. It can be seen that

the error in yaw increases and then decreases both before and after the collision period. The yaw

error also increases prior to the vehicle take off, but is fairly accurate at initialization, and becomes

more accurate after take off. The error in the yaw of the vehicle is likely due to magnetometer

disturbances. Figure 5.5 shows the magnetometer measurements for the same flight rotated into

the inertial frame using Vicon attitude measurements. In theory, the magnetometer measurements

in the inertial frame should be constant as the Earth’s magnetic field is theoretically constant in

the inertial frame. It can be seen that when the magnetometer reading is rotated into the inertial

frame the y component (which directly affects the yaw estimate of the vehicle) varies in a pattern

somewhat similar to the yaw error seen in Figure 5.4. It should be noted that Figure 5.4 shows the
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Figure 5.4: Absolute Euler angle error for UKF during a single experimental flight.
Dashed green line corresponds to take off. First dashed red line marks the impact

with the wall and the second marks when attitude is stabilized
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absolute Euler angle error, and that if the error after the collision was shown to be negative, its

general shape would match that of the y component of the inertial magnetometer measurement as it

increases then decreases from 4-12 seconds, crosses 0 at around 12 seconds, and then increases and

decreases (in magnitude) again. Some error in the attitude measurement can also be attributed to

the state estimation algorithm developing error in the gyroscope bias estimate as it adapts the state

estimate to try to account for the disturbances in the magnetometer measurement. An inaccurate

magnetometer measurement, and matching error in the yaw of the vehicle occurs in the majority of

flight data. Besides the large drifting yaw error, it can be seen that immediately when the impact

of the collision occurs there is a spike in the pitch and yaw error, but then both errors decrease.

After the impact, the error in roll, pitch and yaw increase until the attitude is stabilized, at which

point the yaw error continues to increase, while the roll and pitch error plateau and then decrease.

The spike in the estimation error immediately when a crash occurs is common to all flights, however

the trend in data between the impact and when the attitude is stabilized varies, likely dependant

on the collision characteristics, and magnetometer disturbances. In most flights, after the attitude

is stabilized, the roll and pitch error tend to stabilize as well. This analysis of the error over time

shows that even with the magnetometer correction used, there are still significant disturbances

experienced by the magnetometer.

There are some notable changes in performance compared to the simulation, besides magneto-

meter issues already discussed, the causes are thought to be due to the following reasons. One main

factor is that the sensors were calibrated before each set of flights, using a standard sensor calibra-

tion toolbox available with the PX4 software. The sensor calibration compensates the IMU sensor

measurements to remove biases and misalignment errors. In simulation, it was found that when

the initial gyroscope bias was set to be very small or zero, the MEKF, UKF, and complementary

filter performed very similarly (see Appendix A), which is what appears to be the case with the

experimental data.

Another likely cause of these discrepancies is due to large changes in the accelerometer and mag-

netometer measurements’ magnitudes caused by vehicle accelerations and magnetic disturbances,

respectively. It should be noted that large changes had to be made to the Kalman based filters noise

covariances and accelerometer bounds (Table 5.1) compared to values used in simulation (Table 4.3)
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Figure 5.6: Magnitude of magnetometer measurement for a single flight

in order to get the Kalman based filters to provide performance comparable to the non-linear ob-

servers. The PX4 and complementary filters both normalize the accelerometer and magnetometer

measurements for use, whereas the Kalman based algorithms do not. Figure 5.6 shows how the

magnitude of the magnetometer reading varies over a single data set.

Since the Kalman based algorithms do not normalize the measurements, then any consistent

deviation from the base magnetometer reading (as is seen after 8 seconds in Figure 5.6) would result

in an error in the correction even if the predicted and actual measurement vectors are collinear.

The same would occur to the accelerometer reading when the vehicle is undergoing any linear

accelerations. Increasing the bound for which the accelerometer is used, as well as increasing the

noise covariance of the accelerometer reading by a factor of 500, and the noise covariance of the

magnetometer by a factor of 100, led to a significant improvement in performance for the Kalman

based algorithms. This may show that since the magnetometer measurement is less accurate,

using the accelerometer measurement more frequently, even though it is also less accurate due to

linear accelerations, is better than only using it occasionally with a more accurate measurement.

The improved performance when the magnetometer measurement covariance is increased is likely

due to the significant error in the magnetometer caused by the vehicle’s electronics. Similarly,

increasing the accelerometer noise covariance likely improves performance when using an increased
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accelerometer bound as the accelerometer will be distorted by linear accelerations.

These results point towards investigating algorithms which normalize the measurements, or met-

hods which properly account for the changes in the measurement noise probability density function

when the measurements are normalized. In this case it could also be worth investigating an adaptive

algorithm which always uses the accelerometer reading, but which increases the accelerometer noise

covariance as the magnitude of the accelerometer measurement increases.

5.3 Estimator in the Loop Results

The ultimate test of the performance of the estimation algorithms is how they affect the control

system performance in a closed-loop state feedback controller. Therefore, some algorithms were

chosen to be implemented in the PX4 flight stack and compared in flight. The time it takes the

system to stabilize after a collision is used as a metric to compare estimation algorithms. The

recovery controller operates in two stages: the first stage of the recovery controller stabilizes the

attitude of the vehicle and then the second stage stabilizes the height of the vehicle. The collision

recovery controller enters the first stage when the quadcopter impacts the wall, triggered when the

accelerometer reading is over some threshold. The recovery controller switches between stage one

(attitude stabilization) and stage two (height stabilization) when the roll, pitch, roll rate, and pitch

rate of the vehicle are within specified bounds and exits stage two when the vertical velocity of the

quadcopter is within a certain bound. It is thought that the length of time spent in stage one of the

recovery controller is a good measure of the accuracy of the attitude estimate. This is because if

the estimate is more accurate the vehicle should be able to stabilize more quickly and consistently,

whereas an inaccurate estimate should result in a longer and more erratic stabilization.

Given the large number of estimation algorithms that were investigated in this thesis, it was not

possible to implement and perform experiments with all the methods. Hence, only a small subset

of the algorithms were selected for implementation in the PX4 flight stack. Based on both the

simulation and experimental data it was decided to attempt to implement the UKF and High Gain

AUKF because the UKF based algorithms showed a benefit when faced with sensor biases, whereas

the rest of the simulation and post processing results did not show any distinct improvements

between algorithms. With this in mind, an attempt was made to implement the UKF but it was

found that the algorithm overloaded the flight controller’s CPU. This likely occurred because the
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algorithm was implemented such that it used every set of IMU measurements that were available,

which is at a rate slightly higher than 200 Hz. It is possible that the UKF based algorithms would

not overload the CPU if they were run at a slower rate, using an average of IMU measurements

for a series of time steps instead of using every one. As discussed in Section 4.2.3, the evaluation

in simulation shows that executing the algorithms at 200 Hz provided an improvement over 100

Hz, however, a more detailed investigation would be needed to determine the significance of the

execution rates. Since implementation of UKF based algorithms was not viable at the update rate

of the IMU, and a definitive improvement was seen in simulation between the 200 Hz results and

100 Hz results, it was decided to implement the MEKF and AH∞ filters running at 200 Hz. The

MEKF based algorithms were chosen as they also showed improved performance in simulation when

dealing with initial gyroscope biases over the complementary filter. The AH∞ filter was chosen to

implement over the H∞ filter as it showed some slight improvements in performance in simulation

as well.

The implementation of the AH∞ filter was slightly different from the post-processed and si-

mulation versions in that the AH∞ bound needed to be raised in order for the closed-loop system

to be stable. It was found that the value which worked best in the post-processing comparison

and in simulation,
(
1
ξ

)
max

= 0.2, resulted in the vehicle oscillating aggressively after exiting stage

one of the collision recovery process. While using the original bound,
(
1
ξ

)
max

= 0.2, the pilot

commented that the vehicle sometimes seemed less stable than usual during normal flight and that

after a collision with the wall, the vehicle sometimes did not recover properly. Upon examining

the data post-flight, it was found that after a collision with the wall the recovery controller exited

stage one regularly, but the vehicle would continue to oscillate afterwards. This indicated that

there was significant error in the state estimate, as the vehicle would think it had stabilized when

it had not. It was deemed too dangerous to perform the collisions using the original AH∞ bound,

due to the unpredictability of the recovery, and therefore the AH∞ bound was raised by setting(
1
ξ

)
max

= 0.01. This required that the step size at which the filter adapts, e, also be changed in

order to have a smooth transition, thus it was set as e = 0.001. The difference in results when using

the AH∞ filter’s attitude estimate in the control loop shows how although an algorithm’s estimate

appears to converge when using post-processed data, the instantaneous error in the estimate can

result in the instability of the closed-loop system.
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Table 5.5: Average and standard deviation of the time spent in each recovery stage
during collision recovery when algorithms are used in the control loop, averaged over

53 flights. Bold values signify the lowest values

Estimation algorithm
Average time in
stage one [sec]

Average time in
stage two [sec]

Average total time
for collision recovery [sec]

PX4 0.607 ± 0.224 0.424 ± 0.322 1.03 ± 0.35

MEKF 0.522 ± 0.085 0.301 ± 0.172 0.823 ± 0.175

AHINF 0.511 ± 0.076 0.421 ± 0.322 0.932 ± 0.349

The MEKF and AH∞ filters were successfully implemented in the PX4 flight stack and 53 data

sets of successful collision recoveries were gathered for each algorithm. The results for the time

spent in each recovery stage for the sets of successful collision recoveries are given in Table 5.5.

The table gives the average time spent in each stage, as well as an error term which corresponds

to the standard deviation of the average times. The results are given separately for stage one and

stage two, and a third value of the total time spent in the collision recovery mode is included as

well. It can be seen that, compared to the PX4 estimator, the MEKF and AH∞ filters improve

both the average time spent in stage one by about 15%, and have a lower standard deviation in

their results. The lower mean and significantly lower standard deviation for the time spent in stage

one indicates that it generally took longer to recover with the PX4 state estimate feedback, and

the EKF and AH∞ filters gave a much more consistent collision recovery. In a scenario where the

safety of the vehicle and the surrounding environment might be in danger because of the collision,

having a consistent collision recovery is very valuable.

Evaluating the implications of the time spent in stage 2 of the recovery process is a little more

speculative, and more data is needed to be certain of any hypotheses. The height estimate which

is used in the control loop is provided by a separate estimation algorithm in the PX4 flight stack.

While this estimate is computed separately from the attitude estimate, it still uses the attitude

estimate in order to rotate the accelerometer reading into the inertial frame, and thus is somewhat

dependant on the accuracy of the attitude estimate. It can be seen from Table 5.5, that when using

the MEKF in the control loop, the vehicle spent less time in stage two. The average time spent

in stage two also had a lower standard deviation, meaning the controller was more consistent in

stabilizing the vehicle’s vertical velocity. The PX4 algorithm and AH∞ filter both spent similar

amounts of time in stage two, with the same standard deviation. As was seen when the AH∞ bound
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was set to be too low, the collision recovery controller was sometimes able to exit stage one even

though the attitude was not fully stabilized. This means that an inaccurate attitude estimate could

possibly lead to the controller spending more time in stage two trying to stabilize the height, but

this is difficult to corroborate. The issues encountered when the AH∞ bound was set too low could

explain why the AH∞ filter performs very similarly to the MEKF for stage one of the recovery

process but worse for stage two. While the bound of the AH∞ filter was changed, it may still be

too low, and cause errors in the attitude estimate, resulting in a longer time spent in stage two of

the recovery. The PX4 algorithm showed poor performance in estimating yaw during a collision

when post-processing real sensor data so an inaccurate yaw estimate could be a factor in why the

PX4 algorithm spent longer in stage two.

However, we do not want to spend too much effort interpreting the results of stage two as there

were also anomalies noticed during some flights regarding height control of the vehicle that bring

up issues with this speculation. It was found that after some collisions, the quadcopter would not

respond properly to height commands from the RC controller used to fly the vehicle. It was found

that the vehicle would either slowly rise or descend. Further investigation needs to be done to

definitively attribute the different times spent in stage two of the recovery process to a specific

cause.

The time spent in stage one of the collision recovery confirm post-processing results showing that

the MEKF and AH∞ filters can provide a better attitude estimate during collisions than the PX4

filter. Putting any speculations on the stage two results aside, the stage one results also confirm

our findings in simulation that the AH∞ filter provides a slight improvement in attitude estimation

during a collision. However, as collisions are highly variable, further Monte Carlo style experiments

could be carried to further support these results, as well as to test the hypotheses regarding the

time spent in stage two.
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Chapter 6

Conclusions

6.1 Summary of Work

This research has helped to advance the realization of a complete collision recovery control system

to aide a quadcopter after a collision with a wall. An investigation into the effects of collisions on

sensor data and on ways to mitigate these effects through the use of robust and adaptive estimation

algorithms was successfully completed. It was shown that the inertial IMU sensors, specifically

gyroscopes and accelerometers, are significantly affected by vibrations after a quadcopter impacts

a wall. Based on these observations, a model was derived in order to imitate the effect of a collision

on inertial sensors for the purpose of validating the state estimation algorithms through simulation.

Novel adaptive attitude estimation algorithms were designed to mitigate the effects of the post-

collision vibrations. A survey of attitude estimation algorithms was completed to compare the

capabilities of the novel algorithms to conventional ones. More specifically a comparison in per-

formance was completed for a complementary filter, MEKF, H∞ filter, novel adaptive H∞ filter,

UKF and two novel adaptive UKFs. The comparison of these algorithms was conducted through

simulations as well as experiments.

Simulations showed that when dealing with large initial estimate errors, the complementary filter

performed significantly worse than the Kalman based filters and that the UKF provided the best

performance. The adaptive algorithms provided some minor improvements in attitude estimation

during a collision, and their use for the given scenarios was difficult to endorse given the amount

of tuning that was required to obtain these small improvements. It was found that the H∞ filter

showed a decrease in performance compared to the conventional MEKF, as the detrimental effects

brought about by the collision were not significant enough to warrant its robust design. Simulations
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also showed that solely using an IMU for attitude estimation results in a poor yaw estimate due to

observability issues stemming from the alignment of the gravitational vector with the yaw axis of

the vehicle. It was found that the aggressive motion following a collision aided in observability of a

quadcopter, causing an overall improvement in attitude estimation during a simulated collision.

Before any algorithms were implemented in the control loop of the quadcopter they were eva-

luated by post processing sensor data. The attitude estimates of the algorithms were compared

to the very accurate orientation estimates provided by a Vicon motion capture system. The data

showed that the algorithms detailed in this thesis improved performance when compared to the

estimator included in the PX4 software used onboard the quadcopter. The trends were different

than those found in simulation, in that the complementary filter matched the performance of the

Kalman based estimation algorithms, and the attitude estimates were less accurate during the col-

lision. This was attributed to large error in the magnetometer measurements due to interference

from the electronics as well as pre-flight sensor calibration causing the experimental data to have

lower sensor biases than were used in simulation. No algorithm performed definitively better than

the others when comparing them through post-processing because the standard deviation in the

Vicon measurements was of the same order of magnitude as the differences in performance between

the estimation algorithms.

In implementing the algorithms onboard the quadcopter in a closed-loop control system it was

found that the UKF algorithms were too computationally intensive, and overloaded the CPU.

The MEKF and AH∞ filter were successfully implemented onboard and compared to the PX4

estimation algorithm. The experiments showed that the time spent in the attitude recovery stage

by the MEKF and AH∞ filter was less than the PX4 estimator and was much more consistent.

The MEKF also spent much less time in the second stage of the recovery process compared to the

other two algorithms, but the reasons why are speculative. Overall this thesis clarified the attitude

estimation issues experienced by the quadcopter during collision recovery and improved the attitude

estimation algorithm performance for a more consistent collision recovery.

6.2 Recommendations for future work

There are many extensions and experiments that can be done to further validate and improve

state estimation for collision recovery. The method to corrupt and model sensor data during a
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collision could be improved through a vibrational analysis of the quadcopter after impacts. The

effect of using a dynamics model, including the collision contact dynamics model, in the attitude

estimation algorithms is worth investigation to see if it will improve the algorithms’ performance.

Future algorithms utilizing a GPS and estimating the position need to be implemented to enhance

the collision recovery system for use in real environments. An investigation of the effects of a

collision on the height estimate would be useful to determine the implications of the time spent in

the height stabilization stage of the recovery process, as well as determine the effect of a collision

on other quadcopter sensors.

Other experiments that would be of interest are to induce a small bias on the sensors, by

calibrating the sensors indoors, and completing the experiments outdoors (or vice-versa). This

could be used to validate the simulation results when using biased sensor data. It could also be of

interest to implement the complementary filter in the PX4 flight stack in order to validate the use of

Kalman based algorithms when faced with sensor biases. While implementation of the AH∞ filter

required the AH∞ bound to be changed, no other tuning was performed on the filters and the values

found from post-processing were used. It is likely that slightly better results could be obtained by

tuning the filter parameters while using them in the control loop, as was seen through changing the

AH∞ bound. Performing the experiments on a vehicle designed to protect the magnetometer from

the magnetic fields generated by the electronics would likely also improve the attitude estimates.

Since it was not possible to implement the UKF based algorithms onboard the Pixhawk flight

controller, the adaptive algorithms developed for the UKF could easily be used to modify the noise

covariance matrices in the MEKF. However, it is difficult to say whether this would be worthwhile;

the adaptive algorithms were found to be quite difficult to tune and sensitive to a small change in

parameter values. As there are many other robust state estimation algorithms, the investigation of

different designs of H∞ filters could also lead to a better method to robustly estimate the state of

the vehicle.
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Appendix A

Extraneous Simulation Results

Table A.1 presents the average total Root Mean Square (RMS) attitude estimate errors for

scenario 3 (the collision scenario) when the initial attitude error and initial gyroscope bias are

set to be low, σ̃φ = 0.1 and σ̃bg = 0.001, which are ten times smaller than those expected under

normal operating conditions. The complementary filter uses the value of kb found in Table 5.2.

The results show that the performance of the complementary filter is much more similar to the

KF based algorithms when faced with lower than normal gyroscope bias and initial attitude error.

The difference in the performance of the EKF and UKF algorithms is similar to their performance

when faced with normal initial error and gyroscope bias values and the covariance matching AUKF

performs the best overall. It is likely that the high gain AUKF and AHINF filter show little

difference when compared to the UKF and EKF as the adaptive gain may not have changed during

the collision effectively. The adaptive gain may not have changed due to lower innovation values

caused by the lower gyroscope bias and initial attitude error.

Table A.1: Average RMS attitude error for scenario 3 (collision trajectory) with
lower than normal intial attitude error and gyroscope bias (σ̃φ = 0.1 and σ̃bg = 0.001).

Bold values correspond to the lowest error.

Attitude Error [°]

Estimator Total Roll Pitch Yaw

Complementary 1.63 0.373 0.463 1.49

MEKF 1.55 0.255 0.416 1.47

H∞ 1.79 0.288 0.479 1.70

AH∞ 1.55 0.255 0.416 1.47

UKF 1.47 0.235 0.400 1.39

AUKF1 1.47 0.238 0.401 1.39

AUKF2 1.44 0.233 0.392 1.36
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