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We model the capillary flow of a polymer melt, incorporating a stick-slip boundary condition at the
wall. The boundary condition is enforced by a phase-field model for the local state of the polymer,
which describes the kinetics of a first-order transition. We numerically solve the linearized Navier-
Stokes equations, coupled to this prescribed boundary condition and to a Maxwell model for viscoelas-
ticity. In various regimes, the model exhibits steady flow, periodic oscillations, and more complicated
spatiotemporal structures, which can be observed experimentally. [S0031-9007(96)00756-9]

PACS numbers: 61.25.Hq, 47.50.+d, 61.41.+e, 64.60.My

The capillary flow of molten polymers has received Here we generalize these ideas by introducing a hydro-
much attention in the plastics and chemical engineeringlynamic model to describe the flow of a viscoelastic fluid
communities [1,2] because at higher flow rates the extruin which the conformation of polymers near the surface of
sion of the polymer melt is commonly accompanied bythe die undergoes a first-order transition as a function of
instabilities which manifest themselves as surface distorthe shear stress at the wall. This conformational change
tions, called “melt fracture,” in the final plastic product. leads to a change in the frictional force between the wall
A standard experiment has the melt pushed from a largand the polymer in the bulk, producing stick-slip behavior
reservoir into the capillary (“die”) and extruded out the and leading, in a natural way, to a multivalued flow curve
other end. Typically, as the flow rate is increased, the exfFig. 1); such a curve has been prevalent in the recent lit-
trudate first develops a fine-scaled sawtooth texturing on itsrature [1,2]. When the die is coupled to a large reservoir
surface called sharkskin; next, for experiments performeth which the polymer can be compressed, we find that the
at a constant flow rate into the reservoir (as opposed tmultivalued flow curve gives rise to oscillatory spurt flow
constant pressure), there are relatively long timescale regs has been discussed previously [2]. More significantly,
ular undulations during what is called “spurt” flow; finally, and even in the absence of the reservoir, we find that the
a very disordered lumpy structure called “gross melt fracelasticnature of the fluid can give rise to periodic oscilla-
ture” is observed at the highest flow rates. It is controvertions, chaotic behavior, and large-scale spatial structures in
sial whether these effects are due to processes inside thige die, which we conjecture is responsible for sharkskin.
die or are instead effects occurring at the entrance or exit The slipping lengthf(x, ), is commonly defined by
of the die. a relation between the velocity component parallel to the

The specific motivation for the model we will intro- wall, v, and its normal derivative [1,3-5]; i.e.,
duce is recent work which implies that polymeric fluids — (R -V (1)
might not always obey “stick” boundary conditions on Vi g Vv,
mesoscopic length scales. In particular, de Gennes analith fi the inward unit normal. Heréis a constant angs
co-workers [3] have suggested that polymer melts can slifs a dimensionless quantity defined locally at each pwint
at walls and, moreover, that a sharp transition betweeanlong the walls at time. ¢ = 0 gives stick, while — oo
slip and stick should be observed as the shear rate at tlydves total slip. Experiments show that the slipping length
walls is increased. Indeed there is experimental evidengeimps sharply at a critical value of the shear [4,5], while
for the existence of slip in polymer melts. While much hysteresis is observed on the multivalued flow curves seen
of this evidence has been rather indirect [1,2,4], a recerih extrusion [1,2]. Together, these two features suggest
experiment by Migleret al. [5] measured the velocity of the change in slipping length is the nonequilibrium analog
a polymeric fluid within 200 nm of the wall and found a of a first-order phase transition, presumably the result of a
sharp transition between small and large slip velocities agansition in the local conformational state of the polymer
the shear rate was increased. A further impetus for ouat the wall.
work is recent ultrasonic measurements [6], which show We describe this using a Ginzburg-Landau phase-field
that anomalous time-dependent behavior in the polymemodel for (x, ), as is standard in the theory of phase
flow occurs within the die, far from both the entrancetransitions [7,8]. The microscopic picture of de Gennes
and exit, suggesting that instabilities occur inside the diend co-workers [3] suggests associating largerith the
itself. stretching and uncoiling of some polymers attached to the
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v(r,t) = 0], and p is pressure. The viscous stress ten-
sor o satisfies [10] the Maxwell model,, 9o (r,1)/dt =
—[o(r,1) — me(r,1)], where the rate of strain tensor
components are;; = dv;/dx; + dv;/dx;. Depending
on the Maxwell relaxation time,,, this interpolates be-
tween a viscous fluidr, — 0) with viscosity » and an
elastic solid ¢,,, 7 — «). This constitutes a minimal
model necessary to demonstrate our results. Neglecting
the nonlinear convective term in the Navier-Stokes equa-
tion is an excellent approximation, while estimates sug-
) L gest that the convective terms in the Maxwell relation are
3 4 small for the range of flow rates considered [11]. Some
Vi (m/s) limited numerical work incorporating shear-thinning [10]
FIG. 1. Flow curve, showing the magnitude of the shear stres§Uggests it does not qualita.tively alter our bas_ic picture.
at the wall|o,,| vs the average flow velocity, in the steady Hereafter, we shall consider a two-dimensional slit of
state. A plot withz, replaced by the slipping lengifys looks  size L, X L, with periodic boundary conditions in the
qualitatively similar. The dotted part of curve Hgs! < 0 and (flow) direction and impermeable walls at= 0 and L,

is potentiallyunstable; the solid part is stable. The inset showsm the direction normal to the flow. It is convenient to
the range ofv, where the steady-state solution is actually )

linearly unstable as a function of,/r, as obtained from ~Se€parate the pressure into a uniform pressure gradient and
Eq. (4). Thin dashed line shows flow curve obtained’ ifs ~ an excess part, ag(r,t) = g(t)x + dp(r,t). The ex-
reduced by a factor of two; see text for discussion. cess part p(r, ) is periodic inx, while the uniform gra-
dient satisfieg (1) = [4,(Ly, 1) — T(0,1)]/Ly, where
wall although other mechanisms, such as absorption o, (y,?) is the average of the shear stress over the flow
desorption, have also been proposed as the cause of tHigectionx. This enforces a constant flow rate through
stick-slip transition in some systems [4]. The first-orderthe die, which we find to be necessary to produce sus-
transition is determined by the free energy functional tained oscillations when the boundary conditions are uni-
form along the entire wall. (Relaxation of this condition
F = f dx[(£5/2) (99 /0%)* + f()].  (2)  in the nonuniform case is discussed below.)
valls We use material parameters typical of commodity
polymers:p = 740 kg/m® andn = 1.0 X 10* Pas. We
choose a capillary siz&, = 4 X 1073 m. The param-
ters in the phase-field model are taken to e 10,
0§=13, a=5 H=32X10°Pa', and ¢ =4 X
1072 m. These values are chosen so that steady-state
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where the local free energy densityfig)) = (c/4)y* —
(b/3)¢> + (a/2)¢*> — Hloyly, oy is the local shear
stress at the wall, ang, b, ¢, H, and thebare correlation
length &, are positive constants. The time dependence
the process obeys [7]

TIY/dt = —S6F /8y, (3)  solutions of the equations give a multivalued flow curve
where 7 is a kinetic coefficient related to the time scale (Fig. 1) typical of ones seen experimentally [1,2]. The
for polymer reorientation. three branches of the curve in a rangd®f, | correspond

The equilibrium value ofy is zero foro,, = 0, but  directly to the two minima and one maxima jf(y).
as the stress increases, for appropriately chosen values 8éveral authors have suggested that the negative slope
the parameters, there can be a first-order transition to megime of such a flow curve should lead to unstable flow
large value of. Since there is a range of values|of,, | [1,2,9]. We willinvestigate the model over various ranges
where the local free energy densifiis) has a double- of the phenomenological parameters7,,, and &, the
welled structure, this gives rise to hysteresis associateslit lengthZ,, and the average flow veloci,.
with the spinodal part of the van der Waals loop in The range ofv, for which oscillations occur can be
af/ay, where the local susceptibility = (92f/0¢>)~!  determined from an exact linear stability analysis about the
is negative, while retaining consistency with a sharp firststeady-state valug = ¢ [12]. To a good approximation,
order phase transition in the thermodynamic limit. Thisthe criterion for instability of the steady state is simply
hysteresis has been seen experimentally, and much recent —1 212 - _
theoretical work has incorporated it [1,2,9]. X ok < =1/Tm, )

To complete the description of the fluid, the bound-wherey ! = a — 2by + 3c$2. We see that the most
ary condition (1) must be coupled to the bulk fluid flow. unstable mode has wave numlagr= 0. It can be shown
We simply use the linearized Navier-Stokes equation fothaty ! is negative precisely on that part of the flow curve
an incompressible fluid, with Maxwell's constitutive re- between the maximum and the minimum, indicated by the
lation for the viscous stress of a viscoelastic fluid [10].dotted portion of the curve in Fig. 1. Thus (4) will be sat-
Namely, the velocity fieldv(r,s) at positionr satis- isfied fork, = 0 over a range ofr,, provided thatr,,/r
fies pov(r,1)/or = —AVp(r,1) + V - o(r,1). Herep is sufficiently large. We shall call this range the stick-
is the density of the melt, assumed incompressi®e [ slip regime. The kinetics of the first-order transition from
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numerics; in particular, the stability criteriafof = Oisin
excellent agreement with where oscillating solutions first
occur numerically. Itis also found that the period of those
oscillations isO (), as is evident in Fig. 2. An order-
of-magnitude estimate of the, appropriate for polymer
melts yields an oscillation period which corresponds well,
given the flow rate, to the wavelength of experimentally
observed sharkskin [12]. For values of the average flow
v, which are close to the minimal and maximal ranges of
the stick-slip regime, we find complex oscillatory behavior.
This includes chaos [16], shown in Fig. 2, as well as
oscillations with periodicities that are integer multiples of
the fundamental oscillation period. The oscillationsfof
at the two walls are most often out of phase, although
oscillations still occur if mirror symmetry is enforced.

ot /(2m) _For smalleré, rolls spanning the capillary can appear,

" Fig. 3(a); these rolls are coupled to the out-of-phase oscil-

FIG. 2. Behavior of the slipping lengtfiy at the two walls lations at the walls [17]. Indeed, experimentally, shark-

gc'lflg t'?é anx-(tOi)h(;m grrmgo?\(,\gtt?r)ne)wr?sgg(;)hctor tr_i?:'?rgce skin in a cylindrical die often has a spiral pattern with
illati s w ti : : -
Walls aty = 0 andL, are indicated by solid and dashed ”nesysopposne sides of the extrudate being out of phase. In our

respectively. Parameters used age = 103 s, 7 = 10°* s; mod_el, the roll structures in Fig. 3(a) I_ead to complicated
the exact values of, andL, are not relevant. spatiotemporal patterns at the walls, Fig. 3(b). These, and
analogous structures in the third dimension not included in
smally (“stick”) to large ¢ (“slip”) are the origin of oscil-  our calculation, should manifest themselves as defects on
lations in this regime: At a critical stress the stick state bethe surface of the extrudate. Although no direct compari-
comes metastable, and at some stress beyond that the sgen can be made without including the third dimension,
tem jumps to the slip condition. However, once in the newwe are encouraged by recent experiments [6] showing
slip state, the stress between the fluid and wall decreases,
the slip state itself becomes metastable, and a transition to
stick eventually ensues. Hence the system can repeated™’
cycle between stick and slip. This is similar to the mech-
anism giving oscillations in the FitzHugh-Nagumo model
[13]. However, unlike the normal spinodal instability for
which Yy~ ! < 0, here the criterion for instability also de-
pends on the relative magnitudes of the elastic time scale ~
7m, and the time scale for relaxation of the conformation
of the polymer at the surface, as shown in the inset to
Fig. 1. If 7, /7 is too small, there is no instability; the
physics is essentially that of two coupled oscillators (the
wall and the fluid in the bulk), and if,, is too small the
system is overdamped. Thus thlasticnature of the fluid

Power Spectra of ly¥(t) (cm®s®)

Oy TN

(a larger,,) is an essential ingredient of the instability. an 0 — z — (b)
We have carried out further investigation of our model =-..~"™ —

numerically, with a mixed finite-difference and spectral =~ = =

method. First, we analytically Fourier transformed the =

flow equations to obtain an infinite set of coupled ordi- =70 n -

nary differential equations, which were reduced to a finite o 6 f 8

number by neglecting high wave numbers. They, along

with the nonlinear boundary condition, can then be propa- x (em)

gated_forwa_rd in time by standard methOd_S [14]. For thq:IG. 3. (a) Typical random flow pattern in the channel for
one-dimensional case, where the system is assumed t0 e« .. Shown is the velocity relative to the mean flow
uniform in the flow direction, we have verified that this velocity, v(x,y) — 7,%, with the magnitude indicated by the

method gives the same results as solving in real space Igjze of the arrow. (b) Space-time plot of the slipping length
finite differences. Y(x, 1) along one of the channel walls. The value #f is

. . o indicated by the brightness on this gray scale plot. The defect
We f|r.st co_nS|der'the limit&o E_Lx [,15]’ where the structures evident in (b) are associated with the rolls in the
system is uniform in the flow direction. The results channel shown in (a). Parameters used are the same as in the

from the linear stability analysis are confirmed by thebottom panel of Fig. 2, except hegg = 0 m andL, = 0.1 m.
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defect patterns on the surface of the extrudate similar tsupported by the Natural Sciences and Engineering Re-
the patterns seen here in the plane. search Council of Canada, ates Fonds pour la Forma-

In order to make closer contact with experiments, twation de Chercheurs et I'Aide a la Recherche de Québec.
more features must be included in our model. The first is
motivated by recent work [1,2] showing that the long time-
scale oscillations seen in the spurt regime are controlled

by the volume and compressibility of the polymer in the 5, "o " [\ idakos and J.M. Dealy. J. Rhe6, 845
reservoir. This extrinsic effect is easily incorporated by (1992)

cpnsidering the re_s_ervoir roughly as a spring [2,12], Whi_ch [3] P.G. de Gennes and C.R. Seances, Acad. Sci. SB8SB
gives us one additional second-order differential equation” * 219 (1979): F. Brochard and P.G. de Gennes, Langmuir

for the average fluid velocity in the die. We then see 8, 3033 (1992); F. Brochard-Wyart, P.G. de Gennes,
“reservoir compressibility oscillations” which have the H. Hervert, and C. Redoribid. 10, 1566 (1994).

expected linear behavior on the volume of polymer in the [4] P.P. Drda and S.-Q. Wang, Phys. Rev. L&t 2698
reservoir. (1995); Y.W. Inn and S.-Q. Wandhid. 76, 467 (1996).

As has already been alluded to, we conjecture that[5] K.B. Migler, H. Hervet, and L. Leger, Phys. Rev. Lett.
the viscoelastic oscillations in our model account for the 70, 287 (1993); K. B. Migler, G. Massey, H. Hervet, and
sharkskin distortions seen in the extrudate. However, _ L-L€ger,J. Phys. Condens. MatrA301 (1994).
when included, reservoir compressibility oscillations be- [6] J- Tatibouét, R. Gendron, and L. Piché (to be published).

. . . _[7] P.C. Hohenberg and B.I. Halperin, Rev. Mod. Ph48§,
come the controlling phenomenon, since the polymer in

g . . - - 435 (1977); J. D. Gunton, M. San Miguel, and P. Sahni, in
the die spends very little time at a flow rate in the stick- Phas(e Tra)nsitions and Critical Phen(g)mer\éol. 8. edited

slip regime, and thus viscoelastic oscillations do not get  py c. pomb and J. L. Lebowitz (Academic Press, London,
excited. In order to recover the pOSSlblllty of viscoelastic 1983)’ p. 267. For simpﬁcity, we neg|ect thermal noise.
oscillations, we must include the fact that die is not uni- [8] A full description of local polymer conformation would
form and, in particular, that full solutions of the fluid flow involve a complicated order parameter and would be
equations with realistic constitutive laws show that higher applied throughout the fluid, with its local expectation
stresses are present near the exit of the die [1]. We can Value related to shear thinning; for related ideas, see
the die has a smaller slip length coefficiefitcf. Eq. (1), 103 10 7_07 (1995), and references therein. ngeve(, hgre
and thus the flow curve for that region is shifted to the ‘r’é?ef/gﬂf'%eé;g'yn:ﬁ;;?E:C;”gggg f;onrg?hrmat'on which is
left of the primary ﬂOOW curve (see Fig. 1). Forexample, ;g1 o'~ Georgiou and M.J. Crochet, J. Rhe@8, 639
we assume that 20% ,Of the_d'e has @malf that is in (1994); 38, 1745 (1994). These authors find oscillatory
the remainder of the die. This allows us to reproduce all  pepavior in the capillary flow of @ompressibleNewto-

the important features seen in experiments. For example, njan fluid, after assuming a nonlinear slip condition at the
we find that there can be viscoelastic oscillations in the  walls which gives rise to a multivalued flow curve.

end region of the die even when the system has not yg10] R.B. Bird, R.C. Armstrong, and O. HassagBlynamics
reached the stick-slip regime of th@imary flow curve of Polymeric Liquids Vol. 1, Fluid Mechanics (Wiley,
and these oscillations are now sustained, whether or not New York, 1987), 2nd ed. o -

the polymer is pushed into the reservoir at constant flowl1] Using more complicated constitutive relations, it is pos-
rate or constant pressure, in agreement with experimental ~ Sible to produce multivalued flow curves without assuming
observations of sharkskin [2]. Furthermore, when the sys- & Stick=slip transition (see [1] for references). However,
tem is run at a constant flow rate in the stick-slip regime here we are motivated by the experimental evidence [5]

fth . f . ibil that such a transition does in fact occur within microscopic
of the primary flow curve, we see reservoir compressibil- distances of the capillary wall.

ity oscillations (spurt flow) throughout the die, with vis- [12] J.D. Shore, D. Ronis, L. Piché, and M. Grant (to be
coelastic oscillations superimposed in the end of the die ~ puplished).
during part of the stick portion of the cycle. Indeed, ex-[13] Variations of the FitzHugh-Nagumo model have been
perimentally, sharkskin is frequently observed on this part  used to describe, e.g., spiral waves in chemical reactions
of the extrudate in the spurt flow regime. and neural excitations. [See A. Karma, Phys. Rev. Lett.
In summary, we have presented a model for the melt 68 397 (1992); A.T. Winfree, Chadk 303 (1991).]
fracture instabilities seen in the extrusion of polymer[14] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
melts; it includes a first-order transition between stick and ~ Flannery,Numerical Recipes in @Cambridge University
slip behavior of the polymer at the walls as a function . Fress. Cambridge, 1992), 2nd ed., Chap. 16.
of the shear stress. The incorporation of viscoelasticitJlS] In_experimental systems¢, should be roughly the
- . i characteristic size of a polymer; thus we expéct< L, .
and of compressibility of the fluid in the reservoir yield [16]

) > g . g See, e.g., P. Bergé, Y. Pomeau, and C. Vi@afjer within
oscillatory behaviors which can explain both the sharkskin ~ chags(wiley, New York, 1984).

texturing and spurt flow regime seen experimentally. ~ [17] The walls can behave symmetrically also, but this requires
We thank Ken Elder and Rejean Ducharme for their more than one roll across the channel, and so seems more

collaboration in earlier stages of this work. This work was difficult to create and sustain.
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