314 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 63, NO. 1, JANUARY 2015
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Abstract—The finite-element time-domain (FETD) solution of
the vector wave equation (VWE) is directly extended to doubly
dispersive media using the bilinear transform approach. The pro-
posed formulation is quite general and flexible in the sense of ma-
terial dispersion model in contrast to limitations of existing convo-
lutional-based approaches. In addition, it can be implemented in
a very straightforward and efficient manner. A stability analysis
is performed that demonstrates the unconditional stability of the
original formulation is preserved in the dispersive case. However,
in order to avoid the well-known late-time instabilities that arise in
this formulation, an alternative formulation is considered and ex-
tended to the dispersive case with the same approach. Several nu-
merical examples are simulated to verify the validity and accuracy
of the proposed formulations. The late-time stability of the alter-
native formulation is tested through a numerical example with 20
million time steps. The solution is completely free from late-time
growth.

Index Terms—Dispersive media, finite-element time-domain
method.

I. INTRODUCTION

N recent years, there has been a growing interest in dis-

persive materials [1]-[9]. They can be found almost every-
where. For example, applications of electromagnetic waves in
biomedical problems requires modelling of human tissues that
show frequency-dependent behavior. Soil, water, snow and veg-
etation have dispersive behavior, which become important in
radar clutter signal cancellation or remote sensing. Recently,
engineered materials whose parameters usually have strong de-
pendence on the operating frequency have attracted a great deal
of attention both in theory and practice. These properties can
be approximated by a constant value within the frequency band
of interest in a narrow-band simulation in many practical situa-
tions; however, this is not the case in broad-band simulations or
for materials with highly rapid changes in their properties. So,
it is essential to find some effective and efficient approaches in
order to model them in an accurate manner.
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A notable number of papers have been devoted to extending
a variety of the finite-difference time-domain (FDTD) formula-
tions to dispersive media [1]-[9]. However, FETD formulations
have witnessed relatively less attention due to the following per-
ceived difficulties.

* In the case of the mixed formulation [10], it is easy to in-
clude the medium dispersion and both conditionally and
unconditionally stable (US) formulations have been intro-
duced [11], [12]. However, in order to avoid using an aux-
iliary (complementary) mesh, a combination of 1-form and
2-form discretizations has to be utilized. Although hierar-
chical basis functions have been developed for both dis-
cretizations [13], [14], the 2-form hierarchical basis have
not found popularity and, therefore, the Whitney 2-form
(face) elements are still usually employed to discretize B,
which are lowest-order accurate.

* In the case of the formulation based on the VWE, only
1-form basis functions are needed in the spatial discretiza-
tion step. The hierarchical form of these basis functions
have been extensively studied and widely employed in
both frequency- and time-domain simulations [13]. In ad-
dition, the previously-developed frequency-domain codes
based on the VWE can be readily extended to the time
domain; however, the main difficulty arises in modelling
dispersive media. All of the formulations that directly dis-
cretize the VWE are based on convolutional approaches
[15], [16], which are computationally expensive, partic-
ularly for high-order models, because they involve com-
plex-valued calculations in the case of the Lorentz model
and require two previous values of the field to update the
recursive accumulator variable [2]. However, the proposed
formulation does not have the above drawbacks and is
more efficient. In addition, we believe that it can treat non-
linear dispersive materials in a similar manner. Moreover,
the VWE is well-known to support a spurious solution and
exhibit late-time instabilities (e.g., in perfectly matched
layer formulations based on the VWE [17]) that results
in major difficulties particularly in long-time simulations,
which has not been treated for the dispersive case.

In this paper, we first extend the existing US VWE! to linear
dispersive media. The medium dispersion model is quite gen-
eral and can have an arbitrary linear form. The proposed ap-
proach can be implemented in a highly efficient and straightfor-
ward manner with minimal modification to the original FETD

IThroughout this paper, we always mean the Newmark-73 with y = 1/2 and
B = 1/4 known to be US.
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code. Moreover, we perform a stability analysis which shows
that the unconditional stability of the original FETD formulation
is preserved through this approach in dispersive media. In order
to overcome the late-time instability problem, a recently-devel-
oped alternative formulation [18], which has the same stability,
accuracy and efficiency, is extended to dispersive media. In ad-
dition, a modification of the source term has been introduced
which can increase the accuracy in simulations. Both formula-
tions have been tested and verified through several numerical
examples including electromagnetic tunneling through a thin
layer of metamaterial and calculation of the reflection and trans-
mission coefficients of a dispersive dielectric slab characterized
by different models. Highly accurate results have been obtained
in all cases and no sign of late-time growth has been detected in
the alternative formulation, even after 20 million time steps.

II. FINITE-ELEMENT TIME-DOMAIN FORMULATIONS IN
DISPERSIVE MEDIA
A. Vector Wave Equation
The VWE in a dispersive media can be written as

FPERX) 0T imp(t)
o2 ot

V x (uHt) * V x E(1) + (1)
O]

where * denotes convolution in time. £(t) and Jimp(¢) repre-
sent the electric field intensity and the electric impressed current
(excitation) in the continuum case. The weak-form representa-
tion of (1) is

/ {V XN ()« V x E(t) + N -2(t) + 82@%”]”
Q
= /Q N —8tp v (2

in which the curl-conforming basis functions are represented
by N. To seek the finite-element solution of (2), the electric
field intensity is expanded in space using curl-conforming basis
functions as

Neg
E(t) =) Niei(t) 3)
i=0

where e;(t) and N; are the time-dependent electric field inten-
sity, to be discretized in time later, and the curl-conforming basis
function corresponding to the ith degree of freedom (DOF), re-
spectively. V.4 denotes the total number of DOFs (edges). In
addition, we consider the whole computational domain €2 to be
composed of m distinct regions with constant properties (each
subdomain can be a single element). So, permeability and per-
mittivity can be pulled out of the integral and written as
RISHTRORED)

k=1
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in each region. ®" represents nth derivative with respect to time
((87)/(t™)).

Before moving to the next part, we describe a general pro-
cedure to include medium dispersion [9]. Consider an equation
like £(t) = wu(z) * 2:(¢) where u(t) has a general form similar
to (8). Taking the Laplace transform of it and converting it into
the z-domain using a bilinear transformation given by

21—2z1 9
|_> S —
s Atl+4+2z1 ©)
we obtain £ = i - & where
-1 .. -p
ﬂ(z) _ vg+ vz + + vpz (10)
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and & = Z{x(t)}. To implement £ = 4 - % in the time domain
in an efficient manner, an implementation approach named the
direct transport II is borrowed from digital signal processing
community [9], which involves

W =vaa™ —vo L+ WS a=1,2,...,p—1
W2 = vaa”™ — ¥ L" ; a=p (11)

where W,;a = 1,2, ..., pare auxiliary variables. The variable
L att = nAt is given by

LY = vga™ + Wit (12)

It should be noted that £ is an auxiliary variable utilized to sim-
plify explanation of the algorithm. One can substitute it in (11)
and eliminate it, if it is not desired.
To apply the above-mentioned procedure to (4), we first map
(8) to the z-domain, which results in
oy, + clszl +oe Tt C(Pk)kzipk
L+diyz 4+ dg,), 2 P
i) = 2t T R T
Hy 1+,r1k271 +'”+T(Pk)kz—pk'

£r(z) = (13a)

(13b)

Having defined equations {L., (1)} = ep(t) * (Mg]{e(t)})
and {L‘u,;l ()} = ;' (1) *([Sk]{e(t)}), the corresponding final
update equations can be written similar to (12) as

(Lo} = o, [Mi{e)™ + {Wys)m ™
(£, 1)" = a0, [SKHe)" +{Gue}" !

where W, , and G, j; are ath auxiliary variables in region k for
the permittivity and permeability, respectively. The appropriate
update process for the auxiliary variables can be obtained in a
similar manner as (11).

(14a)
(14b)
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Discretizing (4) in time using the Newmark-3 method [19]
and making use of (14a)—(14b), the fully discretized form can
be derived as

{351+ M} @
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where
[Se] =Y a0u[Skl, [Me] = Y co [Mi]  (16a)
k=1 k=1

W =3 Wi} {67 =D {6k} (16b)
k=1 k=1

B. The Stabilized Vector Wave Equation With Modified Source

Although the FETD based on the VWE is US when the New-
mark-3 method is utilized in the time-discretization step, it is
shown that it supports the nontrivial solution of £(¢) = —(at +
b)V¢ where a and b are constants and ¢ is a time-indepen-
dent scalar function. The first part of £(¢), i.e., —atV¢, causes
the solution to drift in time linearly. This becomes problematic
in long-time simulations such as those involving high Q-factor
structures, for example. Recently, several different approaches
to tackle this problem have been proposed [18], [20], [21]. In
[18], it has been shown that by integrating the VWE in time
such that

PE (%)

¢
V x </L1V X / 5(T)d7’> +57 = *jimp(t) (17)

the constant @ will be set to zero and the solution does not
drift any more. Multiplying (17) by curl-conforming basis func-
tions as testing functions, following a variational procedure, and
using the Newmark-3 method for time integrating, the final so-
lution can be cast as a set of recurrence relations as

{EW] + —(Aj)Qul[S]} {uyn1/2
= {gy" 2 Sl asw)
(e} = e} + At{u}+? (180)
{w}n+3/2 = {w} /2 4 At{e}n ! (18¢)
where
t
(1) :[ film)dr. 19)

Eliminating the auxiliary variables {v} and {w} from (18)
yields the original discretized form of the US VWE with the
following source term:

{g}" /2 — g} 12
At

(20)

this expression is an approximation to {f}"™ which can reduce
accuracy, particularly if only the vector { f} is available. To re-
move this problem, we suggest using the following source term
instead of {¢}"*1/2 in (18a):

0.25{9}71-"-3/2 _|_ 0.5{9}71—0-1/2 + 0-25{g}7171/2 (21)
where the midpoint rule is utilized to evaluate (19)
gi((n+1/2)At) = At Y fi(mAe). (22)

m=—o

In this manner, exactly the same source term as (15) is
recovered.

To derive the formulation in dispersive media, we follow the
same procedure as in the last part. We first define {£,1, (¢)} =
ex(t) * (Mil{e()}), {Loa, ()} = i, (1) * ([Sel{v(t)}) and
{ Lo, 1)} = p t (#) * ([Sk]{w(t)}). The update equations can
be derived as

{L1,}" = co, IMpl{v}" + { A1} ! (23a)
{Lo2,}" = qo. [Skl{v}" + {K1p}" " (23b)
{Lw}" = qo. [SkH{w}" + {Qus}™ ! (23¢)

where the update equations for the auxiliary variables can be
cast as (11). Having substituted (23) in (18a), we obtain

{[Mt} + (A4t)2 [St]} {’U}nJrl'/Z — {g}n+l/2 - [St]{w}n+1/2
_ {{At}nl/Q + %{Kt}nflﬂ + {Qt}nl/Q} (24)

where {At}nm: et {ALE S K = Y {K1,}” and
{Ge}" = > { Q1™

C. Implementation

In order to implement the formulation developed in Sec-
tion II-A for an inhomogeneous dispersive problem, one should
take the following steps.

1) Break the computational domain into m regions with ho-

mogeneous permittivity and permeability (k = 1,...,m).

2) Given the £, (t) and ug(t), (8), for each region, discretize
them using the bilinear transform (9) to reach (13a)—(13b).

3) Assemble the mass and stiffness matrices for each region
([M] and [Sg]) and form the [M;] and [S;] using (16a)
and the coefficients obtained in Step 2.

4) For each region, k, define a set of auxiliary variables
{L:. 1, {ﬁﬂgl}, Wartand {G, 1} wherea = 1,. .., pi
and py, is the order of dispersion model in the kth region.
These auxiliary variables should be updated similar to (11)
and (12).

Once all of the above variables are defined, the update process
can be implemented in two steps.

1) Update {e} to (n + 1) using (15).
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2) Update {W,,1} and {G,  } in each region to (n+1) using
equations similar to (11) and (12).
The formulation described in Section II-B can be imple-
mented in a similar manner.

III. STABILITY ANALYSIS

In order to have a stable formulation, the following two con-
ditions have to be satisfied [22].

1) All eigenvalues of the amplification matrix have to reside

inside or on the unit circle (in the z-plane).

2) Ifthere exist some eigenvalues on the unit-circle, they have
to be either simple or non-defective. Non-defective eigen-
value is a multiple eigenvalue whose algebraic multiplicity
does not exceed its geometric multiplicity.

We prove the first condition (von Neumann criterion) by
investigating roots of the characteristic polynomial using the
Routh-Hurwitz criterion [23]. The stability analysis is per-
formed just for the original formulation, because the alternative
one (18) has the same update process. In addition, the source
term has been removed because it has no effect on the stability
of the scheme. Moreover, we restrict ourselves to a homoge-
neous dispersive case for the sake of simplicity. In the case of
the Lorentz model, stability analysis for only either electrically
or magnetically dispersive media has been performed. How-
ever, in the other cases, a doubly dispersive media has been
considered, which can embrace electrically or magnetically
dispersive media as special cases.

In a source-free and homogeneous dispersive media, we have

P{e(t)}
o

Applying the Newmark-3 scheme and taking the z-transform
gives

[l (1) * {e(O)} + [M]e(t) * (25)

Zo2a41 (_AQSJ Lamige) = o.

(26)

0.25(2% + 22+ )i ' [S|{é} +

Since matrix [M] is symmetric and positive-definite, we can
multiply both sides by [AM] 1. Rearranging it as an eigenvalue
problem [24] gives

(2422 + D) N{e + (22 —2:+1)E{e} =0
27

where \; = 0.25(At)%eig{|M] [S]} > 0. We analyze sta-
bility of the proposed scheme for different media by substituting
corresponding permittivity and permeability (transformed to the
z-domain) in (27) and check whether the zeros of the resultant
polynomial lie on or inside the unit circle or not.

1) Lossless media: (27) reduces to the conventional FETD
formulation in lossless media (fi(s) = p and £(s) = ¢),
which has already been proven to be US.

2) Lossy media: the permittivity and permeability in a lossy
medium can be described as: £(s) = €, + (0.)/(s) and
fi(s) = proo +(0,)/(8) inthe Laplace domain. Converting
to the z-domain using (9) and substituting it into (27) yields
a second-order polynomial with long coefficients. To in-
vestigate the location of the roots more easily, we map it
to the s-plane using z = (s + 1)/(s — 1), which gives:

ass® + a1s+ag = 0 where ag = 0.0, (A)2 + 4N, a1 =
2A1(E00Om + Poooe) and ag = 4piE0- The sufficient
condition for a quadratic polynomial to be Hurwitz-stable
is to have positive coefficients, which is the case. So, it is
stable regardless of the time step size.

3) Debye media: the model used to characterize a Debye ma-
terial is: £(s8) = eoc + (€5 — €00)/(1 + Te8) and fi(s) =
Moot (s — oo )/ (14T 8). Following a similar procedure,
we obtain a fourth-order polynomial in the s-plane with the
following coefficients: a4 = /\i(At)Z,CL3 = 2N AL (. +
Tn)s A2 = ANiTeTrn + (At)285,u5, a1 = 2A8(TeEoois +
TmEstoo) and ag = A€ fhoo Te Ty - Performing the Routh-
Hurwitz test reveals that the scheme is stable if s > po
and £, > £.. Since these conditions are always satisfied,
the scheme is US for Debye media.

4) Lorentz media: the governing model of a Lorentz model
is: £(8) = oo + ((5 — €0c)w?)/ (5% + 2.5 + w?) and
A(s) = poo + (s — poc)wi,)/ (87 + 205 + w3,).
For electrically dispersive media, a fourth-order poly-
nomial with the following coefficients can be ob-
tained: ay = MNwi(At) a3 = 4N Atay =
AN + E00w2(AL)” + (65 — £00)w2(A1)%, a1 = 48,600 Al
and ag = 4e... The scheme is stable for ¢, > e,,. A
similar stability criteria can be achieved for magnetically
dispersive media (i.e., pts > piso). However, analyzing
stability of the doubly dispersive case, which results in
a sixth-order polynomial, seems to be very difficult. For
an Nth-order medium the characteristic polynomial is of
order 2(N + 1) (in doubly dispersive case), so the stability
analysis becomes increasingly more difficult.

Regarding the second condition of stability, since it seems
difficult to be demonstrated for dispersive media, we do not
provide any proof for it. However, numerous numerical studies,
particularly the long-time simulation in Section IV-C, do not re-
veal any instability. Hence, we believe that the second condition
is also satisfied for the stabilized formulation.

IV. NUMERICAL RESULTS

In order to validate the proposed formulations, several numer-
ical examples are considered in this section. The first example
is a 2-D tunneling of electromagnetic energy by use of a meta-
material junction. The second example is a 3-D simulation that
involves calculation of the reflection and transmission coeffi-
cients of a dispersive dielectric slab.

In all examples the time step is At = &5, /co, Which is
roughly four times the stability limit of the VWE discretized
by the central difference scheme; £.,;,, represents the minimum
edge length in the mesh.

A. Electromagnetic Tunneling

Recently, it has been demonstrated that electromagnetic
waves can be squeezed and tunneled through a thin layer of
e-near zero (ENZ) material [25]. The problem under analysis
consist of two parallel waveguides with the height of ¢ = 4 cm
each having been connected to each other through a thin layer
(4 mm wide) of ENZ material (see Fig. 1). The permittivity of
the slab is defined by

Ew) = ¢ (1 _ w(wip jF)) (28)
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Fig. 1. Magnetic field intensity (H.) distribution in waveguide 1 and 2 in
steady-state.
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Fig. 2. Normalized electric field intensity (£, ) recorded during simulation in
waveguide 1 and 2. After the transient response, the two samples match with
each other in amplitude very well, which shows near-perfect tunneling.

where wy, and I are plasma and collision frequencies, respec-
tively. At a frequency around w,, there should exist a narrow fre-
quency band with a nearly perfect (perfect for I' = 0) transmis-
sion. The problem is discretized with 32800 right triangles with
the average edge length of 1.1 mm. The simulation is performed
with At = 3.34 ps. We find the central frequency of this band
to be wy = 1.605 x 10? rad/s by numerically calculating the re-
flection coefficient (with I' = 0.001w, and w, = 2¢y/(1.5a)).
Afterwards, the lower waveguide (waveguide 1) is excited by
a TEM sine source with the frequency of wq and raised cosine
ramp [26]. The y-component of the electric field was probed in
both waveguides and depicted in Fig. 2. The amplitude of two
samples are very close to each other after the transient response,
which shows the validity of our formulations. In addition, Fig. 1
shows the distribution of the magnetic field intensity () in the
structure.

B. Reflection and Transmission of the Dispersive Dielectric
Slab

The reflection (T") and transmission (T) coefficients of a
5 cm wide dispersive dielectric slab for a normally incident
plane wave is calculated in this part. This problem can be
solved in 1-D; however, we simulate it in three dimensions. The

Amplitude

L L I !

25 3

0 L L L L
Frequency (GHz)

Fig. 3. Numerical and exact values of the reflection and transmission coeffi-
cients amplitude of the electrically dispersive dielectric slab.

slab is confined inside a 3-D parallel-plate waveguide excited
with TEM mode. The perfect electric and magnetic conductor
boundary conditions are imposed on the appropriate walls of
the waveguide to support TEM mode. A first-order absorbing
boundary condition is utilized to terminate the waveguide end.
In all examples the results are plotted within 0.03—-5 GHz and
the time step is set to At = 0.34 ps. It should be noted that
although the material models and parameters utilized in the
following examples are physically possible, we are not aware
of any specific material with such properties. The material
parameters are randomly selected to obtain complex enough
reflection and transmission coefficients.

As the first example, an electrically dispersive slab {1 = i)
with four Debye poles has been selected

4 Ag;
E(s) = oo + ; s (29)
where the parameters are given by
€oo = 240, Te; = 10 DS, Te, =6 ps, 7, = 12 Pps

Tey — 5 pS,ASl = 1.860,A62 = 7.360
A63 = 3.460,A€4 = 2.160.

The amplitude of 7" and I' are computed and plotted in Fig. 3
along with the exact solutions. The absolute error (|Zexact —
2rETD|) of both coefficients are calculated and plotted in Fig. 4,
which is less than 0.01 in the given frequency range.

In the next example, a magnetically dispersive (¢ = q) slab
whose dispersion is characterized by one Lorentz pole pair and
two Debye poles

(,us - #’oo) w?n

fi = Mo Gm :
fs) = poo + 2+ 20,8 + w2,

+ 22: _Am g
Pt 1475
is considered. The parameters are as follows:
G = 5,w,, =57 x 10°,8,, = 0.005w
s = 4500, oo = 3.310,
Tiny = 6PS, Ty, = 8ps, Apy = 3.2p0, Apz = 4.1p0

m?
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Fig. 4. Absolute error of the reflection and transmission coefficients amplitude

of the electrically dispersive dielectric slab.

Amplitude

25 3
Frequency (GHz)

Fig. 5. Numerical and exact values of the reflection and transmission coeffi-

cients amplitude of the magnetically dispersive dielectric slab.

the numerical and exact solutions are depicted in Fig. 5. As
shown in Fig. 6, the absolute error is less than 0.01 for either

coefficients.

The last example deals with a doubly dispersive slab defined
by two pairs of Lorentz poles with the following parameters:

Ge, =0.2,G., = 04,8, = 0.025w,,
dey, = 0.01w,,, 5 = 5.269,600 = 3.1€9
w,, = 3.1m x 10°,w,, = 2.27 x 10°
Gy = 0.9,Grmy = 05,6, = 0.03w,,,
Oma = 0.018w,,, pts = 3.Tpt0, ftoc = 18110
Wy, = 331 X 10%,w,, = 4.2m x 10°,

Fig. 7 shows the obtained results. The obtained absolute error
is not more than 0.015 in the frequency range of interest (see

Fig. 8).

Absolute Error

319
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Fig. 6. Absolute error of the reflection and transmission coefficients amplitude
of the magnetically dispersive dielectric slab.
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Fig. 7. Numerical and exact values of the reflection and transmission coeffi-
cients amplitude of the doubly dispersive dielectric slab.
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Fig. 8. Absolute error of the reflection and transmission coefficients amplitude
of the doubly dispersive dielectric slab.
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Fig.9. Normalized electric field intensity recorded inside the waveguide within
20 million time steps.

It should be noted that the mentioned absolute errors are en-
forced by the low-frequency limit (i.e., 30 MHz), which needs
a longer simulation to be improved. Away from that region, the
errors drop significantly.

C. Late-Time Stability

In order to study the late-time performance of the proposed
formulations, we performed several numerical simulations with
different dispersive models, solvers and time steps. The original
formulation shows instability almost in all cases as expected,
but we couldn't find any sign of instability or late-time growth
in the case of the stabilized formulation. In particular, the last
example with the fourth-order doubly dispersive slab has been
simulated for 20 million time steps. The electric field intensity
inside the waveguide has been recorded and plotted in Fig. 9.
The probed electric field intensity has been damped-out during
time stepping without any instability or late-time growth.

V. CONCLUSION

By using the bilinear transform method, the FETD formula-
tion based on the second-order VWE has been directly extended
to include arbitrary linear dispersive media. Hence, the obtained
formulation is more flexible and efficient than the existing for-
mulations based on the convolutional approaches. The uncondi-
tional stability of the formulation has been analyzed and verified
and a modified formulation has been introduced to avoid excite-
ment of unstable spurious solutions. The accuracy and late-time
performance of both formulations have been demonstrated via
numerical experiments. Highly-accurate results have been ob-
tained in all cases and the stabilized formulation has shown
completely stable behavior in very long time simulations.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their comments, which greatly improved the clarity of this

paper.

REFERENCES

[1] A. Taflove and S. Hagness, Computational Electrodynamics: The Fi-
nite-Difference Time-Domain Method, 3rd ed. Boston, MA, USA:
Artech House, 2005.

[2] D. F. Kelley and R. J. Luebbers, “Piecewise linear recursive con-
volution for dispersive media using FDTD,” IEEE Trans. Antennas
Propag., vol. 44, no. 6, pp. 792-797, Jun. 1996.

[3] R. Luebbers et al., “A frequency-dependent finite-difference time-do-
main formulation for dispersive materials,” IEEE Trans. Electromagn.
Compat., vol. 32, no. 3, pp. 222-227, Aug. 1990.

[4] S. G. Garcia et al., “Extension of the ADI-FDTD method to Debye
media,” IEEE Trans. Antennas Propag.,vol.51,no. 11, pp. 3183-3186,
Nov. 2003.

[5] H. K. Rouf, F. Costen, and S. G. Garcia, “3D Crank-Nicolson finite
difference time domain method for dispersive media,” Electron. Lett.,
vol. 45, no. 19, pp. 961-962, 2009.

[6] T. Kashiwa and I. Fukai, “A treatment by the FD-TD method of the
dispersive characteristics associated with electronic polarization,” Mi-
crow. Opt. Technol. Lett., vol. 3, no. 6, pp. 203-205, 1990.

[7] R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integra-
tion of Maxwell's equations in linear dispersive media with absorption
for scattering and propagation of femtosecond electromagnetic pulses,”
Opt. Lett., vol. 16, no. 18, pp. 1412-1414, Sept. 1991.

[8] D. M. Sullivan, “Frequency-dependent FDTD methods using Z trans-
forms,” IEEE Trans. Antennas Propag., vol. 40, no. 10, pp. 12231230,
Oct. 1992.

[9] J. A. Pereda, A. Vegas, and A. Prieto, “FDTD modeling of wave
propagation in dispersive media by using the Mobius transformation
technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 7, pp.
1689-1695, Jul. 2002.

[10] M.-F. Wong, O. Picon, and V. Fouad Hanna, “A finite element method
based on Whitney forms to solve Maxwell equations in the time do-
main,” IEEE Trans. Magn., vol. 31, no. 3, pp. 1618-1621, Mar. 1995.

[11] B. Donderici and F. L. Teixeira, “Mixed finite-element time-domain
method for transient Maxwell equations in doubly dispersive media,”
IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 113-120, Jan.
2008.

[12] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos, “Finite-element
time-domain solution of the vector wave equation in doubly dispersive
media using Mobius transformation technique,” IEEE Trans. Antennas
Propag., vol. 61, no. 8, pp. 4158-4166, Aug. 2013.

[13] J. P. Webb, “Hierarchical vector basis functions of arbitrary order
for triangular and tetrahedral finite elements,” IEEE Trans. Antennas
Propag., vol. 47, no. 8, pp. 1244-1253, Aug. 1999.

[14] M. M. Botha, “Fully hierarchical divergence-conforming basis func-
tions on tetrahedral cells, with applications,” Int. J. Numer. Meth. Eng.,
vol. 71, pp. 127-148, 2007.

[15] D. Jiao and J.-M. Jin, “Time-domain finite-element modeling of dis-
persive media,” I[EEE Microw. Wireless Compon. Lett., vol. 11, no. 5,
pp. 220-222, May 2001.

[16] F.Maradei, “A frequency-dependent WETD formulation for dispersive
materials,” IEEE Trans. Magn., vol. 37, no. 5, pp. 3303-3306, Sep.
2001.

[17] S. Wang, R. Lee, and F. L. Teixeira, “Anisotropic-medium PML for
vector FETD with modified basis functions,” IEEE Trans. Antennas
Propag., vol. 54, no. 1, pp. 20-27, Jan. 2006.

[18] W.A. Artuzi, Jr., “Improving the Newmark time integration scheme in
finite element time domain methods,” IEEE Microw. Wireless Compon.
Lett., vol. 15, no. 12, pp. 898-900, Dec. 2005.

[19] N. Newmark, “A method of computation for structural dynamics,” J.
Eng. Mech. Div., vol. 85, pp. 67-94, Jul. 1959.

[20] R. A. Chilton and R. Lee, “The discrete origin of FETD-Newmark late
time instability, and a correction scheme,” J. Comput. Phys., vol. 224,
no. 2, pp. 1293-1306, 2007.

[21] N. V. Venkatarayalu et al., “Suppressing linear time growth in edge
element based finite element time domain solution using divergence
free constraint equation,” in Proc. IEEE Antennas Propag. Soc. Int.
Symp., 2005, vol. 4B, pp. 193—196.

[22] S. Wang and F. L. Teixeira, “Some remarks on the stability of time-
domain electromagnetic simulations,” IEEE Trans. Antennas Propag.,
vol. 52, no. 3, pp. 895-898, Mar. 2004.

[23] J. A. Pereda et al., “Analyzing the stability of the FDTD technique by
combining the von Neumann method with the Routh-Hurwitz crite-
rion,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 377-381,
Feb. 2001.

[24] D. Jiao and J.-M. Jin, “A general approach for the stability analysis
of the time-domain finite-element method for electromagnetic simula-
tions,” IEEE Trans. Antennas Propag., vol. 50, no. 11, pp. 1624-1632,
Nov. 2002.



AKBARZADEH-SHARBAF AND GIANNACOPOULOS: STABLE AND EFFICIENT DIRECT TIME INTEGRATION OF THE VWE 321

[25] M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy
through subwavelength channels and bends using e-near-zero mate-
rials,” Phys. Rev. Lett., vol. 97, no. 157403, Oct. 2006.

[26] C. M. Furse et al., “The problem and treatment of DC offsets in
FDTD simulations,” IEEE Trans. Antennas Propag., vol. 48, no. 8,
pp. 1198-1201, Aug. 2000.

Ali Akbarzadeh-Sharbaf (S'09—A'10) received the
M.Sc. degree in electrical engineering from Amirk-
abir University of Technology (Tehran Polytechnic),
Tehran, Iran, in 2011. He is currently pursuing
the Ph.D. degree at the Computational Analysis
and Design Laboratory (CAD Lab), Department
of Electrical and Computer Engineering, McGill
University, Montréal, QC, Canada.

He is a recipient of the Iran Telecommunication
Research Center (ITRC) grant to support his M.Sc.
thesis. He is also a recipient of the McGill Engi-
neering Doctoral Award (MEDA) and the Eric. L. Adler fellowship in electrical
engineering, McGill University. His research interests include computational
electromagnetics, especially differential-based techniques.

Dennis D. Giannacopoulos (S'90-M'92-SM'13)
received the B.Eng. and Ph.D. degrees in electrical
engineering from McGill University, Montreal, QC,
Canada, in 1992 and 1999, respectively.

He has been with the Department of Electrical and
Computer Engineering at McGill University since
2000, where he is currently an Associate Professor
and a member of the Computational Electromag-
netics Group.

Dr. Giannacopoulos has been the recipient of his
department's Professor of the Year Award twice.
His research interests include adaptive finite element analysis for electromag-
netics and the acceleration of computational electromagnetics algorithms on
emerging parallel architectures. He has authored or coauthored more than 90
referred journal and conference publications. His students have received three
best-paper/presentation awards at international conferences and symposia. His
research has been sponsored by the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Fonds de recherche du Québec—Nature et
technologies (FQRNT), and the Canada Foundation for Innovation (CFI). He
has served on the editorial boards and technical program committees of several
major international conferences and served as Co-Chair of the editorial board
for the 14th Conference on the Computation of Electromagnetic Fields. He is a
member of the International Compumag Society, and the Ordre des Ingénieurs
du Québec.



