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Abstract 

Error correcting codes are of paramount importance for reliable communications. By adding 

redundancy to the transmitted data they allow the decoder to detect and correct errors. 

However in favorable channel conditions, a part of this redundancy can be removed in order 

to increase throughput. Unfortunately most co ding schemes are poorly adapted to these 

higher co ding rates. For ex ample , the decoding of block codes grows exponentially with 

code length. In this thesis we propose a novel solution to this problem: selective trellis 

pruning. 

Selective trellis pruning reduces decoding complexity by removing certain codewords 

from the trellis. This reduction is accompli shed by making hard decisions on the values 

of bits in the received sequence above the certainty threshold. This method can pro duce 

near-optimal results with only a fraction of the operation required by full decoding thanks 

to the reduced trellis size. In this work we also introduce an innovative way of obtaining 

the pruned trellis directly from a simplified version of the generator matrix. By using this 

method we avoid the long process of constructing and then pruning the full trellises, thus 

making the selective trellis pruning algorithm an efficient decoding tool. Finally we apply 

this algorithm to the parallel concatenated turbo block code decoder in order to reduce its 

complexity. 
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Sommaire 

Les codes correcteurs d'erreur sont essentiels à une communication fiable. Ils rajoutent 

une certaine quantité de redondance à l'information transmise afin que le décodeur puisse 

détecter et corriger les erreurs de transmission. Cependant, lorsque les conditions de 

transmission sont favorables, une partie de cette redondance peut être enlevée afin de 

d'augmenter la capacité du canal. Malheureusement, la majorité des techniques d'encodage 

sont mal adaptées à ces taux d'encodage. Dans ces conditions, les codes convolutionels souf­

frent d'une perte de performance due au perforage tandis que la complexité du décodage des 

codes en bloc augmente exponentiellement avec la longueur de ceux-ci. Dans ce mémoire, 

nous proposons une solution novatrice à ce problème: la réduction sélective du treillis. 

La technique de réduction sélective du treillis diminue la complexité de décodage des 

codes en bloc en enlevant certains mots codes de leur treillis. Cette diminution est effectuée 

en choisissant, avant le décodage, la valeur de tout les bits dans le signal reçu au dessus 

du seuil de simplification. En opérant de cette façon il est possible d'atteindre un perfor­

mance quasi-optimale tout en n'utilisant qu'une infime partie des opération requises par 

le décodage du treillis complet. Dans ce travail nous introduisons également une nouvelle 

technique qui permet d'obtenir le treillis simplifié directement d'une version modifiée de la 

matrice génératrice. De cette façon il est possible d'éviter le long processus de construction 

et de réduction du treillis complet. En combinant ces deux techniques nous avons créé 

un outil de décodage très efficace. Finalement, nous avons appliqué ces principes à un 

décodeur turbo utilisant de l'encodage en bloc parallèle afin de réduire sa complexité. 
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Chapter 1 

Introduction 

Digital communications have become part of our everyday life. From the internet, to 

cell phones, to satellite television, our society now relies heavily on this technology. New 

applications are constantly popping up and the number of people using these systems 

increases daily. This increase in demand has lead designers to develop communication 

systems that are incredibly efficient and reliable. However, new applications are now being 

developed which will require systems to be even more efficient then in the pasto Third 

generation, or 3G cell phones push the envelope by proposing mobile video conferencing 

and mobile high speed internet. Home internet speeds have increased more then ten-fold 

in the past years. All this leads to an increased demand on data transmission. As more 

and more data is sent over these networks it is important that they remain reliable. 

Error-correcting codes play a key role in these systems, be they wireline or wireless. 

For unidirectional systems, they add a certain amount of redundancy to the data that en­

ables the receivers to detect and correct errors. For bidirectional communication systems 

this redundancy limits the number of retransmissions needed to ensure reliable commu­

nication. This increases throughput not only by minimizing retransmissions but also by 

allowing transmitters to use more efficient modulation schemes. These schemes pack more 

bits/second per Hertz and could not be used on sorne channels due to error rate consid­

erations. In case of extremely poor conditions, error correcting codes allow systems to 

communicate on channels that would otherwise be unusable. 

On the other hand when channel conditions are favorable, the amount of redundancy 

introduced can be reduced in order to augment throughput. At these rates however conven-
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tional error correcting schemes are not at their best. This is because the implementation 

of error correcting systems using convolution codes become very complex and their perfor­

mance can sometimes suffer due to the use of puncturing. Systems using block codes can 

easily be designed for these higher rates but the computational complexity of the trellis 

decoding algorithm is prohibitive. In order to solve this problem we investigated different 

ways of reducing the computational complexity of decoding block codes. 

The source of the complexity required by the decoding algorithm was identified as the 

extremely large trellis representation of block codes. The ide a behind the methods we 

developed was to reduce the size of this trellis representation while still maintaining near­

optimal performance. In other words our method trades optimality in order to reduce 

decoding complexity. 

From a throughput point of view turbo codes could also benefit from a reduction in the 

amount of redundancy added to the data when channel conditions are favorable. For this 

reason we also investigated applying one of our trellis simplification methods to the decoder 

of a parallel concatenated turbo block code encoder. More specifically the algorithm is used 

to simplify the decoding of the different constituent codes. This work presents our research 

into these computationally efficient decoding algorithms. 

1.1 Thesis Contribution 

This thesis proposes a new algorithm which can select a certain number of codewords, based 

on the received signal, which, when removed from the trellis representation of a block code, 

do not affect performance significantly. These codewords do, on the other hand, reduce 

the number of operations required by the decoder to a fraction of those required by full 

decoding. This algorithm is referred to as the selective trellis pruning algorithm. 

An innovative algorithm for removing these codewords from the trellis is also proposed. 

This algorithm is capable of modifying the generator matrix of the code so that it generates 

only the codewords in the pruned trellis. In this way the simplified trellis can be generated 

directly instead of having to generate a complete trellis and then reduce it. 

This thesis also introduces a turbo decoding scheme with reduced complexity. This 

scheme incorporates our innovative selective trellis pruning algorithm inside the soft output 

Viterbi decoders of the constituent codes. 
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1.2 Thesis Organization 

Chapter 2 discusses a variety of subjects related to error correcting codes. More specifically 

it deals with various co ding techniques and the trellis representations of block codes. The 

co ding technique presented include linear block codes in their general form. The concepts 

of the generator and parity check matrices are defined and the way in which block codes 

are used in error detection and correction is explored. Turbo co ding is also presented with 

various encoders and decoders. In particular product codes are discussed. This is also 

where the Viterbi algorithm is presented in its different forms. The co ding techniques 

are followed by a discussion on the different ways a block code can be represented by a 

trellis. In particular we focus on the selection of the optimal representation. Two methods 

proposed in previous work for reducing the trellis to a us able size are also presented. These 

methods are the low-weight sub-trellis method and the Chase method. This chapter also 

introduce the notations that will be used throughout this thesis. 

The third chapter focuses on the novel contributions proposed in this work. The design 

of the selective pruning algorithm is discussed in detail. This includes the selection of the 

bits to be simplified, the selection of the simplification order as well as the introduction 

of the simplification threshold. It also explores different implementation issues regarding 

this algorithm. The innovative way in which we obtain the pruned trellis directly from a 

simplified version of the generator matrix and a translation vector is derived. This method 

results in significant computational savings during the selective trellis pruning algorithm. 

We also propose a novel way of using our pruning algorithm to reduce the complexity of a 

turbo decoder. This algorithm simplifies bits in the received signal, before the first iteration 

of decoding is performed, in the same way as it would in a non-turbo setting. 

In chapter four we present the experimental results obtained for the different tests run 

during the course of this work. These tests are divided into three main parts. The first part 

presents the tests used to determine which bits should be simplified by our algorithm. They 

determine whether it is better to simplify systematic or redundant bits. This is followed by 

the tests that were run in order to analyze the behavior of the selective pruning algorithm 

under different operating conditions. In particular it examines how certain block code char­

acteristics affect performance as weIl as the amount of savings that can be achieved when 

using our algorithm. This is also where we develop a method for finding an appropriate 

simplification threshold based on a code and signal to noise ratio. FinaIly, the results of 
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tests run on the turbo decoder using trellis simplifications are presented. Again our focus 

is on algorithm behavior and the amount of simplifications that can be achieved. 

While developing these algorithms new ideas often occurred to us. Sorne of these were 

related to improvements that could be made to the algorithms developed while others were 

new ideas based on similar principles that we believe could be exploited. However these 

ideas are beyond the scope of this work and for this reason are presented in chapter 5. 
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Chapter 2 

Background 

2.1 Linear Block Codes 

Error correcting codes are of paramount importance to reliable communications. These 

codes add a certain amount of redundancy to the data which can be used to detect and/or 

correct errors that occur during transmission. Forward error correcting codes (FEe) are 

used in one-way communication systems. When errors are detected these systems cannot 

send a request for retransmission to the transmitter, thus it is up to the receiver to correct 

the errors with the information present in the received signal. Linear block codes are just 

one of many types of codes that can be used to accomplish this. In this section we will 

mathematically describe them as weIl as present many related concepts. 

A linear block code is defined by a set of codewords known as the code book [1]. Each 

codeword is a vector which contains exactly n symbols. The symbols can be chosen for 

an alphabet containing any number of elements. However when the alphabet has only two 

elements we say that the code is binary and each symbol is known as a bit. This is the case 

for aIl codes used in this work and for this reason aIl definitions and proofs will suppose 

that the codes in question are binary. 

Given n bits 2n , different possible combinations can be created. We define the code 

book of a block code by choosing a subset of say 2k combinations, or code words, out of 

2n possibilities. In this fashion 2k k-tuples are mapped into 2k n-tuples and we say the 

we have an (n, k) code. If a k x n generator matrix G is used to map the k-tuples to the 

n-tuples the resulting code is known as (n, k) linear block code. 

MathematicaIly, given a k-bit message 'JJ. = (Ul' U2, ... , Uk) we introduce n - k bits of 
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redundancy using a k-by-n generator matrix G in order to obtain an n bit codeword 

ç = (Cl, C2, ... , cn ). This is accomplished as follows : 

ç=~G (2.1) 

It should be noted that since the elements of the vectors and of the matrices are an 

binary the operations of addition and multiplication are carried out in GF(2). Related to 

the generator matrix is the parity check matrix H. This matrix is the generator matrix 

for the dual code associated to the linear code defined by G. The dual code is made up of 

the 2n - k code words that constitute the null space of G. This implies that any code word 

generated by G is orthogonal to all code words in the dual code and hence: 

çH'=Q (2.2) 

Using Eq. (2.1) we can see that: 

~GH' = Q =} GH' = Q (2.3) 

The fact that an codewords are orthogonal to their parity check matrix is often used in 

error detection. If the result of the multiplication between the received signal and the parity 

check matrix is not Q then the received sequence is not a codeword and a transmission error 

has occurred. Error correction using block codes is achieved by selecting the n-tuple, out 

of the 2k valid n-tuples, which is closest to the noisy observation of ç. 

In order to compare different block codes we will now define several concepts that 

characterize them. First, the rate of a block code is defined as the ratio k / n. This represents 

the amount of redundancy added by the code. The lower the rate, the more redundancy is 

present. A ratio of 1 means no redundancy is present and is equivalent to an interleaver. 

U nlike sorne types of error correcting codes, block codes can easily be designed with high 

or low co ding rates. 

Another important characteristic of a linear block code is whether or not it is systematic. 

In a systematic code the k-bit message can be seen directly in the n-bit codeword. In other 

words for a systematic code it is possible to re-write the generator matrix in the following 

form: 

G = [Ikxk PkX(n-k)] (2.4) 
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simply by reordering the columns of G. Here I kxk is the identity matrix and Pkx(n-k) is 

the matrix responsible for the parity bits. For the case of non-systematic codes, obtaining 

the message bits from the coded bits is more involved since each code bit is part message 

and part redundancy. 

The weight of a codeword denoted w (c) is equal to the number of non-zero entries in 

the codeword. For example: 

w(l 0 1 0 0 1) = 3 (2.5) 

Finally block codes can also be characterized by their minimum distance, denoted by 

dmin . It is not uncommon to refer to a code as a (n, k, dmin ) code. This distance is defined 

as the the smallest Hamming distance between two codewords in the code book. The 

Hamming distance between two codewords is sim ply equal to the number of bit positions 

in which the two differ. The minimum distance is closely related to the error correcting 

capability of a code. The greater the minimum distance the better since the valid code 

words are farther apart. 

2.2 Trellis Representation of Block Codes 

Trellises are often used in the decoding process in or der to keep track of all valid codewords 

and compare them to the received signal. Coupled with efficient decoding algorithms such 

as Viterbi and BCJR, they can be powerful tools. In this section we first define trellises 

in general terms, while introducing the notation that will be used throughout this work. 

This is followed by the detailed presentation of the trellis representation of block codes. 

And finally we examine the process of trellis generation. For full details on the trellis 

representation of block codes we refer the reader to [2]. 

2.2.1 Trellises 

Mathematically a trellis T is a layered directed graph. It is defined by three different sets. 

They are, a set of states V, a set of edges E and a set of labels À. States are grouped 

together to form depths. In figures 2.1, 2.2, 2.3 the states are represented by numbers. 

These states are numbered from 0 at each depth. Edges in the trellis are responsible for 

linking states at different depths. They are represented by arrows in the trellis figures. 
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Finally, each label is associated to a specific edge and contains information related to that 

edge. In the figures, the labels are represented by solid and dashed lines. A solid Hne 

represents a binary value of 0 in the corresponding code word at the appropriate position 

while a dashed line represents a 1. 

Specifically, the layers of the trellis are organized by depth and are indexed by x E 

[0, l, 2, ... , n] where n, known as the length of the code, is defined as the greatest depth in 

the trellis. 

We denote the set of aH states in all depths by V and the set of all states at depth given 

depth x by Vx . The number of states at each depth depends on the code which is being 

represented. 

E is defined as the set of all edges in the trellis and Ex,x+I are subsets of E and contain 

aH edges linking a state in Va: to a state in Va:+I. Each state in the trellis must have at least 

one edge entering it and one edge leaving it unless the state is on the limits of the graph 

(i.e. x = 0 or x = n). Edges must not jump over a depth. In other words an edge cannot 

conne ct a state in Vx to one in Vx+a where a is any integer greater than 1. Each edge in E 

also has an associated label Àe in À. 

The two operators startO and endO return the start and end states of a given edge. 

For example given and edge e that links state VI to state V2, start( e) is VI and end( e) is V2. 

A path is defined as a set of uninterrupted edges which links two states in a trellis. 

Let VI and V2 be two states in V where VI E Va and V2 E Yb and a < b. We define a 

path PV1 ,V2 as a set of edges (el, ... , eb-a) for which start(el) = VI, end(eb-a) = V2 and 

end(ex) = start(ex+d where x El, ... ,b-a-1. It is possible that more than one path link 

two given states and the set of all such paths is denoted by <PV1 ,V2. 

Finally the label of a path denoted À(P) is equal to the concatenation of the labels of 

the edges in P, i.e. À(P) = (Àe1 Àe2 ••• Àeb_J. 

2.2.2 Trellis representation of Block Codes and Trellis Construction 

We say that a trellis T(V, E, À) represents a block code C if and only if À(<PaI,aF) is identical 

to the codewords of C. In other words only when the labels of each and every path from 

(JI to (Jp corresponds to a codeword in C and that all codewords in C have a corresponding 

path in T can we say that T represents C. 

This definition leads to many possible trellis representations of a given code. That is to 
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say the trellis representation of a block code is not unique. To illustrate this point we will 

examine three different representations for the (7,3) code defined by: 

[ 

1 0 100 1 1 1 
G= 1 0 1 0 1 0 0 

1 1 1 1 0 0 0 

(2.6) 

We can see from the generator matrix that this code is systematic. Figures 2.1,2.2,2.3 

show three possible trellis representations for this code. 

0--0--0--0--0--0--0--0 
.d 

HH>4 __ 4··· 

7 ·>7--7····>7--7·>7 

Fig. 2.1 Trellis representation of the (7,3) block code using 56 edges and 50 
states. 

Sinee many different trellises can represent a given block code a choiee must be made 

as to which representation should be selected. The first representation 2.1 is the most 

straightforward and can be easily constructed directly from the code book. This is done by 

simply adding n - 1 states and n edges for each codeword in the code book to the trellis 

presenting the all-zero codeword in such a way that each path from start to finish represents 
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~ 
3 ----3> 3 ---- 3 

Fig. 2.2 Trellis representation of the (7,3) block code using 28 edges and 22 
states. 

o~o----o----o----o~o----o~o 

'" 1 
.", 

1··> 1· 

3···>3 

~ ~ ~ 

'", 
1 :---'1·· 

."'" 

Fig. 2.3 Trellis representation of the (7,3) block code using 22 edges and 18 
states. 

10 
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one of the codewords. However, as we will present shortly, the decoding complexity of the 

Viterbi algorithm is directly related to the number of edges and states in the trellis. Seeing 

as the ultimate goal of our algorithm is to simplify decoding we would obviously like to select 

the representation with the smallest decoding complexity and hence the smallest number 

of edges and states. With this in mind, we note that despite the fact that the trellis in 2.1 

is easy to construct, it uses the greatest number of states and edges. Specifically the trellis 

contains 8 paths, since there are 23 = 8 codewords, each requiring 7 edges, since n = 7. 

7 edges 
8 paths * h = 56 edges 

pat 
(2.7) 

This means that a total of 56 edges and 50 states are required to represent the code 

using this trellis representation. The graphs in in figures 2.2 and 2.3 take advantage of the 

fact it is possible to share certain states and edges between different paths. This sharing 

reduces the number edges required to 28 and the number of states to 22 in figure 2.3. The 

third representation (figure 2.3) does even better, using only 22 edges and 18 states to 

represent the entire code book. 

We say that a trellis is in minimal form when it uses no more edges or states than is 

strictly necessary. In other words a trellis with fewer states or edges could not represent 

all codewords in the code book. It can be shown that for each code there exist such a 

representation [3]. A full discussion on the dimension of the trellis representation of block 

codes can be found in [4]. This minimal trellis is the desired representation and will be 

used throughout the rest of this work. 

We now focus on the construction of this minimal trellis. There are many algorithms for 

finding the minimal trellis of a block code directly from its generator matrix. The approach 

that we use can be found in [5]. The process is quite involved but is computationally 

efficient. Re-deriving this algorithm in its entirety would be overly complicated and would 

not provide the reader with additional insight into our selective pruning algorithm. This 

is because the trellis construction algorithm is only used to provide the simplest trellis 

representation given a generator matrix. In other words it provides a starting point for our 

simplifications. For these reason we only present the main ide a behind this algorithm. 

The first step in constructing the minimal trellis is to put the generator matrix into its 

minimal-span form. In order to define this form is we introduce several other definitions. 

First, the span of a non-zero vector x is the discrete interval or indices between the smallest 
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index (Left (x)) su ch tha t Xi #- 0 and the largest index (Right (x)) such Xi =1= o. The span 

length of X denoted spanlenght(x) is equal to the number of elements in the span. The span 

length of a matrix is then defined as the sum of the span length of it rows. Finally a matrix 

is in minimal-span form wh en its span length is as small as possible and is row-equivalent to 

the original matrix. Full details on two algorithms for obtaining the minimal span matrix 

can be found in [5]. Minimal span matrices are part of a useful class of generator matrices 

for linear codes said to be "trellis oriented". In this form rnany useful properties can be 

read directly from generator matrix. 

We now define sorne of these properties. First we say that a vector x is active at 

coordinate i if i is in the span of x. Second we say that a vector is active at depth i if both 

i and i + 1 are in the span of x. It is clear that it is possible to determine if a row in a 

matrix is active at coordinate i or at depth i directly. Using these concepts we now define 

two set Ai and Bi. Ai is defined as the set of row indices which are active at coordinate i 

in matrix. Similarly Bi is defined as the set of row indices which are active at depth i in 

the matrix. Finally ai and (Ji are the cardinalities of Ai and Bi respectively. For example 

if a generator matrix G is active at coordinate i = 3 in rows 2 and 3 then A3 = {2, 3} and 

a3 = 2. 

We can now proceed with construction of the trellis. This is done in two steps. First 

the states are added and then they are linked together. The number of states allocated 

at depth i is 2(3; since 1 Vi 1 = 2(3; [5]. The number of edges required to link these states 

is 2Œi
• The linking procedure uses A, Bi, ai and (Ji in order to determine how to link 

the different states together as well as assign their corresponding label. This procedure is 

fairly straight forward but quite lengthy. For this reason we refer the reader to [5] for full 

details. However it is clear that all four of these values can be obtained directly from the 

generator matrix. The trellis that is generated is minimal when the generator matrix is in 

its minimal-span form. In this way it is possible to obtain the desired minimal trellis from 

any generator matrix. 

The trellis representation is well known when it cornes to convolutional codes. There 

are however several differences between these trellises and those that represent block codes. 

First the trellises used for decoding convolutional codes normally have an undefined length. 

For this reason only a certain number of past depths are considered during the decoding 

process. On the other hand the depth in the case of block code is well defined and is equal 

to n. Bits are output during the decoding pro cess only after the entire trellis has been 
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searched. 

It is also typical for the trellis of convolutional codes to have the same structure at 

each depth of the trellis and they do not tend to be very wide. This regularity can be 

used to simplify the implementation of the decoding algorithm. On the other hand, block 

codes have a trellis structures that can vary greatly from depth to depth. In other words 

sorne depth can have a great many states while others can have very few. This means that 

the decoding complexity of the different depths varies from depth to depth and requires a 

decoding algorithm capable of dealing with this situation. This variation is obvious when 

one considers the fact that all codewords in a block code start and end in the same states, 

these states are known as the initial ((Ji) and final ((J f ) states respectively. This means that 

at at least two depths the number of states is equal to l. In between these two depths the 

number of states can vary greatly. 

Another difference between convolution trellises and block code trellises is the fact the 

states in a convolutional trellis normally represent the state of the shift register in its 

corresponding encoder. Using the state of the shift register and the input information 

bit only certain states can be reached. These legal transitions can be seen in the trellis 

representation of the code. States in a block code trellis on the other hand have no such 

signification. However in both cases the edge labels represent the value of the bit associated 

with that edge. 

In this section we have justified our selection of minimal trellis as the representation of 

choice. However, even when using the minimal trellis representation, which is optimal in 

the number of states and edges used, decoding block codes in the conventional way quickly 

becomes impractical for most block codes as n and the number of redundant bits n - k 

increases due to the size of their minimal trellises. To illustrate we consider the number 

of edges and states required to represent three different codes. As mentioned the (7,3) 

code described by the the generator matrix in Eq. 2.6 requires 22 edges and 18 states. We 

now consider two slightly more complex codes. Namely the Reed-Muller (16,11) and the 

BeR (31,16) codes whose generator matrices can be found in appendix A. The first of 

these two codes requires 252 edges and 149 states. This is still acceptable. Rowever the 

second code requires 196,604 edges and 131,069 states. In practical terms this means that 

196,604 multiplications and 65,536 additions need to be performed to decode each block of 

only 31 bits [5]. These numbers clearly show the impracticality of decoding certain block 

codes using a minimal trellis. To solve this problem we propose the algorithm presented in 
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chapter 3 which reduces the number of states even further by selectively removing certain 

codewords from the trellis. 

2.3 Viterbi Decoding 

Viterbi decoding is one of the most widespread decoding algorithm in use today. This 

algorithm, proposed by Andrew J. Viterbi [6], a founder of the Qualcomm Corporation, 

has since been studied at length and now has many variants. This section presents the 

general idea behind the algorithm as well as sorne of the variants that have been developed. 

The Viterbi algorithm is a computationally efficient way to find the maximum likelihood 

sequence in a trellis given a received signal r = (rI, r2, ... , rn ). The brute force approach to 

finding this most likely codeword is to simply calculate a path metric for every path. A path 

metric is a measurement of the reliability of a path and can be calculated in many different 

ways. The Viterbi algorithm, as opposed to the brute force method, takes advantage of 

the fact that paths sometimes merge. At the state where a merger occurs the algorithm 

selects the path with the best metric as the survivor path. It is clear that all other paths 

to the state in question are not optimal and thus continuing to calculate their metric only 

wastes resources. These paths are therefore excluded from the list of possible most likely 

codewords. Hence, only one survivor path and its associated metric need be saved at each 

state. This procedure starts at (J'i and works its way to (J' f' Finally, the output of the 

decoder is the path form (J'i to (J' f with the best path metric. If at a point of merger two 

paths have equal metrics then one is chosen arbitrarily. 

Different metrics can be chosen to determine the "best path" in the trellis, two of which 

will be discussed shortly. It is important to note that the computation of the metric is the 

operation in the Viterbi algorithm which is performed most often. For this reason the com­

plexity of the metric greatly affects the computational complexity of the overall algorithm. 

Before going into more detailed explanations on metrics, we present the pseudo-code for 

the Viterbi algorithm in figure 2.4. 

In figure 2.4 we see that the metric operator can be used on either a state or and edge. 

When it is used on astate it returns the value stored at that state; the Viterbi algorithm is 

responsible for setting this value equal to the best metric from (J'i to the state in question. 

When it is used on an edge, it simply returns the metric calculated for that edge. 
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Set initial state path metric = 0; 

For( x = 1 ; x ::; n, x ++ ){ 
For(v E Vx ){ 

} 
} 

Select emin = argmin (metric(start(e)) + metric(e)) 
eEEx,x+l : end(e)=v 

Set metric(v) = (metric(start(e)) + metric(e)) 
Set path(v) = P(cri, end(emin)) 

Fig. 2.4 Pseudo Code for the Viterbi Algorithm. 

As we see from this pseudo-code the number of operations required in order to decode 

the trellis is proportional to the number of edges in the trellis. It is for this reason that it is 

important to select the simplest trellis representation possible for our trellis when wanting 

to minimize decoding complexity. This also means that by removing states and edges from 

this trellis it is possible to simplify decoding further but no guarantee can be made on 

performance. There are many variations on the Viterbi algorithm depending on the type 

of input and type of output that are available or are needed. A list of several of them as 

weIl as sorne of their respective advantages is detailed below. 

2.3.1 Hard Input, Hard Output 

This is one of the simplest forms of the Viterbi algorithm, the output of which is a sequence 

of ones and zeros with no reliability measurement. For this reason we say that the decoder 

makes hard decisions. The input in this case is also a series of hard decisions (ones and 

zeros) made by the detector based on the received signal before the Viterbi algorithm is 

performed. This sequence does not take into account the trellis structure of the code and 

thus the input need not be a valid codeword. 

The metric used in this case is the Hamming distance and the codeword with the 

smallest Hamming distance from the received signal is declared to be the most likely. This 

implementation is computationally efficient due to the fact that the Hamming distance can 

be calculated using a simple exclusive or operation. However in most real communication 

systems soft information, i.e. information about the reliability of each input bit, is also 

available to the decoder. This is not the case for this implementation because of the hard 
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decisions made on the input signal before decoding. 

2.3.2 Soft Input, Hard Output 

In this variation, the output of the Viterbi algorithm is still a sequence of ones and zeros 

with no reliability measurements. However the reliability of the input signal is taken into 

account when computing this output. For this reason we say that we have a soft input. 

For example, if an antipodal ±l BPSK signal is being sent over and AWGN channel, a 

received value of + 1.01 instills more certainty than a value of 0.17. Thus if ever it came 

time to choose which of two values was in error, we would obviously choose the latter. 

The metric used must be able to accommodate this new information. Since the square 

of the Euclidian distance is the ML met rie under AWGN conditions it is chosen instead of 

the Hamming distance when soft information is available. It is calculated as follows: 

dEuclidian = (r - X)2 (2.8) 

Where r is the received value and x is the candidate. Once again the codeword with 

the smallest distance from the received signal is declared most likely. By using this soft 

information a gain of roughly 2 dB is achieved over hard input. This gain cornes at the 

price of a more complicated path metric. Again since the output is hard, no reliability 

measurements of the output bits are available. This information would be useful when 

further processing of the data is required. 

2.3.3 SOVA or Soft Input, Soft Output 

The SOVA or Soft Output Viterbi Algorithm is used when a reliability measurement of the 

output bits is required. It was first proposed in [7]. This soft information can be used for 

further processing such as in Turbo decoding applications. The log likelihood ratio is used 

to measure this reliability at each depth of the trellis. For BPSK the ratio is given by [2]: 

(2.9) 

In equation 2.9, P(çlr) is the probability that codeword ç was sent given that vector r 

was received. The MAP algorithm can calculate the exact values of Lx given the underlying 
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co ding mechanism. However the computational complexity of this algorithm is extremely 

high. The optimality of the MAP algorithm is foregone in SOYA in or der to reduce the 

complexity of the decoder. SOYA requires far fewer operations than MAP because it makes 

uses of the following approximation [2]: 

log (t Oj) ~ log (_ max {Oj}) 
_ JE{I,2, ___ ,N} 

J=1 

(2.10) 

Substituting Eq. 2.10 into Eq. 2.9 we obtain: 

Lx ~ log C~xa!i P(flzJ) -log C:~!~1 P(fl~)) (2.11) 

Eq. 2.11 has two terms. One corresponds to the maximum likelihood codeword. This is 

the codeword that can be found using the conventional Viterbi algorithm. The other is the 

most likely codeword which differs from this ML codeword at position x. The hard output of 

the decoder is based on the sign of this difference. If the term on the left corresponds to the 

maximum likelihood codeword then the sign of Lx will be positive and hard output of the 

decoder will be 1. Otherwise the sign will be negative and the output will be a O. In other 

words the maximum likelihood codeword is also equal to (sign(Ld, sign(L2 ), ... , sign(LN )). 

As we can see the soft information is proportional to the reliability difference between 

different paths in the trellis. In AWGN the reliability difference is defined as the difference 

in the squared Euclidian distance separating the respective codewords (QI & Q2) from the 

received signal. 

reliability difference = II~ - Q111 2 -II~ - Q211 2 (2.12) 

It is also possible to define the reliability difference between two paths merging at an 

arbitrary state v E Vx, denoted ~v, as the difference between the cumulative correlation 

metric of the most likely path from (Ji to v and that of the second most likely path with 

the same start and end points. This difference is used to update the reliability, or soft 

information, of each bit by the SOYA algorithm. Here the cumulative correlation metric 

M((Ji, vx ) is defined as follows: 

x 

M((Ji, vx ) = L ri· (2Ci - 1) (2.13) 
i=1 
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It is important to note that this metric is equivalent to the Euclidian distance men­

tioned in equation 2.8. By expanding the square we notice that maximizing the cumulative 

correlation matrix is equivalent to minimizing the Euclidian distance. The SOVA algo­

rithm is very similar to the traditional Viterbi algorithm. Decoding is done is the same 

order and the survivor paths are chosen in the same way. However, the SOVA algorithm 

needs to keep track not only of the survivor paths but also of a li st of their associated soft 

information. This is where SOVA differs from conventional Viterbi. An additional step 

needs to be performed each time two paths merge in order to update the soft information 

of the surviving path. In other words the soft information for every bit in the merged path 

needs to be updated taking into account the soft information found in both merging paths. 

In order to explain the update procedure we rely on the following example. Suppose 

that two paths Pl and P2 merge at state v where v E Vx. We will denote the soft information 

vector associated to Pl and P2 as Ll(v) = {LL LL ... , L~_l} where l E {1, 2} corresponds to 

the path number. For ease of discussion we will assume, without loss of generality, that Pl is 

selected as the survivor path. The first thing to do in order to update the soft information 

is to set L";:erged = ,6.v since this latest bit is the deciding factor between Pl and P2 and the 

difference between them is ,6.v. Then we need to update the rest of Lmerged(v). Suppose 

that the first i - 1 values have already been updated. We would like to update the i th 

value, namely r;erged. This value is linked to the bit at position i where i < x. 

There are two possible scenarios for this update and each requires a different update 

function. In the first scenario the bit at position i in Pl is different than the one in P2. In 

other words the paths do not agree on the bit at this position. It follows that r;erged cannot 

be greater than the reliability difference between the two paths, since this would imply that 

we are more sure about the bit at position i than we are about the choice between Pl and 

P2, which is a contradiction. Also, if this bit is less likely than the reliability difference, 

i.e. LI < ,6.v, then L,,;erged cannot be larger then LI since this value was determined by a 

previous merger between Pl and a path for which the reliability difference was even sm aller 

than the one in progress. In other words if an error occurs at this position it is more likely 

that the error will be due to the previous merger than the one in progress. Thus L,,;erged( v) 

is updated as follows when PI(i) =1= P2(i) [2]: 

Lmerged( ) _ . {;\ 
i V - mIn uv, (2.14) 
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In the second situation, the two paths do agree on the bit at position i. The update 

function must therefore be different. For the same reasons as previously stated, Lr:erged 

cannot be greater than the current L}. However it could be smaller due to P2'S uncertainty 

about bit i, denoted L;, . We must therefore also take this uncertainty into account, 

with an additional penalty of Llv due to the reliability difference between the two paths, 

when updating the soft information of the survivor path. Thus the update function when 

Pl(i) = P2(i) is [2]: 

Lmerged _ . {;\ + L2 L l } 
i - mIn Llv i , i (2.15) 

This procedure is repeated for each bit in the surviving path when a merger occurs 

in the decoding process. The final output of the algorithm is the sole surviving path and 

L merged ((7 f ). This vector contains the approximations of the log likelihood ratios we were 

trying to obtain. A sliding window version of the SOVA algorithm can be found in [8]. We 

conclude this section with the presentation of the pseudo-code for the SOVA algorithm. 

This algorithm is very similar to the Viterbi algorithm but includes an additional loop 

which updates all the soft values for the new merged path based on the previous values and 

the reliability difference between the two merging paths. This loop considerably increases 

the overall decoding complexity. 

Set initial state path metric = 0; 

For( x = 1 ; x :::; n, x ++){ 

} 
} 

For(v E Vx ){ 

Select the surviving path and calculate Llv 
Update the path and set u;:erged = Llv 
For( a = 0 ; a < x ; a++){ 

If(PI(a) #- p2(a)) 
Set v:erged(v) = min{Llv, L;} 

Eise If(PI(a) = p2(a)) 
Set Lmerged = min{Ll + L2 Ll } a v a' a 

} 

Fig. 2.5 Pseudo Code for the SOYA Algorithm. 
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2.4 Trellis Reduction 

Reducing the size of the trellis to a usable size is one of the main focuses of this thesis. 

The innovative and efficient way that we developed to simplify trellises based on the re­

ceived signal is presented in chapter 3 and in our paper [9]. Before presenting it however 

we will first examine methods that have already been developed by other authors. These 

simplification methods can be found in [10], [11], [12] and [13]; two of which are presented 

in greater detail in this chapter. In particular we explore the main idea behind the simpli­

fication process. AIl methods achieve a reduction in complexity, but each does so by very 

different means. 

In general, algorithms which attempt to perform maximum likelihood decoding on the 

full trellis representation of block codes spend most of their time calculating path metrics 

for paths that are very unlikely. However by foregoing optimality it is possible to develop 

many efficient schemes that can pro duce near-optimum performance. Presented here are 

two such sub-optimal methods. Both perform decoding on a reduced, or pruned, trellis. 

However their reduced trellises are not constructed in the same way. It is interesting to 

examine these schemes in order to understand the ways in which these methods differ from 

the one proposed in this wor k. 

2.4.1 Low Weight Sub-Trellises 

The first method, proposed in [10], is based on the construction of low weight sub-trellises. 

Before presenting this method we must first define the weight profile of a binary code C. 

The weight profile W = {O, Wl, W2, ... } of C is defined as the set of all distinct weights 

of the codewords in the code book. Here, W a < Wa+l and Wl, which can also be written 

Wmin, is known as the minimal (non-zero) weight of C. 

The weight( wa) sub-trellis is defined as a trellis which is composed of aIl codewords of 

weight W a in the code book. The sub-trellis associated with Wmin is known as the minimal 

weight trellis. It is also possible to define the weight( Wl : wa)-subtrellis, this sub-trellis 

contains aIl codewords whose weights are between Wl and W a and also includes the aIl-zero 

vector. 

Decoding using the low weight sub-trellis method starts by generating the weight (Wl : 

wa)-subtrellis. The choice of a will be explained shortly. This sub-trellis is said to be 

centered around the aH-zero codeword since the weights also correspond to the Hamming 
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distances between the other codewords and this vector. Next, hard decision decoding is 

performed on the received signal in order to obtain a first hard-decision ML estimate ~. 

Then, the search for the most likely codeword is performed using the weight(wl : wa )­

subtrellis centered around ~ instead of using the full trellis. Centering the weight( Wl : 

wa)-subtrellis around ~ is accomplished by simply adding this vector to the paths in the 

weight( Wl : wa)-subtrellis centered around the all-zero codeword. Reducing the size of the 

trellis in this way results in considerable computational savings. However if the most likely 

codeword in the full trellis is not in the pruned trellis a loss in optimality occurs. For this 

reason we say that this method is sub-optimal. 

Determining an appropriate value for a is an important part of this method since this 

parameter determines the size of the pruned trellis and thus the computational complexity 

of the decoding pro cess. In general a is chosen to be small, hence the name "low weight 

sub-trellis". The smaller the value of a, the fewer codewords are present in the trellis since 

all codewords that differ from the received codeword in more then W a positions are pruned 

from the trellis. When a = 1 the search is performed on the minimal weight trellis. 

However a value of a which is too low can lead to poor performance. 

2.4.2 Chase Decoding 

Another method of reducing the size of a block code's trellis to a usable size was proposed 

by Chase in [11]. His method is based on the idea that if errors in transmission have 

occurred they most likely have occurred in the least reliable bits of the received sequence. 

By selecting the a least reliable bits from the received sequence it is possible to create 

2a error test patterns. These patterns are more likely to occur than others due to the low 

reliability of the received signal at these positions. Once again the choice of a determines 

the complexity of decoding. These test patterns are then used in order to decode the re­

ceived sequence. In this way the computational complexity of decoding can be dramatically 

reduced. Chase demonstrated that his algorithm achieves good performance by using these 

error patterns and by selecting a = l ~in J. 

2.5 Turbo Codes 

Turbo codes are a type of FEC that have very strong error correcting capabilities. Many 

other codes have this characteristic yet most result in decoder solutions which are far too 
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complex to implement. Thrbo codes avoid this problem by combining two relatively simple 

codes rather than using one very complex code. This combination results in long powerful 

codes which can be decoded using a relatively simple decoder. 

Although there exists many different ways to select and combine the constituent codes, 

this work will focus primarily on concatenated block codes. This section is based on the in 

depth presentation of the turbo codes presented in [8] and [14] . 

2.5.1 SeriaI Concatenated Block Codes 

In the case of seriaI concatenated block codes the encoding process starts by encoding kl 

data bits using a (kl , nI) block code. The resulting nI bits are then interleaved and fed 

into the second encoder which uses a (nI, n2) code. The resulting code has a rate of kI/n2' 

The encoder is shown here: 

u 
Î "-

Encoder 1 
(k1,n1) 

Î 

Encoder 2 
f----+j 1 nterleaver f----+i r-_-=c+ 

(n1,n2) 

Fig. 2.6 Serial Concatenated Block Code Encoder 

2.5.2 Parallel Concatenated Block Codes 

In the case of parallel concatenated block codes the data is encoded by the first encoder 

at the same time as an interleaved version is encoded by the second one. In general the 

codes used in this type of implementation are systematic and the transmitted signal is the 

concatenation of the k message bits followed by the parity bits from both encoders. The 

number of parity bits produced by each encoder is denoted as Pl and P2 respectively and 

the resulting code has a rate of k/(k + Pl + P2)' The parallel encoder is shown here: 

The main difference between the seriaI implementation and this one is that the trans­

mitted sequence of the seriaI encoder contains parity information on the parity bits whereas 

the parallel sequence does not. 



2 Background 23 

u u 

Encoder 1 P1 

(k1,n1) 
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/ P2 Encoder 2 
(k2, n2) 

Fig. 2.7 Parallel Concatenated Block Code Encoder 

2.5.3 Product Codes 

In order to remain as general as possible, the interleavers in the two encoders previously 

presented where voluntarily left undefined. Interleaver design can be quite involved and 

can affect the overall performance of a code. In this section we present product codes. 

These codes are characterized by their interleaver. 

For product codes interleaving is done by writing data into a table row-wise from left 

to right and from top to bottom and reading it out column-wise from top to bottom and 

from left to right. In general due to the nature of the interleaver, systematic codes are 

preferred. Here we present the equivalent product code implementations of the seriaI and 

parallel concatenated block code encoders discussed in the previous sections. They are 

shown in figures 2.8 and 2.9 respectively. 

In these encoders the parity bits are obtained from the data bits by first applying a 

(kI , nd systematic block code to each row and then a (k2, n2) systematic block code to each 

column. Since the codes are systematic the data in the table is unchanged. The co ding 

rate for the seriaI implementation is slightly lower than that of the parallel one since it 

contains parity bits on parity bits. The codes used for both the rows and columns can be 

either the same or different. 
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Fig. 2.8 Seriai Concatenated Product Code Encoder. 

Data Bits 
Parity 
Bits 

Fig. 2.9 Parallei Concatenated Product Block Code Encoder. 
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2.5.4 Turbo Decoding 

Before going into the specifie implementations of turbo decoders we will first explain the 

underlying idea. Turbo decoding is accomplished by iteratively using information gained 

during the decoding of one code to help in the decoding of the next. In other words 

information is fed back into the decoder in much the same way as a turbo compressor 

sends air back into the motor of an automobile, hence the name turbo codes. 

Consider the case of a product code in which the rows of the table are decoded first. 

This decoding results in new information being available to the de co der. This information 

can then be used in combinat ion with the channel information to decode the columns. This 

in turn results in new information which can be used to re-decode the rows, and so on and 

so forth. This is much like solving a crossword puzzle. Each new word found in the rows 

allows you to solve words in the columns and vice versa. Finally after a set number of 

iterations or another stopping criterion is met the final version of the data is output. 

This procedure is illustrated in the next figure. It should be noted that this iterative 

decoding process performs significantly better when the decoders output soft values instead 

of hard decisions. It is for this reason that outputs of the decoders in the diagram presented 

below are log likelihood ratios. Specifically figure 2.10 represents the turbo decoder for the 

parallel encoder presented in figure 2.7. 

Fig. 2.10 Parallel Iterative Turbo Decoder 

Here U and Û are the k x k matrices containing the transmitted data and the esti­

mates of the transmitted data respectively in matrix form. They correspond to the k x k 

information bits in figure 2.9. L(U) is the a priori log likelihood ratio of the data, L! (Û) 
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and L; (Û) are the extrinsic information from decoder 1 and decoder 2 respectively, R is 

the k x k matrix containing the received signal and Le is called the reliability value of 

the channel. This reliability factor is linked to the signal to noise ratio and the fading 

attenuation. It is equal to 4a ~~, where a is the fading. For AWGN channels a = 1 and ~~ 

is the 8NR estimate at the receiver. 

In order to estimate the transmitted data U the decoder uses all three sources of infor­

mation at its disposaI. They are: the information from the channel, the a priori knowledge 

about the bits and the extrinsic information obtained during decoding. 8180 Decoder 1 in 

figure 2.10 has two different outputs. The first LI (Û) is the estimate based on the three 

sources of information just mentioned. It is the main output from the decoder. This output 

can be broken down as follows [14]: 

(2.16) 

During the first iteration we set L(U) = 0 if no a priori information is available. The 

second output of the de co der is L~ (Û), this output is the information that was gained during 

decoding and is known as extrinsic information, it is found by subtracting the information 

gained via the channel and that known a priori from the estimate L(Û) output by the soft­

output decoders. It is important that extrinsic information not be used more than once 

due to the danger of positive feed back. For the same reason we do not use the a priori 

information more than once either. Instead the extrinsic information from the previous 

decoder is used as the a priori information for the current decoder. The only exception 

of course is the very first iteration. Thus, after the first iteration, when the switch in 

figure 2.10 is set to the output of the interleaver rather then L(U), we see that extrinsic 

information from the most recent iteration can be written as [14]: 

L!(Û) = LI(Û) - LeR - L;(Û) 

L;(Û) = L2(Û) - LeR - L;(Û) 

(2.17) 

(2.18) 

At each iteration this update is performed and the pro cess is terminated once a set 

number of iterations have been completed or another stopping criterion has been met. The 

final output is obtained by making hard decisions on the sign of L 2 (Û), which combines 

channel information as well as the extrinsic information from both decoders. 
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This information on turbo decoders as weIl as the information contained in the other 

sections of this chapter is the foundation upon whieh we have developed our innovative 

algorithms. The topies covered in this chapter are used extensively throughout this entire 

thesis. Now that the foundations have been laid the next chapiter presents the work that 

we have done which brings together these various subjects. 
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Chapter 3 

Selective Trellis Pruning 

Wh en channel conditions are favorable, higher co ding rates are desired in order to increase 

channel throughput. Recall that at these rates the performance of convolutional codes 

suffers due to the use of puncturing. For this reason designers look to block codes for a better 

solution. However, their extremely large trellis representations makes them impractieal to 

decode. 

In this chapter we examine a way to reduce the size of the trellis representation to 

usable sizes while still maintaining near-optimal performance. This is done by way of trel­

lis pruning. Pruning a trellis consists of removing various edges and states from it thus 

reducing the corresponding decoding complexity. However this procedure also results in 

the fact that trellis no longer represents all codewords in the code book. The decoder can 

therefore no longer guarantee that the maximum a posteriori probability (MAP) codeword 

will be found since it may have been removed from the trellis. For this reason we see that 

removing edges and states at random can be disastrous with respect to performance. In 

order to reduce the risk that the MAP codeword be pruned from the trellis we perform 

selective trellis pruning. Selective pruning consists in intelligently choosing which code­

words to remove based on the information available to the decoder. In this way we hope to 

remove many states and edges from the trellis without removing the MAP codeword. In 

the case of our algorithm, pruning in our trellis is based on the soft information contained 

in the received signal. The priee to pay for this reduction in complexity is obviously a loss 

in performance. However wh en the pruning is done correctly, the MAP codeword is rarely 

pruned, and this loss can be quite small. 
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This chapter focuses on our selective trellis pruning algorithm. It will be presented in 

two parts. The part first focuses on how to choose the codewords that can be pruned. The 

second details the innovative way in which these codewords are removed from the trellis. 

This last part is of the utmost importance since the overall computational complexity of 

the algorithm depends greatly on the efficiency of this removal. Finally we explain how 

this algorithm can be used in the context of a turbo decoder. 

3.1 Selective Trellis Pruning 

The presentation of the algorithm, although having two main parts (namely: codeword 

selection and codeword removal), will be subdivided into five subsections. The first three 

are related to codeword selection. They will respectively focus on the selection of the bits 

to be simplified, the order in which to simplify them and how many should be simplified. 

Codeword removal will be divided in two subsections, each explaining a different way to 

prune the selected codewords from the trellis. 

3.1.1 Bit Selection 

In order to reduce the size of the trellis certain codewords must be removed from the trellis. 

The selection of these codewords is key to the performance of the decoding algorithm. For 

this reason codewords cannot be eliminated at random but must be carefully selected 

based on information available to the decoder. There are two sources of information that 

the decoder can take advantage of. They are the a priori probabilities of the transmitted 

bits and received signal itself. Based on this information it is possible to make certain 

assumptions and thus eliminate certain codewords. 

It is possible to simplify the trellis of a code by not including codewords which, based on 

the a priori information, are very unlikely. However due to the equiprobable nature of the 

codewords in most real systems, using this information yields few simplifications. This is 

because few codewords are very unlikely a priori. For this reason most methods developed 

rely on the received signal in order to prune the trellis. 

The two methods presented in the previous chapter are perfect examples. The low 

weight sub-trellis method, seen in section 2.4.1, bases its simplification on the hard decision 

sequence of the received signal which it uses to construct the weight( Wl : wa)-subtrellis. 

Thus aIl codewords not belonging to this sub-trellis are removed as possible candidates. 
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The method do es not however take into account the reliability of each individual bit. The 

Chase algorithm, presented in section 2.4.2, on the other hand does consider these individual 

reliabilities. Based on the x least likely bits of the received signal it selects its candidates. 

The method we propose is similar to the Chase algorithm in the sense that it considers 

the likelihood of bits individually. It is based on the simple ide a that most likely bits in the 

received signal are least likely to be in error. Thus by assuming them to be known one can 

simplify decoding without affecting performance significantly. This is similar to the Chase 

algorithm. The difference between the two being that Chase varies the x least likely bits 

to generate test patterns while ours makes hard decisions on the x most likely ones. By 

fully determining these bits, codewords which do not respect these determinations are no 

longer needed and can be pruned from the trellis. 

The terms likelihood and likely have been used frequently in this chapter when refer­

ring to bits in the received sequence. These terms refer to the likelihood ratio for each 

bit. For antipodal BPSK signaling with received value T' at time t we can calculate the 

probability that either or a 1 or a 0 has been sent. These probabilities are denote p(l) and 

p(O) respectively and are calculated using two intermediate values cy and (3. These values 

represent the probability density function of the Gaussian noise without the normalization 

factor given that + 1 and -1 were sent respectively. 

_( _1_r)2 

(3 = e 2<72 

(3.1) 

(3.2) 

Then using the definition of conditional probabilities we normalize theses values to obtain 

the probability that either a 1 or a 0 was sent. The probability that the bit sent is a 1 is 

given by : 
cy 

p(l) = cy + (3 

while the probability that the bit sent is a 0 is given by: 

(3 
p(O) = cy + (3 

(3.3) 

(3.4) 

Using these probabilities we can determine which bits in the received sequence are most 

likely. This measurement is equivalent to the log likelihood presented in 2.9. The numerator 
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in 2.9 simply corresponds to p(l) while the denominator corresponds to p(O) which is also 

equal to 1 - p(l). For example if p(l) = 0.999 then the equivalent log likelihood ratio is 

given by: 

Lx = log [(0.999) / (1 - 0.999)] = 2.999 (3.5) 

We therefore conclude that theses measurements are interchangeable. These equations 

do not include the terms that would factor in the a priori knowledge [15], therefore they 

assume that the symbols are equiprobable. This same assumption is made when the a 

priori knowledge is unknown, which is the case in most real systems. 

The likelihood of each bits was chosen in order to determine which bits could be declared 

known in our algorithm. Before selecting this characteristic however, we also examined 

other possibilities. Amongst other things, we examined if simplifying two bit near each other 

was better than simplifying two bits further apart. This turned out to be very dependent on 

the generator matrix and was not useful wh en trying to implement a general algorithm. We 

also explored the possibility that certain types of bits might yield greater performance gains 

than others. In other words, was there more to gain from the simplification of a systematic 

than a redundant bit or vice versa. Several tests were run in order to determine if this could 

be taken advantage of. It was found that when a systematic bit was simplified performance 

suffered marginally less then when a redundant bit was chosen. However we determined 

that the increase in complexity required at the decoder was not worth the limited gain in 

performance. For this reason no further effort was made to push this concept further. The 

tests as weIl as the results that were used to make this determination are presented in the 

chapter 4. 

3.1.2 Simplification Order 

When more than one bit can be simplified, and only a given number of simplifications 

may be performed, it is important to determine wether or not the or der of simplification is 

important and if so which order should be chosen. We based our order on two criteria. The 

first is the complexity of the pruned trellis. We chose this criterion because it determines the 

ove raIl computational complexity of the decoding algorithm. Based on this criterion, bits 

that reduce the size of the trellis the most should be selected before bits that simplify the 

trellis less. The second criterion is performance. By this we mean selecting a simplification 
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order that will affect performance as little as possible. Presented now are the reasons, 

based on these two criteria, which motivated the choice of our simplification order. 

Recall that the goal of our algorithm is to minimize complexity by reducing the size of 

the trellis. Given equiprobable symbols in the codewords, trellis size is reduced by a given 

amount independently of which simplification order is chosen. Therefore, with respect to 

our complexity minimization criterion, the order of simplification is irrelevant. This means 

that we can choose the order of simplification based solely on the criterion of performance. 

The performance of a decoding algorithm is based on the amount of information avail­

able to the decoder and how it is used. When decoding is performed on the full trellis we 

say that it is optimal because it makes use of aIl the information at its disposaI. However, 

making simplifications implies a certain loss of information. In other words, each time 

we remove a codeword from the trellis we remove information from the system. There­

fore the goal when performing pruning is to remove as little information as possible. This 

also implies that sorne codewords contain more information than others. These codewords 

were determined to be the ones nearest the received signal. This can be understood by 

considering the fact that the act of simplifying bits is equivalent to making hard decisions 

on their values. It is obvious that less information is lost when quantizing 0.99 = 1 then 

when quantizing 0.55 = 1. For this same reason simplifications should not be made which 

contradict the received signal, i.e. setting a received value of -0.1 = +1 should not be 

selected over setting it to -1. 

Based on the criteria set forth, we determined that the optimal simplification order is 

based on the likelihood of the received bits. Thus simplification should be made in direction 

of the received signal in decreasing order of likelihood, from most likely to least likely. This 

order ensures that trellis size is reduced as much as possible while not removing information 

unnecessarily. 

This order has other advantages as weIl. Suppose that sorne bits in the received se­

quence are in error. Knowing that simplifications are always made in the same direction as 

the received bit, they inevitably lead to errors in the decoded sequence since these simpli­

fications permanently flip received bits. In other words, the transmitted codeword in these 

cases is pruned from the trellis. It is also possible that the simplification of two different 

bits le ad to conflicting simplifications in the trellis. For example, suppose we make two 

simplifications. First we simplify the a bit at position Xl. After pruning the trellis we note 

that aIl remaining codewords have a value of 0 at position X2. Now suppose that the next 
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simplification that is to be made is to set the bit at position X2 = 1. This is obviously a 

confiicting simplification. If carried out, all codewords would be pruned from the trellis and 

the trellis would be empty. This is impossible since a codeword was obviously transmitted 

and we must therefore conclude that one of our simplifications is in error. Simplifying bits 

in order of likelihood ensures that in the case of confiicting simplifications the most likely 

simplification is always performed first. Furthermore, if ever a confiicting simplification 

were to occur, it would sim ply be ignored. This is because any such simplification would 

confiict with a previous simplification which was based on a more likely bit. The second 

simplification is therefore considered to be erroneous. 

3.1.3 Amount of simplification 

Once the order of simplification has been determined, it is important to determine the 

amount of simplifications that should be made. The low-weight sub-trellis algorithm deter­

mines the amount of simplifications to be made via the selection of simplification weight W a 

and the Chase algorithm determines the number of least significant bits that will be used 

to create its test patterns. The algorithm we propose must select how many bits can be 

declared known in the received sequence. The more bits that are chosen the more simpli­

fications will be performed. However as simplifications are made, performance inevitably 

suffers. For this reason the choice of how many simplifications are made represents a 

trade-off between complexity and performance. 

It is possible with our algorithm to trade as much or as litt le complexity as one desires. 

Specifically, by making no simplifications the algorithm is equivalent to the regular Viterbi 

algorithm and thus achieves ML optimal performance with regards to the code in use. On 

the other hand if all bits are declared known without regard for the trellis structure and 

hard decisions are made on every bit, the algorithm behaves in same way as un-coded 

BPSK. It is thus possible to operate anywhere between optimal performance and that of 

un-coded BPSK. For this reason there is no set answer to how much complexity can be 

saved. The answer depends only on the performance the user would like to achieve and 

what he is willing to sacrifice. However it is possible for two simplification thresholds to 

yield very similar performance for a given point of operation while using a very different 

number of operations. We will now discuss how we chose what we feel is the best trade-off 

between performance and computational complexity. 
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One possible choice we explores was to select a set number of bits to be simplified in 

each block. This is similar to what the Chase and the low-weight sub-trellis methods do. 

They select the optimal value of W a or the optimum number or the least likely bits to 

be used for a given operating point. This could be implemented with our simplification 

scheme by simplifying a set number of the most likelihood bits. For example we can choose 

to only simplify the most certain bit in each received block. This roughly results, when 

bits are equiprobable, in half the codewords being removed from the trellis, a significant 

saving. The question that then needed to be asked wa whether or not more bits could 

be simplified. Ideally we wanted to simplify as many bits as possible while not affecting 

performance significantly. 

This ide a leads to the possibility of selecting a different number of bits to be simplified 

in each block. This solution is more dynamic. Using this scheme it is possible to tailor the 

simplifications to each received block. In other words we take advantage of the soft infor­

mation in the received signal not only in the de co ding process but also in the simplification 

process. Previous works in this area do not make use of this information. 

In order to take advantage of the soft information in the simplification pro cess in an 

efficient way we introduced a simplification threshold, denoted e. e represents the minimum 

probability which a bit can have and still be simplified. In other words if either p(l) or p(O) 

is above the simplification threshold e then the bit at time t can be assumed known as either 

a 1 or a 0 respectively. It is logical that the choice of the number of bits to be simplified is 

based on the same criterion that was used to determine the order of simplification. 

It is clear that by using this type of threshold the amount of simplifications that occur 

in each block depends on the received signal. The more bits above the threshold, the more 

simplifications can be made. The threshold also adds the assurance that although many 

simplifications may be made the decoder has a certain degree of confidence in each one. 

Alternatively if the received signal is particulary poor, it is possible that no simplifications 

be made. When this is the case however, full trellis decoding is performed, which, from 

a performance point of view, is a good idea when the received values are unclear. It 

is important to note that when only one codeword remains in the trellis this codeword is 

output and the simplification process stops. This is not equivalent to making hard decisions 

on the received signal since the trellis structure is taken into account. This guaranties that 

the output of the decoder will be a valid codeword. This is not the case with un-coded 

BPSK. 
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The choice of the simplification threshold is an important part of the algorithm. Se­

lecting a threshold which is too low will le ad to unwanted performance degradation while 

selecting one that is too high diminished the computational savings. The next question is 

whether how to find an appropriate threshold exists. It was determined by simulation that 

sorne thresholds outperform others, these threshold values depend on many factors such as 

the code in use, the signal to noise level of the operating point as weIl as the desired bit 

error rate. This will be discussed in much greater detail in the section 4.2.4. 

We also studied the behavior of our algorithm under different operating conditions. We 

studied the effects of choosing a very low threshold as weIl as one that was very high. 

In particular we examined the effects of the simplification threshold on the performance 

of different codes establishing links between their performance and various block code 

characteristics. A fuIllist of the tests conducted and the corresponding results are presented 

in chapter 4. 

The next section focuses on the implementation issues related to our algorithm. However 

before going into these details we first summarize the likelihood based selective trellis 

pruning algorithm developed in figure 3.1.3. 

Pseudo Code 

1. Calculate P for aIl n bits 

2. Select x as the unsimplified bit with the greatest p 

3. While (Px > e and S f {}) repeat 4 & 5 

4. Prune the trellis 

5. Select x as the unsimplified bit with the next greatest p 

6. Decode with Viterbi or SOYA using the pruned trellis 

Fig. 3.1 Pseudo Code of the selective trellis pruning algorithm 
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3.1.4 Implementation Issues 

The algorithm proposed can efficiently select the codewords that need to be removed from 

the trellis in order to reduce the computational complexity while affecting performance as 

litt le as possible. However, several steps were added to the decoding process. They are: the 

computation of the probabilities for each bit, the selection of the bits to be simplified and 

the removal of codewords from the trellis. If these operations require as many operations 

as they save in the decoding process, no overall savings are achieved. For this reason it is 

important to consider the complexity of these extra steps. 

The first two steps are quite straightforward. They do not increase complexity substan­

tially since they require only a few multiplications and comparisons. The total number of 

operations is on the order of n since they are only performed once for each bit in the n bit 

received signal. For this reason we conclude that these steps will not adversely affect the 

overall complexity of our decoding algorithm. 

On the other hand the fourth step in the pseudo code, the pruning of the trellis, might 

require a very larger number of operations if implemented inefficiently. This is because the 

number of codewords that need to be removed is on the or der of 2k . This number grows 

exponentially as the size of the code increases. For this reason it is very important to have 

en efficient pruning algorithm. In the course of this work, two algorithms for obtaining the 

pruned trellis were developed. 

The first method is the most straightforward and intuitive. It begins by generating the 

full minimal trellis representation of the code directly from its generator matrix using the 

method proposed in [5]. Recall that this trellis contains all valid codewords and employs 

the minimal number of edges and states. A recursive pruning function is then called with 

the first bit in the simplification order as a parameter. This function removes all edges at 

simplification depth that have labels opposite to the one of the bit being simplified. The 

removal of these edges sometimes results in states becoming unneeded. Unneeded states 

are states which no longer have at least one edge entering and leaving them, they are thus 

not part of any codeword and can be pruned. All edges attached to an unneeded state can 

also be removed. This can lead to removal of more states and so on and so forth. It is for 

this reason that the pruning algorithm is implemented recursively. This function is called 

in order to simplify all bits in the simplification order above the likelihood threshold. After 

the last bit is simplified the trellis is in the desired pruned form. Decoding can then be 
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performed on this trellis. 

This method presents several drawbacks. The first is due to the complexity and the 

sheer number of times that the recursive function must be called. This function can only 

remove one edge or one state at a time and only after a series of tests have been performed. 

These tests insure that the current element should in fact be removed and also identifies 

other elements that might need to be pruned. The tests also verify that at least one valid 

codeword is still present in the trellis after the removal of the selected elements is completed. 

Another problem is that once a block is decoded the full trellis must be restored. Trellis 

restoration is required since the simplifications performed on each block are not necessarily 

the same. The problem is that this restoration can also requires a fair amount of operations 

even when it is accomplished by using a copy of a previously stored version of the full trellis. 

This is especially true when the size of the full trellis is large. Using this method of pruning, 

observe that the trellis always st arts and ends in its full version. A lot of unnecessary work 

is thus put into reducing and then restoring the trellis. 

Due to these problems it was determined that a more efficient way of pruning the trellis 

should be found. The innovative method for pruning the trellis which we developed and 

which avoids these problems is presented in the next section. 

3.1.5 Trellis Pruning via Generator Matrix Simplification 

Recall that the problem with the recursive pruning algorithm is the number of wasted 

operations during the reduction and restoration of the full trellis. The solution we propose 

avoids these problems by building a pruned trellis directly. In other words the full trellis 

no longer has to be pruned and then restored each time a block is decoded. Instead only 

a pruned version has to be constructed. 

We found that it was possible to construct the pruned trellis directly from a modified 

generator matrix using the same algorithm previously used to obtain the full minimal trellis. 

The inspiration for our solution came from the fact that if the full trellis could be built 

directly from a generator matrix, so too could the pruned trellis. The matrix used however 

was not the generator matrix G but a modified version of this matrix. Our method also 

requires a translation vector denoted~. This is due to the fact that matrices can only 

represent linear codes, and, simplifications that set the value of a bit to llead to non-linear 

codes. We did however choose G as a starting point since a pruned trellis represents a coset 
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of a sub-code of C. In other words this method do es not simplify the trellis, it simplifies 

the generator matrix. In this way, the problem of wasted operations during the pruning 

and restoration of the trellis are solved. 

This way of simplifying is clearly better than the previous method because of the fact 

that simplifications take place at the generator matrix level. Therefore we only need to 

generate a trellis which contains 2k - a codewords where a is the number of simplifications 

made. This represents a significant reduction in complexity when the value of a is large. 

Even when a = 1 savings are significant since the number of codewords is reduced by 50%. 

However when no simplification are made our method must generate a full trellis. In this 

worst case scenario the recursive algorithm is superior since its trellis is already in its final 

form. On average however, when an appropriate simplification threshold is in use, the value 

of a> 1. 

The procedure used to modify the generator matrix of C and obtain the translation 

vector will be explained in detail shortly. Before proceeding however we first exp and the 

ide a behind our method in order to facilitate the understanding of the mathematics. We 

first discuss the necessity of the the translation vector. To illustrate, suppose we would like 

to find the matrix that can generate the pruned trellis in which we have declared the i th bit 

to be equal to 1. Mathematically this simplification constrains aIl codewords to have a 1 

at position i. This also means that the alI-zero codeword will not be in the pruned trellis. 

However any matrix multiplied by the alI-zero input message equals the alI-zero codeword. 

For this reason we see that a generator matrix alone cannot represent the codewords in the 

pruned trellis. It is for this reason that the translation vector is required. 

The simplified generator matrix's role in our algorithm is not to represent the coset of 

the sub-code, but the sub-code. This is the version in which aIl of the simplified codewords 

are present but have aIl been translated by the same vector ~, the coset leader. In this way 

the sub-code can be obtained by simply translating the sub-code by the translation vector. 

The constrained codewords can then be constructed using the translation vector ~ and the 

modified generator matrix. 

Let G = (2i 2~ ... 2~) be the generator matrix of a kxn code, where if is kx1. 

We are looking for a way to constrain a code bit. 

Let il, ... , i"( be the set of locations where we want to constrain the bits : {il, ... , i"(} ç 
{l, ... , n}. 
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Let al, ... , a')' be the corresponding constrained values, i.e., we are looking for a parametriza­

tion of codewords : 

S = {ç E {a, l}n: :3]J E {a, l}k: ç = ]JG and Cij = aj,j = 1, ... ,,} (3.6) 

This is possible with a series of generator matrices G(j) and vectors f(j); 

The procedure to determine G(j) and f(j) is the following: 

1. Given G(j-l) with (G(O) ~ G) compute a matrix p(j) such that 

p(j)g(j-l)T 
-~j ° 

Q, then: 

P (j) - l 
- k j - 1 x k j - 1 

otherwise: p(j) is (kj - l x kj - l ), where kj - l is the number of rows of G(j-l). 

2. It is then clear that : 

(3.7) 

(3.8) 

(3.9) 

80 {(]J(j)p(j)) : ]J(j) E {a, 1 }kj} generates all possible information words such that 

they result in the irth bit of the codeword being O. 

3. Pick e(j) E {a, 1 }kj-l such that 

_ {f(j)G(j-l), j-l 

f(j)G(j-l) + r~ f(r)G(r-l), 

has its irth bit equal to (a(j))ij := aj. 

This is easy to do : 

if j = 1; 

otherwise 
(3.10) 
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j-l 
• if j = 1 or Œj = 0:= ~(r)G(r-l))ij: f:.(j) = il will do. 

r=l 

j-l 
• if Œ ....t (~e(r)G(r-1)) .. then choose e(j) = g(j-1)T where (g(j-l)T) .. = 1. 

J r D - tJ - -t -t tJ 
r=l 

4. Then , all codewords of G with bits il, ... , i'Y equal to Œl, ... , Œ'Ycan be written as : 

'Y 
S = {~= 1fC'Y)GC'Y) + Lf:.(j)G(j-1), 1f'Y E {D,l}k-y} (3.11) 

j=l 

j-1 
It is important to note that if (flY-l)T)ij = il and Œj =1= (L f:.(r)G(r-1))ij then the pro cess 

r=l 
cannot set ~ij = Œj since this would lead to an empty set of codewords S = n. 

Equation (3.11) is the desired parametrization of the constrained codewords with re­

spect to the translation vector and the modified generator matrix. Obtaining the pruned 

trellis now only requires applying the minimal trellis generating algorithm to this modified 

generator matrix and then translating the resulting trellis by e = t f:.(j)G(j-l). Trans-
j=l 

lating a trellis is done by ad ding the value of the translation vector to the labels of each 

edge at the corresponding depths. 

The algorithm presented in this chapter is capable of efficiently reducing the trellis 

representation of a block code to a usable size. It selects the bits, and the order in which 

they should be simplified, based on the soft information in the received signal. It provides 

a simplification order which maximize the reduction in the size of the trellis while removing 

as little information as possible from it. It also provides a threshold parameter e which can 

be used to trade performance for complexity in order to set an efficient point of operation. 

It also provides an effective method for pruning the trellis based on the simplification of its 

generator matrix. The behavior of this algorithm under different operating conditions is 

the focus of chapter 4. The choice of an appropriate threshold value will also be discussed 

based on the simulations that were done. However, before going into these results, we will 

present how the algorithm we developed can be used in a turbo de co ding setup. 
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3.2 Trellis Pruning as Applied ta a 'TUrbo Decoder 

TUrbo co ding often utilizes block codes: two example are the seriaI and parallel concate­

nated block codes presented in chapter 2, each using two block codes. The turbo decoder 

presented in figure 2.10 uses two SOYA decoders; each one hindered by the size of the 

trellis representation of its constituent code. The computational complexity of this turbo 

decoder could obviously benefit from a trellis simplification algorithm. This is especially 

true considering the fact that for each iteration SOYA decoding is performed k1 + k2 times, 

once for each row and once for each column of data. The goal of this section is to present 

the way in which we applied our simplification algorithm to the turbo decoder. Although 

not discussed in this work other turbo decoding simplification schemes are proposed in [16] 

and [17]. 

Before doing this however, we first expose the main concern we had during the design 

process. The concern was how well turbo codes withstood simplifications. Recall that a 

turbo decoder decodes iteratively, each iteration generally improving the overall perfor­

mance. This gain is achieved by using the extrinsic information obtained from the previous 

step in decoding. The concern was that by simplifying the trellises the turbo effect might 

easily be lost. In other words it was unclear if we could substantially decrease complexity 

without affecting performance. Computer simulations were run in order to determine the 

behavior of turbo codes in the face of these simplifications. As it turns out it is possible to 

achieve a considerable amount of savings. Full results and discussions are presented in the 

next chapter. 

In a parallel concatenated block code, bits are sent in large blocks. These block were 

coded using two codes, one applied to the rows and one to the columns. Instead of perform­

ing decoding on the entire block, the decoder breaks it up into k1 + k2 smaller sections. 

These sections correspond to the k1 columns and the k2 rows that were used for encoding. 

Using this decomposition it is possible to apply regular SOYA decoding to each section 

using the appropriate code. In other words k1 + k2 regular SOYA decodings must be 

performed for each iteration. In order to reduce the overall computational complexity, we 

simply apply our simplification algorithm to each of these decoders. 

In the context of a turbo decoder, new possibilities exist as to the number of bits chosen 

to be simplified. For example we can choose to simplify a fixed number in each column 

or row, a variable number in each column or row, or a fixed number in the entire table. 
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For the same reasons as previously presented we chose to simplify as many bits as possible 

without affecting performance. The bits were chosen once again based on the likelihood of 

the received signal and the simplification threshold e. 
Having found an appropriate value for this threshold in previous experiments we chose to 

take advantage of this information. This however is only possible during the first iteration. 

This is because a bias is introduced by the extrinsic information during decoding. This 

bias can be quite large because of the fact the simplified bits add a considerable amount of 

certainty to the trellis. As a result many bits that have not been simplified have very large 

likelihoods compared to the threshold; likelihoods that are almost impossible to achieve 

during transmission. If a different threshold is not used at each iteration most bits are 

rapidly simplified and the turbo effect is lost. 

We star by identifying and simplifying bits row by row. We then simplify the same bit 

pattern with respect to the columns. The only difference is that the simplification order 

for the columns is respected. This means that even if a bit was simplified first in its row it 

will not necessarily be simplified first in its column. The procedure is shown graphically in 

figures 3.2 and 3.3. 

Row Being Decoded 

D = Simplified Bit 

Fig. 3.2 Row Decoding with Bit Simplification. 
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Column Being Decoded k1 

= Previously Simplified 
Bits 

Fig. 3.3 Column Decoding with Bit Simplification Based on Row Simplifi­
cation Bit Pattern. 
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The procedure results in the creation of k1 + k2 different trellises, one for each row and 

column. These trellises are saved and are used again to decode their corresponding row or 

column during the following iterations. In this way the trellises do not need to be simplified 

at each iterations. In the results section we present the different simulations in which we 

managed to reduce the computational complexity of decoding while still maintaining near­

optimal performance over many iterations. In other words we manage to simplify decoding 

without losing the turbo effect. 

It is also possible to envision a scheme in which additional simplifications would be made 

after the first iteration. However because of the bias introduced by the SOYA algorithm, 

a new threshold would be needed at each iteration. This possibility is discussed in greater 

detail in the future work section in chapter 5. 
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Chapter 4 

Experimental Results 

This chapter focuses on the various computer simulations that were run in the scope of 

this work. \Ve used these simulations in order to verify many of the hypotheses made 

during the design process, to evaluate the computational savings provided by algorithms 

developed, as well as to study the behavior of these algorithms under different operating 

conditions. The chapter is divided into three main sections. The first section presents the 

tests that were run in order to determine the effects of simplifying different types of bits on 

performance. The second section studies the effects of our selective pruning algorithm on 

the performance of different codes. It also presents the tests that were run which allowed 

us to select an appropriate simplification threshold. Finally, the third section focuses on 

the performance of a turbo decoder which takes advantage of our simplification algorithm. 

Each of these sections has roughly the same structure. First, a summary highlights 

the most important aspects of the problem in question. Then the tests that were run are 

described in detail. This is followed by the presentation and analysis of the experimental 

results. 

4.1 Systematic vs. Redundant Bit Simplification 

In order to determine which bits we wanted to simplify in the received signal we examined 

the possibility that sorne types of bits might be more advantageous to simplify than others. 

For systematic codes, there are two types of bits, systematic bits and redundant bits. Recall 

that a systematic bit is directly related to a data bit while a redundant bit only contains 

parity information. The goal of this test was to determine which type of bit affected 
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performance the least when simplified. 

This was accompli shed by generating three bit error rate curves, one where only sys­

tematic bits were simplified, one where only redundant bits were simplified and one in 

which both types were simplified. Simplifications were limited to the selection of the most 

certain bit in each block of n bits. This bit was then simplified using the generator matrix 

simplification algorithm presented in chapter 3. No minimum certainty requirement was in 

effect. The fact that the bit was the most certain out of the n bit block was assumed to be 

sufficient to justify its simplification. 

The test used antipodal BPSK signaling over an AWGN channel and the decoder per­

formed soft input Viterbi decoding on the simplified trellis. 

Before running the test we hypothesized that the type of bit which performs better, 

might be dependent on the rate of the code. For this reason we performed tests on many 

different codes, each having a different rate. Presented in figures 4.1 and 4.2 are two codes 

that are typical of the results observed over the many codes tested. Their generator matrices 

can be found in appendix A. One has a rate of 4/15 while the other has a rate of 11/16. 

In the following figures the SNR is Eb/ No in dB where Eb is defined as the information bit 

energy. 
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Fig. 4.1 (15,4) Systematic Block Code in Which Only the Most Likely Bit 
Is Simplified. 
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Fig. 4.2 (16,11) Systematic Block Code in Which Only the Most Likely Bit 
1s Simplified. 

From figures 4.1 and 4.2 we dearly see that performance suffers less when systematic 

bits are simplified. This is true in both cases. For this reason we condude that the rate of 

the code do es not determine the type of bit which performs better. The rate do es however 

affect the average performance of decoding. This average value is represented by the curve 

that did not take into account the type of bit being simplified. Figure 4.1 shows the results 

for the code with the lower of the two rates. In this figure we see that the average is much 

doser to the curve corresponding to redundant bit simplification then it is to the curve 

corresponding to systematic bit simplification. This is because only 4 out of the 15 bits are 

systematic. Since the channel is AWGN, the position of the most likely bit should be evenly 

distributed over aH positions. This means that on average 4 out of 15 simplifications will 

be performed on a systematic bit. The other 11 out 15 times the simplification is done on 

a redundant bit. It is only logical based on this information that the average performance 

be doser to the curve corresponding to redundant bit simplification then it would to the 

one in which systematic bit were simplified. The situation is inverted in figure 4.2 where 

there are more systematic bits than redundant ones. 

The key aspect to note in these figures is not that the systematic simplifications outper­

form the redundant ones, but rather the gap between these two curves. This gap represents 
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the performance gain that can be achieved by taking advantage of the fact the systematic 

bit simplification affects performance less than the redundant bit simplification. As we can 

see this gap is relatively small. This implies that at best an algorithm could gain 0.1 dB in 

performance when taking into consideration the type of bit being simplified. This gain was 

determined to be too small to warrant the required increase in decoder complexity. For 

this reason more effort was not put into furthering this concept. 

4.2 Thellis Reduction Using Selective Trellis Pruning 

This section focuses on the performance and behavior of the selective pruning algorithm 

presented in chapter 3. The goal of this algorithm is to reduce the size of the trellis as 

much as possible while not significantly affecting performance. Recall that this algorithm 

trades performance for complexity via the selection of the simplification threshold. We will 

show that the algorithm can achieve its goal wh en an appropriate threshold is selected. 

This effectively reduces the total number of operations required to only a fraction of that 

required by full trellis decoding. 

This will be done in four parts. The first part deals with the test setup, it details the 

tests that were run and introduces the codes that were tested. The second part presents the 

experimental results obtained by computer simulations. The third and fourth sections focus 

on the analysis of this data. More specifically, the third part discusses the behavior of the 

algorithm when applied to different codes while the forth part explores the computational 

savings provided by the algorithm. This last section also discusses appropriate threshold 

selection. 

4.2.1 Test Setup 

This section details the test setup that was used to study the behavior and computational 

savings provided by the selective trellis pruning algorithm. Presented first are the tests 

that were run as weIl as the measurements that were taken during these simulations. This 

is followed by the presentation of the various codes that were used to test the algorithm. 

Finally the details concerning the specific implementation of the algorithm we used are 

explored. 

In or der to study the behavior of our algorithm we examined its bit error rate perfor­

mance under different operating conditions. Each test consisted of measuring the BER 
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curve for a given code and simplification threshold. For each code tested several BER 

curves were generated by varying the simplification threshold. The different BER curves 

were then compared to each other in order to determine the effects of the simplification 

threshold. Many codes were tested in this way and similarities between the curves of dif­

ferent codes were also observed. These results are discussed in greater detaillater in this 

chapter. 

Apart from the bit error rate performance, we also measured the number of multipli­

cations that were required by the Viterbi algorithm before and after trellis simplification. 

The comparison of these two values yields the relative number of operations required by 

the simplified decoder. By comparing this relative number of operations and the BER 

performance other interesting characteristic emerge. Again these results will be discussed 

in greater detail after the presentation of the results. 

As mentioned earlier a large number of block codes were used in order to test the trellis 

reduction algorithm. In this thesis we decided to present three of these codes. We feel 

that they are representative of the ensemble of codes tested and follow the general trends 

observed. We selected two BeR block codes and one Reed-Muller code. They are the 16-31 

BeR block code, the (31,21) BeR block code and the (32,16) Reed-Muller code. In general 

BeR codes tend to be more powerful than Reed-Muller codes at similar co ding rates. This 

can be understood by examining the size of their trellis representations. For example, the 

(32,16) Reed-Muller code has 4,797 states and 6,396 edges while the (31,16) BeR code has 

131,069 states and 196,604 edges, a considerable difference. The (31,21) BeR code with its 

14,333 states and 26,620 still has more states and edges than the (32,16) Reed-Muller code 

which has a much lower rate and should therefore be more complex. It is also interesting to 

note that we chose two codes with similar rates. This fact will be used later in the analysis 

of our results. The generator matrices for all three codes can be found in Appendix A. 

The selective trellis pmning algorithm can be implemented in many different ways. 

This was discussed in chapter 3. For all tests mn in this section we chose to use the 

implementation that we feel is the best trade-off between performance and complexity, the 

details of which are presented now. 

In the selected implementation all bits above the certainty threshold are simplified, 

from most likely to least likely. There are however two exceptions to this rule. First, if 

many bits have been simplified and only one codeword remains in the trellis, decoding 

stops and this codeword is output. Second, if a confiicting simplification were to occur the 
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simplification process is stopped and decoding is performed. This is true even if subsequent 

simplifications could be made to the trellis. This was chosen in or der to give the decoder 

the best chance at correct decoding, given the fact that the situation implies that either 

the bit that was about to be simplified or one of the previous simplifications was in error. 

We stop decoding despite the added complexity. 

AlI tests were simulated for an Additive White Gaussian Noise channel (AWGN) using 

BPSK signaling. This signaling schemes maps the coded bits to their transmission symbols 

t in the following way: 

t = 2c - 1 (4.1) 

In other words, zeros are mapped to -1 and ones are mapped to +1. The channel simply 

adds analog noise to the transmitted signal which is independent from symbol to symbol. 

The received signal is the sum of the symbols and the noise. This signal is used to 

simplify the trellis using the selective trellis pruning algorithm we developed. The actual 

trellis simplifications are done via generator matrix simplification in order to minimize 

computational complexity. A new trellis is thus constructed for every block of n bits. This 

trellis is constructed using the trellis generating algorithm proposed in [5] and uses the 

simplified generator matrix and its corresponding translation vector instead of the original 

generator matrix. 

FinalIy, decoding is performed on the pruned trellis using the soft-input hard output 

Viterbi algorithm. Recall that in the upcoming figures the simplification thresholds are 

probabilities, see equations 3.3 and 3.4, and not log likelihood ratios. Soft input was 

chosen over hard input in order to maximize performance. 

4.2.2 Results 

This section presents the results of the computer simulations run on the three codes tested. 

They are the (32,16) Reed-Muller block code, the (31,16) BeR block code and the (31,21) 

BeR block code. For each code, bit error rate curves are given for different simplification 

thresholds. The relative number of operations required by the algorithm at these signal 

to noise levels and simplification thresholds are also given. In this way it is possible to 

visualize the savings obtained by the selective trellis pruning algorithm. In the following 

figures the SNR is Eb/ No in dB where Eb is defined as the information bit energy. 
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4.2.3 Behavior 

This section focuses on the overall trends observed in the different simulations. We will 

comment on the effects of over-simplifying the trellis and try to establish which charac­

teristics of a codes influence its performance. Questions concerning the amount of savings 

provided by the algorithm are dealt with in the next section. 

From the BER curves we see that the overall behavior of the algorithm depends greatly 

on the code being used. In other words, the better a code performs without selective 

trellis pruning, the better it will perform with selective trellis pruning. This is apparent in 

figures 4.3 and 4.5, which present two codes with approximately the same rate but with far 

different performances. This was to be expected since our algorithm attempts to maintain 

near-optimal performance and, as was mentioned previously, the (31,16) BCR code is more 

powerful than its (32,16) Reed-Muller counterpart. As expected, we see from figure 4.7 

that the (31,21) BCR code also outperforms the (32,16) Reed-Muller code. 

Rowever, the most interesting thing to note in the various bit error rate curves is 

how similar they are. In all three graphs the bit error rate curves for all thresholds lie 

between two bounds. The lower bound is the BER curve for the fully decoded trellis. This 

represents the best performance which can be achieved using soft decision Viterbi decoding. 

The upper bound is what we will refer to as the oversimplified bound. This bound 

represents the performance that is achieved when the threshold is set too low and a number 

of simplifications are made which hinder decoding. Over simplification understandably 

results in performance degradation. 

A general trend that can be observed over the different BER curves is that they st art on 

the lower bound and break off to join the upper bound as the signal to noise ratio increases. 

The only exception is the BER curves associated with the 0.9 simplification threshold. This 

is because even at 0 dB the simplification threshold is too low, so the curves start and stay 

on the over simplified bound. In all other cases however we can see a break-off point. This 

break-off point depends on the simplification threshold. Beyond this point the performance 

of the pruning algorithm strays from that of full decoding and for this reason we say that 

the trellis is over simplified. 

This over simplified region of operation still provides a considerable amount of gain 

over un-coded BPSK. The reason our algorithm continues to outperform un-coded BPSK, 

even when the simplification threshold is set too low is the fact that the trellis structure is 
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taken into account. Considering the low computational complexity required in this region 

it might be advantageous to operate at these threshold levels. Decoding in this way is 

equivalent to reducing the trellis to one codeword based solely on the k most probable bits. 

In other words this gain in performance is obtained without having to perform a trellis 

search. This is discussed in greater detail in the future work section of chapter 5. 

Another observation that can be made is that the distance, or gap, between the lower 

and upper bound is greater in the case of the (32,16) Reed-Muller code and the (31,16) 

BCR code than it is in the case of the (31,21) BCR code. This means that the fist two 

codes suffer a greater loss in performance when over simplified. Both the (32,16) Reed­

Muller code and (31,16) BCR code have a gap of around 1.3 dB. On the other hand the 

(31,21) BCR code has a gap of only 0.7 dB. What differentiates the third code from the 

first two, other than its gap, is the number of redundant bits. The first two have 16 and 

15 respectively while the third only has 10. This suggests that size of the gap is linked to 

the amount of redundancy present in the code. It is also important to note that this trend 

was observed in all codes tested, even those not presented here. 

To understand this we examine the effects of simplifications on different codes. Sim­

plifications made to a hypothetical code with no redundancy affect only one trellis depth 

at a time. On the other hand simplifications made to trellises with redundancy can affect 

many depths at once. This implies that redundancy increases the possibility of several bits 

being decoded erroneously when the original bit is simplified incorrectly. For this reason 

codes with less redundancy tend to perform better when erroneous simplifications are made 

and thus perform better wh en over simplified. The distance between the lower and upper 

bound in our BER curves is linked to the amount of redundancy in the code in this way. 

4.2.4 Simplifications and Appropriate Thresholds 

In this section we turn our attention to the computational savings provided by the selective 

pruning algorithm at various signal to noise ratios. Based on these observations and the 

BER curves we determine the appropriate value of the simplification threshold. 

The relative number of multiplications required before and after trellis simplification 

for the different codes are presented in figures 4.4, 4.6 and 4.8. Recall that the appropriate 

threshold maintains near-optimal performance while reducing the size of the trellis as much 

as possible. 
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Suppose we would like to select which of the 4 threshold values used at the 2 dB signal 

to noise level provides the best compromise between performance and complexity for the 

(31,21) BCH code. To do this we examine the BER curves presented in figure 4.7 and the 

relative number of operation presented in 4.8. From a performance point of view two of 

the thresholds provide superior results while the others, 0.9 and 0.99, do not perform as 

weIl. The performance of both the 0.9 and 0.99 thresholds at 2 dB are already too poor to 

be considered near-optimal and for this reason they are eliminated as possible candidates. 

Since the other two provide the same performance we must base our selection on the 

number of operations required. As we can see from figure 4.8 the two remaining thresholds, 

0.999 and 0.9999, require respectively 17% and 50% of the multiplication required by full 

decoding. For this reason we select 0.999 as the best threshold. 

We generalize this procedure using the fact that the number of operations monotoni­

cally decreases with respect to the SNR for a given code and simplification threshold. This 

implies that we should lower the threshold up until the point where near-optimal perfor­

mance is lost. This corresponds exactly to the break-off point we identified earlier. We 

therefore conclude that this point of operation maintains near-optimal performance while 

using the least amount of operations. Given any specific code and signal to noise ratio 

it is now possible to select the appropriate simplification threshold for our trellis pruning 

algorithm. However doing so requires running many simulations in which the threshold is 

varied until the break-off point coincides with the desired signal to noise ratio. A more 

efficient way of obtaining this threshold will be presented shortly. 

When using this appropriate threshold we see from figure 4.4 that in order to maintain 

near-optimal performance the (32,16) Reed-Muller code needs to perform approximately 

40% of operations required by full decoding. For the (31,21) BCH code this number drops to 

17%. Finally in the case of the (31,16) BCH code our algorithm do es even better requiring 

only about 4% of said multiplications. 

Another interesting observation is that the number of operations required at the break­

off point is independent of the threshold and the signal to noise ratio. This can be seen 

more clearly in figure 4.9. 
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Fig. 4.9 Constant Number of Operations at the Break Off Point for the 

(31,21) BCR Black Code. 

It is also interesting to note that this observation holds for aH codes tested. This fact 

is used to obtain the appropriate threshold in a more efficient way. The idea is that it is 

possible to obtain the appropriate threshold for every signal to noise level once the relative 

number of operations is known at a break-off point. Suppose we would like to find the 

appropriate threshold for a given signal to noise ratio. This can be done by varying the 
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threshold until the amount of simplification reaches the same level at the desired SNR that 

it has at the known break-off point. The threshold which achieves this will be the desired 

threshold. This is the preferred method for finding the appropriate threshold since the 

number of operations before and after decoding can be rapidly estimated experimentally. 

This estimation is done by taking advantage of the fact that the simplification ratio can 

be calculated directly from the simplified generator matrix without having to generate or 

decode a trellis. The calculation sim ply involves comparing the number of edges before 

and after simplifications. The procedure for obtaining the number of states and edges in a 

trellis from its generator matrix can be found in [5]. The ratio is found by simply averaging 

the number edges before and after simplification over several transmitted blocks. 

4.3 Turbo Decoding 

This section describes the computer simulations that were run in order to evaluate the 

performance of a turbo decoder which takes advantage of the selective trellis pruning al­

gorithm. The goal of these tests was to find out whether or not turbo decoding could be 

simplified by selectively pruning the trellises of its constituent codes and this without losing 

the turbo effect. Furthermore, we wanted to quant if y these savings. This section is divided 

into three parts. The first section deals with the tests that were run. The second section 

presents the results. Finally, the third section discusses the behavior of the algorithm based 

on the simulations. 

4.3.1 Test Setup 

The following tests simulate a turbo communication systems including the encoder, the 

channel and the turbo decoder. The encoder selected was the parallel concatenated block 

code encoder presented in figure 2.7 which can be found in chapter 2. The same code was 

used to encode both the rows and the columns. As a result all codes tested had to be 

systematic. Many such codes were tested in our simulated communications systems. This 

sections highlights the results for one of them. We feel that these results are sufficient to 

explain the general trends and overall behavior observed over the different codes tested. The 

code presented is a (31,26) BeR code. Its generator matrix can be found in appendix A. 

The transmitter in our simulated systems employs antipodal BPSK signaling. Once 

again "0" bits are mapped to -1 and "1" bits are mapped to +1. This is the same scheme 
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that was used in order to simulate the performance of the selective trellis pruning algorithm 

presented in the previous section. We also chose to use the same AWGN channel. The soft 

output decoding algorithm that was selected is the SOVA algorithm. 

The turbo decoding method selected was presented in great detail in chapter 3. For this 

reason we now present only the most important aspects. First, simplifications were made 

on a row by row basis based on the selected simplification threshold. The same bit pattern 

was then simplified column by column using the optimal order of simplification. The 

simplified generator matrices for each row and each column were saved in order to perform 

simplified decoding during the following iterations. Furthermore, simplifications were made 

exclusively during the first iteration. In other words no subsequent simplifications were 

made during the second and third iterations. 

Bit error rate data was collected for different codes and different thresholds. This data 

includes the BER curves for the first three iterations. Each code was also tested with 

different simplification thresholds. Despite the fact that many turbo codes continue to 

improve significantly after the third iteration, data was not presented for these iterations. 

This is because most of the performance gain was already achieved by the third iteration 

in the codes tested due to their relatively small block and interleaver sizes. Subsequent 

iterations were therefore of little interest. 

4.3.2 Results 

This section presents the BER curves for the different codes tested in our simulated com­

munications systems. Each bit error rate figure presented has a different simplification 

threshold namely, 1, 0.99 and 0.999. The only variable is the signal to noise ratio. As 

mentioned earlier only the results for the first three iterations are presented. The BER 

curve for un-coded BPSK is also presented as a reference. In the following figures the SNR 

is Eb/ No in dB where Eb is defined as the information bit energy. 
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Fig. 4.10 Bit Error Rate Curves for the First 3 Iterations of Turbo Decoding 

Using No Simplifications for the (31,26) BCR Block Code. 
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Fig.4.11 Bit Error Rate Curves for the First 3 Iterations of Turbo Decoding 

Using A Simplification Threshold of 0.99 for the (31,26) BCR Block Code. 
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Fig. 4.12 Bit Error Rate Curves for the First 3 Iterations of Turbo Decoding 

Using A Simplification Threshold of 0.999 for the (31,26) BCR Block Code. 
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Fig. 4.13 Relative Number of Multiplications Required Before and After 

Trellis Pruning for the Turbo Decoder of the (31,21) BCR Block Code with 

Various Simplification Thresholds. 
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4.3.3 Behavior 

Recall that the goal of these simulations was to determine whether or not our selective 

trellis pruning algorithm could be used in a turbo decoding context and if so what amount 

of savings could be obtained. We start our discussion of the results by examining the 

figures as a whole. In the first part of the graphics in figure 4.11 and 4.12, at low signal 

to noise ratios, the turbo decoding algorithm behaves as it would without simplifications, 

shown in figure 4.10. However as the SNR increase there is an explosion of sorts in BER 

performance. In other words, instead of improving performance, each additional iteration 

worsens it. This explosion occurs due to oversimplification of the trellises caused by an 

inadequate threshold value. 

Threshold selection is once again based on maintaining near-optimal performance with 

as few operations as possible. Each figure having a set threshold, we identify the SNR for 

which the threshold value is appropriate instead of selecting the appropriate threshold for a 

given SNR. This is do ne by choosing the largest SNR for which near-optimal performance 

is still achieved. The near-optimal performance we wish to maintain is not that of the first 

iteration but that of the latest iteration. In other words, we want to simplify the decoding 

and still retain the turbo effect. In the case of figure 4.12 this SNR is 2.3 dB. 

In order to study the behavior of the algorithm in more detail, the shape of individual 

bit error rate curves is examined. These curves give a better understanding of the inner 

workings of the algorithm. The BER curve of the first iteration follows a pattern similar 

to those observed in the case of non-turbo decoders presented in the previous section. It 

starts by following the optimal curve then it breaks off to join the oversimplified bound, 

which are not show in these figures. This is because of the fact that simplifications made 

during the first iteration are done in the same way as when no turbo decoding is performed. 

The second and third iterations on the other hand do not follow a previously encountered 

pattern. In fact at first glance they appear to be quite peculiar. At low SNRs they follow 

the optimal curves. This is because the simplifications being made during the first iteration 

are mostly correct and a sufficient amount of information is still present to allow further 

decoding. However when the first iteration starts to make erroneous simplifications these 

errors are propagated to the second iteration. In turn, the second iteration pro duces more 

errors, errors which lead to even more errors in the third iteration. For this reason we 

see that error propagation leads to each iteration producing more errors than the previous 
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one. In this way the order of the curves are inverted. We also see that the effect of error 

propagation diminishes at high signal to noise ratios. This is because at these levels very 

few bits are received in error and therefore the first iteration makes very few erroneous 

simplifications. As a result there are fewer errors to propagate. 

This drop in performance could be avoided if a measurement was taken on the output 

and the extrinsic information which could ensure coherence between different iterations. In 

other words the algorithm should not blindly perform a predetermined number of iterations, 

but use sorne sort of stopping criterion. It should instead try to detect the propagation 

of errors and, if detected, should cease decoding before performance suffers unnecessarily. 

Once again this aspect is left for future work. 

4.3.4 Savings 

Figure 4.13 presents the relative number of multiplications required by the turbo decoder 

before and after selective trellis pruning was applied to its constituent codes. We see from 

figures 4.11 and 4.12 that the appropriate SNR for the thresholds of 0.99 and 0.999 are 

1.3 dB and 2.5 dB respectively. At these points of operation the simplified turbo decoding 

algorithm requires only 35% and 47% of the number of operations required by full decoding. 

Two things are important to note. 

First, the amount of savings in not constant for different SNRs as was the case in the 

non-turbo decoder. This could be caused by the fact that simplifications made based on 

the row are not necessarily suit able in the case of the columns. 

Second we note that the amount of savings are not as significant as in the case of the 

non-turbo decoder. This is explained by the fact that in order to achieve a turbo effect a 

sufficient amount of information must circulate between the decoders. In other words if the 

trellis size is reduced too mu ch the following iterations do not have sufficient information 

to work with and thus more errors are made. 
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Chapter 5 

Conclusion 

5.1 Summary 

As channel conditions improve we can increase throughput by using error correcting codes 

with higher rates. These codes include less redundancy and therefore more message bits are 

sent in each transmitted block. The problem is that traditional coding schemes are difficult 

to implement at these rates. On one hand convolutional codes suffer performance losses 

due to puncturing and on the other the size of the trellis representation of block codes is 

prohibitively large. In this thesis we chose to research computationally efficient decoding 

algorithms for block codes. This decision was based on the fact that despite their large 

trellis representations these codes can easily be designed to accommodate higher rates. 

The key to the simplification of the decoding algorithms was to reduce the size of the 

trellis. This was done by removing certain codewords from the full trellis. This removal 

takes place in two parts: first the codewords to be removed are selected, then they are 

removed. The main idea behind our selection process is that the most "certain" bits in the 

received sequence are least likely to be in error, thus by making hard decisions on their 

values it is possible to reduce the size of the trellis while not affecting performance signifi­

cantly. The measurement of certainty used in making this determination was the likelihood 

ratio of each bit. To this end our algorithm selects the codewords to be removed by sim­

plifying an bits above the certainty threshold from most likely to least likely. This order of 

simplification was determined since it minimizes the amount of information removed from 

the trellis and avoids problems related to confiicting simplifications. It was also determined 

that the type of bit should not be taken into account when simplifying the trellis due to 
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the limited gain and added complexity involved. 

Once the codewords to be removed have been selected they still need to be pruned 

from the trellis. To this end we presented two methods used for trellis simplification. The 

first involves constructing the full trellis and then using a recursive function to remove the 

selected codewords. The problem with this method however was that the amount of opera­

tions needed to pruned the trellis was on the same order as the operations needed to decode 

the full trellis. We solved this problem by proposing a novel trellis reduction algorithm. 

This algorithm is capable of obtaining the pruned trellis directly from a modified version of 

the generator matrix and an associated translation vector. This matrix is used to represent 

the sub-code associated with the simplifications. Its trellis can then be generated using the 

method proposed in [5]. Finally this trellis is translated so that it corresponds exactly to 

the desired pruned trellis. In other words simplifications are made at the generator matrix 

level instead of at the trellis level. 

It was shown that there exist an appropriate threshold for which near-optimal perfor­

mance can be maintained with only a fraction of the operations required by full decoding. 

It was also shown that setting the threshold above the appropriate value increased the com­

putational complexity of decoding but did not increase performance significantly. Setting 

the threshold bellow the appropriate value resulted in additional computational savings but 

also caused performance to wain. At worst however performance followed the oversimplified 

bound. We also showed that the relative amount of operations required during decoding, 

when using the appropriate threshold, was independent of the signal to noise ratio. This 

fact was used to develop an algorithm capable of finding appropriate thresholds at different 

SNR. 

A turbo decoding scheme using selective trellis pruning was also developed and tested. 

It was shown that the turbo decoding of a parallel concatenated block code could be simpli­

fied by a considerable amount without losing the turbo effect. However when oversimplified 

the performance suffered more than its non-turbo counterpart. This was due to the prop­

agation of errors in the different iterations. The operation point was once again set using 

a simplification threshold. 

We believe, based on our research, that selective trellis pruning combined with the 

generator matrix simplification algorithm is a novel and powerful decoding tool. This 

near-optimal method is a good alternative to methods previously used in the decoding of 

high rate codes. The next section presents future work that can be done relating to this 
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algorithm. 

5.2 Future Work 

5.2.1 Dynamic Threshold Updating 

Recall that the ratio of operations required before and after simplification is constant when 

decoding block codes using the selective trellis pruning algorithm with the appropriate 

threshold. This fact was used to elaborate a scheme for finding the appropriate threshold 

at any signal to noise level. This was done by varying the simplification threshold until 

the ratio of operations required at the desired signal to noise level coincided with the ratio 

required at the break-off point. 

The identification of the appropriate thresholds however had to be done manually for 

each signal to noise ratio. This setup is not particulary useful in a real system where 

the SNR can vary. We therefore propose looking into a system which could dynamically 

update the simplification threshold. This could be accomplished by always maintaining 

the amount of operations performed by the decoder at the same level as that needed at 

known break-off point. In other words when the signal to noise ratio goes up the number of 

simplifications increases and we notice a drop in the number of operations. This signaIs to 

the decoder that the simplification threshold needs to be increased. On the other hand as 

the signal to noise ratio drops, fewer simplifications are performed and thus more operations 

are required. This signaIs that the decoder can lower the simplification threshold without 

loss of performance. 

5.2.2 Best k Bit Simplification Method 

By examining the behavior of the selective trellis pruning algorithm when the threshold was 

set extremely low we noticed that many codewords were being output directly without a 

trellis search being performed. This was explained by the fact the trellis had been simplified 

down to a single path. Based on this observation we propose a new method of decoding. 

In the method we propose to explore, the generator matrix simplification algorithm 

would be used in order to reduce the size of the trellis to one codeword for each received 

block. This reduction would be based on the the k most likely bits. In this way codewords 

ccould be output without having to search through a trellis. The amount of operations 
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required by this algorithm would be almost negligible. This method could be used as 

a better alternative to un-coded BPSK because of its performance and extremely low 

complexity. The performance gain over BPSK stems from the fact that the trellis structure 

and the soft information in the received signal are both taken into account despite the fact 

that no trellis search is performed. 

It is clear that this method will not pro duce optimal results, in fact it corresponds 

roughly to the over simplified bound in our simulations, however it does provide significant 

gain over un-coded BPSK with little additional complexity. For this reason we believe that 

further research should be put into the performance of such a decoding scheme. 

5.2.3 Additional Turbo Simplifications 

The turbo decoder developed simplifies as many bits as possible during the first iteration. 

However no simplifications are made during the subsequent iterations. It is possible to 

envision systems which, based on the extrinsic information of the previous decoder, could 

simplify bits after the first iteration. In this way, bits that gain sufficient certainty as the 

iterations progress could be simplified in or der to provide additional computational savings. 

Schemes could also be designed that simplify fewer bits during the first iteration and 

more during the second and third. The ways in which the simplifications can be dis­

tributed over the different iterations are almost endless. Research could therefore be done 

in determining the distribution which provides the best trade-off between performance and 

complexity. 
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Appendix A 

Generator Matrices 

This appendix contains the generator matrices for the various codes used through this work. 

Generator Matrix for the Reed-Muller (16,11) Block Code 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 



A Generator Matrices 
-----_._. __ ._--------

Generator Matrix for the BCR (31,16) Black Code 
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68 



A Generator Matrices 

Generator Matrix for the Reed-Muller (32,16) Block Code 

o 

o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

1 

1 0 

o 
o 0 

o 0 
o 0 
o 0 
o 0 

o 0 
o 
o 
o 
o 
o 

o 0 

o 0 

1 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

1 

o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

1 

o 
o 

1 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

1 

o 
1 

o 
1 

o 
1 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

1 

o 
o 0 
o 0 

o 0 
o 0 

o 0 
1 

o 
o 0 
o 0 

o 0 
o 0 

o 0 
o 0 
o 0 

1 

o 

1 

o 0 
o 0 
o 0 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

o 
o 0 
o 0 
1 

o 
o 0 

1 

o 
o 0 
1 

o 0 
o 0 
o 0 
o 0 
o 0 

1 

o 

o 

o 

1 

o 

o 0 
o 0 
o 0 
o 0 
o 0 

1 

o 1 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

o 
o 0 
o 0 
o 0 

1 

o 
1 

o 
o 
o 
o 
o 
o 
o 
o 
1 

o 

o 
o 

1 

o 
o 
o 

o 1 

o 0 
o 0 
o 0 
o 0 

o 0 
o 0 

1 

o 
o 

o 1 

o 0 

1 

o 
o 

1 

o 
o 
o 
o 
o 

1 

o 
1 

o 

Generator Matrix for the BCR (31,21) Block Code 

o 
1 

o 
1 

o 

1 

o 
o 
1 

o 
o 

o 
1 

o 
o 

o 

1 

o 
1 

o 
1 

o 

o 
o 
1 

o 
o 

o 

o 

o 
o 

1 

o 
1 

o 
1 

o 

1 

o 
o 
1 

o 
o 
1 

o 

o 
o 
o 
o 

1 

o 

o 

1 

o 
o 

1 

o 
1 

o 

o 
o 
o 
o 
o 

1 0 

1 1 

o 0 
o 0 

1 

o 0 
o 
o 

1 

o 
o 1 

1 0 

o 
1 

o 

o 
o 

o 
1 

o 
1 

o 
o 

o 

1 

o 

1 

o 
o 
o 
1 

o 

1 

o 

1 

o 

1 1 

o 0 
1 0 

o 0 
1 0 

o 0 
o 
o 
o 

o 0 

o 0 

1 0 

o 0 
o 0 
1 0 

o 0 
1 0 

o 0 
o 0 

o 

o 0 0 0 0 0 0 0 
1 000 000 0 
o 0 0 000 0 
00100000 
000 1 000 0 
o 0 0 0 100 0 
o 0 0 0 0 0 0 
o 0 0 0 0 0 1 0 
o 0 0 0 000 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 000 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 

000 
000 
000 
000 
000 
000 
000 
000 
000 
1 0 0 

o 0 

o 0 1 

000 
000 
000 
000 
000 
000 
000 
000 
000 

1 

o 
1 

o 
1 

o 

o 
o 
o 
o 
1 

o 

o 

o 
o 
o 
o 

1 

o 

o 0 
o 0 

o 0 
o 0 

o 0 
o 0 

o 0 

o 0 
o 0 
o 0 
o 0 

o 0 
1 0 

o 
o 0 
o 0 
o 0 

o 0 
o 0 
o 0 

o 0 

1 

o 
o 
o 
o 
o 
o 

o 
o 
o 

o 
o 
o 

o 
o 
o 
o 
o 

o 
o 

o 
o 
1 

1 

o 
1 

o 
o 
o 
o 
1 

o 
1 

o 
1 

o 

o 

o 0 0 

000 
000 
000 
o 0 0 

000 
000 
000 
000 
000 
000 
000 
000 
o 0 0 

o 0 

010 
o 0 1 

000 
000 
000 
000 

1 

o 
o 

1 0 

o 
o 0 

o 0 

o 
1 0 

o 

o 
1 0 

o 

o 0 
o 0 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

o 0 
o 0 
o 0 

o 0 

o 0 
o 

o 1 

o 0 
o 0 

1 

o 
o 

o 

o 

1 

o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 

o 

1 

o 
1 

o 

o 

o 

1 

o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

69 



A Generator Matrices 

Generator Matrix for the BCR (31,26) Block Code 

1 0 

o 1 

o 0 
o 0 
o 0 
o 0 

o 0 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

o 0 
o 0 
o 0 
o 0 
o 0 

o 0 

o 0 

o 0 
o 0 

o 0 

o 
o 
1 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

000 0 
00000 
000 0 

o 0 0 0 
o 1 0 0 0 
o 0 1 0 0 

000 0 
000 0 
00000 
00000 
00000 
000 0 
00000 
00000 
00000 
00000 
00000 
00000 
00000 
00000 
00000 
o 0 0 0 0 
o 0 0 0 0 

o a 0 0 
o a 000 
o 0 0 0 0 

o 
o 0 
o 0 
o 0 
o 0 

o 0 

o 0 
o 0 

o 

o 0 

o 0 

o 0 
o 

o 0 
o 0 
o 0 
o 0 

o 
o 0 
o 0 

o 0 
o 0 

o 0 
o a 
o 0 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 0 0 0 
o 0 0 0 
o 0 0 0 
o 0 0 0 
o a 0 0 
o a 0 0 
o a 0 0 

o 0 a 0 

o a 0 0 
o 0 a 0 

o a a 0 

1 0 a a 
a 1 0 a 
a a a 
a a 0 

a a a a 
a a a a 
a a a a 
a a a a 
o 0 0 0 
o 0 0 0 
o 0 0 0 
o 0 0 0 
o 0 0 0 
o 0 0 0 
o a 0 a 

o 0 0 0 a 0 0 0 
o 0 000 0 0 0 
o 0 0 0 0 0 0 0 
o 0 000 a 0 0 
o 0 0 0 0 0 0 0 
o 0 000 0 a 0 
o 0 0 0 0 0 0 0 
o 0 000 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 000 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
1 0 0 0 0 0 a 0 
o 1 0 0 0 0 0 0 
o 0 0 0 0 0 0 
000 000 0 
o 0 0 0 1 0 a 0 
o 0 0 0 0 1 a 0 
o 0 0 0 0 0 0 
a a a 0 0 0 a 1 
o 0 0 0 0 0 a a 
a 0 0 0 0 0 0 0 
000 0 0 0 0 0 

a 
o 
o 
o 
a 
o 
o 
a 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 

o 
o 

o 0 

000 
000 
o 0 
000 
o 0 
a 0 1 

000 
000 
o 0 
a 0 
o 0 
o 0 
o 0 
000 
000 
000 
o 0 

o 0 

000 
o 0 
a 0 
o 0 1 

000 
1 0 

o 0 

a 0 
o 

o 0 

o 
a 1 

000 
o 

a 
a 1 

a 

1 

a 1 

a 0 
a a 

o 

a a 1 

a 0 

o 0 
o 

o 1 

1 a 
a 0 

a a 

o 
a 
1 

a 

1 

o 
o 

1 

o 
o 
o 

o 

1 

o 
1 

o 

70 



71 -._--_ .. _._-----_ .. _._------_. __ ._-_._-_._---

References 

[1] J. G. Proakis, Digital Communications. McGraw Hill, fourth ed., 200l. 

[2] S. Lin, T. Kasami, T. Fujiwara, and M. Fossorier, Trellis and Trellis-Based Decoding 
Algorithms for Linear Block Codes. Kluwer Academic Publishers, first ed., 1998. 

[3] D. Muder, "Minimal trellises for block codes," IEEE Transactions on Information 
Theory, vol. 34, pp. 1049 - 1053, September 1988. 

[4] G. D. Forney, "Dimensionjlength profiles and trellis complexity of linear block codes," 
IEEE Transactions on Information Theory, vol. 40, pp. 1741 - 1752, November 1994. 

[5] R. McEliece, "On the BCJR trellis for linear block codes," IEEE Trans. on Information 
Theory, vol. 42, pp. 1072-1092, July 1996. 

[6] A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum 
decoding algorithm," IEEE Transactions on Information Theory, vol. IT-13, pp. 260-
269, April 1967. 

[7] J. Hagenauer and P. Hoeher, "A viterbi algorithm with soft-decision outputs and its 
applications," in Global Telecommunications Conference, 1989, and Exhibition. Com­
munications Technology for the 1990s and Beyond, vol. 3, pp. 1680 - 1686, November 
1989. 

[8] B. Vulcetic and J. Yuan, Turbo Codes: Principles and Applications. Kluwer Academic 
Publishers, first ed., 2000. 

[9] E. Bertrand and F. Labeau, "Simplified trellis decoding of block codes by selective 
pruning," in Asilomar Conference On Signals, Systems, and Computers, November 
2004. 

[10] T. Kasami, K. Koumoto, T. Fujiwara, H. Yamamoto, Y. Desaki, and S. Lin, "Low 
weight subtrellises for binary linear block codes and their application," IEICE Trans. 
Fundamentals Electron., Commun. Comput. Sei., vol. E80-A, p. 2095-2103, November 
1997. 



References 72 

[11] D. Chase, "Class of algorithms for decoding block codes with channel measurement in­
formation," IEEE Transactions on Information Theory, vol. 18, pp. 170-782, J anuary 
1972. 

[12] Y. Berger and Y. Be'ery, "Soft trellis-based decoder for linear block codes," IEEE 
Transactions on Information Theory, vol. 40, pp. 764 - 773, May 1994. 

[13] H. Moorthy, S. Lin, and T. Kasami, "Soft-decision decoding of binary linear block 
codes based on an iterative search algorithm," IEEE Transactions on Information 
Theory, vol. 43, pp. 1030 - 1040, May 1997. 

[14] R. Soleymani, y. Gao, and U. Vilaipornsawai, Turbo Co ding for Satellite and Wireless 
Communications. Kluwer Academie Publishers, first ed., 2002. 

[15] B. Sklar, Digital Communications: Fundamentals and Applications. P T R Prentice 
Hall, first ed., 1988. 

[16] R. Pyndiah, "Near-optimum decoding of product codes: block turbo codes," IEEE 
Transactions on Communications, vol. 46, pp. 1009-1010, August 1998. 

[17] S. Dave, J. Kim, and S. Kwatra, "An efficient decoding algorithm for block turbo 
codes," IEEE Transactions on Communications, vol. 49, pp. 41 - 46, January 2001. 


