
NOTE TO USERS

Page(s) not included in the original manuscript and are

unavailable from the author or university. The manuscript

was scanned as received.

iii-iv

This reproduction is the best copy available.

®

DMI





Theory and Simulation of Texture Formation in

Mesophase Carbon Fibers

by

Jun Yan

Department of Chemical Engineering

Mcgill University, Montreal, Canada

Date: June 3, 2001

A Thesis submitted to the Faculty of Graduate Studies and Research in Partial fulfiment

ofthe requirements for the degree ofMaster of Science

© Jun Yan 2001. AU rights reserved.



1+1 National library
of Canada

Acquisitions and
Bibliographie Services
385 W.IlngIon Str..t
Oftawa ON K1 A 0N4
canada

BibliothèQue nationale
du Canada

Acquisitions et
services bibliographiques

395. rue W"ngton
OIt.Iiwa ON K1A 0N4
CaNdI

CÙ'.-._

The author bas granted a non­
exclusive licence allowinB the
National Library ofCanada to
reproduce, loan, distnbute or sen
copies of tb.is thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts nom it
may be printed or otherwise
reproduced without the author's
peIDUSS1on.

L'autelU' a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prater, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-79104-1

Canad~



11



Abstract
Carbonaceous mesophases are discotic nematic liquid crystals that are spun into

high performance carbon fibers using the melt spinning process. The spinning process

produces a wide range of fiber textures and cross-sectional shapes. The circular planar

polar (PP), circular planar radial (PR), ribbon planar radial (RPR), and ribbon planar line

(RPL) textures are the most frequently observed in industrial fiber making. This thesis

presents, solves, and validates models of mesophase fiber texture formation based on the

classical Landau-de Gennes theory of liquid crystals, adapted here to carbonaceous

mesophases. The model captures the microstructure and the formation of the four

(PP, PR, RPR, RPL) textures. In cylindrical fibers, the computed PP and PR textures

phase diagram, given in terms of temperature and fiber radius, establishes the processing

conditions and geometric factors that lead ta the selection of these textures. The

influence of elastic anisotropy to the textures' formation and structure is thoroughly

characterized. The multi-stage formation process of the PP texture is reproduced,

including defect nucleation, defect migration, and overall texture geometry. The

mechanisms that control the PP texture geometry are characterized using analytical

methods. The role of elasticity and flow-induced orientation on texture selection

mechanism in ribbon-shaped mesophase fibers are characterized using an anisotropic

viscoelastic model. The model is able to predict the formation of the commonly

observed line defect in the RPL texture, and the fine structure of the line is reproduced

and explained in terms of classicalliquid crystal defect physics. The results of this thesis

provide new knowledge on how to optimize and control mesophase fiber textures.
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RÉSUMÉ
Les mésophases carboniques sont des cristaux liquides nématiques distiques,

utilisés pour la fabrication des fibres de carbones à haute performance en utilisant le

procédé d'extrusion. Le procédé d'extrusion produit une gamme variée des textures des

fibres et des différentes formes des sections transversales. Les textures circulaires

planaires polaires (PP), circulaires planaires radiales (PR), les textures ruban planaires

radiales (RPR), et ruban planaires ligne (RPL) sont très répandues. Cette thèse pressent,

résolut et valide les modèles pour la formation des textures de fibres de mésophases,

basés sur la théorie classique Landau-deGennes pour cristaux liquides, adaptée dans ce

cas pour l'étude des mésophases carboniques. Dans les fibres cylindriques, les

diagrammes des phases pour les textures PP et PR données en fonction de la température

et du rayon de la fibre, sont présentées pour déterminer les conditions du procédé et les

facteurs géométriques conduisant à une certaine sélection de la texture. L'influence de

l'anisotropie élastique sur la formation et la structure des textures est aussi étudiée. Le

procédé de la formation de texture PP est très bien reproduit, en incluant l'apparition des

défauts, la dynamique des défauts et la géométrie de la texture. La géométrie calculée de

la texture PP est très bien expliquée à l'aide des méthodes analytiques. Aussi on

caractérise le rôle de l'élasticité et de l'orientation induite par l'écoulement sur le

mechanism de sélection de la texture ruban. Ce modèle est capable prédire la formation

de la texture ligne observée souvent dans la texture RPL. La structure fine de cette ligne

est reproduite et expliquée en fonction de la physique classique des défauts du cristal

liquide. Les résultats obtenus apportent des nouvelles connaissances dans le domaine de

l'optimisation et du control des textures des mésophases carboniques.
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List of Figures
Figure 1.1: thermal conductivity versus electrical resistivity product property phase

plane for various metals and carbon fibers. The thermal conductivity of

mesophase carbon, P-13üX, P-12ÜX etc., is considerably higher than that of the

most conductive metals like copper. 2

Figure 1.2: tensile strength versus modulus of elasticity (stiffness) product property

phase plane of various carbon fibers. The PAN-based carbon fibers have

considerably in terms of stiffness. The stiffness of mesophase carbon fibers

reaches the theoreticallimits of pure graphite 3

Figure 1.3: Schematic representation of (a) rod-like nematic liquid crystals, and (c)

discotic nematic liquid crystals. The director n represents the average preferred

orientation of the molecules for (b) rod-like nematics, whereas in discotic

nematics n is the average preferred orientation of the unit normals to the disc-like

molecules. The molecular degree of alignment is given by scalar order parameter

S, which is a measure of alignment of individual molecule along the director n.. 5

Figure 1.4: schematic arrangement of rod-like molecules in a cholesteric liquid

crystalline phase. The localized director n follows a helical trajectory along the

z-axis. Note that the successive planes are drawn for convenience, and don't

have any physical meaning 6

Figure 1.5: Schematic arrangement of rod-like molecules in (a) Smectic A, and (b)

Smectic C liquid crystalline phases. The shown smectic phases have 2-D layered

structure. In smectic C phase the constituting molecules are tilted at an angle ro

normal to the smectic plane 7

Figure 1.6: changes in the non-volatile organic compounds like coal or petroleum

pitches brought about by heating in the absence of air 8

Figure 1.7: Typical molecule of a heat soaked mesophase pitch 9

Figure 1.8: schematic model representing stacking arrangement of polyaromatic

molecules in carbonaceous mesophases or mesophase pitches. The disc-shaped

molecules lie more or less parallel to each other. 9
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Figure 1.9: processmg sequence of mesophase carbon fibers, showing continuous

conventional melt spinning of mesophase pitch, and subsequent batch processes:

oxidization stabilization Il

Figure 1.10: SEM images of cylindrical mesophase pitch-based cabon fibers with (a)

radial texture, (b) planar polar texture 13

Figure 1.11: SEM images ofribbon shape mesophase pitch-based carbon fibers with (a)

Line texture in center. (b) Radial-like texture 13

Figure 2.1: Schematics of the elastic splay (left), twist (centre), and bend (right)

deformation for uniaxial discotic nematics. Note that the splay (bend) mode

involves bending (splaying) of the disk's trajectories, in contrast to the case of

uniaxial rod-like nematics. A disk trajectory is a curve locally orthogonal to the

director 20

Figure 2.2: molecular orientation in the neighborhood of a disc1ination 20

Figure 2.3: the free energy F as a function of the scale order parameter S, for the special

temperatures T* , TNh T+, for SNI=OA 25

Figure 3.1: Definition of director orientation of a uniaxial discotic nematic liquid

crystalline materia1. The director n is the average orientation of the unit normals

to the disk-like molecules in a discotic nematic phase 33

Figure 3.2: Schematics of the elastic splay (left), twist (centre), and bend (right)

deformation for uniaxial discotic nematics. Note that the splay (bend) mode

involves bending (splaying) of the disk's trajectories, in contrast to the case of

uniaxial rod-like nematics. A disk trajectory is a curve locally orthogonal to the

director 34

Figure 3.3: Schematics of two cross-sectional textures most commonly seen in

mesophase carbon fibers. The dashed line indicates the trajectories of the

molecular planes, (a) shows the planar radial (PR) texture, in which only the pure

bend mode exists with one defect in the centre of strength S=+l, and (b) shows

the planar polar (PP) texture, with splay and bend, and two defects of the

strength S=+ll2. Figure 3.3 (c), (d) are the corresponding director fields'

schematics of the PP and PR textures. The defects arise due to the constraints of

tangential boundaryconditions and a planar 2D orientation field 36
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Figure 3.4: (a) Computed texture phase diagram, given in terms of nematic potential

ljU = T/3T* as a function of dimensionless fiber radius n = Rj'f:" with the

auxiliary conditions (18,19) and 2.7~U~6.55, 0~'R~300, [2=-0.5,

[3 =O. The full line indicates the pp and PR texture transition line, defined by

critical values of the temperature and fiber size (l/Ue, 'Re). The dot on the

diagrams represent the parametric conditions applied in obtaining the solution

shown in Figs. 3.4b. (b) Representative steady state visualization of M

corresponding to the pp texture for U=6.55, 'R=67, L
2
=-0.5, L

3
=0. (c-d) Grey­

scale plot and a surface plot of the uniaxial scalar order parameter S as a function

of dimensionless position (x*, y*). In the grey-scale plot a low order parameter

(S ~ 0) is black and high order parameter (S ;:::! 1) is white. (e-f) Grey-scale and

surface plots of the biaxial order parameters P as a function of dimensionless

position (x*, y*). In the grey-scale plot, P ;:::! 0 corresponds to black and P ;:::! 1 to

white 46

Figure 3.5: (a) Computed texture phase diagram, given in terms of nematic potential

ljU = T/3T* as a function of dimensionless fiber radius 'R = R/~, with the

auxiliary conditions (18,19) and 2.7:::;; U :::;; 6.55, 0 ~ 'R ~ 300, [2 = -0.5,

L 3 = O. The fullline indicates the pp and PR texture transition line, defined by

critical values of the temperature and fiber size (l/Ue, 'Re). The dot on the

diagrams represent the parametric conditions applied in obtaining the solution

shown in Figs. 3.5b. (b) Representative steady state visualization oftensor order

parameter M corresponding to the PR texture for U=2.80, 'R=67, L2 =-0.5, L3 =0.

(c-d) Grey-scale plot and a surface plot of the uniaxial scalar order parameter S

as a function of dimensionless position (x*, y*). In the grey-scale plot a low

order parameter (S ;:::! 0) is black and high order parameter (S ;:::! 1) is white. (e-1)

Grey-scale and surface plots of the biaxial order parameters P as a function of

dimensionless position (x*, y*). In the grey-scale plot, P;:::! 0 corresponds to

black and P ~ 1 to white 47
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Figure 3.6: Dimensionless short-range energy (top), long-range energy (middle) and

total energy (bottom) as a function of dimensionless fiber radius ~, for: U=3.05,

L2 =0 (left column) and U=3.05, L2 =-0.5 (right column). The discontinuity at

~~ corresponds to the texture pp <=> PR transition .48

Figure 3.7: Computed texture phase diagram, given in terms of nematic potential

ljU =T/3T* as a function of dimensionless fiber radius 'R=R/'t" with the

auxiliary conditions (18,19) and 2.7 :5 U :5 6.55 , 0 :5 <R :5 300, L3 = 0,

L2 = 0 and L2 =-0.5. The phase transition line of L2 =-0.5 shifts left and up in

comparison to the L2 =0 case. The figure shows that significant influence of L2

on the texture transition only exists for intermediate values ofU and R 50

Figure 3.8: Eigenvalues of the tensor order parameter Q as a function of dimensionless
~ ~ ~

distance b* for U=6.55, ~=67, L3 =0.0, L2 =0.0 (a), and U=6.55, ~=67, L3 =0.0,

L2 =- 0.5 (b), corresponding to the pp textures. In both cases the state at defect

center is uniaxial with Jl n = Jl m > 0, Jll < O. The main effect of Lz is the

decrease in defect core size. Figures 3.8b-d show the three eigenvalues of the

tensor order parameter Q as a function of dimensionless radial distance r* for
r--.J "'" """ ,....,

U=2.8, ~=67, L2 =0.0, L3 =0.0 (b), and U=2.8, ~=67, L 2 =-0.5, L3 =0.0 (d),

corresponding to the PR textures 51

Figure 3.9: Computed texture phase diagram, given in terms of nematic potential

ljU = T/3T* as a function of dimensionless fiber radius ~ = R/~, with the

auxiliary conditions (18,19) and 2.7::;; U::;; 6.55, O:s;; <R:s;; 300, L2 =-0.5. For

three values of L3 , the figure shows that as IL
3

1 increases the texture transition

line shifts up and left in the phase diagram 52

Figure 3.10: Dimensionless defect distance d* as a function of L3 for ~=67, L
2
=-0.5,

and U=6.55(top), 5.55(middle), and 4.55(bottom). The dots for L < L
3 3e

correspond to the PR texture and the fullline corresponds to the pp texture. Note

that in Figure 3.10 the minimum value of L3 is set by the thermodynamic
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stability restriction -1.125 ~ SL3 • The horizontalline indicates the case of L3=0,

when d*=l/if5. The numerical solutions confirm the theoretical result for aU

values of U. The computations confirm the expected inequalities (33). When L3

increases, the distance of two defects also increases and eventuaUy aSYmptotes to

the edge of the fiber. Since the boundary conditions are fixed, the defects'

location cannot be right on the edge. The critical value of L3 = L3e ::::; -1.2 and is

within our computational scheme nearly independent ofU. In terms of the vector

model, using S=0.8, the critical splay-bend anisotropy is 8=-0.75 57

Figure 3.11: (a) Computed visualization of the M tensor order parameter for 1:3 <0

(U=6.55, R=67, L
2
=-0.5, L

3
=-1.3), corresponding to the PR texture with only

bend present. (b) Computed visualization of the M tensor order parameter for

1:
3
>0 (U=6.55, n=67, 1:

2
=-0.5, 1:

3
=1.5) corresponding to the pp texture with an

aligned center region and strong splay next to the s=+1/2 defects, now located

next to the fiber rim 58

Figure 3.12: Second order long-range energy (fu CV' Q)) profile as a function of C
with the same parametric conditions of figure 3.10. The dots correspond to PR

and the curve to the pp texture. The dramatic change of long-range energy at

L
3
=-1.2 corresponds to the texture transition point due to splay-bend elastic

anisotropy. The minimum long-range energy happens when 1:
3

is close to 0..... 59

Figure 4.1: Definition of director orientation of a uniaxial discotic nematic liquid

crystalline materia1. The director n is the average orientation of the unit normals

to the disk-like molecules in a discotic nematic phase 63

Figure 4.2: Schematics of the elastic splay (left), twist (center), and bend (right)

deformation for uniaxial discotic nematics. Note that the splay (bend) mode

involves bending (splaying) of the disk's trajectories, in contrast to the case of

uniaxial rod-like nematics. A disk trajectory is a curve 10caUy orthogonal to the

director 64

Figure 4.3: Schematics of transverse textures of actual mesophase carbon fibers. (a)

The planar radial (PR) texture, in which the pure bend mode (K33) exists with
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one defect in the center of strength +1. (b) The planar polar (PP) texture, in

which two modes of deformation, splay (KIl) and bend (K33), couple in the

system with two defects of the strength +1/2 65

Figure 4.4: Schematic of fiber geometry. (a) The dots 1 and II are two defects of

strength s=+1/2 in the computational domain and TIl and N are two image

defects of strength s=+1/2. P is an arbitrary point on the surface, on which the

director n is tangential to the surface. (b) The distance between defect and

coordinate origin is x, the distance between image and coordinate origin is f"

and the fiber radius is R 75

Figure 4.5: (a) Computed texture phase diagram, given in terms of nematic potential

ljU =Tj3T* as a function of dimensionless fiber radius ~ =Rlç for the

auxiliary conditions (equation (17) and (18), 2.8~U~6.55, 0<~<150). Fig.

4.5(b) Steady state solution of the planar polar texture for U=6.55, ~=67, L2 =­

0.5. Fig. 4.5(c)-(d) Gray-scale plot and surface plot of the uniaxial scalar order

parameter S as a function of dimensionless distance (x*, y*). In the gray-scale

plot a low order parameter (S ~ 0) is black and high order parameter (S ~ 1) is

white. The dark dots in the figure correspond to the two s=+1/2 defects. The

narrow peaks in the surface plots indicate the difference in scale between defect

cores and fiber radius. At the defects core S ~ 0, as expected. Fig. 4.5(e)-(f)

Gray-scale and surface plots of the biaxial order parameters P as a function of

dimensionless distance (x*, y*). In the gray-scale plot, P ~ 0 corresponds to

black and P ~ 1 to white. The figure c1early shows the biaxial eigenvalue of Q at

the two defect cores. The corresponding surface plot shows that at the defects

core P ~ 0.4 and strong biaxiality is present. 79

Figure 4.6: (a)-(d) Computed visualization of the evolution of the tensor order

parameters Q for the same parametric conditions as in Fig. 4.5. Fig. 4.6e Total

dimensionless long-range energy r; as a function of dimensionless time t*. the

long-range energy decreases non-monotonically with time. The increase in f; at

t*=180 indicates the following topological transformation: SI ---+ 2s
2

• Fig. 4.6f

Dimensionless defect separation distance d* as a function of dimensionless time
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t*. The horizontal line corresponds to the theoretical results derived in the

previous section: d* = x/R = l/ifS .Parametric conditions: U=6.55, ~=67, L
2
=-

0.5 80

Figure 4.7: Uniaxial scalar order parameter S (left) and biaxial order parameter P (right)

as a function of dimensionless distance d*, for seven dimensionless time, t*:

100-1350. Parametric conditions: U=6.55, ~=67, L
2
=-0.5. The figures c1early

capture the SI ~ 2s2 defect transformation 83

Figure 4.8: The dimensionless defect separation distance d* as a function of

dimensionless temperature -.!.-, for ~=67. The solid line corresponds to the
3T'

theoretical results, d*=l/VS 84

Figure 4.9: Dimensionless defect separation distance d* as a function of dimensionless

fiber radius 'R = R, for U=3.55. The solid line corresponds to the theoretical
~

results, d*=1/VS 84

Figure 5.1: Definition of director orientation of a uniaxial discotic nematic liquid

crystalline material. The director n is the average orientation of the unit normals

to the disk-like molecules in a discotic nematic phase 88

Figure 5.2: Schematics of the elastic splay (left) , twist (center), and bend (right)

deformation for uniaxial discotic nematics. Note that the splay (bend) mode

involves bending (splaying) of the disk's trajectories, in contrast to the case of

uniaxial rod-like nematics. A disk trajectory is a curve locally orthogonal to the

director 89

Figure 5.3: Schematics of two circular cross-sectional textures most commonly seen in

mesophase carbon fibers. The dashed line indicates the trajectories of the

molecular planes, (a) shows the planar radial (PR) texture, in which only the pure

bend mode exists with one defect in the center of strength s=+1, and (b) shows

the planar polar (PP) texture, with splay and bend, and two defects of the

strength s=+1/2. The corresponding director fields of the PP and PR textures are

given by lines perpendicular to the average molecular trajectories. The defects
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arise due to the constraints of tangential boundary conditions and a planar 2D

orientation field 90

Figure 5.4: Schematics of three ribbon cross-sectional textures most commonly seen in

mesophase carbon fibers. The dashed line indicates the trajectories of the

molecular planes, (a) shows the ribbon planar radial (RPR) texture, in which

splay-bend mode exists with one defect in the center of strength s=+1, (c) shows

the ribbon planar line (RPL) texture, with a splay-bend inversion wall, and a

defect of strength s=+1, and (c) the ribbon planar polar (RPP) texture with an

ahgned center region and two defects of strength s=+1/2. The corresponding

director fields' of the textures are given by hnes perpendicular to the average

molecular traj ectories 91

Figure 5.5: Definition of fiber geometry and rectangular (x, y) dimensionless coordinate

system used in this paper. The vertical distance y is scaled with Ry : y*=2y/Ry,

and spans the interval: - 0.5::S; y*::s; +0.5. The distance between the center of the

two semi-circles ofradius Ry/2 is Rx. The axial ratio is Ar= Rx/Ry• The horizontal

distance x lS scaled with Ry : x*=x/Ry, and spans the interval:

- (Ar /2 + 0.5)::S; x* ::s; +(Ar/2 + 0.5). For a circular fiber Ar=O. For brevity we

let Ry/2=R 95

Figures 5.6: Computed visualizations of a representative steady state RPP texture, for

U=4.55, 'R =10, L2 = -0.5, L3 =0, De=O, and Ar=l. Figure 5.6a is a

representative typical steady state visualization of tensor order parameter C. It

clearly shows the molecular orientation of planar polar texture, with the two

s=+1/2 defects collinear with the fiber long axis. Figures 5.6b, 5.6c show a gray­

scale plot and a surface plot of the uniaxial scalar order parameter S as a function

of dimensionless position (x*, y*). In the gray-scale plot a low order parameter

(S :::::: 0) is black and high order parameter (S :::::: 1) is white. The dark dots in the

figure correspond to the two s=+112 defects. Figures 5.6d, 5.6e shows a gray­

scale plot and a surface plot of the biaxial scalar order parameter P as a function

of dimensionless position (x*, y*). In the gray-scale plot a low order parameter

(P :::::: 0) is black and high order parameter (P :::::: 1) is white. The dark dots in the

figure correspond to the two s=+1/2 defects 106
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Figure 5.7: Formation kinetics and structural evolution of the ribbon planar polar

texture, for U=4.55, 'R = 50, [2 = -0.5, [3 = 0, De=O, and Ar=1. Figure 7a-d

show visualizations of M as a function of increasing dimensionless time t*: (a).

50, (b) 70, (c) 80, and (d) steady state. The orientation develops as a moving

front towards the interior. Figure 7e shows the dimensionless long range free

energy r; as a function of dimensionless time t*. The energy decreases, until it

reaches plateau (corresponding to Fig. 5.7c), and then the residual energy from

gradients at the center1ine (y*=O) vanishes leading to a homogeneous well-

aligned region (corresponding to Fig. 5.7d) 108

Figure 5.8: Computed visualizations of the tensor order parameter C of representative

steady state RPP textures, for U=4.55, 'R = 10, [2 = -0.5, [3 = 0, Ar=l, for a

planar extensional flow, (a) De*=O, (b) De*= 0.03, (c) De*=O.1. The figures

show that the effect of elongation is to displace the defects towards the rims of

the fiber, and increasing the degree of director orientation along the fiber's long

axis 109

Figure 5.9: Computed visualizations of the tensor order parameter C, for U=4.55,

'R = 10, [2 = -0.5, [3 = -1.3, De*=O, Ar=O (a), 0.5 (b), and 1.0 (c). The figures

shows that increasing shape anisotropy the disclination line of strength s=+1

remains at the center of the fiber. In addition the pure bend distortion that exist
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fiber (Ar=l). The figures show that the geometric change Ar = 0~ Ar = 1

produces the texturaI change PR ~ RPR . The orientation features shown in Fig.
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line texture. The figure shows a texture in qualitative agreement with
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given by eqn. (43), for Ee=5, 10, and 20, where the effect ofincreasing Ee on the

wall thickness is clearly shown. The figures show that the 2D steady state
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Figure 5.12: Geometry and flow-induced texturaI transformation. The left column

corresponds to higher temperatures and to the family of radial textures, whi1e the
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splay distortions, but the disclination 1ine remains at the center. A subsequent
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Chapter 1

Introduction

1.1 Thesis Motivation

High perfonnance mesophase carbon fibers are often used as reinforcing agents for

polymers, ceramics, and metals in future generations. They exhibit ultra high Young's

modulus, low density, extremely large thennal conductivity, and negative coefficient of

expansion [1]. The superior set of product property profile of mesophase carbon fibers

depends on their microstructure which emerges during the fiber melt spinning process.

The melt spinning process and the mesophase carbon fiber microstructure are a strong

function of the operating conditions, the geometry, and the material properties [1]. There

has been a great interest in understanding the texture evo1ution during the fiber fonnation

melt spinning process, in which the carbonaceous mesophases are subjected to non­

homogeneous mixed shear and extensional flows, with the aim of controling and

optimizing the product property profile. Figure 1.1 shows thennal conductivity and

electrical resistivity for a number of metals and Amoco series of mesophase pitch-based

(suffix "P") and PAN-based (polyacrylonitrile) carbon fibers [2]. The thennal

conductivity of mesophase carbon fibers is considerably higher than that of copper and

PAN carbon fibers, which is due to the inherent graphitic crystallinity in the weB ordered

textures of the mesophase carbon fibers. On the other hand, the lack of extended structure



makes PAN-based carbon fibers less flaw-sensitive, allowing them to develop higher

tensile strengths than mesophase pitch-based carbon fibers (see fig.2). Therefore while

PAN is the preferred precursor for the carbon fibers used in structural composites [3],

mesophase pitch is the superior precursor for carbon fibers used in composites and

printed-circuit substrates when heat transfer is critical. This thesis focuses on the studyof

mesophase pitch-based carbon fiber.

Although during the past decade sorne important advances have been made in

understanding polymer melt viscoelasticity, relatively less is known for material systems

that include mesophases such as liquid crystals. The present theories of polymer melt

rheology need to be extended to include liquid crystals to further our understanding of the

underlying principles governing microstructure-viscoelasticity responses, and thus to

ultimately improve product property-profiles. Modeling and simulation provides

economical research alternatives to more expensive and time-consuming experimental

work, and it' s employed in this thesis to understand the microstructural behavior of

carbonaceous mesophase, a liquid crystal currently being employed to manufacture high

performance carbon fiber.
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Figure 1.1: thermal conductivity versus e1ectrical resistivity product property phase plane for various

metals and carbon fibers. The thermal conductivity of mesophase carbon, P-13ÜX, P-12ÜX etc., is

considerably higher than that of the most conductive metals like copper. Adapted from [2]
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Figure 1.2: tensile strength versus modulus of elasticity (stiffness) product property phase plane ofvarious

carbon fibers. The PAN-based carbon fibers have considerably in terms of stiffness. The stiffness of

mesophase carbon fibers reaches the theoreticallimits ofpure graphite. Adapted from [3].

1.2 Introduction of Liquid Crystals

For many organic compounds the phase transition between the solid state and liquid

state is not simple phase transition, and an intermediate state called mesophase (i.e.

intermediate phase) exists between solid and liquid [4,5,6]. Mesomorphic materials

possess both liquid-like fluidity and solid like molecular order. Based on the partial

ordering two basically different types of mesophases have been observed. The first type

shows a transition from a strongly ordered state to a phase where each molecule

commutes between several equivalent orientations. The positional order is still present but

the orientational order has disappeared or is strongly reduced, and this phase is called

disordered crystal mesophase or plastic crystal [4]. The second type shows a 10w

temperature phase where the positional order is reduced or even completely absent but

exhibits long orientatonal order. The phase is called ordered fluid mesophase or liquid

crystal [4]. Materials, which form a stable liquid crystalline phase, are, in general,

composed of relatively rigid anisotropie molecules. At higher temperature, liquid crystals

undergo a transition to a conventional (isotropie) liquid. The shape of the molecule is an

important factor for mesomorphism to occur. Two main types of liquid crystals

compounds characterized by the shape oftheir molecules are most widely studied [5], the
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rod-like crystals and disk-like liquid crystals, also known as discotic liquid crystals,

which are studied in this thesis.

1.2.1 Classification of Liquid Crystals

Two main methods are used to c1assify the liquid crystals: based on their physical

composition or behavior (i.e. thermotropic and lyotropic) and based on the molecular

order or orientation (nematic, cholesteric, smectic). There are two other classifications

based on the qualitative differences in the molecules: shape of molecules (rod-like, disc­

like) and weight of the constitutive molecules (polymerie liquid crystals and low

molecular weight liquid crystals).

1.2.1.1 Classification based on physical composition or behavior

(a) Thermotropic liquid crystals

Single component systems that show mesomorphic behaviors in a definite

temperature range are called thermotropic liquid crystals, which are primarily associated

with low molecular weight liquid crystals [4]. Every molecule in the thermotropic liquid

crystalline participates in the long range ordering. This kind of LC is of interest for

applications in electro-optical displays, temperature and pressure sensors, etc.. Most

computer and watch displays use mixture of low molecular weight liquid crystals, such as

8CB(p-octyl-p'-cyanobiphenyl).

(b) Lyotropic liquid crystals

Lyotropics show mesomorphic behavior in solution and are usually the solutions of

rigid, high molecular weight molecules in various solvents, in which the concentration

(rather than temperature) is the main force of the mesophase formation [4]. A well-known

example is Kevlar, which is the solution of (poly-p-phenylene terepthalmide) in sulphuric

acid. The temperature range in which lytropics exist is mainly determined by the rod-like

molecules (solute). Lyotropic liquid crystals are of great interest biologically and appear

to play an important role in living systems.

1.2.1.2 Classification based on structure or arrangement of molecules

(a) Nematic order
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Figure 1.3 shows the schematic representation of the nematic phase. The molecules

tend to align parallel to each other and along sorne common axis called director n, which

is a unit vector (n·n=l) and gives the average preferred orientation. Long-range

orientational order and cylindrical (or uniaxial) symmetry are exhibited by this liquid

crystalline phase. The centers of gravity of the molecules are distributed at random. Thus

they show orientational order like crystals and positional disorder like viscous fluid.

The degree of alignment of the individual molecules along the director n is given by

a scalar known as scalar order parameter S [4,5,6]:

(1.1)

where e is the angle between the director n and the long axis of each rod-like molecule

in the rod-like nematics, and between the director n and unit nomal of dise like molecule

in discotic nematics. The brackets denote an average over all of the molecules in the

sample. For isotropie liquid, the order parameter S~ 0, and for a perfect ordering

S~ 1. Typical values for the order parameter of a liquid crystal range between 0.3 and

0.9.

(a) (b) (c)

Figure 1.3: Schematic representation of (a) rod-like nematic liquid crystals, and (c) discotic nematic liquid

crystals. The director n represents the average preferred orientation of the molecules for (b) rod-like

nematics, whereas in discotic nematics n is the average preferred orientation of the unit norrnals to the disc­

like molecules. The molecular degree of alignment is given by scalar order parameter S, which is a measure

of alignment of individual molecule along the director n. Adapt from [7].

(b) Cholesteric order

Figure 1.4 shows the schematic of the equilibrium structure of the cholesteric phase.

The lack of long-range translational order imparts fluidity to the cholesteric phase. On a
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local scale, the cholesteric order is similar to the nematic order, since the molecules tend

to align along the director n. on a larger scale, the cholesteric director follows a helical

path as shown.

(c) Smectic order

A smectic phase (see fig. 1.5) has, in addition to the orientation order of nematics

and cholesterics, a single degree of translational order, which results in a layered

structure. Smectics phases always occur at temperatures below the nematic range, since

they are more ordered. In smectic ordering, the molecules are tilted away from the normal

in each layer [6]. The layer spacing is of the order of2üA [6].

z

_0

- --- ---- --- _--=---:- ---'D
...L-IIL..- ..... x

Figure 1.4: schematic arrangement of rod-like molecules in a cholesteric liquid crystalline phase. The

localized director fi follows a helical trajectory along the z-axis. Note that the successive planes are drawn

for convenience, and don't have any physical meaning. Adapted from [6].

1.3 Carbonaceous Pitches (Mesophase Pitches)

In the production of commercial mesophase carbon fiber, carbonaceous mesophase

(CM) or mesophase pitch (MP) is the usual raw materia1. It is a uniaxial discotic nematic

liquid crystal thennodynamically stable phase, which fonns during the liquid phase

pyrolysis of coal or petroleum pitches [8]. Figure 1.6 shows the thermodynamic and

structural changes brought by heating a non-volatile organic compound, such as coal or

petroleum pitch. In the absence of air, the organic component melts in heating and

becomes an isotropic pitch or liquid. As the temperature rises over 35üoC, optically
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anisotropie spheres, known as spherules, appear in the isotropie matrix [9,10]. The

formation of the carbonaceous mesophase follows a nuc1eation and growth process.

Attractive forces among the spherules give rise to droplet coalescence and overall growth

of the mesophase. As the polymerization reactions continue, the molecules get larger and

the mesophase becomes more viscous. The transformation was observed first by Brooks

and Taylor in 1965 as an intermediate phase of spherules with a mosaic structure [Il].

The droplets or spherules are easily observed because oftheir optical anisotropy. Selected

area electron diffraction patterns indicated that each mesophase spherule possesses at its

center a single direction of preferred orientation. During the pyrolysis, the spherules

grow, due to growth of the aromatic molecules, and coalesce until a phase inversion takes

place, after which the mesophase becomes the continuous phase. The characteristic

mesophase mechanism, which is involved in establishing the mesophase morphology, is

spherule precipitation, coalescence of spherules to form a bulk mesophase, and distortion

ofmesophase by mechanical deformations.

l '1 ,\ " , 1\ 1" 1 ld

'\111 \1 '" 1
"\/\\ 1///\ Il

(a)

/1111/1/11111 Il
11111 /,~ i / / / l " 1
111111/// /111/1

(b)

Figure 1.5: Schematic arrangement of rod-like molecules in (a) Smectic A, and (b) Smectic C liquid

crystalline phases. The shown smectic phases have 2-D layered structure. In smectic C phase the

constituting molecules are tilted at an angle ru normal to the smectic plane. Adapted from [6].
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Besides the pyrolysis of aromatic pitch, different methods, such as solvent

extraction and supercritical fluid extraction, have been employed by a number of

researchers [14] worldwide to produce mesophase pitches with few impurities, which

result in carbon fibers with superior properties. Recently mesophase pitch has also been

prepared by catalytic polymerization of synthetic precursors, such as naphthalene or

methylnaphthalene[15]. However, the resulting mesophase pitch, derived from aIl of

these processes, consists of aromatic disc-like molecules exhibiting discotic liquid

crystalline properties.

The carbonaceous mesophase consists of disc-like molecules (fig.l.7) that display

long-range orientational order, so that the molecules lie approximately parallei to each

other with no point-to-point registry between adjacent molecules. A schematic model of

carbonaceous mesophase stacking in the bulk is given in figure 1.8. The model suggests

that the stacking size and the possible shapes of the disc like molecules may be quite

irregular and that the material may have vacant sites and holes.

State of Compound

Organie Plteh

Isotropie Piteh

Cokes

Temperature

Room Temperature

2000 C - 3500 C

3000 C - 4500 C

500°C - up

Figure 1.6: changes in the non-volatile organic compounds like coal or petroleum pitches brought about by

heating in the absence of air. Adapted from [13].
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Figure 1.7: Typical molecule ofa heat soaked mesophase pitch. Adapted from [12].

Figure 1.8: schematic model representing stacking arrangement of polyaromatic molecules in carbonaceous

mesophases or mesophase pitches. The disc-shaped molecules lie more or less paraUe1 to each other.

Adapted from [10].

1.4 Processing of Carbonaceous Mesophases

Mesophase carbon fibers are manufactured from mesophase pitch in mainly three

steps: melt spinning, stabilization and heat treatment. In the melt-spinning step, the fibers

are drawn using the molten mesophase pitch to achieve preferred orientation in the as­

spun fibers [1]. Sorne types of cross-section texture of carbon fibers can be seen in the

process. The texture depends on a number of variables such as the composition of the

pitch, the spin temperature, whether or not the melt pool is stirred, the geometry of the

orifice, etc [1, 16]. These textures across the fiber diameter can be random, radial, and

radial with a wedge like crack in the length of the fiber. onion skin, oriented core, or

mixtures of these textures across a fiber radius may also be appeared.
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The melt-spinning process used to convert mesophase pitch into fibers is essentially

similar to that used for thermotropic polymers. Figure 1.9 shows the schematic

representing the different steps [1] used in the manufacturing of mesophase pitch-based

carbon fiber. Typically the precursor is melted in an extruder, and which then pumps the

melt into the spin pack. The molten pitch is then filtered, to remove solid impurities,

before being extruded through a multi-holed spinneret. The pitch is subjected to high

extensional shear stresses as it approaches and flows through the spinneret capillaries.

The associated flow-induced torque tends to orient the disk-shaped molecules in a regular

transverse pattern. Upon emerging from the spinneret capillaries, the as-spun fibers are

drawn to improve axial orientation and are collected on a wind-up device.

After the MP is formed into fibers, it must then be stabilized to prevent the fibers

from melting or fusing together during the high temperature heat treatment required to

form carbon fibers of high strength and modulus. The as-spun fiber has low strength and

low reactivity as a result of the need for a thermally stable pitch during the spinning

operation. For these reasons, it is desirable to have a fiber with a high Tg (glass transition

temperature) in order to allow higher stabilization temperatures, higher rates of oxygen

diffusion, and thus lower reaction times. The purpose of oxidation is to prevent the fiber

from melting during the subsequent carbonization process, thus to "lock in" the structure

developed during the extrusion process. The stabilization is accomplished by exposing the

fibers to flowing air at a temperature of approximately 300°C for several hours. During

this process, oxygen tends to react first with aliphatic side groups, cross-linking and

adding weight to the fiber. If insufficient time is allowed for stabilization, there is a

gradient of oxygen across the filament radius, and a skin core texture may be resulted.

Fibers thinner than IOllm do not exhibit a skin-core texture because of rapid oxygen

diffusion, unless the oxygen content of the stabilizing atmosphere is reduced [16].

Carbonization or high temperature heat treatment of the stabilized fiber may consist

of two separate steps: first to around 1000°C in order to reduce the rate of gas evolution

and then to temperatures between 1200 to 3000°C, depending upon the increases with

heat treatment temperature in contrast to PAN-based fiber. The high temperature MP

fibers have, the higher modulus and usually lower tensile strength compared to PAN­

based fibers it has at the same temperature [16].
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Figure 1.9: processing sequence of mesophase carbon fibers, showing continuous conventiona1 me1t

spinning ofmesophase pitch, and subsequent batch processes: oxidization stabilization. Adapted from [1].

1.5 Morphology of Mesophase Pitch-based Carbon Fibers

As we mentioned before, the carbon fibers melt-spun from mesophase pitch exhibit

a variety of transverse textures [16,20]. Table 1.1 shows the influence of the mesophase

fiber texture to the properties of the end product. The microstructure is defined by the

spatial arrangement of the flat disc-like molecules in the fibers. The commonly observed

transverse textures are random, radial, polar, onion-like, and oriented core or a mixture of

these textures across a fiber radius. In the radial texture, the discotic molecules oriented

with their unit normal describing a circ1es concentric with the fiber axis, while in the
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planar polar texture the dicotic molecules alignment perfectly in the center region of the

fiber with two disorder region on the edge of the fiber collinear with the fiber center. The

morphology or cross section texture of mesophase pitch-based carbon fibers is controlled

by the pretreatment of the mesophase pitches, the constitution and spinnability of pitches,

the spinning conditions, the fiber diameter, the spinning tension, the temperature, etc.

figure 1.10 shows SEM and optical micrographs for two of these textures.

Bright and Singer compared the electrical resistivities of mesophase pitch-based

carbon fibers with those of radial and random textures [21]. They found that, fibers with

radial textures developed lower resistivities than those with random textures. Since

electrical resistivity and thermal conductivity are inversely related, one wou1d expect

fibers with radial textures to be good candidates for thermal management applications.

Unfortunately, circular fibers with a radial texture tend to crack and split during

high temperature treatment. One possible solution for developing high thermal

conductivities while avoiding fiber cracking is changing the shape of fiber from circle to

ribbon [22,23,24]. Figure 1.11 shows the scanning electron micrographs of the ribbon

shaped carbon fiber.

In this thesis, the experimentally observed texturaI features will be elucidated by

doing thorough investigation of the parametric and geometrical effects (i.e. circular and

non-circular fiber cross-sections) or orientation patterns.

Code Texture Dim l
~e Dos Lc(002) Brl Et5 BC6

Ü.lIn) (%) (%) (um) (CP) (CP) (CP)

1-A Radial with open wedge 11.0 0.30 95.4 22 2.8 740

1-B Skin radial-core random 8.1 0.42 94.2 21 3.4 800 0.4

1-C Random 9.2 0.45 94.2 20 3.6 780 0.7

1-D Quasi-onion 10A 0.32 95.0 21 2.6 720

Table 1.1: The influence of fiber textures to the properties of end product. (1) Diameter of fiber. (2) Strain

to break. (3) Degree of preferred orientation. (4) Tensile strength. (5) Young's modulus (6) Compression

strength (Vf 60 vol%). Adapted from [20].

12



(a) (b)

Figure 1.10: SEM images of cylindrical mesophase pitch-based cabon fibers with (a) radial texture, (b)

planar polar texture. Adapted from [16].

(a) (b)

Figure 1.11: SEM images of ribbon shape mesophase pitch-based carbon fibers with (a) Line texture in

center. (b) Radial-like texture. Adapted from [23,24].

1.6 Objectives

The specifie objectives ofthis thesis are:

(1) To formulate, solve, and validate a model of transient texture formation for

mesophase carbon fibers;

(2) To simulate the transient formation process of planar radial and planar polar textures

(Figs. 1.10) observed in carbon fibers of circular cross-section using large scale computer

simulations based on well-established theories about discotic nematic liquid crystals;

(3) To simulate the transient formation process ofline and radial-like textures (Figs. 1.11)

observed in ribbon-shaped carbon fibers using large scale computer simulations based on

well-established theories about discotic nematic liquid crystals;

(4) To identify the fundamental principles which govern the pattern selection process of

mesophase carbon fiber texture.

(5) To discover processing pathways for targeted carbon fiber texture production.
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1.7 Thesis organization

This Masters Thesis is organized as follows:

Chapter 1 presents the necessary background concepts on masophase carbon fiber.

including the motivation of this thesis, and an introduction to mesophase carbon fibers.

Chapter 2 presents the theory used to model and simulate the disk like nematic

liquid crystalline behavior in mesophase carbon fiber, including the Frank elasticity

theory, the Landau-de Gennes theory, and the concepts of defects in liquid crystalline

materials.

Chapter 3 presents the modeling and simulation of the transient planar radial and

planar polar texture formation process using the Landau-de Gennes mesoscopic theory for

discotic liquid crystals. The computed planar polar and planar radial textures phase

diagram, given in terms of temperature and fiber radius, is presented to establish the

processing conditions and geometric factors that lead to the selection of these textures.

The influence of e1astic anisotropy to the textures' formation and structure is thoroughly

characterized.

Chapter 4 presents the theory and simulations of defect phenomena during the

formation process of the planar polar texture in elastic isotropy, including defect

nucleation, defect migration, and overall texture geometry.

Chapter 5 presents the application of the Landau-de Gennes mesoscopic theory to

model the texture formation of ribbon shape mesophase carbon fiber. The mechanism of

texture selection in terms of fiber cross-section shape is discussed.

Chapter 6 presents the conclusions of this thesis.
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Chapter 2

Continuum Theory of Liquid Crystals

2.1 Continuum Theory of Liquid Crystals
The melt spinning of carbonaceous mesophases is a complex process involving

viscous, elastic, and thermal processes. This thesis is mainly concerned with the

characterizing the role elasticity in the texture formation processes during the melt

spinning of carbonaceous mesophases using the continuum theory for liquid crystal

properly adapted to discotic nematic mesophases. This chapter presents the theoretical

framework as well as a full derivation model used to simulate transient mesophase texture

formation under anisotropic elastic deformations. Simulation results are shown in the

following chapters.

2.1.1 Frank Orientation Distortion Elasticity
The simplest nematic state is that of a uniform orientation domain, known as

monodomain. This uniform orientation state is easily perturbed under the influence of

bounding surface conditions, defects, and external fields such as shear, electric and

magnetic fields. For example, the textures shown in Fig1.10-1.11 clearly show the

presence of orientational distortions due to boundary conditions in a circular domain, as



(1)

weIl as defects. The distorted orientation state is described by minimizing the orientation

distortion energy, also known as Frank elastic energy or long range energy.

Frank identified three possible independent distortion modes according to which the

director n can vary in the neighborhood of the origin, as shown in the fig. 2.1 [1,2,3]. In

the first one, the "splay" mode, the curvature is represented by the components ànx/àx and

ànylày, in the second, the "twist" mode, the curvature is represented by -ànylàx and

ànx/ày, and in the third, the "bend" mode by ànJ8z and àny/8z. Based on this physical

picture, and using material symmetry (i.e., corresponding to the absence of polarity and

enantiomorphy) and material objectivity (i.e., corresponding to invariance with respect to

rotation around the z-axis), Frank showed that, within the quadratic limit, the curvature or

distorted orientation elasticity in terms of n could be represented for nematic liquid

crystals in coordinate free notation as [1,2,3]:

f n = ~Kll (V. nY + ~K22 (n. V x nY + .!..K 33 1(n. V)nlz
2 2 3

-~(Kzz +K Z4 )[cV.nY +jVxnjZ -Vn :Vn]
2

where Kll ( splay mode) , K22 ( twist mode) K33 ( bend mode) and K24 ( saddle-splay

mode) are four, in general non-vanishing, elastic moduli, fn is the change of Helmholtz

free energy density between the Le with perfect alignment and with distortions. The

elastic moduli are subject to the inequalities [3]:

Kll~O, K22~ IK z4 j, K33~O, 2 Kll~ K22+ K24 (2)

so that the homogeneous state corresponds to a minimum of the free energy. As the last

term in eqn. (1) represents a total differential, it can be accounted for by a surface

integral. Therefore, when ignoring the surface energy contribution, eqn. (1) can be

reduced to [1,2,3]:

f n = lK ll (V. nY + lK 22 (n. V x nY + lK 33 1(n. V)nlz (3)
2 2 3

thus in the description of the bulk phenomena, eqn.(3) is applied as the definition of the

free energy density of nematic liquid crystals. According to the thermodynamic stability,

the foIlowing restriction should be obeyed [3]:

Kll~O, K22~O, K33~O (4)
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which is corresponding to the three distortion modes mentioned before: splay, twist and

bend. For disk like nematic liquid crystal [4,5]:

Kzz>Kjj>K33 (5)

2.1.2 Disclinations
The name " nematic " means thread in the Greek language, and is used due to the

thin black brushes that can be seen within the fluid under a microscope. The threads

originate from points corresponding to the 'line singularities' perpendicular to the

nematic layer [6] being observed under the optical microscope. Similar to dislocations in

crystals, Frank proposed the term 'disinclinations', which has been modified to

disclinations in CUITent usage.

The strength of a disclination is defined as s=~ (number of brushes), which
4

indicates the amount of orientation distortion, and the sign (+/-) corresponds to the sense

of orientation rotation while circling the defects. Only disclinations of strengths +112, ­

112, +1, -1 are generally observed.

Consider the planar structure in which the director is confined to the xy plane (the z

axis being normal to the film). Taking the components of the director to be n x = cos~,

n y = sin~, nz=O (~ is the orientation angle with respect to x direction), and making the

simplifying assumption that the medium is elastically isotropie, i.e. Kl1=K22=K33=k,

equation (3) reduces to:

(6)

And the system tend to minimize the free energy fn when the director angle obeys

Laplaces' equation:

(7)

1

Seeking a simple solution independent of r = (x 2 + y2 )"2 , the solutions of eqn (7)

are:

1
~ =sa + c (s =±-, ± 1, ........ )

2
(8)
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where a is the position angle with respect to the x aXIS and c IS a constant. The

solutions' plots of eqn (8) are shown in fig. 2.2.

Ku

Figure 2.1: Schematics of the elastic splay (left), twist (centre), and bend (right) deformation for uniaxial

discotic nematics. Note that the splay (bend) mode involves bending (splaying) of the disk's trajectories, in

contrast to the case of uniaxial rod-like nematics. A disk trajectory is a curve locally orthogonal to the

director. Adapted from [4].

~~
~W

s=-I

$=:11, c=o s=l, c= trl4 s=I,c=n/2

s=3/2

Figure 2.2: molecular orientation in the neighborhood ofa disc1ination. Adapted from [6].

The energy of defonnation of an isolated disc1ination in a circular layer of radius R

and of unit thickness is:
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(9)

where rc is the radius of disclination core, and Wc is the energy of the central defect

region. Eqn. (9) shows that the energy of a single defect is proportional to S2 according to

1
the planar model, so that usually the defects of strength Isi > - should be unstab1e and

2

dissociate into Isi =! defects.
2

Due to the long range e1astic distortions, defects interact with each other as charged

particles do. The interaction between two disclinations of strength SI and S2 is:

W =nk(sl +s2)21n(R/rJ-2nksls2In(r12/2rJ (10)

where r12 is the distance between the two defects, and rc «r12 «R. According1y, the

force between two defects is:

(11)

Disclinations of same sign repe1 and those of opposite signs attract, the force being

inversely proportional to the distance [6]. Note that aIl the derivations above are based on

the elastic isotropie case. When considering the elastic anisotropie case

(Ku ;;j:. K 22 ;;j:. K 33 ), the equation for the defect interaction force becomes much more

complicated.

2.1.3 Orientational Ordering
To fully capture nematic ordering both the amount of molecular ordering along the

preferred orientation (i.e., the director n) and the prefered orientation must be specified.

Thus, in general the vector n is insufficient and a second order tensor Q has to be used to

fully describe nematic ordering. The nematic phase has a lower symmetry than the high­

temperature isotropie liquid. In order to experss this in a quantitative way we introduce a

tensor order parameter Q [7,8], such that:

(1) Q=O in the isotropie phase;

(2) Q;;j:.O in the nematic phase;

AlI macroscopic response functions of the bulk material, such as the dielectric

permittivity or the diamagnetic susceptibility, are anisotropie and can be applied as the

21



order parameter. In order to inc1ude aIl the information of order and orientation into Q,

the most general form of Q is a second order, traceless, symmetric tensor given as:

1 1
Q=S (nn--I)+-P (mm-Il)

3 3

where the following restrictions apply:

T 1 3 3
Q=Q ; Tr(Q)=O; --::;;S::;;I;--~P~-

2 2 2

(12)

(13)

n·n=m·m="'=I; nn+mm+II=I;

where n, m, l(=nxm) are unit orientation vectors which form orthogonal director triad ; n

is known as the (unaxial) director and m,lare termed as the biaxial directors, S is the

uniaxial scalar order parameter and P is the biaxial scalar order parameter. On the

principal axes, the tensor order parameter is written as:

1
0 0--CS -P)

3

Q= 0
1

0--CS + P) (14)
3

0 0 ~S
3

where 2 S, _.!.. (S-P), and _.!.. (S+P) are the eigenvalues corresponding the eigenvectors n,
3 3 3

m, and 1 respectively. If aIl the eigenvalues of the tensor order parameter Q are zero (i.e.

S=O,P=O) then the phase is defined as isotropie. If two eigenvalues are equal (i.e. S:;t:O,

P=O) then the phase is termed as uniaxial nematic, and the uniaxial scalar order parameter

S is sufficient to define the order of alignment of the molecules in the phase. If aIl the

eigenvalues are different (i.e. S:;t:O, P:;t:O), the phase is called biaxial nematic [16,27].

In the case of perfect axially symmetric molecules (for example rigid rods or rigid

circular disks), no molecular interactions can result in a macroscopic ordering that is less

symmetric than the molecules themselves. Thus an external cause, such as an external

field perpendicular to m, is necessary to produce ordering in a plane normal to n. The

presence of an external field is referred to as field-induced biaxility. In the absence of an

external field, the biaxial nematic phase is expected only for molecules that are

geometrically biaxial or do not possess axial symmetry [7,8]. On the other hand, the

cores of the defects shown in fig. 2.2 are known to be biaxial.
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As mentioned in chapter one, S is known as the uniaxial scalar order parameter or

uniaxial alignment, and is a measure of degree of alignment of the unit normals to the

dise like molecules in the direction of director D. Similar to S, the biaxial scalar order

parameter P is a measurement of the degree of alignment of the preference of the

molecular normal along the biaxial director m, which is in the plane orthogonal to the

uniaxial director D. In other words, the biaxial scalar order specifies the amount of

transverse ordering.

Since the complete description of nematic ordering requires the specification of Q,

the Frank elastic energy is inadequate when changes in the order parameters, biaxiality

and/or defects are present. Since an these three phenomena occur during texture

formation, a theory based on the tensor order parameter must be specified. The Landau-de

Gennes tensor order parameter theory is such a theory and is described in the next section.

2.1.4 Landau-de Gennes Tensor Order Parameter Theory

Ignoring the surface energy and the influence of external fields, the Landau-de

Gennes total energy density is expressed as [1]:

fb =fo + fs + ft (15)

where fo is the free energy density of the isotropie state, fs is the short-range energy

density, which is responsible for the nematic-isotropic phase transition, and f e is the

long-range energy. The short-range free energy density fs(Q) can be expressed as

[1,2,3,7]:

f s = f o + .!-A(Q : Q)+ .!-B(Q : (Q .Q ))+ .!-C(Q : Q y + (16)
2 3 4

where the A, B, C are phenomenological coefficients, and fo is the free energy density for

a given temperature and pressure of the state with Q=O. To have a minimum in the short

range free energy, C must be positive. Under uniaxial ordering (P=O), fs is only a function

of S. Fig. 2.3 shows the short range energy fs as a function of the scalar order parameter S

for B<O, for different temperatures. Four temperature regions can be distinguished [7]:

(1) T > T+ : the minimum corresponds to an isotropie phase (S=O);

(2) TNJ < T < T+: the minimum corresponds to an isotropie phase. In addition, there

is a local minimum corresponding to a possible superheated nematic state;
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(3) T* < T < TNI: the minimum corresponds to a nematic phase. There is a local

minimum corresponding to a possible supercooled isotropie state.

(4) T < T*: the minimum corresponds to a nematic phase.

Below T* the isotropie phase is completely unstable with respect to the nematic

state; the local minimum at S=O does not exist anymore. Above T+ the nematic phase is

completely unstable with respect to the isotropie phase; the local minimum at S ::f: 0 does

not exit anymore.

In order to generalize the Frank distortion elasticity description close to the clearing

point, de Gennes proposed a Landau-Ginzburg type of expansion for long-range energy

density fe in terms of the derivatives of the tensor order parameter Y'Q. In absence of

electric and magnetic fields, the expression of fe becomes [3,9,10]:

f e =~LI (VQ:Y'Q)+~L2(V .Q). (V 'Q)+~L3Q: (VQ: VQ)+ ....
2 2 2

(17)

where LI, L2 and L3 are elastic moduli. Up to second order terms in Q, only LI and L2

appear in the expression of fe• In the uniaxial case (P=O) LI and L2 can be corre1ated to

the Frank elastic moduli K ll , K22, and K33 as follows [3]:

L = K 22 L = K ll - K 22
1 2s2' 2 S2

Thermodynamic stability restrictions impose the following inequality [10]:

(18a,b)

(19)

In addition, the molecular geometry involved in the discotic nematic phase requires

that [5,8]:

L2<0 (20)

In this case, de Gennes's theory, as expressed by eqn. (17), gives very simple

expressions for the Frank elasticity constants. The expansion (17) implies that KII=K33, in

clear contradiction to experiments. The Kil=K33 relation arises because only second order

Q terms were retained in the free energy. To remove this restriction from the tensor

theory, it suffices to include higher order terms in Q. However, the final expression is no
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longer unique. One of the simplest extensions involves inclusion of the L3 term in the free

energy. In actuality there are six independent L3 terms. One of this six terms is:

QaI3 Q YO,aQy8,13 (shown in eqn.17) which is able to reproduce experimental data. In this

research [11], only this term is added in our mode!. So the relation between the Landau­

de Gennes elastic constants LI, L2 and L3 and the Frank elastic constants Kll, K22, and

K33, under uniaxial ordering (P=O) are:

(21a, b, c)

1.5

1.0

..
0.5 T

,;
c:i 0.0....

Li.

-0.5

-1.0

-1.5

-0.4 0.0 0.4
5

T"

Figure 2.3: the free energy F as a function of the scale order parameter S, for the special temperatures T· ,
TNh T+, for SNi=OA.

De Gennes shows that the dynamics of nematics is essentially described by the

Landau theory of phase transitions, as we show in the previous section and proposed a

phenomenological nonlinear equation for the kinetics of order parameter tensor Q [12]:

( J
[S]

_ (Q)dQ =~= afb -V. afb

y dt 8Q aQ aVQ
(22)

where [s] indicates the symmetric and traceless, y(Q) is the rotational viscosity

coefficient, and oF is the functional derivative of the total energy F. Equation (22) is a
8Q

gradient system, where evolution is dictated by energy minimization. On the other hand,

Doi proposed the following expression for coefficients A, B, C that appear in the short

range energy, given in equation [12]:
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1(U) U UA=ckT- 1-- B=-ckT- C=ckT-
2 3' 3' 4

(23)

3T*
where c is the number density of the discs, k is the Boltzmann's constant, and U =-- is

T

the nematic potential or dimensionless temperature. Note that as U increases, the

temperature T decreases. T* is a reference temperature just below the isotropic-nematic

phase transition temperature introduced in the previous section.

Specifie models based on this theory will be formulated, solved, and validated in

chapter 3,4, and 5. In chapter 3, we explain the effect ofLz and L3 anisotropy to the fiber

texture. In chapter 4, the model shows the transient process of fiber formation in which

L3=O. In chapter 5, we explain the application of the model with different initial

conditions to the non-circular fiber geometry.

2.2 Computational Method

2.2.1 Finite Element Method
Virtually every phenomenon III nature, whether biological, geological, or

mechanical, can be described with the aid of the laws of physics, in terms of algebraic,

differential, or integral equations relating various quantities of interest. While the

derivation of the governing equations for these problems is not difficult, their solution by

exact methods of analysis is a formidable task. In such cases approximate methods of

analysis provide alternative means of finding solutions. The methods ofweighted residual

such as the the Galerkin finite element method is frequently used in the literature.

The finite e1ement method provides a systematic procedure for the derivation of the

approximation functions. The method is endowed with two basic features, which account

for its superiority over other competing methods. First, a geometrically complex domain

of the problem is represented as a collection of geometrically simple subdomains, called

finite elements. Second, over each finite element the approximation functions are derived

using the basic idea that any continuous function can be represented by a linear

combination of algebraic polynomials. The approximation functions are derived using

concepts from interpolation theory, and are therefore called interpolation functions. Thus,

the finite-element method can be interpreted as a piecewise application of the variational
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methods (eg., weighted residual methods), in which the approximation functions are

algebraic polynomials and the undetermined parameters represent the values of the

solution at a finite number of preselected points, called nodes, on the boundary and in the

interior of the element. From interpolation theory the order of the interpolation function

depends on the number of the nodes in the element [15].

There are certain steps to solve the partial differential equations using Garlerkin

finite element methods:

• Finite-element discretization (mesh)

First, the continuous region (i.e. circ1e) needs to be represented as a collection of a

finite number n of subregions, for example rectangular. Each subregion is called an

element. There are lots of different mesh generation methods, like the tree structure

method. A typical mesh generation program locates and numbers the nodal points,

numbers the elements, and determines the element incidences. The number of elements

used in a problem depends mainly on the element type and accuracy desired.

• Derivation of element equations

To apply the finite element method, the variational form of the original model (eqn.

(22)) over a typical element needs to be derived. For example, the equation of dQII III
dt

eqn. (22) can be written as:

f[ (Q) dQ11 + (afb - V '~J[S]J .dxd =0y dt aQ av Q <P 1 Y
e 11

(24)

where <Pi (i=I,2, ... ,N) is the known basis function. Expand the approximate solution in

terms ofunknown coefficients and known basis functions:

N

Q11 =L Qllj(t)<P/x, y, z)
1

(25)

where <Pj (j=1,2,3,4) are the known basis function ( the same as which is in eqn (24)), N

is the number of nodes in the finite element mesh, and Qllj is the solution vector.

Replacing eqn (25) into eqn (24) gives:

(26)
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Defining the mass matrix Mij as:

Mij == f<rj<rjdxdy
e

the equation can be written finally as:

(27)

(28)

where tn is the time of n iteration, Lltn+1 is the time step adopted in n+1 time step. AlI the

terms in the right hand of eqn (2.28) are evaluated at the time level tn and are known

functions of the boundary conditions and initial conditions. The unknown on the left hand

side of eqn.(28) can be easily evaluated by performing the matrix-vector multiplication.

The equations for the other components Qllj; j=2,3,... ,N, of the solution vector are

computed in a similar fashion.

• Convergence and error

For an unknown exact solution, it's better to do the computation using different

mesh densities (mesh refinement) and compare the solutions on the same nodes' location

in order to get a mesh independent solution.

2.2.2 Runge-Kutta Time Adaptive Method
Real world engineering processes are characterized by several disparate time

constants, with the result that the models that describe these processes give rise to stiff

equations. (For example the model of a convection-reaction process with fast flow and

slow reaction leads to a stiff equation). Stiff problems are not suitable to solve using

constant time step integration methods, but are effectively solved using adaptive methods.

The purpose of the adaptive time step-size control is to achieve sorne predetermined

accuracy in the solution with minimum computational effort. Many small steps should

tiptoe through treacherous terrain, while a few great strides should speed through smooth

uninteresting countryside.

A stepsize adjustment algorithm used in this thesis is based on the embedded

Runge-Kutta formulas. The general forma of a fifth-order Runge-Kutta formula is [16]:
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k l =hf{xo,yJ

k 2 = hf(x o + a 2h, Y0 + b 2l k l )

(29)

k 6 = hf(x o + a 6h, Y0 + b 61 k l + ... + b 6SkJ

y 0+1 = Y0 + c1k l + c 2k 2 + c3k 3 + c4k 4 + csks + c6k 6 + O(h6)

the embedded fourth-order formula is:

and so the error estimate is:

6

~ == y 0+1 - Y:+I = L (Ci - c; ~i
i=l

(30)

(31)

where h is the time step. ai and bij are known coefficients.

At this stage we know, at least approximately, what our error is. To find the relation

between ~ and h, according to eqn (29) and eqn (30), ~ scales as hS
• If a step hl

produces an error ~I' the step ho that would have given sorne other value ~o is readily

estimated as:

(32)

Henceforth we wi1llet ~o denote the desired accuracy. Then equation (32) is used

in two ways: if ~I is larger than ~o in magnitude, the equation tells how much to

decrease the step size when we retry the present (failed) step. If ~I is smaller than ~o, on

the other hand, the equation tells how much we can safely increase the step size for the

next step, so that the time step is fully controlled during the time integration.
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Chapter 3

Texture Formation in Carbonaceous
Mesophase Fibers

3.1 Abstract
Carbonaceous mesophases are discotic nematic liquid crystals that are spun into

high performance carbon fibers using the melt spinning process. The spinning process

produces a wide range of different fiber textures. Planar polar (PP) and planar radial

(PR) textures are two ubiquitous ones. This paper presents theory and simulation of the

texture formation process using the Landau-de Gennes mesoscopic theory for discotic

liquid crystals. The computed PP and PR textures phase diagram, given in terms of

temperature and fiber radius, is presented to establish the processing conditions and

geometric factors that lead to the selection of these textures. Thin fibers adopt the PR

texture, while thicker fibers and lower temperatures adopt the pp texture. The influence

of elastic anisotropy to the textures' formation and structure is thoroughly characterized.

3.2 Introduction
Carbonaceous mesophases, such as coal tar and petroleum pitches, are used in the

industrial manufacturing of high performance carbon fibers. This relatively new carbon



fiber is more competitive than the conventional one made from the acrylic precursors in

several application areas [1]. The thermodynamic phase that describes carbonaceous

mesophases is the discotic nematic liquid crystal (DNLC) state [2]. Liquid crystals are

intermediate (i.e. mesophase) phases, typically found for anisodiametric organic

molecules, which exist between the higher temperature isotropic liquid state and the

lower temperature crystalline state. Carbonaceous mesophases are composed of disk-like

molecules. Figure 3.1 shows the molecular geometry, positional disorder, and uniaxial

orientational order of discotic nematic liquid crystals. The partial orientational order of

the molecular unit normal u is along the average orientation or director n (n·n=I). The

name discotic distinguishes the molecular geometry and the name nematic identifies the

type of liquid crystalline orientational order.

Figure 3. 1: Definition of director orientation of a uniaxial discotic nematic liquid crystalline materia1.

The director n is the average orientation of the unit normals to the disk-like molecules in a discotic

nematic phase.

The industrial fabrication of mesophase carbon fiber using the conventional melt

spinning process typically produces micrometer-sized cylindrical filaments whose cross

sectional area displays a variety of transverse textures [3], that is, different spatial

arrangements of the average orientation n on the plane perpendicular to the fiber axis.

The selection mechanisms that drive the texture formation pattern are at present not well

understood, but due to the strong structure-properties correlations, they are essential for

product optimization [1,3].

A question of fundamental importance to the melt spinning of carbonaceous

mesophases is to determine how elastic and viscous mechanisms affect the fiber process­

induced structuring and cross-sectional fiber textures' selection. When considering

elastic mechanisms, it is necessary to identify the three fundamental elastic modes of

these materials. Figure 3.2 shows the three types of elastic deformations, splay, twist,
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and bend, and the corresponding modulus KIl, K22 , and K33, known as Frank elasticity

constants [5]. The bulk free energy density is given by:

f n =~Kil (\7. n)2 +~K22 (n. Vx n)2 +~K331n x (V xnt (1)
2 2 2

Thermodynamic stability requires:

Kil > O;K 22 > O;K33 > 0 (2)

In contrast to rod-like nematics, for disc-like nematics the bending disc's

trajectories give rise to a splay deformation, and the splaying disc's trajectories give rise

to a bend deformation; by disc trajectory it means the curve locally orthogonal to the

director. For DNLCs, the following inequalities hold [6]:

(3)

which indicates that planar deformations are favored.

KIl K22 K33

Figure 3.2: Schematics of the elastic splay (left), twist (centre), and bend (right) deformation for uniaxial

discotic nematics. Note that the splay (bend) mode involves bending (splaying) of the disk's trajectories,

in contrast to the case of uniaxial rod-like nematics. A disk trajectory is a curve locally orthogonal to the

director. Adapted from [6].

It is known [3,4] that the observed cross-section fiber textures belong to a number

of families, such as onion, radial, mixed, PAN-AM, to name a few. Figure 3.3 shows the

schematics of two cross-sectional textures most commonly seen in mesophase carbon

fibers. The dashed line indicates the trajectories of the molecular planes, (a) shows the

planar radial (PR) texture, in which only the pure bend mode exists with one defect in

the centre of strength s=+1, and (b) shows the planar polar (PP) texture, in which two

modes of deformation, splay and bend, exist with two defects of the strength s=+112.

Figure 3.3 (c), (d) are the corresponding director fields' schematics of the PP and PR

textures. The defects arise due to the constraints of tangential boundary conditions and a
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planar 2D orientation field. Defects are singularities in the director field and are

characterized by strength (1/2, 1, ... ) and sign (± )[5]. The strength of a disc1ination

detennines the amount of orientation distortion and the sign corresponds to the sense

(i.e. c10ckwise or anti-c1ockwise) of orientation rotation while circ1ing the defects. Since

the energy of a defect scales with the square of the defect strength [5], the planar polar

texture would seem to emerge, so as to minimize the elastic energy associated with

orientation distortions. In addition, defects of equal sign repel each other, while defects

of different sign attract. As shown below, in the pp texture, defect-defect interaction

plays a critical role in the geometry of the texture. For discussions and references on

rod-like nematics in cylindrical geometries, see for example [7,8]. The phase diagram of

nematic textures in cylindrical geometries as a function of temperature and fiber radius

in the absence of elastic anisotropy has been given by Sonnet et al [9].

Theory and simulation of liquid crystalline materials continues to be perfonned

using macroscopic, mesoscopic, and molecular models [5]. Macroscopic models based

on the Leslie-Ericksen director equations are unsuitable to simulate texture fonnation

because defects are singularities in the orientation field. On the other hand, mesoscopic

models based on the second moment of the orientation distribution function is well

suited to capture the fonnation of liquid crystalline textures, because defects are non­

singular solutions to the goveming equations. A very well established mesoscopic model

in liquid crystalline materials is based on the Landau-de Gennes free energy [5] and is

used in this work.

The objectives ofthis paper are:

(1) To simulate the transient fonnation of the PR and pp texture which is

commonly observed during the melt spinning of carbonaceous

mesophase.

(2) To characterize the mechanisms of PR and pp texture selection III

DNLCs.

(3) To compute a texture phase diagram, given in tenns of temperature and

fiber radius, and to establish the geometric and operating conditions that

lead to the characteristic textures.
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(4) To discuss the influence of elastic anisotropy (Kll *K 22 *K 33 ) on the

formation of fiber texture.

This paper is organized as follows. Section 2 presents the theory and the Landau­

de Gennes goveming equations. Section 3 discusses the computational methods to solve

the mode!. Section 4 shows the numerical solutions of our model, and also, discusses the

characteristics of the texture phase diagram and the effect of e1astic anisotropy. Finally

conclusions are presented.

(a) (b)

(c) (d)
Figure 3.3: Schematics of two cross-sectional textures most commonly seen in mesophase carbon fibers.

The dashed line indicates the trajectories of the molecular planes, (a) shows the planar radial (PR) texture,

in which only the pure bend mode exists with one defect in the centre of strength s=+1, and (b) shows the

planar polar (PP) texture, with splay and bend, and two defects of the strength s=+1/2. Figure 3 (c), (d)

are the corresponding director fields' schematics of the PP and PR textures. The defects arise due to the

constraints of tangential boundary conditions and a planar 2D orientation field.

3.3 Theory and Governing Equations
In this section, we present the Landau-de Gennes theory for nematic liquid

crystals, and the parametric equations used to describe mesophase fiber texture

formation. As mentioned above, the theory is well suited to simulate texture formation

since defects are non-singular solutions to the goveming equations.

3.3.1 Definition of Orientation and Alignment
The microstructure of DNLCs is characterized by a second order symmetric and

traceless tensor, known generally as tensor order parameter Q [15]:
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1 1
Q =S(nn - -1) + -P(mm -Il)

3 3

where the fol1owing restrictions apply:

Q =QT; tr(Q) =0 ; - ..!- ~ S ~ 1; - i ~ P ~ i
222

n .n =m . m =).) =1 ; nn +mm +U = 1 = [~ o 0]
1 0

o 1

(4)

(5)

(6)

the uniaxial director n corresponds to the maximum eigenvalue Iln =~S, the biaxial
3

director m corresponds the second largest eigenvalue Ilm=_! (S - p), and the second
3

biaxial director 1 (=nxm) corresponds to the smal1est eigenvalue Il f =_!(S + p). The
3

orientation is defined completely by the orthogonal director triad (n, m, 1). The

magnitude of the uniaxial scalar order parameter S is a measure of the molecular

alignment along the uniaxial director n, and is given as S =i (n .Q.n). The magnitude
2

of the biaxial scalar order parameter P is a measure of the molecular alignment in a plan

perpendicular to the direction of uniaxial director n, and is given as

3
P =- (m .Q .m -1· Q .1) . On the principal axes, the tensor order parameter Q is

2

represented as:

1
--(S-P) 0 0

3

Q= 0
1

0--(S+P) (7)
3

0 0 ~S
3

both Sand P are positive for normal DNLCs. The Landau-de Gennes model uses the

tensor order parameter to describe nematic ordering. According to equation (7), the

mode! is able to describe biaxial (S -::f:. 0, P -::f:. 0), uniaxial (S -::f:. 0, P=O), and isotropie (S=O,

P=O) states.
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3.3.2 Landau-de Gennes Mesoscopic Model for Liquid Crystalline
Materials

According to the Landau-de Gennes model, the bulk energy density of nematic

liquid crystals (NLC) in the absence of external fields is given by [10, Il]:

fs = AQ: Q+BQ: (Q.Q)+C(Q: Q)z

f n =LIVQ:(VQY +Lz(V.Q).(V.Q)

fn = L3Q: (VQ: VQ)+ ...

(8a,b)

(8c)

(8d)

8(e)

where A, B, C, LI, Lz, L3, ... are coefficients of the specified terms. fo is the free energy

density of the isotropie state. The term is related to the conventional thermodynamic

parameters, like temperature and pressure, and independent to Q. fs is the short-range

energy density, which is responsible for the nematic-isotropic phase transition, ff is the

long range energy, f n is the second order long range free energy density, and ff3 is the

third order contribution to the long range free energy density. By assuming that Q is

uniaxial and comparing f n with fn (eqn.(l» it is found that K ll=K33. To remove this

restriction ff3 must be non-zero. It is known that there are six different third-order

expressions. For rod-like nematics it was shown that representative experimental {Kii};

(ii=l1, 22, 33) data is weIl captured by retaining only the term L3QlI~ QyO ,lI QyO ,~ in the

fn expression [12]. The same approach will be used in this paper. Using the one

parameter Doi model for fs [17], the dimensionless free energy densities are given by:

f* =~(~(l-!U)Q: Q-!UQ: (Q'Q)+~U(Q:QyJ
s U 2 3 3 4

[* = LI rVQ:(VQ)T]+ Lz (V.Q).(V.Q)
n 2ckT*Rz l· 2ckT*Rz

• L 3 r. (~ ~)~
ff3 = * z LQ: VQ: VQ ~

2ckT R

(9a)

(9b)

(9c)

where U is the nematic potential, which is inversely proportional to the temperature in a

thermotropic liquid crystal, and c, k, T* are the number density of dises, the

Boltzmann's constant, and an absolute reference temperature just below the isotropic-
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nematic phase transition temperature, respectively. Comparing eqn.(l) the Landau

coefficients {Li},i=I,2,3 are related to the Frank's constant of uniaxial LCs in the

following way [12,16]:

(lOa, b, c)

(11 a)

(lIe)

(lIb)

Ku = S2(2L1 + L 2 - ~ SL3 )

K 22 = S2 ( 2L1 - ~ SL3 )

K 33 =S2(2L1 +L2 + ; 8L3 )

Using eqns.(l1) and inequalities (2) the following restrictions have to be obeyed

under uniaxial ordering:

(l2a, b, c)

(13)

In addition, since twist is the highest elastic constant in DNLCs, the Landau

coefficient L 2 is negative [14, 15]:

L2<0

Using the classical gradient flow mode!, the time dependent equation in terms of Q

and VQ is found to be [17]:

(14)

where [s] indicates the symmetric and traceless, y(Q) is the rotational viscosity

coefficient, and 8F is the functional derivative of the total energy F. Substituting
8Q

equation (9) into equation (14) yields the following goveming equations ofQ(x,t):
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[

* * ] [s]
dQ =-6Dr ofb -V.~
dt oQ oVQ

M(l-~U)Q-U(Q.Q -~ (Q :Q)r)+ U(Q :QjQ]
=-6Dr

+ L3 *[(VQ :VQ)- !tr(VQ : VQ)I]
2ckT 3

~VzQ + L z *(V(V .Q)+ [V(V ·Q)Y -~tr[V(V .Q)))
+ 6D

r
ckT 2ckT 3

+~((V .Q).VQ)+~(Q:(VVQ))
ckT ckT

D ~ D 1 D = ckT
r r (1- (312)Q :QY' r 6rt

(15a)

(15b)

where Dr is the microstructure dependent rotational diffusivity, Dr is the preaveraged

rotational diffusivity or isotropic diffusivity, which is independent of Q, and 11 is a

viscosity. The relation between Dr and y(Q) can be read off by comparing eqns.

(14,15a). Non-dimensioning equation (15) yields:

dQ =S+L (16a)
dt"

s=-~Ml-%(Q:Qf[(l-~U)Q-~Q.Q-~(Q:Q)I)+U(Q:Q)Q] (16b)

_ ~z 1 [ 3(. )]_Z{VZQ+ Lz
[V(V.Q)+[V(V·Q)r -~tr[V(V'Q)~]}

L--z - 1--,Q.Q 2 3
R U 2 ~ ~(~ ) ~ ) ~ { (~~ )~+ L3 ~ V .Q .VQ + L3 \Q: VVQ ~ (16c)

_~..!- L3 [1-~(Q: Q)]-Z[(VQ: VQ)-.!.tr(VQ: VQ)]
R ZU 2 2 3

* 3ckT* 3T*
where t = t is dimensionless time, U = - is dimensionless temperature,

~ T

~ = ~ LI. is molecular length scale, Lz = L z and L3 =~ are ratios of elastic
ckT LI LI

coefficients, and R is geometry length scale (i.e. the fiber radius), S is the short-range

contribution, and L is the long-range distribution.
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(18)

The dimensionless parameters of the model are: D, <R = R, L2 and L3 • The
~

nematic potential D is a dimensionless temperature that controls the equilibrium order

parameter Seq at the phase transition. According to the Doi model of the short-range

energy, the temperature dependence of S at equilibrium is [17]:

S =.!-+~J(l- 8) D= 3T* (17a,b)
eq 4 4 3D' T

where T* is a reference temperature just below the isotropic-nematic phase transition

temperature like we defined before. For D<8/3 the stable phase is isotropie, for

8/3 ::; U ::; 3 there is biphasic equilibrium, and for higher values of D the phase is

uniaxial nematic. In this work, we have used 2.7::; U ::; 6.55. The parameter <R =R lS

~

the ratio of the fiber radius to the internaI length scale (~). The internaI length scale

represents the characteristic size of a defect core and is usually much smaller than the

system size R. In this work, we have used 0<<R<250. When <R«1, long-range energy

dominates, spatial gradients are costly and homogeneous states are selected. On the

other hand, when 1è»1, long-range elasticity is insignificant with respect to short-range

elasticity and defects proliferate, since spatially, non-homogeneous states are

energetically not costly. The elastic constants ratios L2 =L 2 and L3 =~ are two
LI LI

measures of elastic anisotropy. When L2 , L3 are equal to zero, all elastic modes (KIl,

K 22 , K 33) have the same elastic modulus. To satisfy the thermodynamic restrictions

(12,13), we set L z =-0.5 throughout and limit the range of L 3 to:

-1.125::; SL3 ::; 2.25. The governing equation (16) is solved in the circle Cr =0.5) with

the following boundary conditions:

t*>O, r =0.5, Q=Qeq

Qeq =Seq ( aa - ±1)

where r is the dimensionless radial distance (r =rIR), and r =0 is the centre of the

computational domain (i.e. fiber axis). The Dirichlet boundary condition sets the
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eigenvalues of uniaxial tensor order parameter equal to its equilibrium value (S=Seq),

and the distinct eigenvector n paral1el to the azimuthal (a) direction of the cylindrical

coordinates system (r ,ex). The symbol a represents the unit vector along the azimuthal

ex direction. The initial conditions are:

(19)

where Sini and Pini are infinitesimal1y smal1 random numbers, and nini, mini, and lini are

corresponding three random eigenvectors. The initial conditions represent an isotropie

state (S=O, P=O) with thermal fluctuations in order (S, P) and orientation (n, m, 1).

3.4 Computational Methods
The mode1 equation (16) is a set of six coup1ed non-1inear parabolic partial

differential equations, solved in the circ1e, subjected the auxi1iary conditions (see

equations (18, 19)). The equations are solved using Galerkin Finite Elements with

Lagrangean linear basis functions for spatial discretization and a fifth order Runge­

Kutta-Cash-Karp time adaptive method. Convergence and mesh-independence were

established in al1 cases using standard methods. Spatial discretization was judiciously

selected taking into account the length scale of our model. As mentioned above, the

Landau-de Gennes model for nematic liquid crystals has an external length scale Le and

an internallength scale Li as fol1ows:

Le~R L ~" = ~ LI (20a,b)
, l ':> ckT*

where R is the fiber radius, and where in the length scale obeys Le» Li. If defects are

present, the mesh size has to be commensurate with Lï. It should be noted that the

externallength scale governs the directors' orientation (n, m, 1) while the internallength

scale governs the scalar order parameter (S, P). In addition, care should be taken to

select an appropriate time integration technique to overcome the intrinsic stiffness of the

system. The model equations contain an internaI time scale "Ci and an external time scale

"Ce' The internaI time scale governs the evolution of the scalar order parameters (S, P)

and is given by
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(21)'['. =_11_
1 ckT'

A much longer extemal time scale 'te controls the evolution of the directors and is

given by:

2
11L e't =-­

e L
1

(22)

The selected adaptive time integration scheme is able to efficiently take into

account the stiffness that rises due to the disparity between time scale: 't i « 'te'

3.5 Results and Discussion
To visualize the fiber textures we use the solution tensor Q, and represent the

discotic mesophase by a cuboid C whose axes are normal to the directors (n, m, 1) and

sides are proportional to its eigenvalues. Since Q has negative eigenvalues, we use

M =Q +!I instead ofQ.
3

3.5.1 Representative Planar Radial and Planar Polar Textures
Figures 3.4 and 3.5 show visua1izations of representative pp and PR obtained by

solving eqns. (16). Figure 3.4a and figure 3.5a shows the computed texture phase

diagram, given in terms of nematic potentia1 J.- =~ as a function of dimensionless
U 3T

fiber radius n = ~, with the auxiliary conditions (18,19) and 2.7 ~ U ~ 6.55,

o~ n ~ 300, [2 =-0.5, [3 = O. The phase diagram identifies the stabi1ity of the

textures as a function of temperature and fiber radius. Nanofiber favors the PR texture

while lower temperature and larger fiber favors the pp texture. The full1ine indicates the

pp and PR texture transition 1ine, defined by critical values of the temperature and fiber

size (1IUc, ne). For the parameters used here a good fit to the transition 1ine is:

-1 ( )ll1 3 = n-ne ;n = 0.65, ne = 37

U 8

(23)
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For large U, the transition is effected by 'R (long range), and for large 'R, the

transition is effected by U (short range). At large U the long range effects at the

transition include changes of director distortions and biaxiality. At large 'R the short

range effects on the transition include changes in the scalar order parameter and defect

core size. The dots on the diagrams represent the parametric conditions applied in

obtaining the solution shown in Figs. 3.4b and 3.5b. For U<8/3, the fiber is isotropic.

Figure 3.4b is a representative typical steady state visualization of M

corresponding to the pp texture for U=6.55, 'R=67, L2 =-0.5, L3 =0. It clearly shows the

molecular orientation of planar polar texture, with the two s=+1/2 defects collinear with

the fiber axis. The orientation of the defect-defect axis is arbitrary since the system

evolves from an isotropic state that contains no texture information. The simulations

show the bending distortions close to the two defects and an aligned region between the

two defects. Figures 3.4c,d shows a grey-scale plot and a surface plot of the uniaxial

scalar order parameter S as a function of dimensionless position (x*, y*). In the grey­

scale plot a low order parameter (S ~ 0) is black and high order parameter (S ~ 1) is

white. The dark dots in the figure correspond to the two s=+1/2 defects. The narrow

peaks in the surface plots indicate the difference in scale between defect cores and fiber

radius. At the defects' core S is small, as expected. Figures 3.4e,f show the

corresponding grey-scale and surface plots of the biaxial order parameters P as a

function of dimensionless position (x*, y*). In the grey-scale plot, P ~ 0 corresponds to

black and P ~ 1 to white. The figure clearly shows the biaxial eigenvalues of Q at the

two defect cores. The corresponding surface plot shows that at the defects core P ~ 0.4 .

Far from the disclination the state is uniaxial. Biaxiality arises because it reduces long

range elasticity. Figure 3.5b shows a representative typical steady state visualization of

the tensor order parameter M corresponding to the PR texture for U=2.80, 'R=67, L2 =-

0.5, L 3 =0. There is only one defect in the centre, with the strength s=+1. The only

deformation mode exist in PR texture is bend (K33), because the average molecular

tranjectories shown on the visualization denote splay. Figure 3.5c,d shows a grey-scale

plot and a surface plot S as a function of dimensionless position (x*, y*). I1's shown that

in the centre of the fiber S is small. Figures 5e,f show that P increases at the centre of
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fiber. At the disclination center the state is a1most negatively uniaxial, and the core is

biaxia1. Far from the disclination the state is uniaxia1.

3.5.2 Effect of Twist-Driven Anisotropy on Fiber Texture Selection

In this section we set L3 =0 and characterize the effect of L2 on fiber texture

selection. The magnitude of L2 determines the difference between twist mode (K22) and

the equivalent splay-bend modes (KIl= K33). The thermodynamically consistent range of

L 2 is found from equations (12, 13). To characterize the role of twist elastic anisotropy

on texture selection mechanisms the following dimensionless total energy F* per unit

length is analyzed:

F* = _F_. A* = f(f* + f*)dA*
kT * s f

c A'
(24)

where A* is the area of the computational domain (circle: r*=0.5), F is the total energy

density. Figure 3.6 shows the dimensionless short-range energy (top), long-range energy

(middle) and total energy (bottom) as a function of dimensionless fiber radius, 'R, for:

U=3.05, L2 =0 (left column) and U=3.05, L2 =-0.5(right column). The discontinuity at

'R ='Re corresponds to the texture pp <=> PR transition. Since we perform transient

simulations only stable solutions are captured. The left branch of each plot corresponds

to the PR texture, and the right bottom branch corresponds to the pp texture. The main

effect of decreasing L2 is an horizontal shift of the energy profiles towards smaller

'R values and hence 'Rc( L2 =0»'Rc(L2 =-0.5). Increasing 'R decreases short and long

range energy in the PR textures, but only long range in the pp textures. The rate of these

changes increases with decreasing L2 •
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Figure 3.4: (a) Computed texture phase diagram, given in terms of nematic potential 1/U = T/3T* as a

function of dimensionless fiber radius R =RIE" with the auxiliary conditions (18,19) and 2.7;S; U ;S; 6.55 ,

Os R s 300, L
2
=-0.5, L

3
=O, The fullline indicates the pp and PR texture transition line, defined by

critical values of the temperature and fiber size (lIUe, 'Re). The dot on the diagrams represent the

parametric conditions applied in obtaining the solution shown in Figs. 3.4b. (b) Representative steady state

visualization of M corresponding to the pp texture for U=6.55, 'R=67, L
2

=-0.5, [3=0. (c-d) Grey-scale

plot and a surface plot of the uniaxial scalar order parameter S as a function of dimensionless position (x*,

y*). In the grey-scale plot a low order parameter (S ~ 0) is black and high order parameter (S ~ 1) is

white. (e-f) Grey-scale and surface plots of the biaxial order parameters P as a function of dimensionless

position (x*, y*). In the grey-scale plot, P ~ 0 corresponds to black and P ~ 1 to white.
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Figure 3.5: (a) Computed texture phase diagram, given in terms of nernatic potential ljU =T/3T·

function of dimensionless fiber radius 'R =R/E" with the auxiliary conditions (18,19) and 2.7:s; u:s; 6.55,

o :s; 'R :s; 300, [2 =-0.5, [3 =O. The fullline indicates the pp and PR texture transition line, defmed by

critical values of the temperature and fiber size (lIUe, 'Re). The dot on the diagrarns represent the

parametric conditions applied in obtaining the solution shown in Figs. 3.5b. (b) Representative steady state

visualization of tensor order parameter M corresponding to the PR texture for U=2.80, 'R=67, [2 =-0.5,

[3 =0. (c-d) Grey-scale plot and a surface plot of the uniaxial scalar order parameter 8 as a function of

dimensionless position (x*, y*). In the grey-scale plot a low order parameter (8 ~ 0) is black and high

order parameter (S ~ 1) is white. (e-f) Grey-scale and surface plots of the biaxial order parameters P as a

function of dimensionless position (x*, y*). In the grey-scale plot, P '" 0 corresponds to black and P ~ 1 to

white.
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Figure 3.6: Dimensionless short-range energy (top), long-range energy (rniddle) and total energy (bottom)
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2

=0 (left column) and U=3.05, L
2

=-0.5
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Figure 3.7 shows the corresponding texture phase diagram for [2 =0 and [2 =-0.5.
~ ~

The phase transition line of L2 =-0.5 shifts left and up in comparison to the L 2 =0 case.

The figure shows that significant influence of L2 on the texture transition only exists for

intermediate values of U and R At low 'R the transition line diverges and is independent

ofU (i.e., verticalline). Since at low 'R the transition is sensitive to long range elasticity,

and the main difference in the PR and pp textures is the difference between splay and

bend deformations, no significant effect is detected because [2 does not introduce

splay-bend anisotropy. On the other hand, at high 'R the transition line asymptotes to

nematic-isotropic transition line and the texture transition is independent of long range

in general, inc1uding the L 2 contribution.

Figures 3.8 shows the influence of L2 on the defect core structure for the PR and

pp textures, in terms of the three eigenvalues of Q as a function of distance. The PR has

azimuthal symmetry in the orientation field and the pp has mirror symmetry with respect

to the line connecting the two s=+1/2 defects. Thus for the PR we show the eigenvalues

along the radial direction while for the pp texture we show the eigenvalues as a function

of dimensionless distance b* along a line that is perpendicular to the line connecting the

two s=+1/2 defects and goes through one of the two equivalent defects. Figures 3.8a-b

show the three eigenvalues of the tensor order parameter Q as a function of

dimensionless distance b* for U=6.55, 'R=67, [3=0.0, [2 =0.0 (a), and U=6.55, 'R=67,

~ ~

L3=0.0, L 2 =- 0.5 (c), corresponding to the pp textures. In both cases the state at defect

center is uniaxial with !-ln = !-lm > O,!-ll < O. The main effect of Lz is the decrease in

defect core size. Figures 3.8b-d show the three eigenvalues of the tensor order parameter

Q as a function of dimensionless radial distance r* for U=2.8, 'R=67, [2 =0.0, L3=0.0

(b), and U=2.8, <R=67, L2 =-0.5, L3 =0.0 (d), corresponding to the PR textures. In both

cases the state at defect center is uniaxial with !-ln = !-lm > 0, !-lI < O. The main effect of

Lz is the decrease in defect core size. To analyze the computed defect core features,

the long range and short range energies given in eqns.(8) are expressed in terms of
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eigenvalues and eigenvectors. For brevity we only discuss the following expression for

the PR texture:

(25a)

(25b)

where ~i (i=m.n) are two independent eigenvalues of the tensor Q, and

~i,r =a~JBr (i=m,n;). At the defect center the state is uniaxial [9], with

~n =~m > O'~l < 0, since otherwise the long range energy diverges. In addition the

cornrnon term between LI and Lz:

(26)

shows that when Lz is negative sharper gradients and srnaller defect core sizes can be

accornrnodated, as observed when cornparing Figs. (3.8b,3.8c).
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Figure 3.7: Computed texture phase diagram, given in terms of nernatic potential

function of dimensionless fiber radius 'R =RIE" with the auxiliary conditions (18,19) and 2.7:s; U:S; 6.55,

o:s; tR :s; 300, [3 =0, [2 =0 and [2 =-0.5. The phase transition line of [2 =-0.5 shifts left and up in

comparison to the L z =0 case. The figure shows that significant influence of L z on the texture transition

oilly exists for intermediate values ofU and n.
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Figure 3.8: Eigenvalues of the tensor order parameter Q as a function of dimensionless distance b* for

U=6.55, 'R=67, L 3 =0.0, L 2 =0.0 (a), and U=6.55, 'R=67, L 3 =0.0, L 2 =- 0.5 (c), corresponding to the pp
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of L2 is the decrease in defect core size. Figures 3.8b-d show the three eigenvalues of the tensor order

parameter Q as a function of dimensionless radial distance r* for U=2.8, 'R=67, L 2 =0.0, L 3 =0.0 (b), and

U=2.8, 'R=67, L 2 =-0.5, L 3 =0.0 (d), corresponding to the PR textures.
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3.5.3 Effect of Splay-Bend Anisotropy on Fiber Texture Selection
In this section we characterize the effect of splay-bend elastic anistropy, using

L2 =-0.5 and L3 ;j::. O. Figure 3.9 shows the texture phase diagram in terms of llU and R,

for three values of L3 • The figure shows that as IL 3 1 increases the texture transition line

shifts up and left in the phase diagram. The texture transition lines retain the same

features regardless of the value of IL 3 1, such that at lower R the transition lines diverges

and at high R the transition line asymptotes towards the nematic-isotropic transition

line. As before, at high R long range is insignificant and hence the transition lines

coalesce. On the other hand at low R the figure shows that the diverging transition

lines do not coalesce and the effect of L3 persists. The reason is that planar uniaxial

textures are sensitive to the splay-bend anisotropy that is created when L3 ;j::. o.

30025020015010050

isotropie

---~~-
~~

// ..-'
PR 1 .'

/1
/ :

(1
1 :

Il,. pp

d - l, =0
Il _.. l, =0.3
1 : -- l, =-1.0
1 \0.15

o

0.20

0.25

0.30

0.35

0.45

Dimensionless fiber radius, :R = Rç
Figure 3.9: Computed texture phase diagram, given in terms of nernatie potential ljU =T/3T· as a

function of dimensionless fiber radius 'R = RIf" with the auxiliary conditions (18,19) and

2.7::; U ::; 6.55, 0::; 'R ::; 300, L2 =-0.5. For three values of L3 , the figure shows that as IL
3

1 inereases

the texture transition line shifts up and Ieft in the phase diagram.
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3.5.4 Effect of Splay-Bend Anisotropy on Planar Polar Textures
The geometry of the pp textures is defined by the defect separation distance d.

Using simple arguments and the Frank energy of uniaxial NLCs (see eqn.(1)) we can

establish the dependence of defect separation distance d as a function of splay-bend

anisotropy d=d(Kn-K33) for certain limiting conditions of the vector model, which is

then be tested by the numerical solutions to tensor model (eqns.(16)). In this texture the

director is tangential to the boundary.

3.5.4.1 Predictions of the Vector Model
The effect of splay-bend anisotropy on isolated wedge disc1ination has been

characterized [18]. The free energy density fu around a defect may be written as [18]:

fu = ~ <P ~ [1 +E cos2(<p -a )]/r
2

(27)

where <p, a are the orientation angle and the polar angle at a point in polar cylindrical

elastic anisotropy. Minimization of fu leads to:

<p au = -E[<p aa cos2(<p - a) + <P a (2 - <P Jsin2(<p - a)] (28)

where <Paa = ô2<p/ôa 2
• Analytical limiting defect solutions to eqn.(28) for wedge

s=+112, +1 disc1inations can then be used to estimate d(E).

(i) Negligible Bend: K 33 -?- 0, E -?- +1

A solution where the director field trajectories are all circ1es or parallel lines

around the s=+112 defect is:

n 3n n
and - < a <- en =a --

2 2 ' 't" 2
(29)

and a pair of these solutions can not satisfy the boundary conditions. On the other hand

the s=+1 solution: 0 < a < 2n, <P =a + n , satisfies the boundary conditions and
2

hence in a DNLC fiber geometry this s=+1 solution corresponds to the PR texture and

the defect separation distance is d (E=+1)=0.
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(H) Splay-Bend Isotropy K ll =K 33 ,E =0

Sufficient increase of E produces the decay of the s=+1 defect into two s=+1/2

defects, since sorne bend is replaced by splay. The location of the defects can be found

by using the known boundary conditions and performing a disclination force balance

between the two s=+1/2 defects and the two images lying outside the fiber [5]. If R, is

the distance between the origin and the image of each defect, then to satisfy the director

boundary conditions at FR, the distance x between each defect and the fiber center is:

xR =R,2 (30)

In addition a force balance between each defect and the images gives:

1 1 1
--=-+--
R, - x 2x R, + x

which gives the fol1owing defect-defect distance d=2x:

d*=~=_l_
2R VS

(Hi) Negligible splay: Ku ~ 0, E~ -1

A defect s=+1/2 solution consists of straight lines director field trajectories:

(31)

(32)

n 3n n
and - < a <-, cp = -

2 2 2
(33)

(34)

A pair of such solutions can only satisfy the boundary conditions at two points when the

defects lie next to the fiber rim. Thus sorne bending is necessary. In addition to

minimize the necessary bending to join straight lines the defects should be as far apart as

possible. In a DNLC fiber geometry the solution that best avoids bending corresponds

to the pp texture and d(E~-l)=R-rc' In summary, the inequalities driven by splay-bend

elastic anisotropy are:

d * (E ~ -1) = 1> d * (E = 0) = _1_ > d * (E = +1) = 0
ifS

Splay-avoidance leads to the PR texture and bend avoidance to the pp textures. The

vector model can not predict the elastic-anisotropy driven texture transitions because the

defect reaction s = +1~ 2 s = +1/2 takes place.
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3.5.4.2 Numerical Solutions to the Tensor Model

As mentioned above [3 defines the KIl - K33 difference:

(35)

~ ~ 2
When L3 < L3e , KII>(l+ c) K33, the system will avoid the splay mode, and the

preferred fiber texture is PR; c denotes a constant. On the other hand when [3 > [3e ,

KI 1>(1+ c2
) K33, the system will try to avoid the bend mode, and the preferred fiber

texture is pp with two defects on the rim collinear with the fiber axis.

Figure 3.10 shows the dimensionless defect distance d* as a function of [3 for

<R=67, [2 =-0.5, and U=6.55(top), 5.55(middle), and 4.55(bottom). The dots for

~ ~

L3 < L3e correspond to the PR texture and the full line corresponds to the pp texture.

Note that in Figure 3.10 the minimum value of L3 is set by the thermodynamic stability

~ ~

restriction -1.125::s; SL3. The horizontal line indicates the case of L3=0, when

d*=l/ifS [19]. The numerical solutions confirm the theoretical result for all values ofU.

The computations confirm the expected inequalities (34). When [3 increases, the

distance of two defects also increases and eventually asymptotes to the edge of the fiber.

Since the boundary conditions are fixed the defects' location cannot be right on the edge.
~ ~

The critical value of L3 = L3e Ri -1.2 and is within our computational scheme nearly

independent of U. In terms of the vector model, using S=0.8, the critical splay-bend

anisotropy is 8=-0.75.

Figure 3.11a shows the visualization of the M tensor order parameter for [3<0

(U=6.55, <R=67, [2 =-0.5, [3=-1.3), corresponding to the PR texture with only bend

present. Figure 3.11b shows the visualization of the M tensor order parameter for [3 >0

(U=6.55, <R=67, [2 =-0.5, [3=1.5) corresponding to the pp texture with an aligned

center region and strong splay next to the s=+1/2 defects, now located next to the fiber

nm.
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In contrast to the texture transitions driven by (U, <R) discussed above, the

transition here is driven by splay-bend elastic anisotropy (L3 ;1= 0). Figure 3.12 shows

the second order long-range energy (f2i (V Q)) profile in terms of L3 with the same

parametric conditions of figure 10. The dots correspond to PR and the curve to the pp

texture. The dramatic change of long-range energy at L3 =-1.2 corresponds to the texture

transition point due to splay-bend elastic anisotropy. The minimum long-range energy

happens when L3 is close to O.
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d*=l/ifS [19]. The numerical solutions confirm the theoretical result for aIl values ofD. The computations

confirm the expected inequalities (33). When [3 increases, the distance of two defects also increases and

eventually asymptotes to the edge of the fiber. Since the boundary conditions are fixed, the defects'

location cannot be right on the edge. The critical value of L
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~ -1.2 and is within our

computational scheme nearly independent of U. In terms of the vector model, using S=0.8, the critical

splay-bend anisotropy is E=-0.75.
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(a)

(b)

Figure 3.11: (a) Computed visualization of the M tensor order parameter for L3 <0 (U=6.55, 'R=67, L2 =­

0.5, L
3
=-1.3), corresponding to the PR texture with oruy bend present. (b) Computed visualization of the

M tensor order parameter for L
3
>0 (U=6.55, 'R=67, L

2
=-0.5, L

3
=1.5) corresponding to the pp texture

with an aligned center region and strong splay next to the s=+1/2 defects, now located next to the fiber

rim.
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3
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Conclusions
A mode! to describe the texture formation in mesophase carbon fibers has been

developed, implemented, and shown to replicate commonly observed cross-sectional

carbon fiber textures of industrial relevance. The model is based on the classical

Landau-de Gennes theory for liquid crystals and has been adapted to describe discotic

carbonaceous mesophases. The model is able to predict the formation of planar radial

and planar polar textures. The parametric conditions of their stability in terms of

temperature and fiber radius have been computed. Lower temperature and thicker fibers

tend to select the planar polar texture and higher temperature and thin fibers tend to

promote the emergence of the planar radial texture, in agreement with [9]. The influence

of elastic anisotropy to the fiber texture formation is thoroughly discussed. It is found

that splay-bend anisotropy influences the fiber texture much more than the twist term.

Splay (bend) avoidance leads to the planar radial (polar) texture. The importance of

splay-bend anisotropy is completely explained by the Frank elastic theory. The new

results presented in this paper contribute towards a better understanding of the principles

that control the cross-section texture selection during the melt spinning of mesophase

carbon.
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Chapter 4

Theory and Simulation of Texture Formation
in Mesophase Carbon Fibers

4.1 Abstract

Carbonaceous mesophases are spun into high performance carbon fibers using the

melt spinning process. The spinning process produces a wide range of different fiber

textures whose origins are not weIl understood. Planar polar (PP) and planar radial (PR)

textures are two ubiquitous ones. This paper presents the theory and simulations of the

formation process of the PP texture using the Landau-de Gennes mesoscopic theory for

discotic liquid crystals, including defect nucleation, defect migration, and overall texture

geometry. The simulated PP texture geometry is thoroughly explained using analytical

methods. The computed PP and PR textures phase diagram, given in terms of

temperature and fiber radius, is used to establish the processing conditions and geometric

factors that lead to the selection of these textures.

4.2 Introduction

Carbonaceous mesophase, such as coal tar and petroleum pitches, are used in the

industrial manufacturing of mesophase carbon fiber. This relatively new carbon fiber is

more competitive than the conventional one made from the acrylic precursors in several



application areas [1]. The thennodynamic phase that describes carbonaceous mesophases

is the discotic nematic liquid crystal state [2]. Liquid crystals are intermediate (i.e.

mesophase) phases, typically found for anisodiametric organic molecules, which exist

between the higher temperature isotropic liquid state and the lower temperature

crystalline state. Carbonaceous mesophases are composed of disk-like molecules. Figure

4.1 shows the molecular geometry, positional disorder, and uniaxial orientational order

of discotic nematic liquid crystals. The partial orientational order of the molecular unit

normal u is along the average orientation or director n (n·n=l). The name discotic

distinguishes the molecular geometry and the name nematic identifies the type of liquid

crystalline orientational order.

Figure 4.1: Definition of director orientation of a uniaxial discotic nernatic liquid crystalline rnaterial. The

director n is the average orientation of the unit norrnals to the disk-like molecules in a discotic nernatic

phase.

The industrial fabrication of mesophase carbon fiber using the conventional melt

spinning process typically produces micrometer-sized cylindrical filaments whose cross

sectional area displays a variety of transverse textures [3], that is, different spatial

arrangements of the average orientation n on the plane perpendicular to the fiber axis.

The selection mechanisms that drive the texture formation pattern are at present not well

understood, but due to the strong structure-properties corre1ations, they are essential for

product optimization.

Discotic nematic liquid crystals, such as carbonaceous mesophases, are anisotropie

visco-e1astic materials, whose properties depend on the average molecular orientation. A

question of fundamental importance to the melt spinning of carbonaceous mesophases is

to determine how elastic and viscous mechanisms affects the fiber process-induced

structuring and cross-sectional fiber textures' selection. When considering elastic

63



mechanisms, it is necessary to identify the three fundamental elastic modes of these

materials. Figure 4.2 shows the three types of elastic deformations, known as splay,

twist, and bend, and the corresponding modulus Kll, K22, and K 33, known as Frank

e1asticity constants [4]. Note that in contrast to rod-like nematics, for disc-like nematics

the bending disc's trajectories give rise to a splay deformation, and the splaying disc's

trajectories give rise to a bend deformation; by disc trajectory it means the curve locally

orthogonal to the director. For disc-like liquid crystals, it is known that the twist constant

(Kn ) is greater than the splay (Kll ) and bend (K33) constants [5].

K ll

Figure 4.2: Schematics of the elastic splay (left), twist (center), and bend (right) deformation for uniaxial

discotic nematics. Note that the splay (bend) mode involves bending (splaying) of the disk's trajectories, in

contrast to the case of uniaxial rod-like nematics. A disk trajectory is a curve locally orthogonal to the

director. Adapted from [5].

It has been known [3] that the observed cross-section fiber textures belong to a

numbers of families, such as onion, radial, mixed, PAN-AM, to name a few. Figure 4.3

shows the schematics of two cross-sectional textures most commonly seen in mesophase

carbon fibers. The dashed line indicates the trajectories of the molecular planes, (a)

shows the planar radial (PR) texture, in which only the pure bend mode exists with one

defect in the center of strength +1, and (b) shows the planar polar (PP) texture, in which

two modes of deformation, splay and bend, couple in the system with two defects of the

strength +1/2. The defects in these textures arise because in a cylindrical geometry, it is

impossible to tangentially align the directors at the surface without introducing

singularities. Defects are singularities in the director field and are characterized by

strength (1/2, 1, ...) and sign (±)[4]. The strength of a disclination determines the

amount of orientation distortion and the sign corresponds to the sense (i.e. clockwise or
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anti-c1ockwise) of orientation rotation while circ1ing the defects. Since the energy of a

defect scales with the square of a defect [4], the planar polar texture would seem to

emerge, sa as to minimize the elastic energy associate with defect distortions. In

addition, defects of equal sign repel each other, while defects of different sign attract. As

shown below, the pp texture, defect-defect interaction plays a critical role in the

geometry of the texture.

(a) (b)

Figure 4.3: Schematics of transverse textures of actual mesophase carbon fibers. (a) The planar radial

(PR) texture, in which the pure bend mode (K33) exists with one defect in the center of strength +1. (b) The

planar polar (PP) texture, in which two modes of deformation, splay (Ku) and bend (K33), couple in the

system with two defects of the strength +1/2.

Theory and simulation of liquid crystalline materials continues to be performed

using macroscopic, mesoscopic, and molecular mode1s [4]. Macroscopic models based

on the Leslie-Erickson director equations are unsuitable to simulate texture formation

because defects are singularities in the orientation field. On the other hand, mesoscopic

model based on the second moment of the orientation distribution function is well suited

to capture liquid crystalline textures, because defects are non-singular solutions to the

goveming equations. A very well established mesoscopic model in liquid crystalline

materials is based on the Landau-de Gennes free energy [4] and is adopted and used in

this work.

The objectives ofthis paper are:

(1) To simulate the transient formation of the planar polar texture that is

commonly observed during the melt spinning of carbonaceous

mesophase.

(2) To characterize the elastic driving forces those promote the selection of

the planar polar texture.
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(3) To provide a full geometric characterization of the planar polar textures in

terms of defect locations.

(4) To present and discuss the planar radial-planar polar fiber texture phase

diagram, given in terms of temperature and fiber radius, and to establish

the geometric and operating conditions that lead to the characteristic

textures.

This paper is organized as follows. Section 2 presents the theory and the Landau-de

Gennes goveming equations. Section 3 presents an analytic geometric analysis of the

planar polar texture that yields closed form results. Section 4 shows the numerical

solutions of our model that verify the analytical predictions we made in section 3, and

also, discusses the characteristics of the texture evolution and the texture phase diagram.

Finally conclusions are presented.

4.3 Theory and Governing Equations

In this section, we present the Landau-de Gennes theory for nematic liquid crystals,

and the parametric equations used to describe mesophase fiber texture formation. As

mentioned above, the theory is well suited to simulate texture formation since defects are

non-singular solutions to the goveming equations.

4.3.1 Definition of Orientation and Alignment

The microstructure of the discotic nematic liquid crystals is characterized by a

second order symmetric and traceless tensor, known generally as tensor order parameter

Q [10]:

1 1
Q =S(nn - - 1) + - P(mm - Il)

3 3

where the following restrictions apply:

Q=QT; tr(Q)=O;-.!.~S~l;-~~P~~
2 2 2

(1)

(2)
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[
1 0 0]

n . n = m . m = 1·1 = 1; nn + mm + Il = 1 = 0 1 0

001
(3)

the uniaxial director n corresponds to the maximum eigenvalue ~S, the biaxial director
3

m corresponds the second largest eigenvalue _.!.. (S - p), and the second biaxial director
3

1 (=nxm) corresponds to the smallest eigenvalue - .!..(S + p). The orientation is defined
3

completely by the orthogonal director triad (n, m, 1). The magrtitude of the uniaxial

scalar order parameter S is a measure of the molecular alignment along the uniaxial

director n, and is given as S = ~(n' Q. n). The magnitude of the biaxial scalar order
2

parameter P is a measure of the molecular alignment in a plan perpendicu1ar to the

direction of uniaxial director n, and is given as P = ~ (m . Q . m -1 .Q .1). On the
2

principal axes, the tensor order parameter Q is represented as:

1
--(S-p) 0 0

3

Q= 0
1

0 (4)--(S+P)
3

0 0
2

S
3

both Sand P are positive for normal disc-like uniaxial nematic liquid crystals.

The Landau-de Gennes model uses the tensor order parameter to describe nematic

ordering. According toequation (4), the model is able to describe biaxial (S,* 0, P '* 0),

uniaxial (S,* 0, P=O), and isotropie (S=O, P=O) states. Defects are regions of molecular

size in which orientational order (S, P) sharply decrease. These localized disordered

regions are in principle captured by mesoscopic models since Q remains weIl behaved.
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4.3.2 Landau-de Gennes Mesoscopic Model for Liquid Crystalline

Materials

According to the Landau-de Gennes model, the bulk energy density of nematic liquid

crystals (NLC) in the absence of external fields is given by [8]:

(5)

(6a)

(6b)

(7a,b)

where fs is the short-range energy density, which is responsible for the nematic-isotropic

phase transition, and fi is elastic free energy density, also known as Frank energy, which

contains long range gradient contributions to the system.

The dimensionless free energy densities fs and fi of thermotropic liquid crystals, in

terms of the second order tensor Q, are given by:

f, ~ ~G(l-~U)Q:Q-~UQ:(Q.Q)+: U(Q:Q)'J

f[ = LI * [VQ:(VQY]+ L 2
• (V.Q).(V.Q)

2ckT 2ckT

where U is the nematic potential, which is related to the temperature in thermotropic

liquid crystal, and c, k, T* are the number density of the discs, the Boltzmann's constant,

and an absolute reference temperature just below the isotropic-nematic phase transition

temperature respectively. The symbol L j and Lz are Landau coefficients and are related

to the Frank's constant ofuniaxial LC's in the following way [11]:

L = K 22 L = K - K 22

I 2s2 2 S2

which implies the following elastic anisotropy restrictions: K =K ll =K 33 "* K 22 •

Thermodynamic stability restrictions impose the following inequality [9]:

L j >0,3L j +5Lz>0 (8)

in addition, the molecular geometry involved in the discotic nematic phase requires that

[10]:

Lz<O (9)

Using the c1assical gradient flow model, the time dependent equation in terms of Q and

VQ is found to be [12]:
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(10)_ (Q)dQ =~=(Bfs _V.~)[Sl
y dt 8Q BQ BVQ

where [s] indicates the symmetric and trace1ess, y(Q) is a phenomeno1ogica1 kinetic

coefficient, and 8F is the functiona1 derivative of the total energy F. substituting
8Q

equation (6) into equation (10) yie1ds the following goveming equations ofQ(x,t):

~~ = -6DrM(l-~U )Q- u(QoQ_~(Q :Q)I)+ U(Q :Q)Q]

+6Dr[~VZQ + L z " (V(V. Q) + [V(V. Q)Y - 2 tr[V(V. Q)]I)]
ckT 2ckT 3

1 ckT
Dr::::: Dr Dr=-

(1- (3/2)Q :QY 611

(11)

where Dr is the microstructure dependent rotationa1 diffusivity, Dr is the preaveraged

rotationa1 diffusivity or isotropie diffusivity, which is independent of Q, and 11 IS a

viscosity. Non-dimensioning equation (11) yie1ds:

(12)

For facilitate the discussion, we define:

S=- ~ ~[l-~(Q:QlJ'[(l-~U)Q-~QQ-~(Q:Q)I)+ U(Q:Q)Q] (13a)

L~ i: ~[l-~(Q:QlJ' {V'Q+ ~' [V(VoQ)+[v(VoQ)f +r[v(v 0 Q),]} (13b)

d~ =S+L (Be)
dt

" 3T"
h " 3ckT 'd' '1 'U 'd" 1w ere t = t-- IS ImenSlOn ess bme, = - IS ImenSlOn ess temperature,

11 T

1; = ~ LI" is mo1ecu1ar 1ength sca1e, Lz =.!:2 is dimension1ess e1astic coefficient, and
ckT LI
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(14a,b)

Ris geometry length scale (i.e. the fiber radius), S is the short-range contribution, and L

is the long-range distribution.

Here we discuss the main effects arising from S and L. As mentioned above, S

represents the short-range elastic contribution, which govems the isotropic-nematic

phase transition and tends to keep the molecular order (S, P) equal to that of the

equilibrium state in a local domain. The second term L is the long-range order elastic

effect of the molecular field to impose an energetic penalty for any spatial gradients

(V'Q ;j:. 0). As mentioned before, the long-range effect is known as the Frank elasticity.

The dimensionless parameters of the model are: U, ~ = R , and Lz . The nematic
1;

potential U is a dimensionless temperature that controls the equilibrium order parameter

Seq at the phase transition. According to the Doi-Edwards uniaxial nematic theory [12]:

S ~.l- +~~(l- 8) U= 3T*
eq 4 4 3U' T

where T* is an absolute reference temperature just below the isotropic-nematic phase

transition temperature like we defined before. For U<8/3 the stable phase is isotropic, for

8/3~ U ~ 3 there is biphasic equilibrium, and for higher values ofU the phase is uniaxial

nematic. In this work, we have used 2.8~ U ~ 6.55. The parameter ~ = R is the ratio
1;

of the fiber radius to the intemallength scale (1;). The intemallength scale represents

the characteristic size of a defect core and is usually much smaller than the system size

R. In this work, we have used 0<~<150. When ~«1, long-range energy dominates,

spatial gradients are costly and homogeneous states are selected. On the other hand,

when ~» 1, long-range elasticity is insignificant with respect to short-range elasticity

and defects proliferate, since spatially, non-homogeneous states are energetically not

costly. The dimensionless scale Lz = L z is a measurement of elastic anisotropy. When
LI

Lz =0, the system is isotropic and all elastic modes have the same elastic modulus. The

thermodynamic restrictions, equation (7b), yield [9]:
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~ 3
L >--

z 5 (15)

in addition, since for discotic nematics, it is we11-known that K22>K11 , and K22>K33 then

3 ~
-- < L z ~ 0

5
(16)

In this paper, we have used Lz = -0.5 throughout.

The goveming equation (12) is solved in the unit circle (r =1) with the fo11owing

boundary conditions:

t*>O, r =0.5, Q=Qeq

(17)

The symbol r is the dimensionless radial distance (r = r/R), and r =0 is the center of

the computational domain (i.e. fiber axis). The Dirichlet boundary condition sets the

eigenvalues of uniaxial tensor order parameter equal to its equilibrium value (S=Seq),

and the distinct eigenvector n para11el to the azimuthal (a) direction of the cylindrical

coordinates system (r ,a). The symbol a represents the unit vector along the azimuthal

a direction. The initial conditions are:

t*=O Q .. =S, .(n. ·n·· -.!.I)+.!.P.. (m. ·m·· -l.l.. )
'U11 lm 11111111 3 31m Illi ml lllillll

(18)

(19)

where Sini and Pini are random and Sini R! 0, Pini R! 0, nini, mini, and lini are corresponding

three random eigenvectors. The initial conditions represent an isotropie state (S=O, P=O)

with thermal fluctuations in order (S, P) and orientation (n, m, 1).

4.4 Geometrie Analysis for Planar Polar Textures

In this section, we present a geometric analysis of the planar polar texture, with the

objective of characterizing the distance d between the two +1/2 disclinations. To find a

close form expression for d, we must assume isotropie elasticity, Lz = O. In addition, we

sha11 assume that the tensor order parameter is uniaxial (i.e. P=O):

Q =s(nn-~I)

71



(20)

(21)

the director n orientation in the pp texture is best analyzed using a polar cylindrical

coordinate system (r, a). In this system, the spatial dependence of the order parameter is:

Q(r,a) = s(r,a){n(r,a)n(r,a)-~I)

To satisfy the unit length restriction (n .n = 1), we parameterize the director as follows:

{
nT = cose(r,a)

net = sine(r,a)

assuming that outside the defect cores, the sca1ar order parameter is constant and equal

to its equilibrium value, S=Seq (see equation (14)). Assuming steady state, the goveming

equation (12) then reduces to

A general singular defect solution ofthe Laplace equation to the director angle e is:

8 = sa+c

(22)

(23)

where c is an arbitrary constant and s is the strength of the defect. Since the director

orientation angle e is govemed by the linear Laplace operator ('\72), the principle of

superposition can be used to describe textures with two or more defects. The genera1

solution in the presence of arbitrary number n ofdefects of strength si, at a point P, is:

n

e="s.a.+cL... 1 1

i=l

(24)

(25)

where ai is the polar angle of the ray originating at the defect of strength Si and ending at

point P, c is a constant and 8 is the director angle at point P. For the planar polar texture

with 2 defects of strength s=+1/2, the director field is:

1
e =-(a1 +a2 )+c

2

Next we use the generally valid equation (24) to analyze the planar polar texture

for a fiber of radius R. Figure 4.4a shows the schematic of the fiber cross-section, and

the coordinate system. The dots denoted l, II are the two-disc1ination lines parallel to the

fiber texture axis. The x-axis is defined by a =0 in our polar coordinates. The geometric

analysis consists of finding the dimensionless distance d* between two defects.

According to Figure 4.3b, the director angle at the fiber surface is tangential. Thus at any

72



arbitrary point P on the surface, the director angle 8 measured with respect to the x-axis

IS

7t
8=-+a

2
(26)

Since equation (25) describes the director angle for a two defects texture without

constraints, the effect of fixed boundary conditions given by equation (17) needs to be

incorporated. Multiple defects solution in the presence of boundary constraints is best

obtained using the method of images in which a surface orientation constraint is captured

by an image defect. The method of images is widely used to obtain analytical defect

solutions in liquid crystalline materials, and full details can be found in the literature [4].

Figure 4.4a shows the two image defects, denoted ID and IV, for this particular problem.

The strength s of the two image defects is again +112. Using equation (24) to take into

account the contribution from the two defects, we find that the director orientation at an

arbitrary point P lying on the fiber surface is

8p = ~ +a={~)+s(l3)+s(y)+{~ +a)+c (27)

where a, ~, y are clearly defined in figure 4.4a, and where c is an arbitrary constant.

Figure 4.4b shows how the defect and image distances are related to the fiber axis. The

two defects (l, II) are located at a distance x from the fiber axis and the two images (III,

IV) are located at a distance f! for each defect. It turns out that to find x and define the

geometry of the pp texture, f! must also be known. In our case, s=+112, c=O, and

equation (27) then becomes:

a=y+~ ~~

According to equation (28), the relation between the angular coordinates is:

tana = tan(y + ~) = tany + tan~ )
1- tany . tan~ (29

Using equation (29) in conjunction with the following trigonometric relations:
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Rsina
tany=--

l+x
Rsina

tana=--
x

A Rsina
tanf-l=-­

2x
sin 2a + cos 2a = 1

x
cosa =-

R

we finally get:

R 2 =x·f

(30)

(31)

which relates the fiber radius R to the defect distance x, and image position e. Since e
is unknown, another equation is needed. The additional equation needed to find e(x) is

the defect-defect force balance equation. To find the force of interaction between two

defects of strength SI and S2, the total energy W12 is found [4] by integrating the long­

range energy f e (equation (6b)) and using equation (25) to obtain [4]:

(32)

where r12 is the distance between defects and rc is a lower eut-off distance. Then the

force rI2 between two defects is [4]:

cr _ -27tk S1
S

2
J 12 -

r12

(33)

(34)

which shows that the force rI2 is inversely proportional to their separation distance r12.

Employing the fomulation used to find equation (33), the force balance on defect 1 is:

1 1 1
--=-+-­
f -x 2x f+x

Coup1ing the equation (31) and equation (34) we finally get:

1
x=-R

ifS
(35)
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(a)

1t
-+a
2

x

(b)

x

Figure 4.4: Schematic of fiber geometry. (a) The dots 1 and II are two defects of strength s=+1/2 in the

computational domain and III and IV are two image defects of strength s=+1/2. P is an arbitrary point on

the surface, on which the director n is tangential to the surface. (b) The distance between defect and

coordinate origin is x, the distance between image and coordinate origin is .e , and the fiber radius is R.
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which means that when the system reaches steady state, the two defects only lie on a

circ1e of radius 4~R. Equation (35) is one of the main results of this paper. In the
~5

absence of elastic anisotropy (L2=0), the distance between two defects is fixed by the

fiber radius. The number 1/VS arises due to the fiber geometry. In the rectangular

geometry this factor is 0.5, but in the circular domain it is 0.66. Generalization of this

analysis to other fiber geometries of industrial relevance, such as elliptical, is possible.

Next we shall establish the accuracy and relevance of the theoretical results by

comparing numerical solutions of the full non-linear system of parabolic partial

deferential equations (12) with the theoretical prediction given in equation (35).

4.5 Modeling fiber texture behaviour

4.5.1 Computational Modeling

The model equation (12) is a set of six coupled non-linear parabolic partial

differential equations, solved in the unit circ1e, subjected the auxiliary conditions (see

equation (17) and (18)). The equations are solved using Galerkin Finite Elements with

lagrangean linear basis functions for spatial discretization and a fifth order Runge-Kutta­

Cash-Karp time adaptive method. Convergence and mesh-independence were

established in aIl cases using standard methods. Spatial discretization was judiciously

selected taking into account the length scale of our mode!. As mentioned above, the

Landau-de Gennes model for nematic liquid crystals has an external length scale Le and

an internallength scale Li as follows:

_ ~lLe-R L. =)::= -
, 1 ~ ckT* (36a,b)

where R is the fiber radius, and where in the length seale obeys Le» Li. If defeets are

present, the mesh size has to be commensurate with ~. It should be noted that the

externallength scale governs the directors' orientation (n, ID, 1) while the internallength

scale governs the scalar order parameter (S, P). In addition, care should be taken to select

an appropriate time integration technique to overcome the intrinsic stiffness of the
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system. The model equations contain an internaI time scale 't i and an external time scale

'te' The internaI time scale governs the evolution of the scalar order parameters (S, P)

and is given by

11
't. =--

1 ckT*
(37)

A much longer external time scale r e controls the evolution of the directors and is given

by:

(38)

The selected adaptive time integration scheme is able to efficiently take into account the

stiffness that rises due to the disparity between time scale: 't i « 'te'

4.5.2 Results and Discussions

To efficiently visualize the solution vector Q, we represent Q by a cuboid whose

axes are the directors (n, fi, 1) and whose sides are proportional to its eigenvalues. Since

Q has negative eigenvalues, we visualize M =Q +.!..1 instead of Q.
3

Figure 4.5a shows the computed texture phase diagram, given in terms of nematic

potential l- = -I. as a function of dimensionless fiber radius 7( = RJ~ for the auxiliary
U 3T

conditions (17, 18), and 2.8sUs6.55, O<~<150. The phase diagram identifies the

stability of the textures as a function of temperature and fiber radius. Ultra thin fiber

favor the PR texture while lower temperature and thicker fiber favors the stability of the

pp texture. The full curved line indicates the pp and PR transition line. The area

between the full curved and dashed line show bistability. This is due to the lack of

numerical resolution beyond our available computational power. In this area either the

PR and pp textures were obtained. The dot near the bottom of the diagram represents the

parametric conditions used in obtaining FigA.5b. For U>8/3, the fiber is isotropie. The

phase diagram shows the processing (temperature) and geometry (fiber radius) affect the

texture selection process. Figure 4.5b is a representative typical steady state solution of
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the planar polar texture for U=6.55, ~=67, [2 =-0.5. It clearly shows the characteristic

planar polar texture, with the two s=+1/2 defects collinear with the fiber axis. The

orientation of the defect-defect axis is arbitrary since the system evolves from an

isotropie state that contains no texture information. The simulations show the bending

distortions close to the two defects and an aligned region between the two defects.

Figure 4.5c-d shows a gray-scale plot and a surface plot of the uniaxial scalar order

parameter S as a function of dimensionless distance (x*, y*). In the gray-scale plot a low

order parameter (S ~ 0) is black and high order parameter (S ~ 1) is white. The dark

dots in the figure correspond to the two s=+1/2 defects. The narrow peaks in the surface

plots indicate the difference in scale between defect cores and fiber radius. At the defects

core S ~ 0, as expected. Figures 4.5e-f show the corresponding gray-scale and surface

plots of the biaxial order parameters P as a function of dimensionless distance (x*, y*).

In the gray-scale plot, P ~ °corresponds to black and P ~ 1 to white. The figure clearly

shows the biaxial eigenvalue of Q at the two defect cores. The corresponding surface

plot shows that at the defects core P ~ 0.4 and strong biaxiality is present. The reason

why s=+1/2 defects shows biaxial ordering is because this class of defect (isi =li) lacks

cylindrical symmetry and hence P must be non-zero.

Figure 4.6a-d show computed visualization of the evolution of the tensor order

parameters Q for the same parametric conditions as in Fig. 4.5, for the following

dimensionless times: (a) 200, (b) 400, (c) 800, (d) steady state. The figure shows that at

early time the texture is close to the PR texture with the two defects close to the fiber

axis, and as time proceeds the defects move away from each other and towards the fiber

surface. The reason for the increase in the defect-defect distance is the mutual and equal

repulsive force between two defects of equal sign and strength, which in this case is

+1/2. The defects drift apart and eventually slow down and settle at a distance x from the

fiber axis, because the repulsive image forces arising from the fixed boundary conditions

(equation (17)). Figure 4.6e shows the corresponding total dimensionless long-range

energy f; as a function of dimensionless time t*. The total dimensionless long-range

energy f; is obtained by:
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Figure 4.5: (a) Computed texture phase diagram, given in terms of nematic potential Vu =T/3T' as a

function of dimensionless fiber radius ~ = R/~ for the auxiliary conditions (equation (17) and (18),

2.8::;; U::;; 6.55, 0<~<150). Fig. 4.5(b) Steady state solution of the planar polar texture for U=6.55, ~=67,

[2 =-0.5. Fig. 4.5(c)-(d) Gray-scale plot and surface plot of the uniaxial scalar order parameter S as a

function of dimensionless distance (x*, y*). In the gray-scale plot a low order parameter (S::::: 0) is black

and high order parameter (s '" 1) is white. The dark dots in the figure correspond to the two s=+1/2 defects.

The narrow peaks in the surface plots indicate the difference in scale between defect cores and fiber radius.

At the defects core S:::::O, as expected. Fig. 4.5(e)-(f) Gray-scale and surface plots of the biaxial order

parameters P as a function of dimensionless distance (x*, y*). In the gray-scale plot, P '" 0 corresponds to

black and P '" 1 to white. The figure clearly shows the biaxial eigenvalue of Q at the two defect cores. The

corresponding surface plot shows that at the defects core P '" 0.4 and strong biaxiality is present.
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Figure 4.6: (a)-(d) compute~eJisualization of the evolution of the tensor or~t{. parameters Q for the same

parametric conditions as in Fig. 4.5. Fig. 4.6e Total dimensionless long-range energy f; as a function of

dimensionless time t*. the long-range energy decreases non-monotonically with time. The increase in r; at

t*=lSO indicates the following topological transformation: SI ~ 2s
2

• Fig. 4.6f Dimensionless defect

separation distance d* as a function of dimensionless time t*. The horizontal line corresponds to the

theoretical resuIts derived in the previous section: d' =x/R = l/VS .Parametric conditions: U=6.55, 'R=67,

[2 =-0.5.
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f; =~ H{VQ:(VQY +L 2 (V.Q).(V.Q)}'dA
2R A

where A is the computational domain, and the dimensionless time is given by:

* 3ckT*
t =t---

TI

(39)

(40)

Figure 4.6e shows that the long-range energy decreases non-monotonically with

time. The increase in f; at t*=180 indicates the following topological transformation:

(41)

where SI=+1 and S2=+112. The driving force for this transformation is the reduction of

the long-range elastic energy. The long-range elastic energy associated with a defect

scales with the square of its strength and since (S1 Y> 2(S2 y, the emergence of two

s=+112 defects lowers the energy. The local maximum in f; indicates the global

dimensionless time t* at which the defect transformation (equation (41» occurs. Figure

4.6f shows the corresponding dimensionless defect separation distance d* as a function

of dimensionless time t*. The horizontal line corresponds to the theoretical results

derived in the previous section: d* =~ = 4~ (see equation(35». The figure clearly
R \15

shows that as t* increases, the defect-defect separation distance increases and eventually

asymptotes to the predicted value of 1/VS. Figure 4.7 shows the uniaxial scalar order

parameter S (left) and biaxial order parameter P (right) as a function of dimensionless

distance d*, for seven dimensionless times, t*: 100-1350, and the same parametric

conditions as in Fig 4.5. The figure shows the details of the s=+1 defect nucleation and

the S1 = +1~ 2s2 = +1/2 defect splitting process. The early stage (100<t*<133) shows

the continuous front propagation of S that leads to the nucleation of the s=+1 defect. At

t*=133, a wide core s=+1 displaying weak biaxially starts to decay by core splitting. The

core splitting process is clearly seen in the t*=178 frame. The defect core has spitted into

two strongly biaxiallocalized peaks. As the time elapses, the two peaks corresponding to

the +1/2 defects drift away from the fiber axis (d*=O) and towards the bounding surface.
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Figure 4.8 shows the dimensionless defect separation distance d* as a function of

dimensionless temperature -.!..-, for <R=67. The solid line corresponds to the theoretical
3T

results, d*=I/ifS. The results confirm the validity of the theoretical analysis.

Figure 4.9 shows the dimensionless defect separation distance d* as a function of

dimensionless fiber radius <R = R , for D=3.55. The numerical results again confirm theç

validity of the theoretical results. It should be mentioned that derivation from the

theoretical result are likely to originate from computational limitations that arise due to

the inherent disparate length scales in the model. Aiso for the presented results and

parametric conditions, anisotropie Frank e1asticity has no effect on x. Nevertheless we

expect that for higher D, the magnitude of L2 will affect the ideal value ofx=l/ifSR.

82



(*=116

0.500.250.00

d*
-0.25

(*=100

(*=116

(*=133

fi (*=149

(*=178

)

(*=200

(*=1350

I----l "- '---

0.7

0.6

0.5

DA

Cl 0.3

0.2

0.1

0.0

0.7

0.6

0.5

0.4

Cl 03

0.2

0.1

0.0

0.7

0.6

0.5

0.4

Cl 0.3

-0.50

0.2

0.1

0.0

0.7

0.6

0.5

0.4

Cl 0.3

0.2

0.1

0.0

0.7

0.6

0.5

DA

Cl 0.3

0.2

0.1

0.0

0.7

0.6

0.5

0.4

Cl 03

0.2

0.1

0.0

0.7

0.6

0.5

0.4

Cl 03

0.2

0.1

0.0

0.50

(*=149

(*=178

(*=133

(*=400

(*=100

(*=1350

0.25

d*
0.00

1.0

0.8

0.6

CI) 0.4

0.2

0.0

1.0

0.8

0.6

CI) DA

0.2

0.0

1.0

08

0.6

CI) 0.4

0.2

0.0

1.0

0.8

0.6

CI) DA

0.2

0.0

1.0

0.8

0.6

CI) DA

0.2

0.0

1.0

0.8

0.6

CI) 004

0.2

0.0

1.0

0.8

0.6

CI) 0.4

0.2

0.0

-0.50 -0.25

Figure 4.7: Uniaxial sca1ar order parameter S (left) and biaxial order parameter P (right) as a function of

dimensionless distance d*, for seven dimensionless time, t*: 100-1350. Parametric conditions: U=6.55,

'R=67, [2 =-0.5. The figures clearly capture the SI --+ 2S2 defect transformation.
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Conclusion

A model to describe texture formation in mesophase carbon fibers has been

developed, implemented, and shown to replicate commonly observed cross-sectional

carbon fiber textures of industrial relevance. The model is based on the classical Landau­

de Gennes theory for liquid crystals and has been adapted to describe discotic

mesophases. The model is able to predict the formation of planar radial and planar polar

textures. The parametric envelope of their stability in terms of temperature and fiber

radius has been computed. Lower temperature and thicker fiber tend to select the planar

polar texture and higher temperature and thin fiber tend to promote the emergence of the

planar radial texture. The geometric analysis of the planar polar texture has been

performed and the defect separation distance is shown to be equal to 1/VS .
Computational modeling of texture formation shows that the two defects in the planar

polar texture arise from a topological transformation that involves the decay of a +1

defect into two +1/2 defects. The numerical results show that the computed defect

separation distance equals to the theoretical results for different fiber radius and

temperatures. The new results presented in this paper contribute towards a better

understanding of the principles that control cross-section texture selection during the

melt spinning ofmesophase carbon.
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Chapter 5

Modeling Elastic and Viscous Effects on the
Texture Structure of Ribbon Shaped
Carbonaceous Mesophase Fibers

5.1 Abstract

Carbonaceous mesophases are discotic nematic liquid crystals that are spun into high

performance carbon fibers using the melt spinning process. The spinning process

produces a wide range of different fiber textures and cross-sectional shapes. Circular

planar polar (PP), circular planar radial (PR) textures, ribbon planar radial (RPR), and

ribbon planar line (RPL) textures are ubiquitous ones. This paper presents, solves, and

validates a model of mesophase fiber texture formation based on the c1assical Landau-de

Gennes theory of liquid crystals, adapted here to carbonaceous mesophases. The effects

of fiber cross-sectional shape and elongational flow on texture formation are

characterized. Emphasis is on qualitative model validation using existing experimental

data [1]. The role of elasticity and flow-induced orientation on texture selection

mechanism on ribbon-shaped mesophase fibers is characterized. The model is able to

predict the formation of the commonly observed line texture, and the fine structure of the

line is reproduced and explained in terms of c1assical liquid crystal defect physics. The

results provide additional knowledge on how to optimize and control mesophase fiber

textures.



5.2 Introduction

Carbonaceous mesophases, such as coal tar and petroleum pitches, are used in the

industrial manufacturing of high performance carbon fibers. This relatively new carbon

fiber is more competitive than the conventional one made from the acrylic precursors in

several application areas [2]. The thermodynamic phase that describes carbonaceous

mesophases is the discotic nematic liquid crystal (DNLC) state [3]. Liquid crystals are

intermediate (i.e. mesophase) phases, typically found for anisodiametric organic

molecules, which exist between the higher temperature isotropic liquid state and the

lower temperature crystalline state. Carbonaceous mesophases are composed of disk-like

molecules. Figure 5.1 shows the molecular geometry, positional disorder, and uniaxial

orientational order of discotic nematic liquid crystals. The partial orientational order of

the molecular unit normal u is along the average orientation or director n (n·n=1). The

name discotic distinguishes the molecular geometry and the name nematic identifies the

type of liquid crystalline orientational order.

Figure 5.1: Definition of director orientation of a uniaxial discotic nematic liquid crystalline material. The

director n is the average orientation of the unit normals to the disk-like molecules in a discotic nematic

phase.

The industrial fabrication of mesophase carbon fiber using the conventional melt

spinning process typically produces micrometer-sized cylindrical and ribbon filaments

whose cross sectional area displays a variety of transverse textures [4], that is, different

spatial arrangements of the average orientation n on the plane perpendicular to the fiber

axis. The selection mechanisms that drive the texture formation pattern are at present not

weIl understood, but due to the strong structure-properties correlations, they are essential

for product optimization [2,4].

A question of fundamental importance to the melt splnnmg of carbonaceous

mesophases is to determine how elastic and viscous mechanisms affects the fiber process-
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induced structuring and cross-sectional fiber textures' selection. When considering elastic

mechanisms, it is necessary to identify the three fundamental elastic modes of these

materials. Figure 5.2 shows the three types of elastic deformations, known as splay, twist,

and bend, and the corresponding modulus Kll , K22, and K33, known as Frank: elasticity

constants [5]. The bulk elastic free energy density is given by:

f u = ~ Ku (V'. nY + ~ K 22 (n. V' x nY + ~ K331n x (V' x nt (1)

Thermodynamic stability requires:

Ku > 0; K 22 > 0; K33 > 0 (2)

In contrast to rod-like nematics, for disc-like nematics the bending disc's trajectories give

rise to a splay deformation, and the splaying disc's trajectories give rise to a bend

deformation; by disc trajectory it means the curve locally orthogonal to the director. For

DNLCs the following inequalities hoId [7]:

(3a,b)

which indicates that planar director deformations are favored.

Kll K 22

Figure 5.2: Schematics of the elastic splay (left), twist (center), and bend (right) deformation for uniaxial

discotic nematics. Note that the splay (bend) mode involves bending (splaying) of the disk's trajectories, in

contrast to the case of uniaxial rod-like nematics. A disk trajectory is a curve locally orthogonal to the

director. Adapted from [6].

In addition to elastic effects, viscous mechanisms a1so affect texture formation and

structure. When taken into account flow-induced orientation in complex processing

flows, the orienting effects of shear and extensional flow have to be taken into account.

The theoretical rheology of discotic nematic liquid crystals has been widely studied in the

past [8-11]. Flow-aligning discotic nematic liquid crystals subjected to simple shear flow
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orient the director within the shear plane and close to the velocity gradient direction.

Furthennore, the effect of uniaxial elongation flow is to align the director along the

compression plane. These simple mIes are sufficient to qualitatively predict flow-induced

orientation. In processing flows, such as Jeffrey-Hamel flows [8], both shear and

defonnation are present, and prediction of flow-induced orientation is possible if one type

of defonnation, say extension, dominates over the others. In general, elongation flows

are strongly orienting flows as compared to shear [12]. The validity of this dominant

defonnation type approach was demonstrated in the analysis of radial outflow of nematic

liquid crystals [13], and will be used here to analyze flow-induced orientation in ribbon­

shape fibers.

(b)

Figure 5.3: Schematics of two circular cross-sectional textures most commonly seen in mesophase carbon

fibers. The dashed line indicates the trajectories of the molecular planes, (a) shows the planar radial (PR)

texture, in which only the pure bend mode exists with one defect in the center of strength S=+1, and (b)

shows the planar polar (PP) texture, with splay and bend, and two defects of the strength S=+1/2. The

corresponding director fields of the PP and PR textures are given by lines perpendicular to the average

molecular trajectories. The defects arise due to the constraints of tangential boundary conditions and a

planar 2D orientation field.

It is known [4] that the observed circular cross-section fiber textures belong to a

numbers of families, such as onion, radial, mixed, PAN-AM, to name a few. Large-scale

computer simulations of the radial and PAN-AM textures have been recently perfonned

[14]. Figure 5.3 shows the schematics of two cross-sectional textures most commonly

seen in mesophase carbon fibers. The dashed line indicates the trajectories of the

molecular planes, (a) shows the planar radial (PR) texture, in which only the pure bend

mode exists with one disc1ination line (singular defects) in the center of strength s=+1,

and (b) shows the planar polar (PP) texture, in which two modes of defonnation, splay

and bend, exist with two disc1ination lines of the strength s=+1/2. The disc1ination lines

arise due to the constraints of tangential boundary conditions and a planar 2D orientation
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field. Disclination lines are singularities in the director field and are characterized by

strength (112, 1, ... ) and sign (t) [15]. The strength of a disclination detennines the

amount of orientation distortion and the sign corresponds to the sense (i.e. clockwise or

anti-clockwise) of orientation rotation while circling the defects. Since the energy of a

defect scales with the square of the defect strength [16, 17], the planar polar texture

would seem to emerge, so as to minimize the elastic energy associated with orientation

distortions. In addition, defects of equal sign repel each other, while defects of different

sign attract. In the pp texture, defect-defect interaction plays a critical role in the

geometry of the texture [18].

(a) (b) (c)

Figure 5.4: Schematics of three ribbon cross-sectional textures most commonly seen in mesophase carbon

fibers. The dashed Hne indicates the trajectories of the molecular planes, (a) shows the ribbon planar radial

(RPR) texture, in which splay-bend mode exists with one defect in the center of strength S=+l, (c) shows

the ribbon planar Hne (RPL) texture, with a splay-bend inversion wall, and a defect of strength S=+l, and

(c) the ribbon planar polar (RPP) texture with an aligned center region and two defects of strength s=+1/2.

The corresponding director fields' of the textures are given by lines perpendicular to the average molecular

trajectories.

The structure and fonnation of non-circular ribbon-shaped mesophase fibers have

been characterized experimentally [1], but sorne features of the process remain poorly

understood. Two characteristic cross-section textures of ribbon-shaped fibers are shown

in Fig. 5.4. Figure 4a shows a ribbon planar radial (RPR) texture, with a defect of

strength s=+1 at the center, which belongs to the same family as the PR texture. In fact a

continuous distortion of the PR texture from a circu1ar cross-section into a ribbon cross­

section will be shown be10w to lead to the observed RPR tetxure. The right figure 4b

shows the texture of the characteristic p1anar line (PL) texture, displaying two inversion

walls at the center plane and a disclination line of strength s=+1 at the center. Inversion

walls are non-singu1ar two-dimensional defects, in which localized director gradients
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occur. For planar orientation (n=(nx, ny, 0)) there is no twist distortion and the inversion

walls are known as splay-bend walls [19]. Moving across a vertical path off the center,

the director rotates by + 7t radians on the left sector, and by - 7t radians on the right sector.

The continuous rotation is localized in a thin region that defines the inversion wall. At

the center, a defect is present to resolve the opposite sense of rotations between the left

and right sectors. It should be mentioned that inversion walls can only end at bounding

surfaces and other defects, or form closed loops. In the RPL texture each inversion wall

ends at the bounding surfaces and starts at the s=+1 disclination line. Usually inversion

walls arise in liquid crystals under orienting fields. The appearance and structure of the

inversion walls in the RPL texture is virtually identical to those observed by Thomas and

co-workers [20] during magnetic re-orientation of nematic liquid crystal polymers. Since

the orienting effects of elongational flow and magnetic field are identical [19], the

presence of inversion walls in ribbon-shaped mesophase fibers subjected to elongation

flows in the converging section of the die and in the spin line is expected. Below we use a

simple model that captures inversion-wall formation under extensional flow, and show

that subjecting the RPR texture to a strong elongation flow produces the RPL texture.

Finally, Fig. 5Ac shows the ribbon planar polar texture (RPP), which is predicted to exist

[21], since it belongs to the same family as the pp texture present in circular fibers. This

fiber is characterized by an oriented center-region, with two s=+1/2 defects close to the

circular edges.

Theory and simulation of liquid crystalline materials continues to be performed

using macroscopic, mesoscopic, and molecular models [16]. Macroscopic models based

on the Leslie-Ericksen director equations are unsuitable to simulate texture formation

because disclinations are singularities in the orientation field. On the other hand,

mesoscopic models based on the second moment of the orientation distribution function is

weIl suited to capture the formation of liquid crystalline textures, because disclinations

are non-singular solutions to the goveming equations. A very well established mesoscopic

model in liquid crystalline materials is based on the Landau-de Gennes free energy [16,

22,23] and is used in this work.

This paper is a continuation of our on-going work on theory and simulation of

texture formation in mesophase fibers [14,24,25]. The objectives ofthis paper are:
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(4)

(1) To simulate the transient formation of the RPR and RPL textures which are

commonly observed during the melt spinning of carbonaceous mesophases

with ribbon-shaped cross-sections, as well as the expected RPP texture.

(2) To find the mechanisms ofRPR and PL texture selection.

This paper is organized as follows. Section 2 presents the theory, the Landau-de

Gennes goveming equations, and defines the length and time scales of the model. Section

3 flow-induced orientations. Section 4 presents the numerical solutions of our model, and

also, discusses the characteristics of the textures. Finally conclusions are presented.

5.3 Theory and Governing Equations

In this section, we present the Landau-de Gennes theory for nematic liquid

crystals, and the parametric equations used to describe mesophase fiber texture formation.

As mentioned above, the theory is well suited to simulate texture formation since defects

are non-singular solutions to the goveming equations.

5.3.1 Definition of Orientation and Alignment
The microstructure of DNLCs is characterized by a second order symmetric and

traceless tensor, known generally as tensor order parameter Q [26]:

1 1
Q = S(nn --1) +-P(mm -Il)

3 3

where the following restrictions apply:

Q =QT; tr(Q) =0 ; - .!. :::; S :::; 1; - ~ :::; P :::; ~
2 2 2

n .n = ID . ID =1·1 =1 ; nn +mm +U~ 1 =[~ o 0J1 0

o 1

(5a,b,c,d)

(6a,b)

the uniaxial director n corresponds to the maximum eigenvalue /ln = 2 S, the biaxial
3

director m corresponds the second largest eigenvalue /lm =_.!.(S-P), and the second
3

biaxial director 1 (=nxm) corresponds to the smallest eigenvalue /lI = _.!.(S + p). The
3

orientation is defined completely by the orthogonal director triad (n, m, 1). The magnitude
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of the uniaxial scalar order parameter S is a measure of the molecular alignment along the

uniaxial director n, and is given as S =~ (n .Q.n). The magnitude of the biaxial scalar
2

order parameter P is a measure of the molecular alignment in a plane perpendicular to the

direction of uniaxial director n, and is given as P =~ (m .Q .m -1· Q .1) . On the
2

principal axes, the tensor order parameter Q is represented as:

1
--(S-P) 0 0

3

0
1

0Q= --(S+P) (7)
3

0 0 ~S
3

both S and P are positive for normal DNLCs. The Landau-de Gennes model uses the

tensor order parameter to describe nematic ordering. According to equation (7), the model

is able to describe biaxial (S * 0, P * 0), uniaxial (S * 0, P=O), and isotropie (S=O, P=O)

states.

5.3.2 Definition of Coordinate System
Figure 5.5 shows the fiber geometry and the rectangular (x,y) dimensionless

coordinate system used in this paper. The vertical distance y is scaled with Ry*:

y*=2y/Ry*, and spans the interval: - 0.5 S y* S +0.5. The distance between the center of

the two semi-circ1es of radius Ry*/2 is Rx*. The axial ratio is Ar= Rx*/Ry*. The

horizontal distance x is scaled with Ry: x*=2x/Ry*, and spans the interval

- (Ar/2 + 0.5) S x* S +(A r /2 + 0.5). For a circular fiber Ar=O. For brevity we let

Ry*/2=R.
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Figure 5.5: Definition of fiber geometry and rectangular (x, y) dimensionless coordinate system used in

this paper. The vertical distance y is scaled with Ry: y*=2y/Ry, and spans the interval: - 0.5:5: y*:5: +0.5.

The distance between the center of the two semi-circles of radius Ryl2 is Rx ' The axial ratio is Ar= Rx/Ry•

The horizontal distance x is scaled with Ry: x*=x/Ry, and spans the interval:

- (A
r
/2 + 0.5):5: x*:5: +(A

r
/2 + 0.5). For a circular fiber Ar=O. For brevity we let Ryl2=R.

(8d)

8(e)

(8a,b)

(8c)f s = AQ : Q + BQ: (Q .Q) + C(Q : Q)z

fez =L1VQ:(VQY +Lz(V.Q).(V.Q)

ff] = L 3Q : (VQ : VQ)+'"

5.3.3 Landau-de Gennes Mesoscopic Model for Liquid Crystalline
Materials

According to the Landau-de Gennes model, the bulk energy density of nematic liquid

crystals (NLC) in the absence of external fields is given by [27,28]:

f b = fo + f s + ft ; ft = f tz + f e3

where A, B, C, LI, Lz, L3, ... are coefficients of the specified terms. fo is the free energy

density of the isotropie state. The term is related to the conventional thermodynamic

parameters, like temperature and pressure, and independent to Q. fs is the short-range

energy density, which is responsible for the nematic-isotropic phase transition, ft is the

long range energy, f n is the second order long range free energy density, and f e3 is the

third order contribution to the long range free energy density. By assuming that Q is

uniaxial and comparing fez with fn (eqn.(1)) it is found that K ll=K33. To remove this

restriction f t3 must be non-zero. It is known that there are six different third-order

expressions. For rod-like nematics it was shown that representative experimental {Kjj};
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(9c)

(9a)

(9b)

(ii=ll, 22, 33) data is weIl captured by retaining only the term L3QlI~ QyO ,lI Qyo ,J3 in the

f t3 expression [29]. The same approach will be used in this paper. Using the one

parameter Doi model for fs [30], the dimensionless free energy densities are given by:

f' = ~(-!.(l--!.U)Q : Q _-!. UQ : (Q. Q)+-!. U(Q : QyJ
s U 2 3 3 4

f;2 = 2ck~I'R2 [VQ: (VQY ]+ 2ck~2'R2 (V. Q). (V .Q)

f;3 = L3• 2 [Q : (VQ : VQ)]
2ckT R

where U is the nematic potential, which is inversely proportional to the temperature in a

thermotropic liquid crystal, and c, k, T* are the number density of dises, the Boltzmann's

constant, and an absolute reference temperature just below the isotropic-nematic phase

transition temperature, respectively. Comparing eqn.(l) the Landau coefficients

{Li},i=I,2,3 are related to the Frank's constant of uniaxial LCs in the following way

[5,29]:

L = 3K22 -Ku +K33
1 6s 2

(IOa, b, c)

(Ile)

(lIa)

(lIb)

Ku = S2 (2L1 + L 2 - ~ SL3)

K 22 = S2(2L1 - ~ SL3)

K 33 =S2(2L1 +L2 + ~SL3)

Using eqns.(ll) and inequalities (2) the following restrictions have to be obeyed under

uniaxial ordering:

(I2a, b, c)

In addition, since twist is the highest elastic constant in DNLCs, the Landau coefficient Lz

is negative [7, 26]:

Lz<O (13)

The goveming equations for liquid crystal flows follow the dissipation function 8.:
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il = t 5
: A + ckTH.Q (14)

where t 8 is the symmetric viscoelastic stress tensor, A is the symmetric traceless rate of

deformation tensor, H is the molecular field, and Q is the Jaumann derivative of the

tensor order parameter, given by:

A = t (Vv + VvT ) ; Q = ô Q + (v. V)Q - W .Q + Q .w; w = t (Vv - Vv T ) (15)
ôl

(ckT)H = _[ OF][5J
= [Bfb _ V. Bfb ][5] (16)

oQ BQ BVQ

where [s] indicates the symmetric and traceless, A is the rate of deformation tensor, W is

the vorticity tensor, and oF is the functional derivative of the total energy F. Expanding
8Q

the forces (t8
, Q) in terms of fluxes (A, ckTH), and taking into account thermodynamic

restrictions and the symmetry and tracelessness of the forces and fluxes we can obtain the

equations for t 8 and Q. The dynamics of the tensor order parameter is given by [22]:

Q =fpA+ p[A.Q+Q.A-f(A :Q)I]-

tp[(A: Q)Q +A·Q·Q +Q·A·Q +Q·Q·A - {(Q .Q): A}I]

~ [(1- ~ U)Q -u(Q. Q- ~ (Q :Q)r) + U(Q :Q)Q]
-6Dr

+ L 3
• [(VQ : VQ)- .!..tr(VQ : VQ)I]

2ckT 3

~V2Q + L 2 • ·(V(V .Q)+ [V(V ·Q)Y -~tr[V(V .Q)))
+ 6D

f
ckT 2ckT 3

+~((V 'Q)'VQ)+~(Q : (VVQ))
ckT ckT

D ~ D 1 D = ckT
f f(1-(312)Q:QY' f 6rj

(17a)

(17b,e)

where p is a material shape parameter, Df is the microstructure dependent rotational

diffusivity, Dr is the preaveraged rotational diffusivity or isotropie diffusivity, which is

independent of Q, and 11 is a viscosity. Non-dimensioning equation (17) yields:
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dQ =S+L+F
dt*

(18a)

(18b)

(18c)

(18d)

3ckT·
where t* =t is dimensionless time, S is the short-range contribution, and L is the

11

long-range distribution, F is the f10w effect,
3T·

U =-- is dimensionless temperature,
T

1; ~ ~ L,. is moleeular length seale, L, ~!:2 and L, ~!:2 are ratios of elastie
ckT LI LI

coefficients, R is geometry length scale (i.e. the fiber radius), De =Y11/ckT * is the

Deborah number, and y is a characteristic deformation rate. Since all the f10w effects

we wish to discuss in this paper are captured by the leading order term in F, without loss

of relevant physics we use:

F =l.AADe =-D·A
3 1-' e

. D· = -1.ADe
'e 3 1-' (19)

R ~ ~

The dimensionless parameters of the model are: U, ~ =~' L 2 , L3 , De, and the

aspect ratio Ar ofthe ribbon fiber. The nematic potential U is a dimensionless temperature

that controls the equilibrium order parameter Seq at the phase transition. According to the

Doi model of the short-range energy, the temperature dependence of S at equilibrium is

[30]:
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(20a,b)

where T* is a reference temperature just below the isotropic-nematic phase transition

temperature like we defined before. For U<8/3 the stable phase is isotropic, for

8/3 s; U s; 3 there is biphasic equilibrium, and for higher values of U the phase is uniaxial

nematic. In this work, we have used 2.7 s; U s; 6.55. The parameter <R = R is the ratio
~

of the fiber radius to the intemallength scale (~). The intemallength scale represents the

characteristic size of a defect core and is usually much smaller than the system size R. In

this work, we have used O<<R = R <250. When <R = R «1, long-range energy
~ ~

dominates, spatial gradients are costly and homogeneous states are selected. On the other

hand, when <R = R »1, long-range elasticity is insignificant with respect to short-range
~

elasticity and defects proliferate, since spatiaIly, non-homogeneous states are

~ L ~ L
energetically not costly. The elastic constants ratios L 2 = _2 and L 3 = _3 are two

LI LI

measures of elastic anisotropy. When L 2 , L 3 are equal to zero, aIl elastic modes (KIl,

K 22, K 33) have the same elastic modulus. To satis:fy the thermodynamic restrictions

(12,13), we set L 2 = -0.5 throughout and limit the range of L 3 to: -1.125 s; SL3 s; 2.25.

The parameter De is the Deborah number and is the ratio of viscous effects to short range

elasticity. In this paper 0<De<1, which means that flow is weak compared to short range

e1asticity, and hence in the absence of disclination lines the scalar order parameters

remain equal to their equilibrium value. S=Seq, P=O.

The goveming equation (18) is solved in the ribbon geometry, shown in Fig. 5.5;

in this paper we explore the following shapes: 0 S; Ar S; 1. The boundary conditions of

the model are:

t*>O, x = x: ,Q=Qeq

(21)
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where x: is the dimensionless position vector of the boundary. The Dirichlet boundary

condition sets the eigenvalues of uniaxial tensor order parameter equal to its equilibrium

value (S=Seq), and the distinct eigenvector n is tangential to the ribbon surface. The initial

conditions are:

(22)

where the values of Sini and Pini, and nini, mini, and lini depend on the texture and will be

explicitly defined below for each case.

The model equation (18) is a set of six coupled non-linear parabolic partial

differential equations, solved in the circ1e, subjected the auxiliary conditions (see

equations (21, 22). The equations are solved using Galerkin Finite Elements with

Lagrangean linear basis functions for spatial discretization and a fifth order Runge-Kutta­

Cash-Karp time adaptive method [31]. Convergence and mesh-independence were

established in aIl cases using standard methods. Spatial and temporal discretization was

judiciously selected taking into account the shortest length and smallest time scales of our

model, as discussed below.

5.3.4 Length and Time Scales in the Landau-de Gennes Model
The formation and structure of mesophase fiber textures is better understood by

considering the governing time and length scales inc1uded in the Landau-de Gennes

mode!. The Landau-de Gennes model for nematic liquid crystals has an externallength

scale Le and an internallength scale Li as follows:

_ ~1Le-R L. = j: = --
, 1 ~ ckT*

(23a,b)

where R is the characteristic ribbon fiber half-thickness, and where the length scales obey

Le»~. If defects are present, the mesh size has to be commensurate with Li. It should

be noted that the long external length scale governs the directors' orientation (n, m, 1)

while the short internaI length scale governs the scalar order parameter (S, P). In addition,

care should be taken to select an appropriate time integration technique to overcome the

intrinsic stiffness of the system. The model equations contain an internaI time scale 'ri
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and an external elastic time scale 1'e and an external flow time scale 1'[. The internaI time

scale governs the evolution of the scalar order parameters (S, P) and is given by

"1'. =--
1 ckT*

(24)

A much longer external elastic time scale 1'e controls the evolution of the directors and is

given by:

"el' =__e
e L

1

(25)

The selected adaptive time integration scheme is able to efficiently take into account the

stiffness that rises due to the disparity between time scale: 1'i« 1'e' In addition the

external flow time scale 1'[ is just the reciprocal of the flow deformation rate. For example

in shear flow with a shear rate y the flow time scale is 1'F1/y. Flow-induced orientation

occurs when:

(26a, b)

As mentioned above, in this regime the flow affects the eigenvectors of Q, but does not

affect the eigenvalues of Q. For the flow to change the scalar order parameters (S, P), the

time scale l'i has to be fast enough such that 1'[ < 1'i' Thus the effect flow on texture

formation is captured through flow-induced orientation.

5.4 Flow-Induced Orientation

This subsection presents analytical results of flow-induced orientation pertinent to

the analysis of the ribbon planar line texture. Since in the flow-regime of interest the

eigenvalues of the tensor order parameter remain unaffected by the flow, the governing

eqn. (18) can be simplified if the following assumptions hold: (a) no disclination lines are

present, (h) the flow is sufficiently weak such that inequa1ities (26) hold, (c) the system is

spatially homogeneous. In this case the tensor order parameter simplifies to:

Q =Seq(nn-I/3) (27)

Substituting this expression into eqn. (18) we obtain the dynamical equation DE for the

tensor nn. To obtain the dynamical equation for the director n we proceed as follows. (1)
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Take the dot product of the DE for nn with n, and (2) project the resulting equation with

the projection tensor (I-nn). The resulting equation is the dynamical equation for the

director in the absence of long range and short range elasticity, as follows:

an ( ) y ~(4+28-82)
N=-+v.Vn+W.n=ÀA.n-A:nnn; À= __2 = (28a,b)

a YI 68

where À is the reactive parameter, which for DNLC is negative [26]: À<O, YI is the

rotational viscosity, and Y2 is the irrotational torque coefficient. The equation predicts the

following steady state flow-induced orientation results, in a rectangular (x, y, z)

coordinate system. We shall consider the case of À<-l, when the aligning effect of the

rate of deformation tensor A overcomes the tumbling effect ofthe vorticity tensor W.

(a) Steady Simple Shear Flow Alignment

For steady simple shear between two parallel flat plates, the velocity profile is

v = (yY,O,O). Considering in-plane 2D orientation, the director field is: n= (cose, sine, 0).

8ubstituting v, and n in the goveming eqn. (28) we find that a stable steady state

orientation at:

1
cos28 = --'

L À' À <-1;
1t 31t
-<8 <-
2 L 4

(29)

where eL is the Lelsie angle, which usually is close to 1t/2, since À is close to -1. Thus a

simple shear flow of a DNLC aligns the director close to the velocity gradient (y)

direction. We recall that in shear flow two particles that were separated at a distance 10'

after being subjected to a shear rate of y for time t, the separation distance / is /=/0 t. Due

to the linear time increase in separation shear flows are considered weak flows as

compared with elongational flows.

(b) Elongational Flow Alignment

8hear-free elongational flows have the following velocity profiles:

Ëz

(30)
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According to the values of the two parameters the following elongational flows arise: (1)

uniaxial elongational flow, b=O, Ë > 0 ; (2) biaxial stretching flow, b=O Ë < 0, (3) planar

elongational flow, b=l, Ë > O. In elongational flows the vorticity is zero, W=O, and the

rate of deformation A is a diagonal tensor:

-~Ë(l + b) 0 0
2

A= 0 -~Ë(l-b) 0 (31)
2

0 0 Ë

The eigenvectors of this tensor are: (i, j, k) the three unit vectors of the rectangular

coordinate system. Under elongational flows, the director dynamical eqn. (28) simplifies

to:

0= À(A.n - A: nnn)

which is satisfied only if the director n is along the eigenvectors (i, j, k) ofA,

A.n =(A: nn)n =,..Ln

(32)

(33)

where Il represents an eigenvalue of A. It tums out the selected stable unit vector(s) is

(are) the one (ones) corresponding to the compression direction (plane) of the

elongational flow. For the defined elongational flows the compression directions (or

planes) are: (1) uniaxial elongational flow: x-y plane, (2) biaxial stretching flow: z-axis,

(3) planar elongational flow: x-axis. Hence the stable director orientations are: (1)

uniaxial elongational flow: n.lk (2) biaxial stretching flow: n//k, (3) planar

elongational flow, n // i. We recall that in elongational flow two particles that were

separated at a distance 1o, after being subjected to a elongation rate of Ë for time t, the

separation distance 1 is 1=/oexp( Ët). Due to the exponential time increase in separation

shear flows are considered strong flows as compared with shear flows.

(c) Mixed Elongational-Shear Flow Alignment

Simulations of microstructure evolution in non-viscometric flows of aligning

nematics using the LE equations have been performed for Jeffrey-Hamel [32] and radial

out-flow flow between disks [13]. Viscous torques includes shear and elongation, and the

stable orientation is achieved by balancing the two torques. The Jeffrey-Hamel flow

geometry is best described in (r, \jJ, z) cylindrical coordinates. The shear plane is
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spanned by (r, \jf), and z is along the vorticity axis. The IP director angle is 8 and the

director and velocity fields are n(\jf) = (cos 8, sin 8,0) ;v(\jf) = (u,O,O). For converging

(diverging) flow u < °(u > 0). The stable centerline director is along the compresion

direction, which for converging (diverging) flow is along radial azimuthal (radial)

direction. The viscous torque balance yields, at steady state, the following director

equation:

u'
[Àcos28-1] - + [Àsin28] u = 0

2
(34)

The stable solutions, consistent with the centerline orientations for diverging and

converging flows, are, respectively:

+ _1[2À u +~4À2 u2+(À2_1~'2] _ +
\jI > 0, ea = tan () ;\j1 < 0, ea = -e a

u' l+À

(35a)

(35b)

In the centerline (wall) region elongation (shear) dominates. Both shear and extension

promote aligning close to the azimuthal direction for converging flow, while for

diverging flow shear promotes azimuthal alignment and elongation radial alignment.

Thus, at high flow rates, converging (diverging) flows have weak (strong) orientation

gradients. These results are a consequence of the fact that extension and compression are

co-planar with shear, and their magnitudes have the same radial dependence.

Mixed elongational-shear flows such as the converging rectangular channel flow

present in the processing of the ribbon-shaped mesophase fibers is a complex 3D flow,

where W"# 0, and A is a full matrix. Exact solutions for converging and/or diverging

channel flows, of interest in this paper, do not exists and numerical solutions are required.

Nevertheless based on the existing experimental data on rectangular converging die flow

[1] sorne qualitative predictions on converging channel flow-induced orientation can he

made based on the previous discussion. Assuming a rectangular (x, y) cross section and

primary flow in the z-direction the rate of deformation tensor Ais:
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(36)

The compression directions are the x and y-axes, and the velocity gradient directions are

also the x and y-axes. Thus in this type of mixed elongation-shear converging channel

flow the preferred orientation is the x-y plane.

The experimental resu1ts [1] on mesophase carbon fibers of ribbon cross-section

indicate that the structure was subjected to a strong orienting field, thus creating an

inversion wall. Based on the above discussions, since converging channel flow produces a

planar 2D orientation the structuring must then occur by a nearly planar extensional flow

in the spin line, in which the ratio of the long to short axes of the ribbon is reduced, thus

creating a compression field that orients the director.

5.5 Computational Results and Discussion

This section presents representative computational resu1ts obtained by solving the

model eqns. (18). To visualize the fiber textures we use the computed solution tensor Q,

and represent the discotic mesophase by a cuboid C whose axes are normal to the

directors (n, m, 1) and sides are proportional to its eigenvalues. Since Q has negative

eigenvalues, we use M =Q +.!.1 instead of Q. In what follows the horizontal semi axis
3

(along x*) is refereed as the fiber's long semi axis, and the vertical semi axis

(along y*) as the fiber's short semi axis.
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Figures 5.6: Computed visualizations of a representative steady state RPP texture, for U=4.55, 'R =10,

[2 =-0.5, [3 = 0, De=O, and Ar=1. Figure 5.6a is a representative typical steady state visualization of

tensor order parameter C. It clearly shows the molecular orientation of planar polar texture, with the two

s=+112 defects collinear with the fiber long axis. Figures 5.6b, 5.6c show a gray-scale plot and a surface

plot of the uniaxial scalar order parameter S as a function of dimensionless position (x*, y*). In the gray­

scale plot a low order parameter (S ;::; 0) is black and high order parameter (S ;::; 1) is white. The dark dots in

the figure correspond to the two s=+1/2 defects. Figures 5.6d, 5.6e shows a gray-scale plot and a surface

plot of the biaxial scalar order parameter P as a function of dimensionless position (x*, y*). In the gray­

scale plot a low order parameter (P ;::; 0) is black and high order parameter (p ;::; 1) is white. The dark dots

in the figure correspond to the two s=+112 defects.
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5.5.1 Formation and Structure of the Ribbon Planar Polar Texture
Figures 5.6 show computed visualizations of a representative steady state RPP

texture, for U=4.55, <R =10, L2 = -0.5, L3 = 0, De=O, and Ar=1. Figure 6a is a

representative typical steady state visualization of tensor order parameter C. It clearly

shows the molecular orientation of planar polar texture, with the two s=+1/2 defects

collinear with the fiber long axis. The simulations show the bending distortions close to

the two defects and an aligned region between the two defects. Figures 5.6b, 5.6c shows

a gray-scale plot and a surface plot of the uniaxial scalar order parameter S as a function

of dimensionless position (x*, y*). In the gray-scale plot a low order parameter (S Ri 0) is

black and high order parameter (S Ri 1) is white. The dark dots in the figure correspond to

the two s=+1/2 defects. The narrow peaks in the surface plots indicate the difference in

scale between defect cores and fiber radius. At the defects' core S is small, as expected.

Figures 5.6d, 5.6e show the corresponding gray-scale and surface plots of the biaxial

order parameters P as a function of dimensionless position (x*, y*). In the gray-scale plot,

P Ri ° corresponds to black and P Ri 1 to white. The figure clearly shows the biaxial

eigenvalues of Q at the two defect cores. The corresponding surface plot shows that at the

defects core P Ri 0.3. Far from the disclination the state is uniaxial. Biaxiality arises

because it reduces long range elasticity.

Figure 5.7 shows the formation kinetics and structural evolution of the ribbon

planar polar texture, for U=4.55, <R = 50, L2 = -0.5, L3 = 0, De=O, and Ar=l. Figure

5.7a-d show visualizations of M as a function of increasing dimensionless time t*: (a).

50, (b) 70, (c) 80, and (d) steady state. The orientation develops as a moving front

towards the interior. Figure 5.7e shows the dimensionless long range free energy f; as a

function of dimensionless time t*. The energy decreases, until it reaches plateau

(corresponding to Fig. 5.7c), and then the residual energy from gradients at the centerline

(y*=O) vanishes leading to a homogeneous well-aligned region (corresponding to Fig.

5.7d). Note that the energy does not relax to zero because bend distortions remain in the

semi-circular end-regions. Note that at t*=70 the fiber texture is very similar to the ribbon

planar line texture, but since a lower energy state is available with no energy of activation

barriers, the selected fiber is the ribbon planar polar texture.
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Figure 5.7: Formation kinetics and structural evolution of the ribbon planar polar texture, for U=4.55,

'R = 50, [2 = -0.5, [3 = 0, De=O, and Ar=l. Figure 5.7a-d show visualizations of M as a function of

increasing dimensionless time t*: (a). 50, (b) 70, (c) 80, and (d) steady state. The orientation develops as a

moving front towards the interior. Figure 5.7e shows the dimensionless long range free energy (as a

function of dimensionless time t*. The energy decreases, until it reaches plateau (corresponding to Fig.

5.7c), and then the residual energy from gradients at the centerline (y*=O) vanishes leading to a

homogeneous well-aligned region (corresponding to Fig. 5.7d).
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Figure 5.8: Computed visualizations of the tensor order parameter C of representative steady state RPP

textures, for U=4.55, 'R =10, [2 =-0.5, [3 =0, Ar=l, for a planar extensional flow, (a) De*=O, (b) De*=

0.03, (c) De*=O.1. The figures show that the effect of elongation is to displace the defects towards the rims

of the fiber, and increasing the degree of director orientation along the fiber's long axis.

Figure 5.8 shows computed visualizations of the tensor order parameter C of

representative steady state RPP textures, for U=4.55, <R = 10, L2 = -0.5, L3 = 0, Ar=l,

for a planar extensional flow, (a) De*=O, (b) De*= 0.03, (c) De*=O.l. The figures shows

that the effect of elongation is to displace the defects towards the rims of the fiber, and

increasing the degree of director orientation along the fiber's long axis.

In general our model easily selects the RPP texture at low temperatures or when

the long range elasticity is significant. The prevalence of the RPP texture is due to the fact

that the oriented section in the mid-region is perfectly aligned, and hence has no elastic

distortions. The transient texture that leads to the RPP texture has structural features very

close to the RPL texture.

5.5.2 Formation and Structure of the Ribbon Planar Radial Texture
As indicated above the RPR texture belongs to the same family as the planar

radial texture observed in fibers of circular cross-section. The characteristic feature of

these textures is the presence of disclination line of strength s=+1. In our previous work

we have found that the planar radial texture appears at higher temperatures [14]. The

RPR texture has been observed experimentally [1] by using a converging die. Up-stream

of the converging die, the mesophase flows in a capillary geometry, and assuming a radial

texture emerges there, the question we wish to address is what will be the effect of

geometric transition (circular cross-section -7 ribbon like cross-section) on the main

features of the radial texture. To answer this question we performed a parametric study

on the cross-section shape by continuously increasing the aspect ratio Ar from zero to
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one. For Ar=O (circular fiber) the initial conditions correspond to the isotropie state, with

(S,P) nearly zero, and with randomly oriented (n,m,l) eigenvectors. After achieving

steady state, the aspect ratio Ar is increased and a new steady state is achieved. In this

way a continuous family of steady state radial textures is generated.

Figure 5.9 shows computed visualizations of the tensor order parameter C as a

function of aspect ratio, for U=4.55, ~ =10, L2 =-0.5, L3 =-1.3, De*=O, Ar=O (a), 0.5

(b), and 1.0 (c). The figures show that increasing shape anisotropy the disclination line of

strength s=+1 remains at the center of the fiber. In addition the pure bend distortion that

exists in the circular fiber (Ar=0) becomes a splay-bend distortion in the ribbon shaped

fiber (Ar=l). The figures show that the geometric change Ar = 0~ Ar = 1, produces the

texturaI change PR ~ RPR. The orientation features shown in Fig. 5.9c are consistent

with experimentally characterized ribbon fibers [1].
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Figure 5.9: Computed visualizations of the tensor order parameter C, for U=4.55, 'R =10, [2 =-0.5,

[3 =-1.3, De*=O, Ar=O (a), 0.5 (b), and 1.0 (c). The figures shows that increasing shape anisotropy the

disclination Ime of strength s=+1 remains at the center of the fiber. In addition the pure bend distortion

that exist in the circular fiber (Ar=O) becomes a splay-bend distortion in the ribbon shaped fiber (Ar=!). The

figures show that the geometric change Ar =0 -t Ar =1 produces the texturaI change PR -t RPR . The

orientation features shown in Fig. 5.9c are consistent with experimentally characterized ribbon fibers [1].

5.5.3 Formation and Structure of the Ribbon Planar Line Texture
As mentioned above the main characteristic of the ribbon planar line texture is the

presence of a line feature at y*=O, and a strongly oriented bulk, with the director parallel

to the long semiaxis (x*) of the ribbon-shaped fiber. Another important feature is that

both the x* axis and the y* axis are lines of mirror sYmmetry. For increasing y*, the

director rotates anticlockwise for x*>O but clockwise for x*<O. The crossing of the two

mirror axes and the incompatible direction of director rotation is resolved by a
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disc1ination line of strength s=+1. Since all fibers with a disc1ination Hne of strength s=+1

belong to the same family, it follows that the ribbon planar line texture belongs to the

same family as the planar radial and ribbon planar radial textures. Since the bulk of the

texture is strongly oriented along x*, it follows that the RPL texture is the result of a

compressive deformation along x*. This compression can appear at the exit of the

converging die, since the axial ratio Ar is substantially reduced when going from the die

exit to the final fiber shape. Thus we simulate the evolution of the ribbon planar radial

texture under the influence of a steady planar elongational flow, to see whether the

resulting texture share the experimentally observed features.

(a) (c)

Figure 5.10: (a) Computed visualization of the tensor order parameter C for the ribbon planar line texture,

for U=4.55, 'R=10, L
2

=-0.5, L
3

=-1.3, De*=O (a), De*=0.03 (b), De*=0.06 (c) and Ar=!, at steady

state. The texture was obtained by restricting the director orientation along y*, such that for x* '* 0 the

director is vertical: n=(O, l ,0). The effect of planar e1ongation strength on the structural features of the

texture is shown. The smooth homogeneous distortion at low De* becomes localized at greater De*, and if

De* is sufficiently large it leads to the line texture. The figure shows a texture in qualitative agreement with

experiments. In particular the line feature at y*=O, the sense of rotation in the orientation of the director

next to the line, and the strong alignment in the bulk are captured by the simulation.

Figure 5.10 shows computed visualization of the tensor order parameter C, for

U=4.55, 'R = 10, Lz = -0.5, L3 = -1.3, U=4.55, 'R = 10, Lz = -0.5, L3 = -1.3, De*=O

(a), De*=0.03 (b), De*=0.06 (c) and Ar=l, at steady state. The texture was obtained by

restricting the director orientation along y* = 0 such that the director is vertical:

0=(0,1,0). The effect ofplanar elongation strength on the structural features of the texture

is shown. The smooth homogeneous distortion at 10w De* becomes localized at greater

De*, and if De* is sufficiently large it leads to the 1ine texture. The figure shows a texture

in qualitative agreement with experiments. In particular the line feature at y*=O, the sense

of rotation in the orientation of the director next to the line, and the strong alignment in
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the bulk are captured by the simulation. If the director restriction at y*=O was not

imposed, the texture evolves towards the lower energy ribbon planar polar texture, by the

following disclination reaction [15]:

s = +1~ 2s = +1/ 2 (37)

It should be noted that due to computational limitations the value of 'R = R used in this
l;

work is unrealistically low, and hence processes such as disclination reactions, dominated

by short energy, have no energy of activation barriers, and hence dominate the texture

evolution. In real life 'R = R »105_106
, and disclinations of s=+1 may persist [15],

l;

because the decay into two s=+1/2 disclinations requires a high energy of activation.

The emergence of the inversion walls by subjecting the ribbon planar radial

texture to planar elongational flow is another example of inversion wall created by

orienting fields commonly observed in other thermotropic rod-like nematic materials

[17]. A very transparent view of the structure and characteristics of the inversion wall can

be obtained by comparing our computational results) with theoretical results obtained

from a simplified version of the model eqn. (18). Since the inversion wall is an

orientation process and not a molecular process, we only retain the long range energy

contribution. Implementing the following assumptions in eqn. (18):

(a) uniaxial tensor order parameter: Q =Seq(nn-I/3), (b) equal splay and bend

constants: L3=0, (c) steady state: BQ181* =0, (d) planar director orientation given

by: n(y*) = (cose ,sine ,0), (e) planar elongational flow:

A =Ë A; A = 1~1 ~ ~] (38)l0 0 1

the goveming equation (18) reduces to the following director angle equation:
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d2e .
--2 + E e sm8cos8 = 0;
dy*

Y2ÈR~E = .
e K'

(39)

where Ee is the Ericksen number or ratio of e1ongational flow effect to elastic effect on

orientation. In terms of (De), the Ericksen number is:

E = Y2sR~ =-~D*'R2['!..l:.. LI J=D*'R 2 {S (2+S - S~qJ[ ~ 1 ]} (40)
e K 2~ e TI (L

2
+ 2LJ e eq eq 2 (L

2
+ 2)

The solution to eqn.(39) :

(41)

(42)

describes a splay-bend inversion wall produced by the planar elongational flow. For

y*>O and far from the wall the director angle is 8=0, while for y*<O and far from the wall

the director angle is 8= 7t (this corresponds to the x*<O section). As y* increases the

director rotates clockwise and all the rotation is concentrated across the thickness of the

wall d*:

d*=_2_

JE:
The mirror image solution where the director rotates anti-clockwise (this corresponds to

the x*>O section), when traversing the inversion wall is given by:

(43)

Figure 5.11a shows the computed director angle 8 as a function of dimensionless

distance y*, for U=4.55, 'R = 15, L2 = -0.5, L3 = 0, Ar=l, De*=0.06 (Ee=16.6), for

three values of the x* coordinates, using the full tensor order mode1 eqns.(18). The figure

shows that as x* decreases (closer to the bounding surface at x*=-(Rx*+Ry*)) the wall

thickness increases because of the boundary effect. The structure of the inversion wall is

clear; all the director rotation occurs within a small region of thickness

d*=2/(Ee)O.5=2xO.24, and the rotation is clockwise. The mirror symmetric solution is not
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shown. Figure 5.llb shows the analytical solutions given by eqn. (43), for Ee=5, 10, and

20, where the effect of increasing Ee on the wall thickness is c1early shown. The figures

show that the 2D steady state computational solution of the tensor order parameter

Q(x*,y*) agrees very well with the ID analytical solution. The small differences between

computed and theoretical solutions are due to the y* dependence of the Q solutions.

Figure 5.12 shows a summary of the computed results in terms of computed

visualizations of the tensor order parameter. The left column corresponds to higher

temperatures and to the family of radial textures, while the left corresponds to lower

temperatures and to the family of polar textures. The left colurnn shows that the circ1e to

ribbon transformation distorts the texture and creates splay distortions, but the

disc1ination line remains at the center. A subsequent planar elongational flow creates two

mirror image inversion walls that meet at the disc1ination. The thickness of the wall

decreases with increasing elongation rate. The texture transformation cascade is:

geometry flow

planar radial (RP) ~ ribbon planar radial (RP) ~ ribbon planar line (RPL) (44)

At lower temperatures the selected family is the planar polar texture. Geometrical

deformations increase the alignned center-region, while the imposition of planar

elongation flow move the defects towards the bounding surfaces. The texture

transformation cascade is:

geometry flow

planar polar (pp) ~ ribbon planar polar(RPP) ~ ribbon planar polar (RPP) (45)

Finally, our model also predicts the ribbon planar radial - ribbon planar polar transition,

but as mentioned above this is due to the low value of R used in the simulations, as

imposed by computational limitations. Under realistic higher values the transition may

not occur, because ofthe high energy of activation required.
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Figure 5.11: (a) Computed director angle 8 as a function of dimensionless distance y*, for U=4.55, 'R =15,

[2 = -0.5, [3 = 0, Ar=l, De*=0.06 (Ee=16.6), for three values of the x* coordinates, using the full tensor

order model eqns. (18). The figure shows that as x* decreases (closer to the bounding surface at x*=­

(Rx*+Ry*)) the wall thickness increases because of the boundary effect. The structure of the wall is clear;

aIl the director rotation occurs within a small region of thickness d*=2/(Ee)0.5=2xO.24, and the rotation is

clockwise. The mirror symmetric solution is not shown. Figure 5.11b shows the analytical solutions given

byeqn. (43), for Ee=5, 10, and 20, where the effect ofincreasing Ee on the wall thickness is clearly shown.

The figures show that the 2D steady state computational solution of the tensor order parameter Q (x*, y*)

agrees very weIl with the ID analytical solution.

115



l Die Geometry

\ \ 11111
,\ \ \ \ \

, ,\ \ \ 1

.....',.. '.. : ... ~ ~ ~ 1
..........................." ... \ ~ ~

l Die Geometry

j Extensional
Flow j Extensional

Flow

111111
111111

111111

Il!l!l
Hl " !"1~1
1 ~ : 1: :
111111
111111
111111
111111

li!!!!

Figure 5.12: Geometry and flow-induced texturaI transformation. The left column corresponds to higher

temperatures and to the family of radial textures, while the left corresponds to lower temperatures and to the

family of polar textures. The left column shows circ1e to ribbon transformation, distorts the texture and

creates splay distortions, but the disc1ination line remains at the center. A subsequent planar e1ongational

flow creates two mirror image inversion walls that meet at the disc1ination. The texture transformation

cascade is:

geometry flow

planar radial (RP) ~ ribbon planar radial (RP) ~ ribbon planar line (RPL)

At lower temperatures the selected family is the planar polar texture. Geometrical deformations increase the

aligned center-region, while the imposition of planar elongation flow moves the defects towards the

bounding surfaces. The texture transformation cascade is:

planar polar (pp)
geometry

~

flow

ribbon planar polar(RPP) ~ ribbon planar polar (RPP)
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Conclusions

A model to describe the texture formation in mesophase carbon fibers of ribbon

shape cross-section has been developed, implemented, and shown to replicate commonly

observed cross-sectional carbon fiber textures of industrial relevance. The model is based

on the c1assical Landau-de Gennes theory for liquid crystals and has been adapted to

describe discotic carbonaceous mesophases. The model is able to predict the formation of

ribbon planar radial, ribbon planar polar textures, and ribbon planar line texture. Higher

temperatures tend to select radial textures, characterized by a disclination line of strength

s=+1. Lower temperatures tend to select polar textures, characterized by two disc1inations

of strength s=+1/2. Cross-section shape distortions from a circ1e towards a ribbon do not

change the essential nature of the texture but distort the orientation. Thus the planar

radial texture becomes the ribbon planar radial texture, while the planar polar texture

becomes the ribbon polar texture. The effect of planar elongational flow on ribbon

textures has been characterized. Subjecting a ribbon planar radial texture to elongational

flow produces the ribbon planar line texture, whose distinguishing feature is the presence

of two inversion walls along the mid-plane. On traversing the inversion walls, the director

rotates by 7t radians. These localized distortions frequently arise in other liquid

crystalline materials when subjected to strong orienting fields, and the visual traits of the

ribbon line texture in carbonaceous mesophase fibers [1] is virtually identical to that of a

liquid crystal polyether subjected to a magnetic field [20]. The computed solutions of the

line texture are shown to be in agreement with analytical solutions. Subjecting a ribbon

planar polar textures to planar elongation flow only increases the distance of the two

defects but does not produce any line feature.

The computational and theoretical results characterize the main elastic and flow

effects on ribbon-like mesophase fibers and shed new light on how to control and

optimize texture selection mechanisms of interest to the industrial production of carbon

fibers.
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Chapter 6

Conclusions

A model to describe the texture formation in mesophase carbon fibers of circular and

ribbon shaped cross-sections has been formulated, solved, and validated with available

experimental/industrial data. The simulations replicate commonly observed cross­

sectional carbon fiber textures of industrial relevance. The model is based on the

classical Landau-de Gennes theory for anisotropic textured viscoelastic liquid crystals

and has been adapted to describe discotic carbonaceous mesophases.

For cylindrical fibers, the model is able to predict the formation of planar radial and

planar polar textures. The parametric conditions of their stability in terms of temperature

and fiber radius have been computed. Lower temperature and thicker fibers tend to

select the planar polar texture and higher temperature and thin fibers tend to promote the

emergence of the planar radial texture, in agreement with experiments. A geometric

analysis of the planar polar texture has been performed and the defect separation

distance is shown to be equal to 1/ifS under elastic isotropy. Computational modeling of

texture formation shows that the two defects in the planar polar texture arise from a

topological transformation that involves the decay of a +1 defect into two +1/2 defects.

The numerical results show that the computed defect separation distance is consistent

with the theoretical results, for different fiber radius and temperatures. Furthermore, The

influence of elastic anisotropy to the fiber texture formation is thoroughly characterized.

It is found that splay-bend anisotropy influences the fiber texture much more than the



twist tenn. Splay (bend) avoidance leads to the planar radial (polar) texture. The

importance of splay-bend anisotropy is completely explained by the Frank elastic theory.

The model is able to predict the fonnation of ribbon planar radial, ribbon planar

polar, and ribbon planar Hne textures. Higher temperatures tend to select radial textures,

characterized by a disc1ination hne of strength s=+1. Lower temperatures tend to select

polar textures, characterized by two disc1inations of strength s=+1/2. Cross-section

shape distortions from a circ1e towards a ribbon do not change the essential nature of the

texture but distort the orientation. Thus under a circ1e-to-ribbon shape transfonnation

the planar radial texture transfonns into the ribbon planar radial texture, while the planar

polar texture transfonns into the ribbon polar texture. The effect of planar elongational

flow on ribbon textures has been characterized. Subjecting a ribbon planar radial texture

to elongational flow produces the ribbon planar line texture, whose distinguishing

feature is the presence of two inversion walls along the mid-plane. On traversing the

inversion walls, the director rotates by 7t radians. These localized distortions frequently

arise in other liquid crystalline materials when subjected to strong orienting fields, and

the visual traits of the ribbon line texture in carbonaceous mesophase fibers is virtually

identical to that of a liquid crystal polyester subjected to a magnetic field. The

computed solutions of the hne texture are shown to be in agreement with analytical

solutions. Subjecting a ribbon planar polar textures to planar elongation flow only

increases the distance of the two defects but does not produce any line feature.

The computational and theoretical results presented in this thesis characterize the

main mechanisms that control texture selection in mesophase fibers of circular and

ribbon shapes, and hence provide new knowledge on how to control and optimize

texture selection mechanisms of interest to the industrial production of carbon fibers.
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