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We model the capillary flow of a polymer melt, incorporating a stick-slip boundary condition at the
wall. The boundary condition is enforced by a phase-field model for the local state of the polymer
which describes the kinetics of a first-order transition. We numerically solve the linearized Navier
Stokes equations, coupled to this prescribed boundary condition and to a Maxwell model for viscoela
ticity. In various regimes, the model exhibits steady flow, periodic oscillations, and more complicate
spatiotemporal structures, which can be observed experimentally. [S0031-9007(96)00756-9]

PACS numbers: 61.25.Hq, 47.50.+d, 61.41.+e, 64.60.My
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The capillary flow of molten polymers has receiv
much attention in the plastics and chemical enginee
communities [1,2] because at higher flow rates the ex
sion of the polymer melt is commonly accompanied
instabilities which manifest themselves as surface dis
tions, called “melt fracture,” in the final plastic produc
A standard experiment has the melt pushed from a la
reservoir into the capillary (“die”) and extruded out t
other end. Typically, as the flow rate is increased, the
trudate first develops a fine-scaled sawtooth texturing o
surface called sharkskin; next, for experiments perform
at a constant flow rate into the reservoir (as oppose
constant pressure), there are relatively long timescale
ular undulations during what is called “spurt” flow; finall
a very disordered lumpy structure called “gross melt fr
ture” is observed at the highest flow rates. It is controv
sial whether these effects are due to processes insid
die or are instead effects occurring at the entrance or
of the die.

The specific motivation for the model we will intro
duce is recent work which implies that polymeric flui
might not always obey “stick” boundary conditions o
mesoscopic length scales. In particular, de Gennes
co-workers [3] have suggested that polymer melts can
at walls and, moreover, that a sharp transition betw
slip and stick should be observed as the shear rate a
walls is increased. Indeed there is experimental evide
for the existence of slip in polymer melts. While mu
of this evidence has been rather indirect [1,2,4], a rec
experiment by Migleret al. [5] measured the velocity o
a polymeric fluid within 100 nm of the wall and found
sharp transition between small and large slip velocities
the shear rate was increased. A further impetus for
work is recent ultrasonic measurements [6], which sh
that anomalous time-dependent behavior in the poly
flow occurs within the die, far from both the entran
and exit, suggesting that instabilities occur inside the
itself.
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Here we generalize these ideas by introducing a hyd
dynamic model to describe the flow of a viscoelastic flu
in which the conformation of polymers near the surface
the die undergoes a first-order transition as a function
the shear stress at the wall. This conformational chan
leads to a change in the frictional force between the w
and the polymer in the bulk, producing stick-slip behavi
and leading, in a natural way, to a multivalued flow curv
(Fig. 1); such a curve has been prevalent in the recent
erature [1,2]. When the die is coupled to a large reserv
in which the polymer can be compressed, we find that t
multivalued flow curve gives rise to oscillatory spurt flow
as has been discussed previously [2]. More significan
and even in the absence of the reservoir, we find that
elasticnature of the fluid can give rise to periodic oscilla
tions, chaotic behavior, and large-scale spatial structure
the die, which we conjecture is responsible for sharkski

The slipping length,,csx, td, is commonly defined by
a relation between the velocity component parallel to t
wall, vk, and its normal derivative [1,3–5]; i.e.,

vk ­ ,cn̂ ? =vk , (1)

with n̂ the inward unit normal. Here, is a constant andc
is a dimensionless quantity defined locally at each poinx
along the walls at timet. c ­ 0 gives stick, whilec ! `

gives total slip. Experiments show that the slipping leng
jumps sharply at a critical value of the shear [4,5], whi
hysteresis is observed on the multivalued flow curves se
in extrusion [1,2]. Together, these two features sugg
the change in slipping length is the nonequilibrium anal
of a first-order phase transition, presumably the result o
transition in the local conformational state of the polym
at the wall.

We describe this using a Ginzburg-Landau phase-fi
model for csx, td, as is standard in the theory of phas
transitions [7,8]. The microscopic picture of de Genn
and co-workers [3] suggests associating largerc with the
stretching and uncoiling of some polymers attached to
© 1996 The American Physical Society 655
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FIG. 1. Flow curve, showing the magnitude of the shear st
at the walljsxyj vs the average flow velocityyx in the steady
state. A plot withyx replaced by the slipping length,c looks
qualitatively similar. The dotted part of curve hasx21 , 0 and
is potentiallyunstable; the solid part is stable. The inset sho
the range ofyx where the steady-state solution is actua
linearly unstable as a function oftmyt, as obtained from
Eq. (4). Thin dashed line shows flow curve obtained if, is
reduced by a factor of two; see text for discussion.

wall although other mechanisms, such as absorption
desorption, have also been proposed as the cause o
stick-slip transition in some systems [4]. The first-ord
transition is determined by the free energy functional

F ­
Z

walls
dxfsj2

0y2d s≠cy≠xd2 1 fscdg , (2)

where the local free energy density isfscd ; scy4dc4 2

sby3dc3 1 say2dc2 2 Hjsxyjc, sxy is the local shea
stress at the wall, anda, b, c, H, and thebarecorrelation
lengthj0 are positive constants. The time dependenc
the process obeys [7]

t≠cy≠t ­ 2dFydc , (3)
wheret is a kinetic coefficient related to the time sca
for polymer reorientation.

The equilibrium value ofc is zero for sxy ­ 0, but
as the stress increases, for appropriately chosen valu
the parameters, there can be a first-order transition
large value ofc . Since there is a range of values ofjsxyj
where the local free energy densityfscd has a double-
welled structure, this gives rise to hysteresis associ
with the spinodal part of the van der Waals loop
≠fy≠c, where the local susceptibilityx ; s≠2fy≠c2d21

is negative, while retaining consistency with a sharp fi
order phase transition in the thermodynamic limit. T
hysteresis has been seen experimentally, and much re
theoretical work has incorporated it [1,2,9].

To complete the description of the fluid, the boun
ary condition (1) must be coupled to the bulk fluid flo
We simply use the linearized Navier-Stokes equation
an incompressible fluid, with Maxwell’s constitutive r
lation for the viscous stress of a viscoelastic fluid [1
Namely, the velocity fieldvsr, td at position r satis-
fies r≠vsr, tdy≠t ­ 2A=psr, td 1 = ? s

$sr, td. Here r

is the density of the melt, assumed incompressible [= ?
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vsr, td ­ 0], and p is pressure. The viscous stress te
sor s

$
satisfies [10] the Maxwell modeltm ≠s

$sr, tdy≠t ­
2fs$sr, td 2 he

$sr, tdg, where the rate of strain tenso
components areeij ; ≠yiy≠xj 1 ≠yjy≠xi. Depending
on the Maxwell relaxation timetm, this interpolates be-
tween a viscous fluid (tm ! 0) with viscosity h and an
elastic solid (tm, h ! `). This constitutes a minima
model necessary to demonstrate our results. Neglec
the nonlinear convective term in the Navier-Stokes eq
tion is an excellent approximation, while estimates su
gest that the convective terms in the Maxwell relation a
small for the range of flow rates considered [11]. Som
limited numerical work incorporating shear-thinning [10
suggests it does not qualitatively alter our basic picture

Hereafter, we shall consider a two-dimensional slit
sizeLx 3 Ly with periodic boundary conditions in thex
(flow) direction and impermeable walls aty ­ 0 and Ly

in the direction normal to the flow. It is convenient t
separate the pressure into a uniform pressure gradient
an excess part, aspsr, td ­ gstdx 1 dpsr, td. The ex-
cess partdpsr, td is periodic inx, while the uniform gra-
dient satisfiesgstd ­ fsxysLy , td 2 sxys0, tdgyLy , where
sxysy, td is the average of the shear stress over the fl
direction x. This enforces a constant flow rate throug
the die, which we find to be necessary to produce s
tained oscillations when the boundary conditions are u
form along the entire wall. (Relaxation of this conditio
in the nonuniform case is discussed below.)

We use material parameters typical of commod
polymers:r ­ 740 kgym3 andh ­ 1.0 3 104 Pa s. We
choose a capillary sizeLy ­ 4 3 1023 m. The param-
eters in the phase-field model are taken to bec ­ 10,
b ­ 13, a ­ 5, H ­ 3.2 3 1026 Pa21, and , ­ 4 3

1022 m. These values are chosen so that steady-s
solutions of the equations give a multivalued flow cur
(Fig. 1) typical of ones seen experimentally [1,2]. Th
three branches of the curve in a range ofjsxyj correspond
directly to the two minima and one maxima infscd.
Several authors have suggested that the negative s
regime of such a flow curve should lead to unstable fl
[1,2,9]. We will investigate the model over various rang
of the phenomenological parameterst, tm, and j0, the
slit lengthLx, and the average flow velocityyx .

The range ofyx for which oscillations occur can be
determined from an exact linear stability analysis about
steady-state valuec ­ c [12]. To a good approximation
the criterion for instability of the steady state is simply

x21 1 j2
0k2

x , 2tytm , (4)

wherex21 ; a 2 2bc 1 3cc
2. We see that the mos

unstable mode has wave numberkx ­ 0. It can be shown
thatx21 is negative precisely on that part of the flow curv
between the maximum and the minimum, indicated by
dotted portion of the curve in Fig. 1. Thus (4) will be sa
isfied for kx ­ 0 over a range ofyx , provided thattmyt

is sufficiently large. We shall call this range the stic
slip regime. The kinetics of the first-order transition fro
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FIG. 2. Behavior of the slipping length,c at the two walls
for j0 * Lx . Shown are power spectra of,cstd for regular
oscillations (top) and chaos (bottom); insets show time tra
Walls aty ­ 0 andLy are indicated by solid and dashed line
respectively. Parameters used aretm ­ 1023 s, t ­ 1024 s;
the exact values ofj0 andLx are not relevant.

smallc (“stick”) to largec (“slip”) are the origin of oscil-
lations in this regime: At a critical stress the stick state
comes metastable, and at some stress beyond that the
tem jumps to the slip condition. However, once in the n
slip state, the stress between the fluid and wall decrea
the slip state itself becomes metastable, and a transitio
stick eventually ensues. Hence the system can repea
cycle between stick and slip. This is similar to the mec
anism giving oscillations in the FitzHugh-Nagumo mod
[13]. However, unlike the normal spinodal instability fo
which x21 , 0, here the criterion for instability also de
pends on the relative magnitudes of the elastic time sc
tm, and the time scale for relaxation of the conformati
of the polymer at the surface,t, as shown in the inset to
Fig. 1. If tmyt is too small, there is no instability; th
physics is essentially that of two coupled oscillators (
wall and the fluid in the bulk), and iftm is too small the
system is overdamped. Thus theelasticnature of the fluid
(a largetm) is an essential ingredient of the instability.

We have carried out further investigation of our mod
numerically, with a mixed finite-difference and spect
method. First, we analytically Fourier transformed t
flow equations to obtain an infinite set of coupled or
nary differential equations, which were reduced to a fin
number by neglecting high wave numbers. They, alo
with the nonlinear boundary condition, can then be pro
gated forward in time by standard methods [14]. For
one-dimensional case, where the system is assumed
uniform in the flow direction, we have verified that th
method gives the same results as solving in real spac
finite differences.

We first consider the limitj0 * Lx [15], where the
system is uniform in the flow direction. The resul
from the linear stability analysis are confirmed by t
s.
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numerics; in particular, the stability criteria forkx ­ 0 is in
excellent agreement with where oscillating solutions fi
occur numerically. It is also found that the period of tho
oscillations isO stmd, as is evident in Fig. 2. An order
of-magnitude estimate of thetm appropriate for polymer
melts yields an oscillation period which corresponds w
given the flow rate, to the wavelength of experimenta
observed sharkskin [12]. For values of the average fl
yx which are close to the minimal and maximal ranges
the stick-slip regime, we find complex oscillatory behavi
This includes chaos [16], shown in Fig. 2, as well
oscillations with periodicities that are integer multiples
the fundamental oscillation period. The oscillations ofc

at the two walls are most often out of phase, althou
oscillations still occur if mirror symmetry is enforced.

For smallerj0, rolls spanning the capillary can appea
Fig. 3(a); these rolls are coupled to the out-of-phase os
lations at the walls [17]. Indeed, experimentally, sha
skin in a cylindrical die often has a spiral pattern wi
opposite sides of the extrudate being out of phase. In
model, the roll structures in Fig. 3(a) lead to complicat
spatiotemporal patterns at the walls, Fig. 3(b). These,
analogous structures in the third dimension not include
our calculation, should manifest themselves as defect
the surface of the extrudate. Although no direct comp
son can be made without including the third dimensio
we are encouraged by recent experiments [6] show

FIG. 3. (a) Typical random flow pattern in the channel f
j0 ø Lx. Shown is the velocity relative to the mean flo
velocity, vsx, yd 2 yxx̂, with the magnitude indicated by th
size of the arrow. (b) Space-time plot of the slipping leng
,csx, td along one of the channel walls. The value of,c is
indicated by the brightness on this gray scale plot. The de
structures evident in (b) are associated with the rolls in
channel shown in (a). Parameters used are the same as i
bottom panel of Fig. 2, except herej0 ­ 0 m andLx ­ 0.1 m.
657
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defect patterns on the surface of the extrudate simila
the patterns seen here in thex-t plane.

In order to make closer contact with experiments, t
more features must be included in our model. The firs
motivated by recent work [1,2] showing that the long tim
scale oscillations seen in the spurt regime are contro
by the volume and compressibility of the polymer in t
reservoir. This extrinsic effect is easily incorporated
considering the reservoir roughly as a spring [2,12], wh
gives us one additional second-order differential equa
for the average fluid velocity in the die. We then s
“reservoir compressibility oscillations” which have th
expected linear behavior on the volume of polymer in
reservoir.

As has already been alluded to, we conjecture t
the viscoelastic oscillations in our model account for t
sharkskin distortions seen in the extrudate. Howev
when included, reservoir compressibility oscillations b
come the controlling phenomenon, since the polymer
the die spends very little time at a flow rate in the stic
slip regime, and thus viscoelastic oscillations do not
excited. In order to recover the possibility of viscoelas
oscillations, we must include the fact that die is not u
form and, in particular, that full solutions of the fluid flow
equations with realistic constitutive laws show that high
stresses are present near the exit of the die [1]. We
do this most simply by assuming that a portion (“end”)
the die has a smaller slip length coefficient,,, cf. Eq. (1),
and thus the flow curve for that region is shifted to t
left of the primary flow curve (see Fig. 1). For examp
we assume that 20% of the die has an, half that is in
the remainder of the die. This allows us to reproduce
the important features seen in experiments. For exam
we find that there can be viscoelastic oscillations in
end region of the die even when the system has not
reached the stick-slip regime of theprimary flow curve
and these oscillations are now sustained, whether or
the polymer is pushed into the reservoir at constant fl
rate or constant pressure, in agreement with experime
observations of sharkskin [2]. Furthermore, when the s
tem is run at a constant flow rate in the stick-slip regim
of the primary flow curve, we see reservoir compressib
ity oscillations (spurt flow) throughout the die, with vis
coelastic oscillations superimposed in the end of the
during part of the stick portion of the cycle. Indeed, e
perimentally, sharkskin is frequently observed on this p
of the extrudate in the spurt flow regime.

In summary, we have presented a model for the m
fracture instabilities seen in the extrusion of polym
melts; it includes a first-order transition between stick a
slip behavior of the polymer at the walls as a functi
of the shear stress. The incorporation of viscoelastic
and of compressibility of the fluid in the reservoir yie
oscillatory behaviors which can explain both the sharks
texturing and spurt flow regime seen experimentally.
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