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Abstract—Reliable spectrum sensing is required to enable the
effective use of Cognitive Radio (CR) networks. In practice,
CRs not only have to cope with impulsive noises but also need
to consider noise uncertainties. Small uncertainties of noise
parameters are inevitable in any practical detector and the
impact of these must be considered. This paper considers the
energy detector based spectrum sensing under Middleton Class
A noise with parameter uncertainties. Firstly, we show how
analytical expressions of the probabilities of detection and false
alarm can be derived. Secondly, we show that the mismatch of
impulsive parameters A and Γ have little impact on performance
and can thus generally be ignored but the uncertainty of noise
power σ2

Z can induce SNR Walls to the detector, which means
that, no matter how many observations are obtained, the detector
cannot robustly detect the primary signal. These results have
implications for designing an enhanced energy detector for robust
spectrum sensing.

Index Terms—Cognitive Radio, Spectrum Sensing, impulsive
noise, noise uncertainties.

I. INTRODUCTION

In wireless communication systems, the need for higher data

rates has increased due to multimedia applications. As a result,

the limitation of the natural frequency spectrum has become

more obvious. Cognitive Radio (CR) as a tempting solution

to exploit the available spectrum has emerged. In order to

make opportunistic usage of the frequency bands that are not

heavily occupied by Primary Users (PU), the ability to measure

or sense the absent of PU signal is necessary [1]. The task of

obtaining awareness about the spectrum usage and the absence

of primary users is called spectrum sensing. A number of

different methods are proposed for identifying the presence

of signal transmissions, such as energy-detector-based sens-

ing [2], matched filtering based sensing [3], waveform-based

sensing [4], cyclostationarity-based sensing [5] and radio iden-

tification based sensing [6] etc. Among these methods, energy-

based approaches are the most common because of their low

computational and implementation complexities. In addition,

energy-based detectors do not need any knowledge about the

PU’s signal.
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Most of the existing literature on spectrum sensing considers

impairment by additive white Gaussian noise (AWGN) only.

However, this assumption fails to model the behavior of certain

noise types in practice, such as impulsive noise. The Middle-

ton Class A noise model is one of the widely investigated

statistical distributions that is used to model the man-made

interference and the impulsive noise in different systems [7]. In

energy-based sensing, the signal is detected by comparing the

output of the energy detector with a threshold which depends

on the noise floor. The threshold can be selected for finding an

optimum balance between the probability of false alarm Pfa

and the probability of detection Pd. In practice, the threshold

is chosen to obtain a certain false alarm rate [8]. In AWGN

scenario, the selection of the threshold is dependent, as we will

show, on the noise variance; a small noise power estimation

error can cause significant performance loss [9] [10]. Similarly,

the selection of the threshold under Middleton Class A noise

is dependent on the parameters of the noise model. The impact

of the parameter mismatch on the sensing performance must

be considered. However, none paper is dealing with this issue.

We consider the energy-detector based spectrum sensing

under impulsive noise with noise uncertainty, providing the

following contributions.

• We derive the analytical expressions of the probability

of false alarm Pfa and the probability of detection Pd

when the PU signal is contaminated by Middleton Class

A noise. In particular, we show the relationship between

the observation samples required and the parameters of

noise and the SNR for achieving the target Pfa and Pd.

• We analyze the impact of the noise parameters uncer-

tainty on sensing performance. We conclude that the

uncertainty of impulsive parameters A and Γ have little

impact on sensing performance and can thus generally be

ignored, but the SNR Wall phenomenon will arise with

the uncertainty of noise power σ2
Z .

The remainder of this paper is organized as follows. The

signal model is defined in Section II. In Section III we give

the derivation of the analytical expressions of the probability of

false alarm and detection. We analyze the impact of the noise

parameters uncertainty on sensing performance in Section IV

and the conclusion is explained in Section V.



II. SIGNAL MODEL

In spectrum sensing problem, the PU signal to be sensed

is considered as a random process (called Bayesian model)

in some works, and it is also considered as an unknown

deterministic signal (called classical model) in others [11].

Here we choose Bayesian model and consider a source x with

a zero-mean Gaussian PDF

fX(x) = G(x;σ2
X) =

1√
2πσX

e
− x2

2σ2
X (1)

transmitted over a channel impaired by a Middleton Class A

noise z, whose PDF is

fZ(z) =

∞∑
m=0

βmG(z;σ2
m) =

∞∑
m=0

βm√
2πσm

e
− z2

2σ2
m (2)

where βm = e−AAm

m! indicates that m noise sources contribute

to the impulsive event simultaneously, and A = E{m} =∑∞
m=0 mβm is the corresponding overlap index denoting the

average number of impulse noise sources active at any given

time. Larger values of A make the characteristic of the noise

closer to Gaussian noise. Moreover, σ2
Z = E{z2} = σ2

G +
σ2
I is the noise power, where σ2

G is the Gaussian power, σ2
I

is the impulsive power. Γ =
σ2
G

σ2
I

is the power-ratio of the

Gaussian component to the impulsive component, and σ2
m =

m
A +Γ

1+Γ σ2
Z = σ2

G + σ2
I
m
A . Thus, the Middleton Class A noise is

totally characterized by the parameters A, Γ and σ2
Z [12].

III. ENERGY DETECTOR UNDER MIDDLETON CLASS A

NOISE

The problem of detecting the presence of primary users

can be considered as the following binary hypothesis testing

problem [13]:

H0 : y(n) = z(n)

H1 : y(n) = x(n) + z(n)
(3)

where n = 1, 2, 3, ..., N , N is the number of observed sam-

ples; y(n) is the signal observed by sensing receiver with x(n)
and z(n) denoting the PU signal and the additive impulsive

noise respectively. It is obvious that under hypothesis H0 ,

the PU signal is absent and y(n) consists only of noise z(n).
On the contrary, under hypothesis H1 the PU signal is present

along with noise z(n).

Assume the noise z(n) and the signal x(n) are independent

of each other, we can obtain that

fY (y(n))|H0
= fZ(y(n)) =

∞∑
m=0

βm√
2πσm

e
− y(n)2

2σ2
m

fY (y(n))|H1
= fX(y(n)) ∗ fZ(y(n))

=
∞∑

m=0

βm√
2π(σ2

m + σ2
X)

e
− y(n)2

2(σ2
m+σ2

X
)

(4)

As for the energy detector based spectrum sensing, the

corresponding test statistic is expressed as:

T (y) =
1

N

N∑
n=1

|y(n)|2 (5)

According to the central limit theorem [14], when N is

large, the metric T (y) can be approximated as a Gaussian

random variable and

T (y)|H0
∼ N (μ0,

σ2
0

N
)

T (y)|H1
∼ N (μ1,

σ2
1

N
)

(6)

in which

μ0 = E{ |y(n)|2
∣∣∣H0} =

∞∑
m=0

βmσ2
m = σ2

Z

μ1 = E{ |y(n)|2
∣∣∣H1}

=
∞∑

m=0

βm(σ2
m + σ2

X) = σ2
Z + σ2

X

σ2
0 = E{ (|y(n)|2 − μ0)

2
∣∣∣H0}

= E{ |y(n)|4
∣∣∣H0} − μ2

0 =

∞∑
m=0

3βmσ4
m − σ4

Z

σ2
1 = E{ (|y(n)|2 − μ1)

2
∣∣∣H1}

= E{ |y(n)|4
∣∣∣H1} − μ2

1

=

∞∑
m=0

3βmσ4
m − σ4

Z + 2σ4
X + 4σ2

Xσ2
Z

(7)

Thus, the probability of false alarm Pfa and probability of

detection Pd can be given in terms of the Q function by

Pfa = Pr(T (y) > γ|H0) = Q(
γ − μ0√
σ2
0/N

)

Pd = Pr(T (y) > γ|H1) = Q(
γ − μ1√
σ2
1/N

)
(8)

where γ is the threshold for the energy-based spectrum sens-

ing.

If the variance of the signal σ2
X can be obtained in addition

to the noise parameters, we can calculate N by fixing the Pfa

and Pd as Eq.(9). Then the threshold γ can also be obtained

from N .

N = [
Q−1(Pfa)σ0 −Q−1(Pd)σ1

μ1 − μ0
]2 (9)

However, although the noise parameters can be estimated,

the signal power is difficult to estimate since it depends on

many varying factors such as transmission and propagation

characteristics. In practice, the threshold is normally chosen

to satisfy a certain Pfa according to the Neyman-Pearson

criterion, which only requires the noise power to be known.



As shown in Eq.(10):

γ =

√
σ2
0

N
Q−1(Pfa) + μ0. (10)

IV. IMPACT EVALUATION OF UNCERTAINTY ON NOISE

CHARACTERISTICS

Let SNR =
σ2
X

σ2
Z

, substituting into Eq.(9), we have

N=[
Q−1(Pfa)K(A,Γ)−Q−1(Pd)

√
K(A,Γ)2+4SNR+2SNR2

SNR
]2

(11)

where

K(A,Γ) =

√√√√ ∞∑
m=0

3βm(
m/A+ Γ

1 + Γ
)2 − 1 (12)

The Middleton Class A noise is totally characterized by

the parameters A, Γ and σ2
Z . As in Eq.(11),when the three

parameters are all known, K(A,Γ) is determined. It is clearly

that no matter how low the SNR is, the target Pfa and Pd can

be achieved by increasing the number of observation samples.

However, the accurate noise parameter estimation is not always

possible for the receiver [15].There must be small errors on the

estimation of each parameter during the detecting process. So

the impact of each of them must be considered. For discussion

convenience, we assume without loss of generality, that the

actual parameters are A = 0.01, Γ = 0.1 and σ2
Z = 1.

A. Uncertainty of A
With uncertainty, the estimated overlap index is assumed to

be in an interval Â ∈ [ 1ρA, ρA], and ρ > 1 is a parameter that

quantifies the size of the uncertainty. To achieve a target Pfa

and Pd robustly, the following equations need to hold:

Pfa = max
Â∈[ 1ρA,ρA]

Q(
γ − μ0√
σ2
0/N

)

Pd = min
Â∈[ 1ρA,ρA]

Q(
γ − μ1√
σ2
1/N

)
. (13)

Due to the fact that the Q function is a monotonically

decreasing function and σ2
0 and σ2

1 are also monotonically

decreasing functions of A, we obtain

Pfa = Q(
γ − μ0√
σ2
0/N

)

∣∣∣∣∣
Â= 1

ρA

Pd = Q(
γ − μ1√
σ2
1/N

)

∣∣∣∣∣
Â=ρA

. (14)

Then we have

N=[
Q−1(Pfa)K(A/ρ,Γ)−Q−1(Pd)

√
K(Aρ,Γ)2+4SNR+2SNR2

SNR
]2

(15)
Fig.1 shows the required number of samples N to achieve

the target Pfa = 0.1 and Pd = 0.9 with different uncertainty

levels ρ on A. To achieve the target Pfa and Pd, a larger

quantity of samples is required when the uncertainty of A
gets larger. Results for different SNR is shown in Fig.2.
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Fig. 1. Samples required vs. ρ, for different levels of uncer-

tainty on A.(SNR=-5dB)
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Fig. 2. Samples required vs. ρ , for different levels of uncer-

tainty on A with different SNR.

The two figures illustrate that we can slightly increase the

number of samples N to achieve the target Pfa and Pd,. The

larger the uncertainty ρ is, the larger N is required. So the

impact on the uncertainty of A can be easily eliminated by

increasing N , and N is actually reasonably insensitive to ρ.

B. Uncertainty of Γ

Similarly, if the estimated power ratio is in an interval Γ̂ ∈
[ 1ρΓ, ρΓ], and ρ > 1 is a parameter that quantifies the size of

the uncertainty, to achieve a target Pfa and Pd robustly,the

following equations need to hold:

Pfa = max
Γ̂∈[ 1ρΓ,ρΓ]

Q(
γ − μ0√
σ2
0/N

)

Pd = min
Γ̂∈[ 1ρΓ,ρΓ]

Q(
γ − μ1√
σ2
1/N

).
(16)



With similar argument as above, we obtain

Pfa = Q(
γ − μ0√
σ2
0/N

)

∣∣∣∣∣
Γ̂= 1

ρΓ

Pd = Q(
γ − μ1√
σ2
1/N

)

∣∣∣∣∣
Γ̂=ρΓ

. (17)

Then we have

N=[
Q−1(Pfa)K(A,Γ/ρ)−Q−1(Pd)

√
K(A,Γρ)2+4SNR+2SNR2

SNR
]2

(18)

Fig.3 shows the required number of samples N to achieve

the target Pfa = 0.1 and Pd = 0.9 with different uncertainty

levels on Γ. To achieve the target Pfa and Pd, a smaller

quantity of samples is required when the uncertainty of Γ gets

larger. Results for different SNR is shown in Fig.4.

The two figures illustrate that we just need a smaller

quantity of samples N to achieve the target Pfa and Pd. The

larger the uncertainty ρ is, the smaller N is required, but the

variation in N is very small. So the impact on the uncertainty

of Γ can in most cases be ignored.

Comparing the four figures, we found that the impact of

Γ is even lower than that of A, and the impact of these two

parameters can be easily eliminated.

C. Uncertainty of noise power σ2
Z

Finally, if the estimated noise power is assumed to be in

an interval σ̂2
Z ∈ [ 1ρσ

2
Z , ρσ

2
Z ], and ρ > 1 is a parameter that

quantifies the amount of the uncertainty. To achieve a target

Pfa and Pd robustly, the following equations need to hold:

Pfa = max
σ̂2
z∈[ 1ρσ

2
z ,ρσ

2
z ]
Q(

γ − μ0√
σ2
0/N

)

Pd = min
σ̂2
z∈[ 1ρσ

2
z ,ρσ

2
z ]
Q(

γ − μ1√
σ2
1/N

).
(19)
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Fig. 3. Samples required vs. ρ, for different levels of uncer-

tainty on Γ.(SNR=-5dB)
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Fig. 4. Samples required vs. ρ, for different levels of uncer-

tainty on Γ with different SNR.

Due to the Q function being a monotonically decreasing

function, we obtain

Pfa = Q(
γ − μ0√
σ2
0/N

)

∣∣∣∣∣
σ̂2
z=ρσ2

z

Pd = Q(
γ − μ1√
σ2
1/N

)

∣∣∣∣∣
σ̂2
z=

1
ρσ

2
z

(20)

Then we have

N=[
Q−1(Pfa)K(A,Γ)ρ−Q−1(Pd)

√
K(A,Γ)2 1

ρ2+
4
ρSNR+2SNR

2

SNR− (ρ− 1
ρ )

]2

(21)

It is obvious that, when SNR approaches (ρ− 1
ρ ), N → ∞.

So an SNR Wall exists. It means that the detector cannot

robustly detect the signal if the signal power is less than the

uncertainty in the noise power. Fig.5 shows that the SNR
wall will become higher with the uncertainty ρ becoming

higher.(note that the vertical axis is a logarithmic scale)

V. CONCLUSION

We studied the problem of detecting the presence of a

primary user in a cognitive radio setting with impulsive noise.

Firstly, we give the expression of false alarm probability

Pfa and detection probability Pd derived under the specific

condition of impulsive communication noise. Secondly, we

found that the uncertainty on noise parameters A and Γ have

little impact on the detection performance, and the impact

can be eliminated by adapting the number of samples N .

Although both are small, uncertainty of A has larger impact

on performance than that of Γ. Finally, the uncertainty of

noise power σ2
Z cannot be ignored since it can result in the

emergence of SNR wall, in which case weak signals cannot

be detected reliably no matter how many samples observed.
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