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Abstract

Within metacommunity theory, stability of ecosystems is a fundamental concept. Synchrony
between populations is known to cause greater regional variability and diminish the possi-
bility of rescue effects after a catastrophe, and thus it negatively affects stability. However,
much of the underlying dynamics of synchrony as applied to ecology are not yet known.
It is mathematically predicted that populations may move closer to and farther away from
synchrony in cycles, a phenomenon known as phase difference modulation, but this has not
been tested in ecological models. Here, we test for phase difference modulation using a
mathematical model of metapopulations, and evaluate its effects on stability. We find that
intermediate values of dispersal and habitat heterogeneity produce phase difference mod-
ulation. Additionally, we show that it can occur in simulated metacommunities where all
populations naturally fluctuate as well as in those with one that is naturally at equilibrium
but fluctuates due to dispersal. Phase difference modulation was found to cause populations’
amplitudes to vary, leading to cyclic patterns of local and regional variability. Our results
highlight the importance of viewing synchrony as a dynamic phenomenon, with implications

for how synchrony between populations is measured in the field.



Résumé

Dans la théorie métacommunautaire, la stabilité des écosystémes est un concept fondamen-
tal. La synchronisation entre les populations est connue pour provoquer une plus grande
variabilité régionale et diminuer la possibilité d’effets de sauvetage aprés une catastrophe,
et ainsi affecter négativement la stabilité. Cependant, une grande partie de la dynamique
sous-jacente de la synchronie appliquée a ’écologie n’est pas encore connue. Il est prédit
mathématiquement que les populations peuvent se rapprocher et s’éloigner de la synchronie
en cycles, un phénoméne connu sous le nom de modulation de différence de phase, mais cela
n’a pas été testé dans des modéles écologiques. Ici, nous testons la modulation de différence
de phase en utilisant un modéle mathématique de métapopulations, et évaluons ses effets sur
la stabilité. Nous trouvons que les valeurs intermédiaires de dispersion et d’hétérogénéité de
I’habitat produisent une modulation par différence de phase. De plus, nous montrons qu’il
peut se produire dans des métacommunautés simulées ou toutes les populations fluctuent na-
turellement aussi bien que dans celles qui en ont une qui est naturellement a I’équilibre mais
qui fluctue en raison de la dispersion. La modulation de la différence de phase a fait varier
les amplitudes des populations, ce qui a entrainé des variations cycliques de la variabilité
locale et régionale. Nos résultats soulignent 'importance de considérer la synchronie comme
un phénomeéne dynamique, avec des implications sur la facon dont la synchronie entre les

populations est mesurée sur le terrain.
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1 Introduction

1.1 Stability of natural and modelled metapopulations

Over the course of the development of the field, ecologists have always been interested in
the stability of natural populations. Indeed, the concept of stability has been on the minds
of ecologists since the early days of the discipline (Elton, 1958). While stability has many
definitions (Grimm et al., 1992; Ives and Carpenter, 2007), two particular ones that have
been of great importance to ecologists are persistence and variability. Persistence is defined
as the ability of an ecosystem to retain some fundamental quality it possesses over time
(Harrison, 1979; Pimm, 1984; Grimm and Wissel, 1997), which can be further specified to
the ability of an ecosystem to maintain a relatively constant species composition (Donohue
et al., 2016). It follows that a natural system with high persistence will see its species go
extinct at low rates. Variability, in turn, is defined as the ability of a species or group of
species to maintain steady population levels and avoid large fluctuations (Harrison, 1979;
Pimm, 1984; Grimm and Wissel, 1997). Both of these concepts of stability have motivated
extensive volumes of work both in the field (Donohue et al., 2016) and of a more theoretical
nature (Austin and Cook, 1974; DeAngelis and Waterhouse, 1987; McCann et al., 1998; Ives
and Carpenter, 2007; Gellner et al., 2016).

A common thread between persistence and variability is that both can be thought of as
the likelihood that a given population will reach critically low levels, low enough for that
population to go extinct. Indeed, variability and time to extinction have been shown to
correlate with each other (Inchausti and Halley, 2003). This means that there exist metrics
that can effectively measure both of these stability concepts. The coefficient of variation
(CV) of a time series, defined as its standard deviation divided by its mean, is a leading
measurement of variability used both theoretically (Doak et al., 1998; Cottingham et al.,
2001; Loreau and de Mazancourt, 2013) and in the field (e.g. Bai et al., 2004; Grman et al.,

2010; Mrowicki et al., 2016). However, since both decreasing the mean and increasing the



standard deviation of a species’s population levels heighten the chance that that species will
decline to critical levels, and both also increase the CV of the corresponding population time
series, CV has been used as an effective metric for determining extinction risk (Gellner et al.,
2016).

Theoretical studies of natural populations have been undertaken using a variety of differ-
ent models, but the Rosenzweig-MacArthur predator-prey model (Rosenzweig and MacArthur,
1963) is among the most commonly used for interacting species both within a patch and in
metapopulations (e.g. Koelle and Vandermeer, 2005; Vasseur and Fox, 2009; Garvie and
Golinski, 2010). This model features a Hopf bifurcation and the potential for oscillatory
solutions (Rosenzweig and MacArthur, 1963; Kuang and Freedman, 1988). Properties (in-
cluding oscillatory behaviour) consistent with low-dimensional deterministic models, and
specifically the Rosenzweig-MacArthur model, have been shown by experimental popula-
tions (Vasseur and Fox, 2009) and long-term field data (Schaffer, 1984; Holmengen et al.,
2009). The Rosenzweig-MacArthur model can be iterated over multiple patches (in other
words, turned into a metapopulation model). In this case, the oscillatory behaviour of the
populations modelled lends itself to analysis of persistence and variability, just as is done in
observed populations.

Within the context of metapopulation stability, synchrony has been widely studied and
found to have a negative effect. More specifically, this is because of the decline of the rescue
effect among synchronous populations. If a species goes extinct in one patch, migration from
another patch where the species is more abundant may rescue that population (Hanski, 1998;
Gonzalez et al., 1998). This is, intuitively, more likely if the various local populations hit their
minima at different times, or in other words if they exhibit population asynchrony (Allen
et al., 1993; Ruxton, 1994). The relationship between synchrony and stability is underscored
by the effect of dispersal on both. Theoretical results show that dispersal can facilitate the
rescue effect (Abbott, 2011), but also has the effect of inducing synchrony (Winfree, 1967). If

enough dispersal to fully synchronize a system is present, the magnitude of the rescue effect
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becomes minimal (Briggs and Hoopes, 2004; Abbott, 2011). In the same vein, synchrony
across populations causes the aggregate of those populations to possess high variability, while
less synchronous communities have more dampened fluctuations; a graphical explanation of

these effects is available in figure 1.1c.

1.2 Synchronization in metapopulation ecology

In ecology, synchronization of oscillatory population abundances has long been of interest,
both theoretically (Winfree, 1967) and in the field (Elton and Nicholson, 1942). The number
of field studies showing synchrony across populations is large, and encompasses a diverse
range of organisms such as mammals (Moran, 1953; Mackin-Rogalska and Nabagto, 1990;
Ranta et al., 1995), birds (Ranta et al., 1995; Paradis et al., 1999; Koenig and Liebhold,
2016; Eberhart-Phillips et al., 2016), fish (Cheal et al., 2007; Frank et al., 2016), and in-
sects (Hanski and Woiwod, 1993; Bouchard et al., 2017). Field literature has postulated a
variety of potential causes for synchrony, including the Moran effect of environmental fluc-
tuations (Moran, 1953; see figure 1.1b) as well as dispersal (see figure 1.1a). High dispersal
has been explicitly linked to synchrony in populations observed in the field (Matter and
Roland, 2010) and in laboratory-based experiments (Dey and Joshi, 2006; Vogwill et al.,
2009; Duncan et al., 2015). Additionally, synchrony between populations has been found
to decrease with increasing distance for many different species (Ranta et al., 1995), which
has been interpreted as a relationship between dispersal and synchrony. The observation
of greater spatial synchrony in species with greater dispersal ability (Paradis et al., 1999)
supports this, as does synchronization among populations separated by less distance than
species’ known dispersal ranges (Cheal et al., 2007; Eberhart-Phillips et al., 2016).

The degree of synchrony between ecological populations measured in the field has mainly
been described in terms of correlations between time series (Paradis et al., 1999; Buonac-
corsi et al., 2001; Liebhold et al., 2004; Loreau and de Mazancourt, 2013). This method

does have some advantages, for instance being easy to compute given field data (Loreau and
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de Mazancourt, 2013). However, it is an imperfect metric. It marks as “asynchronous” any
pair of populations with low or no correlation between each other, including pairs of popula-
tions where one always peaks shortly after the other, leading to a constant and predictable
phase difference between the two but low correlation (Liebhold et al., 2004). This has the
consequence of pairs of two populations, or a population and an environmental signal, being
declared asynchronous despite a strong appearance of being associated with each other (Mil-
ner et al., 1999). Using a static correlation also disregards any changes in synchrony that
may occur over time, and masks different patterns of synchrony that happen over different
time scales (Defriez et al., 2016). As a result, while a correlation-based approach has its uses
when dealing with field data, theoretical papers in biology that deal with synchrony have
instead used other methods (Blasius et al., 1999; Goldwyn and Hastings, 2008, 2009; Wall
et al., 2013; Zhang et al., 2015).

1.3 Measuring synchrony across populations

Analysis of phase differences and asynchrony between periodic signals is done in a wide
variety of disciplines, for instance astronomy (Zolotova and Ponyavin, 2006), medicine (Chao
et al., 1997), and physics (Rosenblum et al., 1996; Pikovsky et al., 1997), and has many
applications within biology (Winfree, 1967). In the broad field of biology, much of the early
work on phase dynamics was conducted in the context of neuronal oscillators (Ermentrout,
1981; Ermentrout and Kopell, 1991; Somers and Kopell, 1993, 1995), including the rigorous
derivation of equations describing the phase of such oscillators (Ermentrout, 1981).

From this derivation, it is possible to obtain equations for the phase difference between
pairs of oscillators, and the rate of change of this difference (this last one is referred to
as the “G-function”) (Goldwyn and Hastings, 2009). This derivation assumes a number of
constraints, namely that the levels of coupling between oscillators and heterogeneity among
oscillators are weak and of the same order of magnitude, and that without coupling the sys-

tem produces a strongly attracting limit cycle (Ermentrout, 1981; Kuramoto, 1984). Further
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work has led to the derivation of the time it takes coupled oscillators to reach a state of un-
changing phase (Izhikevich, 2000), and the finding that oscillators with more than one time
scale (referred to as pulse-relaxation oscillators) do so more quickly than those with only one
(called sinusoidal or regular oscillators) (Somers and Kopell, 1993, 1995; Izhikevich, 2000).
Mathematically, this shows up in the higher magnitude of pulse-relaxation oscillators’ G-
functions (Goldwyn and Hastings, 2008). Additionally, it has been shown that manipulating
parameters in a system of oscillators has effects on the G-function: increasing heterogeneity
between oscillators may remove its zeros, causing the system to undergo phase drift (Gold-
wyn and Hastings, 2009). In a similar vein, the G-function of the Rosenzweig-MacArthur
model in two patches has been shown to have stable zeros at values other than 0 and 27 for
parameter values leading to pulse-relaxation oscillations, but not sinusoidal ones, meaning
that the former but not the latter can converge to stable out-of-phase states (Goldwyn and
Hastings, 2008).

As literature on synchrony has proliferated, the number of ways to measure it has as
well. The rigorously-derived differential equations for phase and phase difference discussed
above are powerful tools, but may not be applicable for most scenarios due to their inherent
conditions. As a result, other methods of measuring phase have been utilized in the literature
(Pikovsky et al., 1997). One simple method of calculating phase of an oscillator is to assume
that the phase function is 27-periodic and is zero at each local maximum (representing the
beginning of a period), then increases linearly until the next local maximum (Blasius et al.,
1999; Cazelles and Stone, 2003), which has been referred to as the method of marker events
(Glass et al., 1983; Lotri¢ and Stefanovska, 2000). This method is light on computation, but
does not account for dynamics between local maxima, and is therefore good for measuring
phase with respect to oscillators that move approximately in a circle in the phase plane
(Pikovsky et al., 1997) but less so for more irregular oscillations such as pulse-relaxation
ones (Liebhold et al., 2004). Another way of measuring phase relies on angular momentum

(Pikovsky et al., 1997; Allefeld and Kurths, 2004; Liebhold et al., 2004); this addresses the
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problem of accuracy for non-sinusoidal waveforms. A third method, taken from the field of
signal processing, involves finding the phase of a presumedly oscillatory function by adding
its Hilbert transform multiplied by i to it (Rosenblum et al., 1996; Pikovsky et al., 1997).
Additionally, techniques such as measuring the correlations between time series (Liebhold
et al., 2004; Loreau and de Mazancourt, 2013) and spectral analysis (Grenfell et al., 2001
Sheppard et al., 2016; Defriez et al., 2016) have been used to evaluate synchrony, mainly

from field data, although those metrics do not measure phase directly.

1.4 Linking ecological synchrony with mathematical theory

While it is without question that synchrony has been thoroughly discussed in ecology, much of
the mathematically possible phenomena related to synchrony remain untested. At the heart
of this lie the dynamics of phase, and by extension phase difference between populations.
By definition, populations that are becoming synchronized will see their phase difference
approach zero; anti-synchronous populations will have their phase difference at 7, or 50%.
Consequentially, it is possible for the phase difference between two fluctuating populations
to itself fluctuate, or modulate, around a certain value. Since field studies have tended to
use synchrony metrics that forgo direct measurements of phase, they have not yet explored
the dynamics of synchrony through the lens of phase difference. Likewise, although phase
dynamics are regularly talked about in the theoretical ecology literature, phase difference
modulation has not been, despite its mathematical justification being straightforward. To
wit, if three oscillatory populations exist with phases of #;, > and 65, then two linearly
independent phase differences exist in the system, e.g. 6;—605 and 6o—03 (in this example, 6, —
05 is a linear combination of the other two). If these two quantities are considered as varying
temporally, then we are left with two ordinary differential equations in time. This may admit
a limit cycle, which would cause both 6; — 6, and 6, — 03 to fluctuate around an equilibrium.
The implications for this are that populations would move closer to being synchronous, then

farther away, in an ongoing cycle. Groups of three and more populations that exhibit these
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variable, bounded phase differences have already been theorized in the physics literature
(Aronson et al., 1990; Aeyels and Rogge, 2004). Additionally, theoretical ecology papers
have found transitions between various kinds of phase dynamics at intermediate levels of
dispersal (Blasius et al., 1999) and habitat heterogeneity (Goldwyn and Hastings, 2009),
suggesting that dynamics such as phase difference modulation may potentially be possible in
such ranges. (See figure 1.1a for a theorized system exhibiting PDM at levels of dispersal and
heterogeneity between those producing synchronous and uncorrelated populations.) Viewing
synchrony in this way could alter views of what it means for populations to be synchronous,
as well as impacting the way synchrony is measured in the field.

Thus, within this thesis, I investigate the question of whether phase difference modulation
is expected in ecological systems. I use the Rosenzweig-MacArthur predator-prey model to
simulate a metacommunity full of oscillatory populations, and examine the change over
time in phase difference between pairs of populations of each species. With the documented
effects of synchrony on stability in mind, I observe the CVs of synchronous and asynchronous
metapopulations, including one exhibiting phase difference modulation. This allows me to
integrate phase difference modulation into the existing body of work on synchrony and
variability. Additionally, I establish signatures of populations undergoing phase difference
modulation, assisting its identification in the field. Ultimately, my work will advance both
theoretical and field ecology, by adding another aspect to the theoretical knowledge on

synchrony and providing ways of verifying it in nature.
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1.5 Figures

Figure 1.1: Conceptual diagrams illustrating how synchrony can be generated through dis-
persal, habitat heterogeneity and the Moran effect, as well as the effects of synchrony and
asynchrony on regional stability. A theorized community showing phase difference modu-
lation is included, at intermediate rates of dispersal between synchronous and uncorrelated
populations.
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2 Chapter 1: Modulation in phase and amplitude in het-

erogeneous metacommunities and effects on stability

2.1 Abstract

Within metacommunity theory, stability of ecosystems is a fundamental concept. Synchrony
between populations is known to cause greater regional variability and diminish the possi-
bility of rescue effects after a catastrophe, and thus it negatively affects stability. However,
much of the underlying dynamics of synchrony and phase dynamics as applied to ecology are
not yet known. The ability of oscillating populations to undergo modulation in their phase
difference is mathematically predicted but has not been tested in ecological models. Here,
we test for the robustness of phase difference modulation in the Rosenzweig-MacArthur
predator-prey model in three patches, and evaluate its effects on stability. We find that
phase difference modulation occurs at intermediate values of interpatch coupling and habi-
tat heterogeneity. Additionally, we show that phase difference modulation can happen in
metacommunities where all populations autonomously oscillate as well as those with one at
equilibrium that is forced into oscillation. Phase difference modulation was found to produce
temporal variation in populations’ amplitudes, leading to cyclic patterns of local and regional
variability. Our results highlight the importance of viewing synchrony as a nonstationary
phenomenon, with implications for how synchrony between populations is measured in the

field.

2.2 Introduction

Greater understanding of synchronization among oscillating populations, including effects
of coupling and heterogeneity, have led to advances in understanding the variability and
extinction risk of metacommunities (Liebhold et al., 2004). However, the existing literature

in theoretical and field ecology has treated synchrony as a fixed property. Considering the
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phase dynamics between oscillatory populations allows us to view temporal variation in
their synchrony, and specifically fluctuations in synchrony not caused by any environmental
disturbance. This treatment of synchrony as dynamic is predicted to affect the amplitudes
of population fluctuations, and thus allow us to reconsider stability concepts related to
synchrony such as persistence and variability. Here, we examine the robustness of this
dynamic synchrony, which we call phase difference modulation, with respect to dispersal and
habitat heterogeneity. Additionally, we look at the coupling of phase difference modulation
with variation in population amplitudes, and how this affects stability of metacommunities.

When evaluating metacommunity stability, much attention has been paid to synchrony
among local populations. In-phase dynamics have been linked to higher extinction rates due
to cotemporality of local population minima (Ruxton, 1994; Earn et al., 1998; Liebhold et al.,
2004), while uncorrelated populations show less regional variability due to statistical averag-
ing (the “portfolio effect”) (Doak et al., 1998; Cottingham et al., 2001). Hence, the question
of how oscillatory populations in a metacommunity can synchronize has arisen. Dispersal
between populations has been found to synchronize them (Blasius et al., 1999; Goldwyn and
Hastings, 2008), consistent with the mathematical finding of time to synchrony between os-
cillators bearing an inverse relationship with the strength of their coupling (Izhikevich, 2000).
However, the relationship between dispersal and synchrony is far from being clear-cut. In
their study of synchronization in large networks of communities, Blasius et al. (1999) found
that low levels of dispersal led to phase drift among the populations concerned and high lev-
els synchronized them, but intermediate levels of dispersal synchronized local populations’
periods but not amplitudes. This was distinguished from the “complete synchronization”
present at higher coupling rates, and deemed to closely resemble population patterns found
in nature. These results stress the importance of both phase and amplitude when evaluating
synchrony versus interpatch variation.

Spatial synchrony theory in ecology has mostly emphasized phase-locking as the equilib-

rium phase difference, either in or out of phase. Recently, it has been shown that dispersal
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can drive non-equilibrium phase difference depending on the size of metacommunities. In
two-patch heterogeneous systems, the phase dynamics are known: increasing dispersal moves
phase drifting systems to a phase-locked state, and heterogeneity in patch parameters (car-
rying capacity, predator death rate) has been found to shift systems between synchronization
and obligate phase drifting (Goldwyn and Hastings, 2009). These correspond to the phase
difference between two like oscillators (6; —65) either converging to a stable equilibrium point
(locking) or not converging at all (drift) (see e.g. Strogatz, 2000); these two cases represent
the bulk of observable phase dynamics in a low-dimensional system. In contrast, a system
of three patches yields two linearly independent phase differences (e.g. 6; — 65 and 6, — 65).
Considering these phase differences as a system of two coupled differential equations means
that they can admit a cyclic solution (such as limit cycles in a phase plane of phase differ-
ences). This possibility of a modulation in phase difference suggests that phase dynamics
beyond drift and locking may have a much larger presence in systems with three patches
than those with two. Limit cycles in phase difference stemming from high system dimen-
sionality also bear ecological relevance as metacommunities found in nature are often far
more complex than only two patches. Modulation of phase differences has been mentioned
in the existing physics literature (Kim and Shaw, 1984; Aronson et al., 1990; Rosenblum
et al., 1996; Aeyels and Rogge, 2004). However, the phenomenon has so far gone unexplored
in ecology, where research has instead focused on synchronizing drifting systems within the
paradigm of phase-locked synchrony.

While phase difference modulation itself has not been looked at in ecology, we do have
some clues as to where it might appear. Transitions in phase dynamics occurred when het-
erogeneity between patches was varied (Goldwyn and Hastings, 2009). In very heterogeneous
systems, one population may converge to a stable limit in the absence of coupling, but os-
cillate due to forcing by other patches when coupled to them. Non-stationary signals have
been found in systems containing such forced oscillators (Leroux and Loreau, 2012), provid-

ing another potential location for phase difference modulation. Coupling is also known to
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produce transitions in phase regimes (Ermentrout and Kopell, 1991; Goldwyn and Hastings,
2008), and the “more unusual form of synchronization” of Blasius et al. (1999) took place
in coupling ranges between those that produced phase drift and pure synchronization. This
suggests that coupling as well as heterogeneity may play an important role in leading to
non-equilibrium phase and amplitude dynamics.

Signs of the interrelatedness of synchrony and variability, and hence of phase and ampli-
tude, have been produced in the ecological literature. The portfolio effect found by Doak et
al. (1998) means that a regional time series will have smaller amplitudes if its constituent
populations are out of phase. On a local level, it is known that weak coupling between
out-of-phase populations causes immigration into these populations to become inversely cor-
related with their abundances, which has a damping effect on each population’s amplitude
(Briggs and Hoopes, 2004). Both of these effects rely on how close to being out of phase
the populations in a metacommunity are. If that property changes over time, as it would
in a system exhibiting phase difference modulation, the strengths of the portfolio effect and
immigration-local abundance decoupling would also both vary. Hence, it is intuitive that if
there is modulation in phase difference, there should also be modulation in amplitude.

In this paper, we establish the existence, robustness, and implications for stability of
modulation in phase difference and amplitude. To do this, we investigate a model featuring
one predator and one prey iterated over two and three patches. We use a simple linear
model of phase (Blasius et al., 1999; Cazelles and Stone, 2003) to check pairs of oscillators
for phase differences, and establish relationships between coupling strength and patchwise
parameter heterogeneity (i.e. migration rates and habitat heterogeneity) and the type of
phase dynamics expected. Additionally, we use a common measure of ecological stability,
namely the coefficient of variation, to determine how local and regional stability respond
to synchrony regimes. The establishment of phase difference and amplitude modulation
as distinct types of dynamics, separate from locked systems and phase drift, provides new

insight as to how oscillatory natural populations can be evaluated. Also, the wide parameter
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ranges considered offer information about phase dynamics beyond the restrictions of weak

coupling and weak heterogeneity.

2.3 Methods

2.3.1 Terminology and model

In this study, the following terminology related to phase dynamics was used: phase-locking
refers to the phase difference between two oscillators converging to a constant value, phase
difference modulation (PDM) refers to that phase difference converging to a limit cycle, and
phase drift is when phase difference does not converge.

The Rosenzweig-MacArthur model (1) was used to simulate predator and prey popula-

tions:

dN; N; s;N; P;
= N [1=22 E E
o erz< h) T+ 5N Z—i— m; N m

This model was iterated over two and three patches (i = 1,2,3). Within the model,
for each patch, r; represented the intrinsic prey growth rate, K; represented the carrying
capacity of the prey, s; was the predator’s search rate for prey, 7; was the time taken for
the predator to handle a captured prey organism, b; indicated how much energy gained from
predation went towards predator reproduction, and ¢; was the predator’s death rate. In all
simulations, each patch was assumed to have identical values of each parameter other than
K. Specifically, these were r; = 10, s; = 0.5, 7, = 1, b; = 1 and ¢; = 0.4, which were chosen
based on previous studies of out-of-phase dynamics (Goldwyn and Hastings, 2009). For

P

simplicity, the prey migration rates m . and predator migration rates m;; were assumed to

be equal within simulations. K was chosen as the parameter of habitat heterogeneity because
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it was shown to drive a transition from phase drift to synchronization in a two-patch system
(Goldwyn and Hastings, 2009).

We set parameter values, including those of K, that would produce sinusoidal waves
rather than pulse-relaxation ones. This was done in order to test for the roles of habitat het-
erogeneity and coupling on the emergence of PDM and amplitude varaition while controlling
for the effect of pulse-relaxation oscillations (Izhikevich, 2000).

In order to produce sinusoidal waves with the non-K parameters set to the values men-
tioned above, K was needed to be fairly low. Hence, for the three-patch system, one of the
patches (the “middle-K” patch) was assumed to have a value of 5 for K, while the other two
(the “high-K" and “low- K" patches) had K-values of 5+ AK and 5 — AK for some specified
AK. For the two patch system, the patches in question instead had K-values of 5 + AK
and 5 — AK. The particular choice of 5 for the average value of K across patches allowed for
studying forced systems. When all other parameters are as previously specified, one patch
will cross the Hopf bifurcation and will thus only oscillate as a result of being coupled to the
other patches.

The system was integrated in MATLAB, using the ODE45 function. In each simulation,
the system was integrated until ¢ = 3000 and the results up until £ = 1000 were thereafter
discarded in order to eliminate transient dynamics. The periods of the oscillations generated
by running the system with the parameters as above were determined to be approximately
5t, with some variation depending on K. As a result, the integration step size was set to
h = -3t (i.e. 0.001% of the simulation length) in order to minimize computation time while

100

keeping numerical error low.

2.3.2 Measuring phase difference and amplitude modulation

The phase of each oscillator in the Rosenzweig-MacArthur system (1) was measured. To do
this, the local maxima of each oscillator was identified and that oscillator’s phase was assumed

to linearly increase from 0 to 27 from one local maximum to the next. This method has
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been used in ecology (Blasius et al., 1999; Cazelles and Stone, 2003); its advantages include
that it is not very computationally intensive compared to the Hilbert transform method used
in Rosenblum et al., 1996 and that it does not require assuming weak coupling and weak
heterogeneity, as the derivation of phase equations does (Ermentrout, 1981; Goldwyn and
Hastings, 2009). Although this method neglects the behaviour of the oscillators between local
maxima (Liebhold et al., 2004), the assumption of regular, sinusoidal waveforms mitigates
this concern. In previous simulations, the phases extracted with the method of marker
events and with other methods have had minimal differences (Pikovsky et al., 1997; Lotri¢
and Stefanovska, 2000).

The resulting time series of phase difference between pairs of oscillators (see figure 2.2)
were analyzed for phase synchrony. If, after transient dynamics, the minimum phase dif-
ference was 0 and the maximum was 27, indicating one oscillator steadily moving past the
other owing to a faster intrinsic frequency, the oscillators were said to be exhibiting phase
drift (figure 2.2a). If instead the time series of phase difference stabilized at a constant value
and thus the maximum and minimum phase differences were the same, the two oscillators
were said to be phase-locked (figure 2.2¢), in phase if this value was 0 and out of phase if it
was greater than 0. Any intermediate behaviour involving the phase difference varying, but
neither oscillator overtaking the other, was deemed to be PDM (figure 2.2b). In other words,
modulatory behaviour in the phase difference between two oscillators was characterized by
a spread between the maximum and minimum phase differences that was greater than 0 but
less than 2.

Amplitudes were extracted from time series by identifying local minima and maxima and
measuring the vertical distance from a local minimum to the succeeding local maximum.
The amplitudes in a time series were said to be at equilibrium if there was no difference

between the greatest and least amplitude, and non-equilibrium if there was.
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2.3.3 Habitat heterogeneity and coupling strength

To evaluate the response of phase dynamics to habitat heterogeneity and coupling strength,
we analyzed the plotting the pairwise spread in phase difference between oscillators in rela-
tion to variations in coupling strength (m) and interpatch heterogeneity in carrying capacity
(AK). Parameter spaces were created for each pair of oscillators. Since the assumptions
of weak coupling and weak heterogeneity were relaxed, wide ranges of values for these pa-
rameters could be looked at. Specifically, in each parameter space, AK took values in the
range [0,0.5] in order to capture areas on both sides of the Hopf bifurcation, which occurs
at K = % when the other system parameters are as specified above (Kuang and Freedman,
1988). Likewise, the migration rate m took values in the range [0,0.045] in order to represent
weak, intermediate and strong coupling scenarios.We additionally compared the three-patch

results with a two-patch control over a similar parameter space.

2.3.4 Effects on local and regional stability

In order to test for the effect of regimes of spatial synchrony on community stability both
within and among patches, the regional and average local coefficients of variation (CV) were
calculated for simulated time series from parameter sets leading to phase drift, PDM and
phase-locking. The oscillators in a system exhibiting PDM should have cyclical periods, and
thus PDM is predicted to show non-stationary signals. To capture these, the CV needed
to be taken over a window that would be long enough to include multiple periods of the
oscillators, but too short to contain an entire period of the oscillators’ periods. Specifically,
the CV was taken over windows of 20 and 200 time steps. Regional CV (CV,.,) was calculated
by summing the populations of a single species across patches, then taking the CV of the
resulting time series within the aforementioned window, an approach consistent with past
studies (Holyoak and Lawler, 1996; Romanuk and Kolasa, 2004). Average local CV (CVj,.)
was obtained by averaging the CV from each patch in a single species over the same window

(Campbell et al., 2011).
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2.4 Results

2.4.1 Emergence of phase difference modulation

As expected, increasing coupling strength while holding heterogeneity constant caused the
system to synchronize (figure 2.1, figure 2.4). In the three-patch system, holding coupling
strength constant while increasing heterogeneity caused the same shift in reverse, also ac-
cording to expectations (figure 2.1, figure 2.4). In contrast, increasing heterogeneity in the
two-patch system caused phase-locked oscillators to start drifting as their proper frequencies
diverged, but it also caused the low-K oscillator to approach the Hopf bifurcation and thus
have lower amplitudes. This meant that the low-K oscillator could be dominated by the
high-K oscillator, leading to phase-locking, with the ease of such domination depending on
the coupling strength (figure 2.3).

Phase difference modulation (PDM) was found to be present in the three-patch system,
and regions in parameter space where it was present were located between areas of phase
drift and phase-locking (figure 2.4, figure 2.5). There existed parameter ranges where phase
difference was bounded within ]0, 27|, corresponding to PDM (figure 2.4). PDM was present
regardless of the pair of oscillators being compared (figure 2.4a, figure 2.4b), and this region
occupied a smaller but comparable range of parameters than the region of unbounded phase
difference (figure 2.5).

The two-patch system also exhibited PDM (figure 2.3), but it occurred in different and
more restricted regions of parameter space compared to the three-patch one (figure 2.3, fig-
ure 2.4). Specifically, PDM occurred where the low-K oscillator was just close enough to the
Hopf bifurcation to transition between drifting and locking relative to the high-K oscillator
(figure 2.3). This way of arriving at PDM was not observed in three-patch metacommunities

(figure 2.4).
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2.4.2 Phase difference modulation in forced systems

Within the three-patch system, PDM was present in forced systems as well as systems of
three autonomous oscillators. Large areas of PDM occurred where the low-K patch did not
oscillate on its own but had a significant amplitude due to dispersal (figure 2.4a, figure 2.4b).
This contrasts with the two-patch system, in which systems where one patch was forced by
the other had the forced oscillator matching the phase dynamics of the natural oscillator,
i.e. it was entrained into phase-locking (figure 2.3).

Forced systems showing PDM had stronger variation in phase difference than systems
with three autonomous oscillators (figure 2.4a, figure 2.4b). The phase difference fluctua-
tions in these forced systems could have amplitudes close to m, i.e. the high-K and low-K

oscillators could cycle from being almost in phase to almost anti-synchronous.

2.4.3 Relations between phase and amplitude

There were three distinct regions in parameter space with regards to amplitude variation,
which corresponded to regimes of phase dynamics (figure 2.6a, figure 2.5). In phase-drifting
systems, a given oscillator’s maximum amplitude showed no difference from its intrinsic
amplitude but its minimum amplitude decreased with increases in coupling. For systems
showing PDM, the maximum and minimum amplitude changed together, and the difference
between them remained constant regardless of coupling strength. If coupling was strong
enough to phase-lock the system, the maximum amplitude of each oscillator was the same
as its minimum amplitude. As with phase difference, the transitions between the different
regimes of period and amplitude were sharp (figure 2.5, figure 2.6).

In the three-patch system, PDM was closely tied to temporal variation in amplitude
(figure 2.8). Each population in a drifting system stayed at its own intrinsic amplitude and
period (figure 2.8a). In phase-locked systems, all populations converged to a common period
and showed no temporal variation in period or amplitude (figure 2.8c). However, populations

in systems showing PDM showed cyclic patterns of period and amplitude (figure 2.8b),
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dynamics not seen in the other two regimes.

2.4.4 Effect of phase difference and amplitude modulation on stability

Systems undergoing PDM showed lower average local CV, and therefore greater local sta-
bility, than either phase drifting or phase-locked systems (figure 2.7a). This is despite PDM
typically being intermediate between drift and locking in terms of coupling strength and het-
erogeneity, and also intermediate between them in terms of regional CV. These results held
regardless of the length of the window that CV was calculated over (figure 2.7b). The reason
for this is that when PDM was present, all populations in the system had lower amplitudes
than they did in the other two phase regimes (figure 2.8).

Systems with PDM also had the distinct signature of oscillating in both CVj,. and C'V,,
(figure 2.7a), in keeping with PDM being a non-stationary phenomenon. This enabled these
systems to loop around in a cycle in C'Vj,-C'V,., parameter space, similar to their cyclic
patterns of period and amplitude. The higher the amplitude of the fluctuation in phase
difference, the larger this loop was (figure 2.7c). In contrast, the parts of parameter space
governed by phase drift had highly variable CV,., but comparatively little change in C'Vj,.,
and phase-locked systems had no temporal variation in C'V,. or CV,., beyond that from
artifacts related to the sampling window (figure 2.7a). Greatly lengthening the window to
minimize these artifacts yielded no CV variation at all in phase-locked systems (figure 2.7b),

as would be expected from a system of completely synchronized oscillators.

2.5 Discussion
2.5.1 Emergence and robustness of phase difference modulation

In both two-patch and three-patch models, increasing coupling led to drifting populations
being synchronized. Prior observations have shown this pattern both under the assumptions
of weak coupling (Goldwyn and Hastings, 2008) and with higher rates of dispersal (Ranta

et al., 1998). Field studies have also shown that connecting populations can lead to synchrony
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(Haddad et al., 2014), and that populations of species with greater ability to disperse were
more synchronous (Paradis et al., 1999). The same broad pattern of synchronization through
coupling holds for other biological oscillators, for instance those found in neuroscience (Shuai
and Durand, 1999; Ferrari et al., 2015) and epidemiology (Xia et al., 2004). Increasing
heterogeneity in the three-patch system had the opposite effect, namely changing locked
systems to drifting ones. This also is consistent with expectations (Goldwyn and Hastings,
2009).

Different patterns of synchronization were found in the two-patch system, with the high-
K oscillator dominating the low-K one if the latter was near or past the Hopf bifurcation.
In that setup, the intrinsic amplitude of the low-K patch is small or zero, and it can thus be
dominated by signals from the high-K patch. The fact that coupling can alter the dynamics
of oscillators near a Hopf bifurcation is well-known (Aronson et al., 1990). This is also similar
to the concept of “master-slave” oscillators found in the mathematical and physical literature,
where one oscillator can be entrained by another by means of unidirectional coupling (Lee
et al., 2010; Pisarchik and Jaimes-Reétegui, 2015).

The presence of phase difference modulation is itself notable, as it implies that spatial
synchrony can be a non-equilibrium, oscillatory phenomenon in the absence of stochastic
environmental fluctuations. The convergence of drifting populations to a phase-locked state
is more commonly talked about in the existing theoretical literature (Blasius et al., 1999;
Goldwyn and Hastings, 2008; Wall et al., 2013; Zhang et al., 2015), and discussion of any
temporal changes in synchrony is rare in field-based work (Koenig and Liebhold, 2016).
However, our results suggest a new way of thinking about population synchrony as a dynamic

process.

2.5.2 Entrainment and forcing

In a two-patch metacommunity, forced oscillations led to entrainment and phase-locking.

However, in a three-patch system, forcing of one community leads to complex interactions
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between forced and autonomous oscillators and results in PDM over a broad range of het-
erogeneity and dispersal values. This suggests that patches at equilibrium may play an
important role in maintaining stability in metacommunities.

Unconditional sink populations by definition approach equilibrium (i.e. zero) in the
absence of dispersal (Pulliam, 1988; Loreau et al., 2013) and provide a limiting case for
our research on PDM with forced oscillations. Much of the existing source-sink literature
focuses on systems where all patches are at equilibrium, but many examples of source-sink
landscapes with fluctuating dynamics have been identified (Loreau et al., 2013). Indeed,
theory predicts that sink populations with regular oscillations can be driven by migration
from sources (Howe et al., 1991; Holt et al., 2003; Schreiber et al., 2006; Amarasekare, 2016).
As illustrated by our findings that populations at equilibrium can induce PDM by receiving
migration from multiple patches, it is possible that the presence of sinks will make a larger

metacommunity more stable, although more research in this area is required.

2.5.3 Coupled phase-amplitude dynamics in strongly coupled metacommunities

We found a strong relationship between the phase dynamics present and the behaviour of the
amplitudes of the populations in a system. In systems undergoing phase drift, populations
that were out of phase could temporarily dampen each other’s amplitudes, a phenomenon
referred to as immigration-local abundance decoupling (Briggs and Hoopes, 2004; Ama-
rasekare, 2008). Within the regime of phase drift, greater coupling increased the strength
of this effect (figure 2.6). Systems with PDM also showed variation in amplitude over time:
the amplitudes of oscillators rose and fell in limit cycles similar to what was concurrently
happening with phase difference (figure 2.8b). This was caused by the oscillators moving
closer to and farther away from synchrony, and hence the strength of the damping varying
temporally.

In contrast, increasing coupling to values capable of phase-locking the system caused

the end of temporal amplitude variation. This is consistent with past findings on groups of
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oscillators entraining each other’s amplitudes via strong coupling (Kuramoto and Nishikawa,
1987). Previous studies under the assumptions of weak coupling have found dynamics with
uniform phase and chaotic amplitude in both bitrophic (Goldwyn and Hastings, 2009) and
tritrophic models (Blasius et al., 1999), but under strong coupling we did not find dynamics

of that nature.

2.5.4 A dynamic theory of coupled local-regional stability

Phase difference modulation has the potential to reduce variability by damping the ampli-
tudes of both local and regional time series (figure 2.7a). In coupled oscillatory systems,
the amplitudes of local time series can be damped via coupling of out-of-phase oscillators
(Briggs and Hoopes, 2004), and variability in regional averaged time series can be damped
by statistical averaging (Doak et al., 1998; Cottingham et al., 2001). Our results show that
systems undergoing PDM combine both local damping and regional averaging, leading to
fluctuations between local and regional stability in metacommunities.

We have shown that phase difference modulation can provide more local stability than
phase drift or phase-locking (figure 2.7a). At regional scales, the consensus is that out-of-
phase dynamics maximize stability, while in-phase dynamics lead to greater regional vari-
ability and extinction risk (Hanski, 1998). Our findings revealed oscillators undergoing PDM
that were always at least somewhat out of phase, and reached high regional stability when
phase difference approached 7. Hence, our work suggests that drifting systems may not be
the most stable type. The rationale for this is that while the oscillators in a drifting system
may damp each other via the decoupling of immigration and local abundance (Briggs and
Hoopes, 2004; Gouhier et al., 2010), and thus approach steady-state dynamics (Amarasekare,
2008), this effect is lessened as the drifting oscillators become more synchronous and zero

when they are in phase.
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2.6 Conclusion

In this paper, we have shown that synchrony of phase and amplitude can be viewed as non-
stationary properties, and improved our understanding of spatial synchrony in ecology. Our
investigation of phase difference modulation has established it as a phenomenon robust to
strong coupling and heterogeneity. Additionally, we have found phase difference modula-
tion to damp amplitudes of local populations in a metacommunity. These coupled phase-
amplitude dynamics lead to similarly coupled fluctuations in local and regional stability, and
induce greater local stability. The coupling of phase and amplitude dynamics provides for a

distinct signal of phase difference modulation, which should aid its identification in the field.
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2.7 Figures

Figure 2.1: Example time series of systems of prey populations for varying levels of migration
and habitat heterogeneity. When heterogeneity and migration are both low, the oscillators
have frequencies close to their intrinsic ones and changes in phase difference are gradual.
Increasing heterogeneity leads to greater interpatch differences between the oscillators’ in-
trinsic frequencies and amplitudes. Stronger migration leads to a phase-locked system where
all oscillators’ periods are identical.
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Figure 2.2: Example time series of phase difference between two given oscillators, showing
the three different kinds of dynamics. AK = 0.1 in each time series. Absent migration,
the oscillators’ intrinsic frequencies are dominant, causing the faster one to steadily move
past the slower one and their phase difference to increase linearly. With strong migration,
phase-locking occurs: the two oscillators are always at the same point in phase relative to
one another, so phase difference is constant. However, with intermediate migration levels,
the oscillators move closer to and farther away from each other in a cycle without one ever
overtaking the other. This is phase difference modulation.
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Figure 2.3: Spread in phase difference (maximum minus minimum) between the patches in
the two-patch system as a function of migration and heterogeneity. The green line represents
the amount of heterogeneity necessary for the low-K patch to cross the Hopf bifurcation.
Areas in white (with a spread of 27) are where one oscillator has overtaken the other at
least once, indicating phase drift. Grey areas are where the phase difference between the two
oscillators never changes, i.e. they are phase-locked. Any other colour represents areas where
the phase difference changes over time but neither oscillator overtakes the other, defined as
PDM.
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Figure 2.4: Spread in phase difference between two given patches in the three-patch system
as a function of migration and heterogeneity. The green line represents the amount of
heterogeneity necessary for the low-K patch to cross the Hopt bifurcation.

(a) Middle-K versus high-K patches
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