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GEOSTATISTICAL METHODS FOR PREDICTION OF SPATIAL

VARIABILITY OF RAINFALL IN A MOUNTAINOUS REGION

A. Sarangi,  C. A. Cox,  C.A. Madramootoo

ABSTRACT. Reliable estimation of rainfall distribution in mountainous regions poses a great challenge not only due to highly
undulating surface terrain and complex relationships between land elevation and precipitation, but also due to
non-availability  of abundant rainfall measurement points. Prediction of rainfall variability over mountainous islands is a
logical step towards meaningful land use planning and water resources zoning. In this context, geostatistical techniques were
developed for mapping the rainfall variability over the island of St. Lucia in the Caribbean, using the elevation information
extracted from a Digital Elevation Model (DEM) and long-term mean monthly rainfall (MMR) data of 40 raingauge stations
spread over 616 km2. The ordinary co-kriging (OCK) and collocated co-kriging (CCK) methods of interpolation were applied
for the standardized rainfall depths associated with elevation, as the primary variate, and the surface elevation values as the
secondary variate. The best semivariogram model algorithm generated, using either of the above co-kriging (CK) methods,
was used to predict standardized values for the elevation points extracted from the DEM for which the rainfall depths were
not known. The predicted values were further destandardized to generate the rainfall depth at the unmeasured locations.
Ordinary kriging (OK) was then performed for the destandardized and observed rainfall depths to generate the prediction
map of MMR over the entire island. These sequential steps were repeated for the MMR data of all twelve months to generate
rainfall prediction maps over the island. The spherical semivariogram model fit well (0.84 < R2 < 0.98) for both the OCK
and OK methods. The cross-validation error statistics of OCK presented in terms of coefficient of determination (R2), kriged
root mean square error (KRMSE), and kriged average error (KAE) were within the acceptable limits (KAE close to zero, R2

close to one, and KRMSE from 0.55 to 1.45 for 40 raingauge locations) for most of the months. The exploratory data analysis,
variogram model fitting, and generation of MMR prediction map through kriging were accomplished through use of ArcGIS
and GS+ software.

Keywords. ArcGIS, Collocated ordinary co-kriging, Geostatistical analysis, GS+, Ordinary co-kriging, Ordinary kriging,
Rainfall interpolation, Spatial variability, St. Lucia.

he spatial variability of precipitation is highly in-
fluenced by meteorological conditions and land
morphological factors. Mountainous regions are
characterized  by complex precipitation patterns

due to undulating terrain. Moreover, sparse raingauge net-
works add to the complexity of accurate estimation of rainfall
data for ungauged locations. These features make it difficult
to adopt a model to describe the spatial variability of rainfall
in mountainous regions. Phenomena like the enhancement of
precipitation on windward sides and the rain-shadow effect
are typical for mountainous regions with varied topography
(Christel and Reed, 1999). In regions with strong orographic
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rainfall effects, the proper estimation of rainfall may contrib-
ute significantly to development of rainfed agricultural pro-
duction systems. The spatial and temporal variability of
precipitation affects both soil infiltrability and the production
and successive propagation of surface runoff. In addition, de-
termination of long-term spatial variation in rainfall is impor-
tant for crop agro-ecological zoning and demarcation of
potential surface and ground water availability regions.

This study was undertaken to model the spatial variability
of rainfall over the eastern Caribbean island of St. Lucia
(fig. 1). The Caribbean Archipelago stretches from southern
North America to northern South America. Most of the
islands are mountainous due to volcanic genesis. The Greater
Antilles, which include Jamaica, Hispaniola, and Puerto
Rico, are dominated by mountainous ranges at elevations
between 1000 and 3000 m. The Lesser Antilles is comprised
of low-lying coralline islands in the northern Leeward group,
while the islands of the Windward group toward the south are
volcanic, with elevations rising above 1000 m. Agriculture is
an integral part of the economy of most of the islands. In the
absence of any established irrigation network, agriculture is
solely dependent on rainwater. Moreover, in the relatively
flatter valley regions, the spatial variability of rainfall being
less, rainwater is a dependable water resource for practicing
agriculture.  However, due to high spatial variability of
rainfall in the mountainous region, the availability of rainfall
over a larger space becomes uncertain, and agricultural
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Figure 1. Location map of St. Lucia Island with raingauge locations.

activities are at low level in the mountainous regions. Reli-
able estimation of spatial and temporal rainfall patterns over
the islands and the variability of temperature at higher eleva-
tions (FAO, 1996) are important for agricultural planning.
Therefore, the present study aims at accurate estimation of
spatial rainfall depths over St. Lucia for agro-ecological crop
zoning, land use planning, and watershed management.

BACKGROUND INFORMATION
To account for the spatial variability of rainfall, conven-

tional techniques such as Thiessen polygons, the isohyetal
method, and inverse distance weighting (IDW) were used for
interpolation of rainfall data until the late 1980s (Goovaerts,
1997; Phillips et al., 1992) but were not always reliable in
mountainous regions (Lebel et al., 1987; Hevesi et al., 1992).
These methods are useful where there is an adequate
distribution of sample points over the study area or where the
surface terrain is uniform. However, higher raingauge

density in steep mountain terrain is often not possible for
several reasons: the costs of installation, operation, and
maintenance  are quite high, and these regions are also
inaccessible to human climate observers. Therefore, a
reliable method to generate spatial rainfall information for
mountainous areas using point rainfall data is required. The
Thiessen polygon method (Thiessen, 1911) and the IDW
technique do not allow hydrologists to consider the morpho-
logical factors that can affect the rainfall depth at a gauging
point. The isohyetal method (McCuen, 1998) is designed to
overcome this deficiency by using the location and depth
information for drawing isohyets. The amount of rainfall at
the unsampled location is then estimated by interpolation
within the isohyets. The limitation of this technique is that an
extensive raingauge network is required to draw isohyets
accurately.

In order to overcome these limitations and use the
topographical information in interpolation, geostatistical
methods are employed for estimation of rainfall variability.
Geostatistics,  based on the theory of describing the relation-
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ship between the spatially random variables (Goovaerts,
1997; Kitiandis, 1997; Goovaerts, 2000; Wackernagel,
2003), is increasingly employed because it utilizes the spatial
correlation between neighboring observations to predict
attribute values at unsampled locations. Several authors
(Bacchi and Kottegoda, 1995; Christel and Reed, 1999;
Goovaerts, 1999, 2000; Campling et al., 2001; Drogue et al.,
2002) have shown that geostatistics provides better estimates
of precipitation than conventional methods. Moreover, the
co-kriging (CK) technique is advantageous for map genera-
tion using sparsely sampled observations of the primary
attribute with more densely sampled secondary attributes.
Dirks et al. (1998) found that the results of kriging depended
on the sampling density, and for high-resolution networks
(e.g., 13 raingauges over a 35 km2 area) the kriging method
did not show significantly greater predictive skill than
simpler techniques, such as the IDW method.

Christel and Reed (1999) developed geostatistical meth-
ods for mapping extreme rainfall using data from 1003
raingauge stations spread over the mountainous regions of
Scotland. Ordinary kriging (OK) and modified residual
kriging techniques were used for mapping extreme rainfall
due to their simplicity. It was also observed that inclusion of
topographical information (i.e., elevation, slope, and aspect)
in OK resulted in better prediction accuracy of cross-valida-
tion results.

Goovaerts (2000) compared the predictability of three
geostatistical  methods, kriging with external drift (KED),
collocated co-kriging (CCK), and simple kriging with
variable means, with the regression (between rainfall and
elevation),  IDW, Thiessen polygon, and OK methods to
predict rainfall variability. Geostatistical techniques were
used to incorporate the elevation from a Digital Elevation
Model (DEM) to predict the spatial rainfall variability for
36 climatic stations within an area of 5000 km2 in Portugal.
It was observed that the IDW and Thiessen polygon methods
gave the largest prediction errors of cross-validation, where-
as the KED, CCK, and OK methods yielded minimal
prediction errors. Moreover, OK outperformed all other
methods with a moderate correlation coefficient value of
0.75 between the rainfall and elevation data.

Drogue et al. (2002) compared the multiple regression
techniques of rainfall versus the geomorphologic parameters
(using PLUVIA software) with two methods of geostatistics
(KED and extended CCK) for mapping the rainfall over
mountainous regions of northeastern France. It was inferred
from the cross-validation statistics that the extended CCK
methods generated better results in terms of mean absolute
error and standard deviation. The PLUVIA model was linked
with GIS to plot the kriged surface, and statistical software
was used to perform the multiple regression calculations.

It was revealed that only one kriging technique, such as
OK, KED, CK, and CCK, did not always give the best results
in predicting rainfall in mountainous regions (Christel and
Reed, 1999). Therefore, in this study, an effort was made to
develop a combination of geostatistical techniques of kriging
within a GIS environment to predict the spatial variability of
rainfall for a mountainous region.

STUDY OBJECTIVES

The present study’s goal was to use multivariate geostatis-
tical methods to predict rainfall from elevation information
and then use the univariate geostatistical method to interpo-

late rainfall and map the spatial variability. The specific
objectives were: (1) to extract elevation points from the DEM
for analysis and develop a mathematical association (stan-
dardization) between the elevation and rainfall data for use
in CK methods as a primary variate and elevation values as
a secondary variate, (2) to attempt different CK methods and
select the best method from the analysis of the cross-valida-
tion error statistics through cross-semivariogram models,
(3) to use the selected CK method for prediction of the
standardized rainfall values at unmeasured locations, and
(4) to perform kriging for generation of interpolated rainfall
maps using the predicted and observed mean monthly rainfall
data of twelve months for St. Lucia.

STUDY AREA AND DATA COLLECTION

St. Lucia is a small volcanic island in the Windward Island
group in the Lesser Antilles (fig. 1). The island is 616 km2 and
measures 45 km by 23 km across its widest axes. The highest
peaks are in excess of 800 m elevations, with steep gradients,
particularly in the central region of the island. The climate is
tropical maritime with mean annual temperatures ranging
between 26°C and 32°C (Cox, 2002). Based on available
historic records, it was observed that the mean annual rainfall
varied from 1500 mm around the coastal low lands to 3800
mm in the central interior, which was due to orographic
influences. The bulk of the annual rainfall occurs in the
period from July through December due to tropical cyclonic
weather systems prevailing during the Atlantic hurricane
season.

Long-term monthly rainfall records are available for
42 raingauge locations in St. Lucia. Historic records for some
stations exceed 100 years (Cox, 2002). Rainfall is collected
daily and compiled to generate monthly totals. Most of the
rainfall stations are non-recording. These data have been
used in various applications to conduct analyses to support
crop production systems planning and estimation of hydro-
logic parameters required to plan infrastructural develop-
ment related to water extraction for drinking or irrigation. In
these applications, data from the nearest stations are typically
assumed to represent rainfall regimes within a local geo-
graphic region. However, improvements can be made in
estimating rainfall depth at unsampled locations by interpo-
lating between the nearest gauges. Data used in the analysis
were derived from the U.N. Water Resources Preliminary
Report (Migeot and Hadwen, 1986), the WEMP report (HTS,
1997), and the thematic data layers as listed in table 1. Data
from 40 rainfall stations within St. Lucia with more than
10 years of record were used in the analyses (Cox, 2002). The
IDW method was employed to interpolate the rainfall data
and generate spatial variability in monthly rainfall (Cox,
2002). However, the IDW method assumes a weighted
average within the unsampled region and therefore failed to
provide a reliable prediction of the rainfall in the mountain-
ous and hilly terrain of St Lucia (Cox, 2002). These
inaccuracies  can impact the hydrologic analysis and water
resources planning of the region.

INTERPOLATION PROCEDURES
This section briefly deals with the procedures of data

analysis using ArcGIS and GS+ software and the kriging
methods of interpolation. The details of the kriging algo-
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rithms are presented in Johnston et al. (1996), Kitiandis
(1997), Goovaerts (1997), and Wackernagel (2003).

DATA PRESENTATION AND ANALYSIS WITHIN GIS
ENVIRONMENT

The delineated base map (i.e., polygon feature class) of St.
Lucia and the location of rainfall gauging stations within the
island (i.e., point feature class) were generated using ArcGIS
as two different coverage feature classes. The point feature
class coverage map, representing the rainfall locations, also
contained the mean monthly rainfall depths for twelve
months as attribute values. The base map and the rainfall
point coverage map were overlaid to represent the raingauge
locations within St. Lucia. These feature class maps and the
DEM were projected to a standard geographic co-ordinate
system representing the island of St. Lucia. The DEM of St.
Lucia was used for extraction of approximately 400 eleva-
tions points, ranging from 3 to 870 m, covering the entire
island, for use in kriging analysis. The geostatistical analysis
extension module of ArcGIS 8.3 was used for analysis and
development of kriged surfaces, and GS+ was used to
understand the details of variogram models and statistical
fitting parameters.

KRIGING TECHNIQUES
The objective of kriging is to predict rainfall values at

ungauged locations (x0) within the system domain (D) using
information available elsewhere in D (x1, x2, ..., xn). This can
be carried out by expressing Z(x0) {where Z(x): x ∈ D} as a
linear combination of the data Z(x1), Z(x2), ..., Z(xn), such
that:

 ( ) ( )∑
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where � i is the kriging weight of the parameter value at Z(x0)
for n nearby sample points to be used in estimation. The opti-
mal weight (� i) is calculated such that the estimation of
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 by Z(x0) is unbiased and the sum of squares of error is
minimized.  Of the different kriging techniques, the OK and
CCK methods were used in the present study because of their
simplicity and prediction accuracy in comparison to other
kriging methods (Isaaks and Srivastava, 1989). Moreover, it
is observed (e.g., Webster and Oliver, 2001; Johnston et al.,
1996) that the OK of a single variable is most robust and is
frequently used to account for data fluctuations and consider-
ation of a global trend over the study region. Again, due to the
low density of raingauges, i.e., 40 measured point locations
in 5000 km2, the omnidirectional variogram was used in the
present analysis, which assumes the spatial variability to be
identical in the X, Y, and Z directions.

Ordinary Kriging (OK)
Ordinary kriging is based on two assumptions. First, the

mean of the process is assumed constant and is invariant
within the spatial domain. This is expressed as:

 ( ) ( )[ ] 0=−+ xZhxZE  (2)

where E is the expectation, and x ∈ D and x + h ∈ D, with h
being the distance between two points.

Second, the variance of the difference between two values
is assumed to depend only on the distance h between the two
points, and not on the location x. The variance is given by:

 ( ) ( )[ ] ( )hxZhxZ γ=−+ 2var  (3)

where the function �(h) is the semivariogram.
Based on these assumptions, the kriging equation is given

as (Deutsch and Journel, 1992):
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where
�(h,�) = semivariance as a function of both the magnitude

of the lag distance or separation vector (h) and
its direction (�)

N(h,�) = number of observation pairs separated by
distance h and direction � used in each
summation

Z(xi) = random variable at location xi.
For OK, the weighing parameter � i shown in equation 1

is determined to fulfill conditions as presented in equations 2
and 3 by solving a system of linear equations such as:
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where �(x) is the Lagrangian parameter accounting for the
constraint on the weights. The information needed for equa-
tion 5 are the semivariogram values (� ), which are estimated
using equation 4. The spherical model is the most widely used
semivariogram model and is characterized by the linear be-
havior at the origin (Goovaerts, 2000). The spherical model
is:
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where �(h,�) is the spherical semivariogram with range pa-
rameter (a) and sill (S) for lag distance h.

Ordinary Co-Kriging (OCK)
Ordinary co-kriging is the estimation of one variable

based on measured values of two or more variables. It is a
generalization  of kriging in the sense that at every location
there is a vector of many variables instead of one variable.
OCK is the multivariate extension of kriging (Goovaerts,
1997). In this study, the primary variables are standardized
values of rainfall and elevation data at measured locations,
which are obtained by using the mathematical association of
rainfall and elevation given as:

 ( ) ( )[ ] ( )[ ]
2

22
ii

i
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xZ
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=  (7)

where ZS(xi) is the primary variate for OCK, and RF(xi) and
EL(xi) are rainfall and elevation values, respectively, for the
ith variate (i = 1, 2, ..., N, where N = 40). All the available



947Vol. 48(3): 943−954

rainfall data corresponding to 40 raingauge stations are stan-
dardized using equation 7. This transformation resulted in
higher correlation coefficients between the elevation and
transformed values rather than the use of non-transformed
rainfall and corresponding elevation data of the raingauge
network. Moreover, the mean of the primary and secondary
variables are equivalent to each other, which is an essential
requirement of OCK (Goovaerts, 1997). The OCK estimate,
Z*(xi), of ZS(xi) is given by:
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where {S(xj); j = 1, 2, ..., m} are available data of elevation
used as secondary variates. The parameter weights (�i and �j)
are obtained as solutions of the OCK system given by the set
of equations:
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where �1 and �2 are Lagrange parameters, �Z(h) is the vario-
gram function of standardized parameters, �S(h) is the vario-
gram function of elevation values, and �ZS(h) is the
cross-variogram function of standardized parameters and eleva-
tion. B(x) denotes the support of the estimate at location x of
point kriging, and the total study region is representative of
summation of all these support locations. The bar over the vario-
gram denotes the mean variogram between a point and its sup-
port B(x). The estimated variance of an OCK system is:
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Collocated Ordinary Co-Kriging (CCK)
Collocated ordinary co-kriging is a conditional estimator

of CK where the neighborhood uses the secondary variable
as a subset of locations where primary data are available
along with the estimated locations (Wackernagel, 2003). The
standardized primary variate of the 40 measured values of
rainfall depth and the corresponding elevation values were
used in the analysis. The collocated elevation, S(x), in CCK
tends to influence the farther elevation points. The CCK
estimate is given as:
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where Z*(x) is the CCK estimator with weight parameter
��i CK, primary variate ZS(xi), and standardized secondary
variate S(x), and mS and mZ are the mean estimator of stan-
dardized rainfall and elevation values, respectively. The stan-
dardization of the primary variate using equation 7 was done
to ensure that the mean values of the primary and secondary
variates were equivalent to each other, which would result in
an unbiased estimation (Goovaerts, 2000). The CCK cross-
semivariogram is:
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where �ZS(h) is the cross-semivariogram representing the
standardized primary variable and the secondary variable
representing the elevation points.

KRIGING ERROR STATISTICS

The performances of the OK, OCK, and CCK algorithms
were assessed and compared using cross-validation results
(Isaaks and Srivastava, 1989). This was achieved by
temporarily removing one datum at a time from the data set
and re-estimating the deleted value from the remaining data
using the kriging algorithms. All computations have been
performed using the GS+ and ArcGIS software (Johnston et
al., 1996). In the present study, the coefficient of determina-
tion (R2), the kriged reduced mean square error (KRMSE),
and the kriged average error (KAE) were the error statistics
used (Campling et al., 2001; Kitanidis, 1997) for comparison
of the model-predicted results with the observed values.

The KRMSE was used to check the consistency between
the estimation errors and the standard deviation of the
observed values:
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The KAE was used to test the predictability of the
developed models:

 ∑
=

−=
N

i

ii
N s

)zp(zo

1

1KAE  (14)

where
zoi = observed value at location i
zpi = predicted value at i through CCK and OK methods
N = number of pairs of observed and predicted values
s = standard deviation of the observed values.
This KRMSE value should be within the range 1 ±

[2(2/N)1/2] for the model to be acceptable (Ella et al., 2001).
The KAE value should be close to zero for the model to be
acceptable (Kitanidis, 1997).

INTERPOLATION STEPS USING ARCGIS AND GS+
The primary variate for co-kriging was standardized with

the rainfall and elevation values using equation 7. The
exploratory data analysis was performed for both primary
and secondary variates to ascertain the correlation coeffi-
cient, mean value, normality in data trend, and presence of
any outliers before semivariogram fitting.
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Semivariogram Model Selection
The best semivariogram model was generated by observ-

ing the R2 and residual sum square (RSS) values with a trial
and error approach for different lag sizes and lag intervals
(Goovaerts, 1997; Isaaks and Srivastava, 1989). However,
the lag sizes and number of lags were varied based on a
heuristic rule, generally called a rule of thumb, in which the
lag size times the number of lags should be less than one-half
of the largest distance in the database (Johnston et al., 1996).
In this study, the lag size and number of lags were selected
and confined within one-third to one-half the maximum
distance on a trial and error basis to generate an optimized
semivariogram model. Then the optimum semivariogram
model parameters, such as sill, nugget, range, and the fitted
model type corresponding to the highest R2 value, were
noted. The sample variance where the semivariogram
stabilizes is known as the sill, the y-axis intercept of the
model is called the nugget, and the separation distance along
the x-axis where the model flattens out is called the range
(fig. 5). In CK, the primary and secondary variates were
fitted using different models available in GS+ and the
ArcGIS geostatistical extension module, and the optimal
cross-semivariogram was selected. The OCK analysis was
performed for the 40 primary data points (standardized
elevation and rainfall values) and the secondary variate
(elevation points extracted from the DEM). We also ensured
that the difference in the average of both primary and
secondary variates was close to zero. The CCK analysis was
performed for 40 primary data points (standardized elevation
and rainfall values) and the secondary variate as the elevation
of the point locations included in the primary variate. Both
the OCK and CCK methods were compared based on the
variogram fitting statistics and cross-validation error statis-
tics. This was performed to select the best method for
prediction of rainfall at unmeasured locations and to predict
the spatial variability.

The cross-validation error statistics were estimated using
equations 13 and 14 to select the best algorithm model. The
OCK and CCK cross-validation error statistics were
compared to select the best method in performing the CK.
Then, the best CK algorithm (either OCK or CCK) was used
to predict the standardized primary variate values for more
locations within the study region. The database of these
predicted variables corresponding to elevation locations
were then destandardized to obtain the rainfall depths at
predicted unmeasured locations, RF(xi), by solving equa-
tion 7. To this destandardized database of predicted rainfall
depths, the observed rainfall depths of the 40 measured
locations were added. Further, OK analysis was performed
for the data set with rainfall depth as the interpolating variate.
Exploratory data analysis was performed to ascertain the
normality of the distribution of the variates and the presence
of outliers in the data before fitting the semivariogram model.
Similarly, the steps of variogram fitting as described for CK
were followed for the OK method, and the best-fitted
semivariogram was used for kriging. The cross-validation
statistics in terms of KRMSE and KAE were estimated to
ascertain the model algorithms, and finally the interpolated
surface reflecting the variation of rainfall depth over the
mountainous region of St. Lucia was generated using
ArcGIS. These procedures were followed to generate the
spatial variability map of long-term mean monthly rainfall

for one month and replicated for all twelve months to gener-
ate twelve such maps.

RESULTS AND DISCUSSION
The point rainfall data of the study region at 40 raingauge

locations, the DEM (table 1), and the base map of St. Lucia
were projected to the Transverse Mercator (TM) projection
system with the ground distance represented in meters. Four
hundred elevation points covering the entire island, exclud-
ing the raingauge points, were extracted from the DEM for
prediction of rainfall values and determination of the
interpolated surface (fig. 2).

RESULTS OF OCK AND CCK FOR PREDICTION OF MEAN

MONTHLY RAINFALL DEPTHS
The exploratory data analysis performed on the standard-

ized primary variate and the secondary variate of elevation
revealed that the data are normally distributed and free of
outliers. The regression analysis of the primary variate (mean
monthly rainfall depth) and secondary variate (elevation)
resulted in poor R2 values, ranging from 0.17 (June) to 0.41
(May). However, the regression analysis of the standardized
primary values generated using equation 7 with the elevation
values resulted in better R2 values, ranging from 0.80
(October) to 0.97 (March). Therefore, the standardized
primary variate was used with the elevation values for CK
analysis. It was observed from the fitted semivariogram that
using only the elevation points as a secondary variate for
which the primary variate values (standardized) were known
(i.e., CCK) resulted in R2 values of the fitted spherical
semivariogram ranging from 0.78 to 0.82 with optimal values
of sill [118 (m2 + mm2)0.5] and range (13.78 km) parameters.
In comparison, when using more elevation points as the
secondary variate (i.e., OCK), the R2 of the fitted spherical
semivariogram ranged from 0.91 to 0.99 with optimal sill
[98(m2 + mm2)0.5] and range (15 km) parameters. The lag
size of 25 km and lag class interval of 3.3 km were observed
to be the optimal values for obtaining the best-fit cross-semi-
variogram for all the data sets. Moreover, the cross-validation
statistics performed for both the OCK and CCK methods of
CK (table 2) revealed that the OCK method performed better
than the CCK method.

The calculated KRMSE of cross-validation results for
nine months were well within the acceptable range for the
model obtained through the OCK method, whereas the

Table 1. GIS thematic data layers used in rainfall spatial modeling.

Data Layer Data Representation Data Sources

Digital elevation
model (DEM)

50 × 50 m
resolution raster

Topographic map sheets of
1:25000 scale acquired from
Department of Overseas
Surveys (DOS), St Lucia.

Base map Boolean raster
of island extents

Topographic map sheets of
1:25000 scale acquired from
Department of Overseas
Surveys (DOS), St Lucia

Mean annual
rainfall

Interpolated raster
from vector coverage

St. Lucia Development At-
las, 1:50000 map series
(OAS, 1987)

Rainfall
stations

Vector-point U.N. Preliminary Water Re-
sources Report (Migeot and
Hadwen, 1986)
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Figure 2. Location of extracted elevation points from DEM of St. Lucia.

Table 2. Comparison of OCK and CCK methods in terms of model fitting R2 values and cross-validation statistics.
Ordinary Co-kriging Collocated Ordinary Co-kriging

R2 of Cross-
Semivariogram

Cross-Validation
Statistics R2 of Cross-

Semivariogram

Cross-Validation
Statistics

Month
Semivariogram

Model (Spherical) R2[a] KAE[b] KRMSE[c]
Semivariogram

Model (Spherical) R2[a] KAE[b] KRMSE[c]

January 0.95 0.97 −0.001 0.56 0.82 0.78 −0.012 0.18
February 0.98 0.95 0.013 0.42 0.84 0.85 0.018 0.32

March 0.98 0.94 0.017 0.75 0.84 0.84 0.037 0.86
April 0.98 0.97 −0.001 0.86 0.84 0.87 −0.09 0.18
May 0.94 0.97 0.006 0.62 0.82 0.87 0.12 0.17
June 0.85 0.95 −0.012 0.32 0.78 0.85 −0.13 0.20
July 0.94 0.99 0.004 0.76 0.84 0.89 0.08 0.62

August 0.89 0.98 −0.0003 0.58 0.84 0.88 −0.09 0.12
September 0.90 0.99 −0.007 1.01 0.76 0.79 0.17 0.1

October 0.90 0.99 −0.001 0.81 0.79 0.79 0.06 0.11
November 0.88 0.9 −0.012 0.29 0.80 0.83 0.031 0.56
December 0.94 0.97 −0.003 0.92 0.78 0.87 −0.043 0.16

[a] The R2 value should close to 1 for better fit.
[b] The acceptable value of KAE is close to zero.
[c] The acceptable value of KRMSE (1 ± [2(2/N)1/2]) is 0.55 to 1.45 (N = 40).
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Figure 3. The 1:1 line of the predicted and observed rainfall values (stan-
dardized) for mean monthly rainfall of November (R2 = 0.90).
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Figure 4. The 1:1 line of the predicted and observed rainfall values (stan-
dardized) for mean monthly rainfall of September (R2 = 0.99).

KRMSE values of only three months were within acceptable
range (table 2) when the CCK algorithm was used. Moreover,
the KAE values calculated from the cross-validation results
of the CCK and OCK algorithms methods for all months were
close to zero. The 1:1 lines for the highest and lowest R2 value
of the cross-validation results of OCK are shown in figures 3

and 4. Hence, the OCK algorithm was used to predict the
standardized values for 400 elevation point locations using
the geostatistical extension tool in ArcGIS. The reason for us-
ing the limited elevation points representing the entire wa-
tershed by grid layer overlay technique was to minimize the
prediction error and subsequent error in spatial interpolation.
Finally, the predicted database was analyzed to extract the
rainfall depths corresponding to the elevation values by solv-
ing equation 7.

It was observed that a few destandardized values of
rainfall depth obtained by solving equation 7 resulted in
negative values. To avoid this, the minimal difference in the
mean values of the primary variate and the secondary variate
were ensured by optimizing the number of elevation points
through the trial approach (Goovaerts, 2000). Despite the
above technique to minimize the negative rainfall depths, for
all the analysis, the number of such negative values ranged
from 1 to 8, and they were finally excluded from the data set
before using the OK analysis to generate the rainfall spatial
variability map.

RESULTS OF OK ANALYSIS FOR GENERATION OF RAINFALL
VARIABILITY MAP

The predicted mean monthly rainfall values from the CK
algorithm and the observed data of raingauge locations for all
twelve months were subjected to ordinary kriging analysis.
Exploratory data analysis was done to ensure normality of
data trends and to determine if any outliers were present in the
data. The data for all the months were observed to be
distributed normally without any outliers. An empirical
variogram model was fitted with the data set using different
lag sizes and numbers of lag, and the fitted semivariogram
model with the fitting statistics are listed in table 3. The lag
size of 25 km and the lag class interval of 3.25 km were
observed to be the optimal values for obtaining the best-fit
variogram for all the data sets. It was estimated that the
spherical semivariogram fit well with all the data sets, with
the R2 value varying from 0.84 (February) to 0.98 (October,
November, and July). The fitted semivariograms for the
months of February and November are presented in figures 5
and 6, respectively. The cross-validation error statistics with
the KRMSE, KAE, and R2 values are presented in table 4. It
was observed that the KAE was close to zero for all the
months, and the R2 value varied from 0.71 (February) to 0.96
(June). The observed and predicted values with lowest and
highest R2 values are shown in figures 7 and 8, respectively.

Table 3. Fitted semivariogram parameter for the predicted and observed rainfall values in OK analysis.

Month

R2 of
Semivariogram

Model (Spherical)
Nugget
(mm2)

Sill
(mm2)

Range
(m) Spherical Model

January 0.88 140 3749 11540January 0.88 140 3749 11540
The isotropic spherical variogram model is given by:

February 0.84 372 3536 11480
The isotropic spherical variogram model is given by:

March 0.92 455 2975 11710
 April 0.89 492 2839 10930 ( )
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July 0.98 1010 5615 11580
= otherwiseS

August 0.93 1100 4348 10360
September 0.94 840 4281 9810 where S is the sill and a is the range for lag distance h.

October 0.98 1760 7037 10790
where S is the sill and a is the range for lag distance h.

(The parameters are estimated from this table.)
November 0.98 1990 6262 9850
December 0.92 890 5148 10060
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RangeNugget

Sill

Figure 5. Semivariogram of ordinary kriging method for February (R2 = 0.84).

Figure 6. Semivariogram of ordinary kriging method for November (R2 = 0.98).

The interpolated surface was generated for the study region
for the twelve months, and the map of driest (March) and wet-
test (October) months of the year are presented in figures 9
and 10, respectively.

It was observed from the kriged surface that the spatial
variability of rainfall from the leeward direction to the center
of the island was very high for all the months in a year. The
maximum rainfall for all the months occurred over the center
of the island and the magnitude varied from month to month,
with lowest rainfall depth occurring during March and the
highest during the month of October. This observation was
similar to observed rainfall values over St. Lucia.

CONCLUSIONS
It is understood that modeling rainfall spatial variability

of a mountainous region with a sparse raingauge network
poses a challenging task in terms of prediction accuracy.
Furthermore, the short observation record of some stations
and inconsistency in data recordings also influence the
rainfall predictability over the mountainous region. This
necessitates the use of exploratory data analysis techniques
as a prerequisite before using the data for geostatistical
modeling.

The combination of multivariate and univariate kriging
approaches used in this study to predict the spatial rainfall
variability for mountainous regions with orographic effects
is a simple and reasonable approach, which can be applied to
similar locations having sparse raingauge locations and
undulating topography.

The standardization technique used in CK through
mathematical  association of rainfall depth and corresponding
elevation values resulted in better prediction of rainfall
variability over St Lucia. However, a similar approach of
mathematical  transformation needs to be applied to other
mountainous regions for wide acceptability of this developed
concept.

Table 4. Cross-validation error statistics of
the fitted semivariogram models in OK.

Ordinary Kriging

R2 of Cross-
Semivariogram

Cross-Validation
Statistics

Month
Semivariogram

Model (Spherical) R2[a] KAE[b] KRMSE[c]

January 0.88 0.79 0.023 0.57
February 0.84 0.71 0.032 0.81

March 0.92 0.88 −0.002 0.54
April 0.89 0.94 0.01 1.01
May 0.86 0.93 0.03 0.78
June 0.97 0.96 0.02 0.81
July 0.98 0.85 0.03 1.07

August 0.93 0.94 0.05 0.71
September 0.94 0.94 0.05 0.72

October 0.98 0.93 0.02 0.81
November 0.98 0.93 0.03 0.82
December 0.92 0.85 0.05 0.92

[a] The R2 value should close to 1 for better fit.
[b] The acceptable value of KAE is close to zero.
[c] The acceptable value of KRMSE (1 ± [2(2/N)1/2]) is 0.86 to 1.14 (for

N = 440)
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Figure 7. The 1:1 line of the predicted and observed rainfall values for
mean monthly rainfall using ordinary kriging for February (R2 = 0.71).

Figure 8. The 1:1 line of the predicted and observed rainfall values for
mean monthly rainfall using ordinary kriging for June (R2 = 0.97).

Figure 9. Rainfall prediction map of the driest month (March).
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Figure 10. Rainfall prediction map of the wettest month (October).

Fitting the semivariogram model also depends on different
lag sizes and lag class intervals, and the developed semivario-
gram affects the cross-validation results. Efforts should be made
to generate an optimal variogram model, keeping in mind the
fitting parameters. The R2 value does not necessarily represent
a best-fitted model. However, the KRMSE and KAE of the
cross-validation results need to be considered to ascertain the
best geostatistical algorithm.

Nonetheless, considering the study objectives, the modeled
rainfall surfaces were considered reasonable, particularly when
compared to the published annual rainfall surface (OAS, 1987).
The developed methodology of geostatistical analysis and
mathematical association of rainfall and elevation values to
estimate a standardized value for use in CK method and the
combination of OCK and OK approaches to generate rainfall
prediction maps can be applied to account for the spatial
variability of rainfall over mountainous regions.

REFERENCES
Bacchi, B., and N. T. Kottegoda. 1995. Identification and

calibration of spatial correlation patterns of rainfall. J. Hydrology
165: 311-348.

Campling, P., A. Gobin, and J. Feyen. 2001. Temporal and spatial
rainfall analysis across a humid tropical catchment. Hydrological
Processes 15(3): 359-375.

Christel, P., and D. W. Reed. 1999. Mapping extreme rainfall in a
mountainous region using geostatistical techniques: A case study
in Scotland. Intl. J. Climatology 19(12): 1337-1356.

Cox, C. A. 2002. Geographic Information Systems-based
hydrology modeling applications in support of watershed
management planning for St. Lucia. PhD diss. Montreal,
Quebec: McGill University, Department of Bioresource
Engineering.

Deutsch, C. V., and A. G. Journel. 1992. GSLIB Geostatistical
Software Library and User’s Guide. New York, N.Y.: Oxford
University Press.



954 TRANSACTIONS OF THE ASAE

Dirks, K. N., J. E. Hay, C. D. Stow, and D. Harris. 1998.
High-resolution studies of rainfall on Norfolk Island: Part II.
Interpolation of rainfall data. J. Hydrology 208(3-4): 187-193.

Drogue, G., J. Humbert, J. Deraisme, N. Mahrb, and N. Freslonc.
2002. A statistical-topographic model using an omni-directional
parameterization of the relief for mapping orographic rainfall.
Intl. J. Climatology 22(5): 599-613.

Ella, V. B., S. W. Melvin, and R. S. Kanwar. 2001. Spatial analysis
of NO3-N concentration in glacial till. Trans. ASAE 44(2):
317-327.

FAO. 1996. Agro-ecological zoning: Guidelines. FAO Soils
Bulletin 73. Rome, Italy: U.N. Food and Agricultural
Organizations.

Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation.
New York, N.Y.: Oxford University Press.

Goovaerts, P. 1999. Using elevation to aid geostatistical mapping of
rainfall erosivity. Catena 34(3-4): 227-242.

Goovaerts, P. 2000. Geostatistical approaches for incorporating
elevation into the spatial interpolation of rainfall. J. Hydrology
228(1-2): 113-129.

Hevesi, J. A., J. D. Istok, and A. L. Flint. 1992. Precipitation
estimation in mountainous terrain using multivariate
geostatistics: Part I. Structural analysis. J. App l. Meteorology
31(7): 661-676.

HTS. 1997. Watershed and Environmental Management Project,
Final Report. Vol. 3. Hemel Hampsted, U.K.: Hunting Technical
Services.

Isaaks, E. H., and R. M. Srivastava. 1989. An Introduction to
Applied Geostatistics. New York, N.Y.: Oxford University Press.

Johnston, K., J. M. V. Hoef, K. Krivoruchko, and N. Lucas. 1996.
Using ArcGIS Geostatistical Analysis. New York, N.Y.: ESRI.

Kitanidis, P. K. 1997. Introduction to Geostatistics: Application to
Hydrology. Cambridge, U.K.: Cambridge University Press.

Lebel, T., G. Bastin, C. Obled, and J. D. Creutin. 1987. On the
accuracy of aerial rainfall estimation: A case study. Water
Resources Research 23(11): 2123-2134.

McCuen, R. H. 1998. Hydrologic Analysis and Design. 2nd ed.
Englewood Cliffs, N.J.: Prentice Hall.

Migeot, J., and P. Hadwen. 1986. St. Lucia Water Resources:
Preliminary Assessment. Vols. 1 and 2. Castries, St. Lucia:
Ministry of Agriculture.

OAS. 1987. Saint Lucia Development Atlas. Washington, D.C.:
Organization of American States, Department of Regional
Development.

Phillips, D. L., J. Dolph, and D. Marks. 1992. A comparison of
geostatistical procedures for spatial analysis of precipitations in
mountainous terrain. Agric. Forest Meteorology 58(1-2):
119-141.

Thiessen, A. H. 1911. Precipitation averages for large areas.
Monthly Weather Review 39(7): 1082-1084.

Wackernagel, H. 2003. Multivariate geostatistics. In Multivariate
Geostatistics: An Introduction with Applications, 145-169. 3rd
ed. New York, N.Y.: Springer-Verlag.

Webster, R., and M. A. Oliver. 2001. Cross-correlation,
coregionalization, and co-kriging. In Geostatistics for
Environmental Scientists, 271-273. Chichester, U.K.: John
Wiley and Sons.




