
High-Speed Decoders for Polar Codes

Pascal Giard

Department of Electrical and Computer Engineering
McGill University
Montreal, Canada

September 2016

A thesis submitted to McGill University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

© 2016 Pascal Giard

iii

Acknowledgments

I would like to start by thanking my supervisors, Warren J. Gross and Claude Thibeault. Thanks
for their continuous support, mentorship, valuable advice and helpful discussions provided over
the years. I am glad that we had such a good relationship that allowed me to freely explore while
staying focused on tangible goals.

Many thanks to my friend and colleague Gabi Sarkis. A lot of this work would have been
tremendously more difficult to nearly impossible without his help. His algorithmic, software and
hardware skills, his vast knowledge, and his insightful comments were all of incredible help. Fur-
thermore, his willingness to cooperate led to very fruitful collaborations stirring both of us up and
helping me to remain motivated during the harder times.

I would also like to thank Alexandre J. Raymond, Alexios Balatsoukas-Stimming and Carlo
Condo who helped me in one way or another. Thanks to Samuel Gagné, Marwan Kanaan and
François Leduc-Primeau for the interesting discussions we had during our downtime.

I am grateful for the financial support I got from the Fonds Québécois de la Recherche sur
la Nature et les Technologies, the fondation Pierre Arbour and the Regroupement Stratégique en
Microsystèmes du Québec.

Finally, I would like to thank my beautiful boys Freddo and Gouri as well as my wonderful and
beloved Joëlle. Their patience, support and indefectible love made this possible. Countless times,
Joëlle had to sacrifice or take everything on her shoulders so that I could pursue this degree, and
the one before. I am very grateful and privileged that she stayed by my side.

iv

Abstract

Error detection and correction plays a vital role in modern information storage and communication
systems. Polar codes are gathering a lot of attention as they are a class of capacity-achieving error-
correcting codes with an explicit construction that can be decoded with low-complexity algorithms.
However, their adoption is hindered by the lack of high-speed—high throughput and low latency—
hardware and software decoders for codes of practical length and rate.

This thesis presents various solutions to this problem. It introduces modifications to the state-
of-the-art low-complexity decoding algorithm to better accommodate low-rate polar codes. It also
proposes a code construction alteration process. Hardware implementation results show good
latency reduction and throughput improvement with little to negligible coding loss for low-rate
moderate-length polar codes.

Then, it presents high-speed software polar decoders. It shows how adapting the decoding
algorithm at various levels can lead to significant improvements in latency and throughput, yield-
ing polar decoders that are suitable for high-performance software-defined radio applications on
modern desktop processors and embedded-platform processors. These proposed decoders have
an order of magnitude lower latency and memory footprint compared to state-of-the-art decoders,
while maintaining comparable throughput. In addition, strategies and results for implementing
polar decoders on graphical processing units are presented.

Next, it demonstrates that polar decoders can achieve extremely high throughput values and
retain moderate complexity. It presents a family of architectures for hardware polar decoders that
employ unrolling. The resulting fully-unrolled architectures are capable of achieving a throughput
that is two to three orders of magnitude greater than current state of the art while maintaining good
energy efficiency. Moreover, the proposed architectures are flexible in a way that makes it possible
to explore the trade-off between area, throughput and energy efficiency.

Lastly, while unrolled decoders provide the greatest decoding speed, they are built for a spe-
cific, fixed, code i.e. the code length or rate cannot be modified at execution time. Most modern
wireless communication applications largely benefit from the support of multiple code lengths and
rates. This thesis shows how an unrolled decoder can be transformed into a multi-mode decoder
supporting many codes of various lengths and rates. Implementation results show a peak informa-
tion throughput that is an order of magnitude greater than the state of the art, while showing the
best area and energy efficiency.

v

Abrégé

La détection et la correction des erreurs jouent un rôle essentiel dans les systèmes modernes de
stockage et de communication. Les codes polaires intriguent actuellement beaucoup de chercheurs
car ils constituent une classe de codes correcteurs capables d’atteindre la capacité théorique d’un
canal avec des algorithmes de décodage de faible complexité tout en proposant une méthode de
construction explicite. Cependant, leur adoption est ralentie par le manque d’implémentation
matérielle et logicielle de décodeurs hautes vitesses i.e. à faible latence et à haut débit.

Cette thèse propose de multiples solutions à ce problème. Elle introduit d’abord des modifica-
tions à l’algorithme de décodage de faible complexité, qui est l’état de l’art, afin d’accommoder
les codes polaires à faible taux de codage. Elle propose également une méthode d’altération de la
construction des codes polaires. Les résultats d’implémentation matérielle montrent que, pour des
codes polaires de longueur moyenne et de faible taux de codage, on obtient une bonne réduction
de la latence ainsi qu’une augmentation appréciable du débit au coût d’une perte faible ou nulle en
terme de performance de correction d’erreurs.

Puis, elle présente des décodeurs polaires logiciels hautes vitesses. Elle montre, qu’en adaptant
l’algorithme de décodage à divers niveaux, on obtient des améliorations significatives en terme de
latence et de débit. Il en résulte des décodeurs polaires très intéressants pour les applications de
radio logicielle haute performance s’exécutant sur processeur moderne de bureau ou de plate-forme
embarquée. Les décodeurs proposés ont une latence et une empreinte mémoire qui est un ordre de
grandeur inférieur par rapport à l’état de l’art tout en maintenant un débit compétitif. De plus, des
stratégies ainsi que des résultats pour l’implémentation de décodeurs polaires sont présentés pour
des processeurs graphiques généralistes.

Ensuite, elle démontre que les décodeurs de codes polaires peuvent atteindre des débits exces-
sivement élevés tout en conservant une complexité modérée. Elle présente une famille d’architecture
matérielle pour les décodeurs de code polaire faisant appel à la technique de déroulage. Les ar-
chitectures complètement déroulées qui en résultent sont capables d’atteindre des débits qui sont
de deux à trois fois plus élevés que l’état de l’art tout en maintenant une bonne efficacité énergé-
tique. De plus, les architectures proposées sont flexibles de sorte qu’il est possible d’explorer les
compromis entre la surface, le débit et l’efficacité énergétique.

Enfin, bien que les décodeurs déroulés offrent la meilleure vitesse, ils sont construits pour un
code spécifique i.e. un code d’une longueur et d’un taux de codage qui ne peuvent être modifiés au

vi

moment de l’exécution. Les systèmes de communication sans-fil modernes bénéficient du support
de multiple codes de longueurs et de taux variés. Ainsi, cette thèse montre comment un décodeur
déroulé peut être transformé en décodeur multimode supportant plusieurs codes de longueurs et de
taux variés. Les résultats d’implémentation montrent un débit nominal qui est un ordre de grandeur
plus élevé que l’état de l’art tout en montrant les meilleurs taux d’efficacité en terme de surface et
d’énergie.

vii

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Objectives . 3
1.2 Summary of Thesis Contributions . 3
1.3 Related Publications . 5
1.4 Thesis Organization . 7

2 Polar Codes 9

2.1 Construction . 9
2.2 Tree Representation . 10
2.3 Systematic Coding . 11
2.4 Successive-Cancellation Decoding . 12
2.5 Simplified Successive-Cancellation Decoding . 13

2.5.1 Rate-0 Nodes . 13
2.5.2 Rate-1 Nodes . 13
2.5.3 Rate-R Nodes . 14

2.6 Fast-SSC Decoding . 14
2.6.1 Repetition codes . 14
2.6.2 SPC codes . 15
2.6.3 Repetition-SPC codes . 15

viii Contents

2.6.4 Other Operations . 16
2.7 Other SC-based Decoding Algorithms . 16

2.7.1 ML-SSC Decoding . 16
2.7.2 Hybrid ML-SC Decoding . 16

2.8 Other Decoding Algorithms . 17
2.8.1 Belief-Propagation Decoding . 17
2.8.2 List-based Decoding . 17

2.9 SC-based Decoder Hardware Implementations . 19
2.9.1 Processing Element for SC Decoding . 19
2.9.2 Semi-Parallel Decoder . 20
2.9.3 Two-Phase Decoder . 20
2.9.4 Processor-like Decoder or the Original Fast-SSC Decoder 20
2.9.5 Implementation Results . 20

3 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes 23

3.1 Introduction . 23
3.2 Altering the Code Construction . 24

3.2.1 Original Construction . 24
3.2.2 Altered Polar Code Construction . 25
3.2.3 Proposed Altered Construction . 26

3.3 New Constituent Decoders . 30
3.4 Implementation . 33

3.4.1 Quantization . 33
3.4.2 Rep1 Node . 33
3.4.3 High-Level Architecture . 34
3.4.4 Processing Unit or Processor . 35

3.5 Results . 35
3.5.1 Verification Methodology . 35
3.5.2 Comparison with State-of-the-art Decoders 36

3.6 Conclusion . 39

4 Low-Latency Software Polar Decoders 41

4.1 Introduction . 41

Contents ix

4.2 Implementation on x86 Processors . 43
4.2.1 Instruction-based Decoder . 44
4.2.2 Unrolled Decoder . 47

4.3 Implementation on Embedded Processors . 54
4.4 Implementation on Graphical Processing Units 55

4.4.1 Overview of the GPU Architecture and Terminology 55
4.4.2 Choosing an Appropriate Number of Threads per Block 56
4.4.3 Choosing an Appropriate Number of Blocks per Kernel 56
4.4.4 On the Constituent Codes Implemented 57
4.4.5 Shared Memory and Memory Coalescing 58
4.4.6 Asynchronous Memory Transfers and Multiple Streams 58
4.4.7 On the Use of Fixed-Point Numbers on a GPU 59
4.4.8 Results . 59

4.5 Energy Consumption Comparison . 61
4.6 Further Discussion . 62

4.6.1 On the relevance of the instruction-based decoders 62
4.6.2 On the relevance of software decoders in comparison to hardware decoders 62
4.6.3 Comparison with LDPC codes . 63

4.7 Conclusion . 64

5 Unrolled Hardware Architectures for Polar Decoders 67

5.1 Introduction . 67
5.2 State-of-the-Art Architectures with Implementations 68
5.3 Architecture, Operations and Processing Nodes 69

5.3.1 Fully Unrolled (Basic Scheme) . 69
5.3.2 Deeply Pipelined . 71
5.3.3 Partially Pipelined . 72
5.3.4 Operations and Processing Nodes . 74
5.3.5 Replacing Register Chains with SRAM Blocks 75

5.4 Implementation and Results . 76
5.4.1 Methodology . 76
5.4.2 Effect of the Initiation Interval . 76

x Contents

5.4.3 Comparison with State-of-the-Art Decoders 78
5.4.4 Effect of the Code Length and Rate . 80
5.4.5 On the Use of Code Shortening in an Unrolled Decoder 84
5.4.6 I/O Bounded Decoding . 85

5.5 Conclusion . 85

6 Multi-mode Unrolled Polar Decoding 87

6.1 Introduction . 87
6.2 Polar Code Example and its Decoder Tree Representations 88
6.3 Unrolled Architectures . 89
6.4 Multi-mode Unrolled Decoders . 89

6.4.1 Hardware Modifications to the Unrolled Decoders 90
6.4.2 On the Construction of the Master Code 90
6.4.3 About Constituent Codes: frozen bit locations, rate and practicality 92
6.4.4 Latency and Throughput Considerations 93

6.5 Implementation Results . 94
6.5.1 Error-correction Performance . 95
6.5.2 Latency and Throughput . 96
6.5.3 Synthesis Results and Comparison with the State of the Art 97

6.6 Conclusion . 99

7 Conclusion and Future Work 101

7.1 Future Work . 102
7.1.1 Software Encoding and Decoding on APU Processors 103
7.1.2 Software Encoding and Decoding on Micro-controllers 103
7.1.3 High-speed Systematic Encoder . 103
7.1.4 Multi-mode Unrolled List Decoders . 104

List of Acronyms 113

xi

List of Figures

2.1 Construction of polar codes of lengths 2 and 4. 10
2.2 Non-systematic (8, 4) polar code represented as a graph and as a decoder tree. . . . 11
2.3 Low-complexity systematic encoding of a (8, 4) polar code. 12
2.4 Decoder trees corresponding to the SC, SSC and Fast-SSC decoding algorithms. . . 14
2.5 Error-correction performance of BP and SC decoding for a (2048, 1723) polar code 18
2.6 Error-correction performance of List, List-CRC and SC decoding of a (2048, 1723)

polar code versus that of the (1944, 1620) 802.11n LDPC code. 19
2.7 Architecture of the data processing unit proposed in [8]. 21

3.1 Decoder tree for the (1024, 512) polar code built using [22] and decoded with the
nodes and operations of Table 3.1. 26

3.2 Decoder trees for two different (512, 376) polar codes, where (a) and (b) are before
and after construction alteration, respectively. 29

3.3 Decoder tree for the altered (1024, 512) polar code. 30
3.4 Error-correction performance of the altered codes compared to that of the original

codes constructed using the Tal and Vardy method. 31
3.5 Decoder tree for the altered polar code with the added nodes. 32
3.6 Impact of quantization on the error-correction performance of the proposed (1024, 512)

polar code. 33
3.7 Architecture of the Rep1 Node. 34
3.8 High-level architecture of the decoder. 35
3.9 Architecture of the processing unit. 36

4.1 Effect of quantization on error-correction performance. 45

xii List of Figures

4.2 Dataflow graph of a (8, 5) polar decoder. 48
4.3 Polar decoding on GPU: Effect of the number of threads per block. 56
4.4 Polar decoding on GPU: Effect of the number of blocks per kernel. 57
4.5 Polar decoding on GPU: Shared versus global memory. 58
4.6 Polar codes compared with LDPC codes from the 802.11n standard. 64

5.1 Decoder trees for an (8, 4) polar code decoded with the (a) SSC and (b) Fast-SSC
algorithms. 70

5.2 Fully-unrolled decoder for a (8, 4) polar code. 70
5.3 Fully-unrolled deeply-pipelined decoder for a (8, 4) polar code. 71
5.4 Fully-unrolled deeply-pipelined decoder for a (16, 14) polar code. 72
5.5 Fully-unrolled partially-pipelined decoder for a (16, 14) polar code with I = 2. . . 73
5.6 Effect of quantization on the error-correction performance of a polar code. 77
5.7 Maximum FPGA resource usage and coded throughput of unrolled polar decoders. 84

6.1 Decoder trees for SC (a) and Fast-SSC (b) decoding of a (16, 12) polar code. . . . 88
6.2 Unrolled partially-pipelined decoder for a (16, 12) polar code with initiation inter-

val I = 2. 89
6.3 Error-correction performance of two (2048, 1365) polar codes with different con-

structions. 91
6.4 Error-correction performance of the four constituent codes of length 128 with a

rate of approximately 5/6 contained in the proposed (2048, 1365) master code. . . . 93
6.5 Error-correction performance of the polar codes. 95

xiii

List of Tables

2.1 Post-fitting results for SC-based decoder implementations. 22
2.2 Latency and information throughput for SC-based decoder implementations. 22

3.1 Decoder tree node types supported by the original Fast-SSC polar decoder [8]. . . . 25
3.2 New functions performed by the proposed decoder. 31
3.3 Frozen bit patterns decoded by leaf nodes. 32
3.4 Post-fitting results for rate-flexible decoders for moderate-length polar codes. . . . 37
3.5 Latency and information throughput comparison for low-rate moderate-length po-

lar codes. 38
3.6 Comparison of state-of-the-art ASIC decoders decoding a (1024, 512) polar code. . 39

4.1 Decoding polar codes with the instruction-based decoder. 47
4.2 Decoding polar codes with floating-point precision using SIMD, comparing the

instruction-based decoder (ID) with the unrolled decoder (UD). 52
4.3 Comparison of the proposed software decoder with that of [49]. 53
4.4 Effect of unrolling and algorithm choice on decoding speed of the (2048, 1707)

code on the Intel Core i7-4770S . 54
4.5 Decoding polar codes with 8-bit fixed-point numbers on an ARM Cortex A9 using

NEON. 55
4.6 Decoding polar codes on an NVIDIA Tesla K20c. 60
4.7 Comparison of the power consumption and energy per information bit for the

(2048, 1707) polar code. 61
4.8 Information throughput and latency of the polar decoders compared with the LDPC

decoders of [14] when estimating 524,280 information bits on a Intel Core i7-2600. 65

xiv List of Tables

5.1 Decoders for a (1024, 512) polar code with various initiation interval I imple-
mented on an FPGA. 78

5.2 Decoders for a (1024, 512) polar code with various initiation interval I imple-
mented on an ASIC. 78

5.3 Comparison with state-of-the-art polar decoders. 79
5.4 Comparison with other FPGA implementations. 80
5.5 Deeply-pipelined decoders for polar codes of various lengths with rate R = 1/2

implemented on an FPGA. 81
5.6 Deeply-pipelined decoders for polar codes of various lengths with rate R = 1/2

implemented on an ASIC. 81
5.7 Partially-pipelined decoders with initiation interval set to Imax for polar codes of

various lengths with rate R = 5/6 implemented on an FPGA. 82
5.8 Partially-pipelined decoders with initiation interval set to Imax for polar codes of

various lengths with rate R = 5/6 implemented on an ASIC clocked at 1 GHz. . . . 82
5.9 Deeply-pipelined decoders for polar codes of length N = 1024 with common rates

implemented on an FPGA. 83
5.10 Deeply-pipelined decoders for polar codes of length N = 1024 with common rates

implemented on an ASIC. 83

6.1 Information throughput and latency for the multi-mode unrolled polar decoders
based on the (2048, 1365) and (1024, 853) master codes, respectively with a Nmax

of 1024 and 2048. 96
6.2 Comparison with state-of-the-art polar decoders. 97

I wanna go fast!

Ricky Bobby

1

Chapter 1

Introduction

Over the last decades we have gradually seen digital circuits take over applications that were tra-
ditionally bastions of analog circuits. One of the reasons behind this tendency is our ability to
detect and correct errors in digital circuits—circuits making computations with discrete signals
as opposed to continuous ones. This ability lead to faster and more reliable communication and
storage systems. In some cases it enabled things that we thought might have never been possible
e.g. reliable communication with a probe that is located many light years away from our planet.

Right after the second world war, Claude Shannon created a new field—information theory—
in which he defined the limit of reliable communications or storage. In his seminal work, Shannon
defined what he calls the channel capacity [1], the bound that many researchers have tried to
achieve or even approach ever since. Shannon’s work does not tell us how this limit can be reached.

While Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) codes have good error-
correction performance and are in widespread use even today, it’s not until the discovery of turbo
codes [2] in the 1990s that error-correcting codes approaching the channel capacity were found. In-
deed, while Low-Density Parity-Check (LDPC) codes—initially discovered in the 1960s by Robert
Gallager [3]—can also be capacity approaching, their decoding algorithm was too complex for the
time and thus were not used until they were independently rediscovered by David McKay in 1997
[4].

The discovery of turbo and LDPC codes, greatly rejuvenated the field of error correction. Often
used in conjunction with a RS or a BCH code, standards that feature a turbo or a LDPC code are
omnipresent. Nowadays, each home contains at least tens of decoders for these codes. They are
used in a plethora of applications such as video broadcasting, wireless and wired communications

2 Introduction

(e.g. WIFI and Ethernet), data storage and more.
The latest findings on the road to achieving channel capacity are polar codes. Invented by

Arıkan in 2008 [5] and further refined in 2009 [6], this new class of error-correcting codes, contrary
to LDPC and turbo codes, have an explicit—non-random—construction making the implementa-
tion of their encoders and decoders simpler than that of LDPC or turbo codes. Polar codes exploit
the channel polarization phenomenon by which the probability of correctly estimating codeword
bits tends to either 1 (completely reliable) or 0.5 (completely unreliable). These probabilities get
closer to their limit as the code length increases when a recursive construction is used. Under
the low-complexity Successive-Cancellation (SC) decoding algorithm, polar codes were shown to
achieve the symmetric capacity of memoryless channels as their length tends to infinity.

The complexity of the SC algorithm is low but its sequential nature translates in high-latency
and low-throughput decoder implementations. To overcome this, new decoding algorithms de-
rived from SC were introduced, most notably [7] and [8]. These algorithms exploit the recursive
construction of polar codes along with the a priori knowledge of the code structure. Fast Simpli-
fied Successive Cancellation (Fast-SSC), the algorithm described in [8], integrates the Simplified
Successive Cancellation (SSC) algorithm described in [7], thus this work builds upon the former.

Fast-SSC represented a significant improvement over the previous algorithms and led to the
first hardware decoder achieving a throughput greater than 1 Gbps. However, the optimization
presented therein targeted high-rate codes. As low-rate codes are omnipresent in modern wire-
less communications, it was evident that it would be beneficial to have a closer look at potential
improvements for such codes.

In Software-Defined Radio (SDR) applications, researchers and engineers have yet to fully har-
ness the error-correction capability of modern codes. Many are still using classical codes [9], [10]
as implementing low-latency high-throughput—exceeding 10 Mbps of information throughput—
software decoders for turbo or LDPC codes is very challenging. The irregular data access pat-
terns featured in turbo and LDPC decoders make efficient use of Single-Instruction Multiple-Data
(SIMD) extensions present on today’s processors difficult. To overcome the difficulty of efficiently
accessing memory while decoding one frame and still achieve a good throughput, software de-
coders resorting to inter-frame parallelism (decoding multiple independent frames at the same
time) are often proposed [11]–[13]. Inter-frame parallelism comes at the cost of higher latency, as
many frames have to be buffered before decoding can be started. Even with a split layer approach
to LDPC decoding where intra-frame parallelism can be applied, the latency remains high at multi-

1.1 Objectives 3

ple milliseconds on a recent desktop processor [14]. On the other hand, polar codes are well suited
for software implementation as their decoding algorithms feature regular memory access patterns.

While the future 5G standards are still in the works, many documents mention the requirement
of peak per-user throughput greater than 10 Gbps. Regardless of the algorithm, the state of polar
decoder implementations when this research started offered much lower throughput. The fastest
SC-based decoder had a throughput of 1.2 Gbps at a clock frequency of 106 MHz [8]. The fastest
decoder implementation based on the Belief Propagation (BP) decoding algorithm—an algorithm
with higher parallelism than SC—had an average 4.7 Gbps throughput when early termination was
used with a clock frequency of 300 MHz [15]. It was evident that a minor improvement over the
existing architectures was unlikely to be sufficient to meet the expected throughput requirements
of future wireless communication standards.

1.1 Objectives

The objectives of this work are to develop polar decoders that (a) have high throughput, low latency
and good energy efficiency, (b) are suitable for both hardware and software implementations, and
(c) are suitable for use with varying channel conditions. The main objective of this work is to make
polar codes more appealing to practical applications.

1.2 Summary of Thesis Contributions

This thesis proposes improvements to the state-of-the-art low-complexity decoding algorithm for
low-rate polar codes, a code construction alteration method with human-guided criteria, high-speed
low-latency software implementations for modern processors, and very-high-speed multi-mode
hardware architectures and implementations.

Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

Fast-SSC [8], the state-of-the-art low-complexity decoding algorithm, represents a significant im-
provement over the previous decoding algorithms. However, the work in [8] and the optimization
presented therein targeted high-rate codes. We introduce modifications to the Fast-SSC algorithm
to recognize more constituent codes in order to better accommodate low-rate codes and dedicated
hardware is added to efficiently decode these new constituent codes. We also propose a code

4 Introduction

construction alteration process to further reduce the latency and increase the throughput. Imple-
mentation results using the proposed methods and algorithms are presented. These results show a
22% to 28% latency reduction and a 26% to 34% throughput improvement with little to negligible
coding loss for low-rate moderate-length polar codes.

Low-Latency Software Polar Decoders

In SDR applications, researchers and engineers have yet to fully harness the error-correction ca-
pability of modern codes due to their high computational complexity. The low-complexity en-
coding and decoding algorithms render polar codes attractive for use in SDR applications where
computational resources are limited. We present low-latency software polar decoders that exploit
modern processor capabilities. We show how adapting the algorithm at various levels can lead to
significant improvements in latency and throughput, yielding polar decoders that are suitable for
high-performance SDR applications on modern desktop processors and embedded-platform pro-
cessors. These proposed decoders have an order of magnitude lower latency and memory footprint
compared to state-of-the-art decoders, while maintaining comparable throughput. In addition, we
present strategies and results for implementing polar decoders on graphical processing units. Fi-
nally, we show that the energy efficiency of the proposed decoders is comparable to state-of-the-art
software polar decoders.

Unrolled Hardware Architectures for Polar Decoders

Conventional polar decoders implement one or a few specialized computational units and reuse
them multiple times during the decoding process. We demonstrate that polar decoders can achieve
extremely high throughput values and retain moderate complexity. We present a family of archi-
tectures for hardware polar decoders using a reduced-complexity successive-cancellation decoding
algorithm that employ unrolling. The resulting fully-unrolled architectures are capable of achiev-
ing a coded throughput in excess of 400 Gbps and of 1 Tbps on an Field-Programmable Gate-Array
(FPGA) or an Application-Specific Integrated Circuit (ASIC), respectively—two to three orders of
magnitude greater than current state-of-the-art polar decoders—while maintaining a competitive
energy efficiency of 6.9 pJ/bit on ASIC. Moreover, the proposed architectures are flexible in a way
that makes it possible to explore the trade-off between area, throughput and energy efficiency.

1.3 Related Publications 5

Multi-mode Unrolled Polar Decoding

Unrolled decoders are architectures that provide the greatest decoding speed, by orders of mag-
nitude compared to their more compact counterparts. However, unrolled decoders are built for a
specific, fixed, code i.e. the code length or rate cannot be modified at execution time. This is a
major drawback for most modern wireless communication applications that largely benefit from
the support of multiple code lengths and rates. We show how an unrolled decoder built specif-
ically for a polar code, of fixed length and rate, can be transformed into a multi-mode decoder
supporting many codes of various lengths and rates. More specifically, we show how decoders for
moderate-length polar codes contain decoders for many other shorter—yet practical—polar codes
of both high and low rates. The required hardware modifications are detailed, and ASIC synthesis
and power estimations are provided for the 65 nm CMOS technology from TSMC. Results show a
peak information throughput greater than 20 Gbps either at 250 MHz in 4.29 mm2 or at 500 MHz
in 1.71 mm2. Latency is kept under 2 μs and 650 ns for the former and latter.

1.3 Related Publications

This doctoral research has resulted in several publications, a partial list of which and how they
relate to the chapters of this thesis is provided here.

1. P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “A 638 Mbps Low-Complexity Rate 1/2
Polar Decoder on FPGAs,” IEEE Int. Workshop on Signal Process. Syst. (SiPS), Oct. 2015,
pp. 1–6. [16]

This conference paper discussed modifications to the Fast-SSC algorithm to recognize more
constituent codes in order to better accommodate low-rate codes. Dedicated hardware was
presented to efficiently decode these new constituent codes. Also, it proposed to slightly
alter the code construction to reduce the latency and increase the throughput at the cost of a
small error-correction performance degradation. Results were presented for a 1024-bit polar
code with rate 1/2 and for two different FPGAs. The contributions of this paper are included
and improved upon in the journal paper below.

2. P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thibeault, and W. J. Gross, “Fast Low-
complexity Decoders for Low-rate Polar Codes,” Springer J. Signal Process. Syst., 2016,
invited, to appear. [17]

6 Introduction

This journal publication expended on the conference one by formalizing and improving the
code construction alteration process. More FPGA results using the proposed methods, algo-
rithms and implementation were presented. ASIC results along with a comparison against
the state-of-the-art ASIC decoder implementations was also provided. The contributions of
this paper are discussed in Chapter 3.

3. P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Fast Software Polar Decoders,” IEEE
Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP), May 2014, pp. 7555–7559.
[18]

This conference paper discussed the decoding of polar codes on modern desktop processors
with SIMD instructions. Bottom-up optimization was used to implement the Fast-SSC al-
gorithm taking advantage of the Streaming SIMD Extensions (SSE) and Advanced Vector
eXtensions (AVX) of Intel processors. Some of the results of this paper are incorporated in
Chapter 4.

4. P. Giard, G. Sarkis, C. Leroux, C. Thibeault, and W. J. Gross, “Low-Latency Software Polar
Decoders,” Springer J. Signal Process. Syst., 2016, to appear. [19]

This journal publication expended on the conference one by adapting the decoding algorithm
at various levels. It analysed the impact of various strategies on latency and throughput.
Results were presented for desktop and embedded-platform processors. Strategies and im-
plementation results were also presented for high-throughput decoder implementations on
Graphical Processing Unit (GPU) processors. The contributions of this paper are presented
in Chapter 4.

5. P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “237 Gbit/s Unrolled Hardware Polar
Decoder,” IET Electron. Lett., issue 10, vol. 51, pp. 762–763, May 2015. [20]

This journal letter presented a fully-unrolled deeply-pipelined architecture based on the Fast-
SSC decoding algorithm to achieve a throughput greater than 200 Gbps on FPGA. That was
two orders of magnitude faster than the state of the art. The architecture presented in this
paper is included in Chapter 5.

6. P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Multi-Mode Unrolled Hardware Archi-
tectures for Polar Decoders,” IEEE Trans. Circuits & Syst. I, vol. 63, no. 9, pp. 1443–1453,
Sep. 2016. [21]

1.4 Thesis Organization 7

This journal publication started by expending on the previous one by generalizing the un-
rolled architecture into a family of architectures offering a flexible trade-off between through-
put, area and energy efficiency. More details on the unrolled architecture were given and
more results were provided. The example used in the journal letter was significantly im-
proved on all metrics. ASIC results were provided as well as power estimations. These
contributions are included in Chapter 5.

This paper also presented a new method to enable the use of multiple code lengths and rates
in a fully-unrolled polar decoder architecture. This novel method lead to a length- and rate-
flexible decoder while retaining the very high speed typical to unrolled decoders. Results
were presented for two versions of a multi-mode decoder supporting eight and ten different
polar codes, respectively. These contributions are included in Chapter 6.

1.4 Thesis Organization

Chapter 2 reviews polar codes, their construction, representations, and encoding and decoding
algorithms. It also briefly goes over results for the state-of-the-art decoder implementations from
the literature.

In Chapter 3, improvements to the state-of-the-art low-complexity decoding algorithm are pre-
sented. A code construction alteration method with human-guided criteria is also proposed. Both
aim at reducing the latency and increasing the throughput of decoding low-rate polar codes. The
effect on various low-rate moderate-length codes and implementation results are discussed.

Algorithm optimization at various levels leading to low-latency high-throughput decoding of
polar codes on modern processors are introduced in Chapter 4. Bottom-up optimization and effi-
cient use of SIMD instructions available on both embedded-platform and desktop processors are
proposed in order to parallelize the decoding of a frame, reduce latency and increase throughput.
Strategies for efficient implementation of polar decoders on General Purpose GPU (GPGPU) are
also presented. Implementation results for all three types of modern processors are discussed.

A family of hardware architectures utilizing unrolling is presented in Chapter 5 showing that
polar decoders can achieve extremely high throughput values and retain moderate complexity.
Implementations for various rates and code lengths are presented for FPGA and ASIC. The results
are compared with the state of the art.

Expending from the previous chapter, Chapter 6 introduces a method to enable the use of

8 Introduction

multiple code lengths and rates in a fully-unrolled polar decoder architecture. This novel method
leads to a length- and rate-flexible decoder while retaining the very high speed typical to those
decoders. ASIC results are presented for two versions of a multi-mode decoder and compared
against the state-of-the-art decoders.

Lastly, conclusions about this thesis are drawn in Chapter 7 and a list of suggested future
research topics is presented.

9

Chapter 2

Polar Codes

2.1 Construction

Polar codes exploit the channel polarization phenomenon to achieve the symmetric capacity of a
memoryless channel as the code length increases (N → ∞). A polarizing construction where N = 2
is shown in Fig. 2.1a. The probability of correctly estimating bit u1 increases compared to when the
bits are transmitted without any transformation over the channel W . Meanwhile, the probability of
correctly estimating bit u0 decreases. The polarizing transformation can be combined recursively to
create longer codes, as shown in Fig. 2.1b for N = 4. As the N → ∞, the probability of successfully
estimating each bit approaches either 1 (perfectly reliable) or 0.5 (completely unreliable), and the
proportion of reliable bits approaches the symmetric capacity of W [6].

To construct an (N, k) polar code, the N − k least reliable bits, called the frozen bits, are set
to zero and the remaining k bits are used to carry information. Fig. 2.2a illustrates non-systematic
encoding of an (8, 4) polar code, where the frozen bits are indicated in gray and a0, ..., a3 are the
k = 4 information bits. Encoding is carried out by propagating u = u7

0 from left to right, through
the graph of Fig. 2.2a.

The locations of the information and frozen bits are based on the type and conditions of W .
Unless specified otherwise, in this thesis we use polar codes constructed according to [22]. The
generator matrix, GN , for a polar code of length N can be specified recursively so that GN = FN =

10 Polar Codes

u0 + W y0

u1 W y1

(a) N = 2

u0 +
v0

+
x0

W y0

u1
v1
+

x1
W y1

u2 +
v2 x2

W y2

u3
v3 x3

W y3

(b) N = 4

Figure 2.1: Construction of polar codes of lengths 2 and 4.

F⊗ log2 N
2 , where F2 =

[1 0
1 1
]

and ⊗ is the Kronecker power. For example, for N = 4, GN is

G4 = F⊗2
2 =

⎡⎢⎢⎢⎢⎢⎣
F2 0

F2 F2

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In matrix form, non-systematic encoding can be represented as x = uGN , where u is a N-bit
row vector containing the bits to be encoded in the information bit locations. When polar codes
were initially proposed, bit-reversed indexing was used. While this changes the bit ordering for
both encoding and decoding, the error-correction performance remains unaffected. This change
translates into multiplying the generator matrix by the bit-reversal permutation matrix BN [6] (or
Π̃N [5]), so that GN = BNFN . In this thesis, natural indexing is used unless stated otherwise.

2.2 Tree Representation

A polar code of length N is the concatenation of two constituent polar codes of length N/2 [6].
Therefore, binary trees are a natural representation of polar codes [7]. Fig. 2.2 illustrates the
tree representation of an (8, 4) polar code. In Fig. 2.2a, the frozen bits are labeled in gray while
the information bits are in black. The corresponding tree, shown in Fig. 2.2b, uses white and
black leaf nodes to denote these bits, respectively. The gray nodes of Fig. 2.2b correspond to
concatenation operations shown in Fig. 2.2a. Moving up in the decoder tree corresponds to the

2.3 Systematic Coding 11

concatenation of constituent codes. For example, the concatenation operation circled in blue in
Fig. 2.2a corresponds to the node labeled v in Fig. 2.2b.

u0 = 0 + + + x0

u1 = 0 + + x1

u2 = 0 + + x2

u3 = a0 + x3

u4 = 0 + + x4

u5 = a1 + x5

u6 = a2 + x6

u7 = a3 x7

(a) Graph

u0 u1 u2 u3

v

left

u4 u5

right

u6 u7

αv

βv

βl

αl βr

αr

(b) Decoder tree

Figure 2.2: Non-systematic (8, 4) polar code represented as a (a) graph and as a (b) decoder tree.

2.3 Systematic Coding

Encoding schemes for polar codes can be either non-systematic, as shown in Figs. 2.1b and 2.2a, or
systematic as discussed in [23]. Systematic polar codes offer better Bit-Error Rate (BER) than their
non-systematic counterparts; while maintaining the same Frame-Error Rate (FER). Furthermore,
they allow the use of low-complexity rate-adaptation techniques such as code shortening method
proposed in [24]. Flexible low-complexity systematic encoding of polar codes is discussed at
length in [25], [26].

Fig. 2.3 shows an example of the low-complexity systematic encoding scheme proposed in
[25], [26]. It comprises two non-systematic encoding passes and a bit masking operation in
between. For a (8, 4) polar code, a N-bit vector u = [0, 0, 0, a0, 0, a1, a2, a3], where a0, ..., a3

are the k = 4 information bits, enters the first non-systematic encoder from the left. Then,
using bit masking, the locations corresponding to frozen bits are reset to 0 before propagating
the updated vector through the second non-systematic encoder. The end result is a N-bit vector
x = [p0, p1, p2, a0, p3, a1, a2, a3], where p0, ..., p3 are the N − k = 4 parity bits and a0, ..., a3 are the
k information bits.

12 Polar Codes

0 + + + 0 + + + p0

0 + + 0 + + p1

0 + + 0 + + p2

a0 + + a0

0 + + 0 + + p3

a1 + + a1

a2 + + a2

a3 a3
u x

Figure 2.3: Low-complexity systematic encoding of a (8, 4) polar code.

This encoding scheme was proven to be correct under certain conditions, conditions that are
always met when a construction method leading to polar codes with a good error-correction per-
formance is used e.g. [22]. In this thesis, systematic polar codes are used.

2.4 Successive-Cancellation Decoding

In SC decoding, the decoder tree is traversed depth first, selecting left edges before backtracking
to right ones, until the size-1 frozen and information leaf nodes. The messages passed to child
nodes are Log-Likelihood Ratios (LLRs); while those passed to parents are bit estimates. These
messages are denoted α and β , respectively. Messages to a left child l are calculated by the f

operation using the min-sum algorithm:

αl[i] = f (αv[i],αv[i + Nv/2])

= sign(αv[i])sign(αv[i + Nv/2]) min(|αv[i]|, |αv[i + Nv/2]|),
(2.1)

where Nv is the size of the corresponding constituent code and αv the LLR input to the node.
Messages to a right child are calculated using the g operation

αr[i] = g(αv[i],αv[i + Nv/2], βl[i])

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αv[i + Nv/2] + αv[i], when βl[i] = 0;

αv[i + Nv/2] − αv[i], otherwise,

(2.2)

2.5 Simplified Successive-Cancellation Decoding 13

where βl is the bit estimate from the left child.
Bit estimates at the leaf nodes are set to zero for frozen bits and are calculated by performing

threshold detection for information ones. After a node has the bit estimates from both its children,
they are combined to generate the node’s estimate that is passed to its parent

βv[i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βl[i] ⊕ βr[i], when i < Nv/2;

βr[i − Nv/2], otherwise,
(2.3)

where ⊕ is modulo-2 addition (XOR).

2.5 Simplified Successive-Cancellation Decoding

As mentioned above, a polar code is the concatenation of smaller constituent codes. Instead of
using the successive-cancellation algorithm on all constituent codes, the location of the frozen bits
can be taken into account to use more efficient, lower complexity, algorithms on some of these
constituent codes. In [7], decoder tree nodes are split into three categories: Rate-0, Rate-1, and
Rate-R nodes.

2.5.1 Rate-0 Nodes

Rate-0 nodes are subtrees whose leaf nodes all correspond to frozen bits. We do not need to use the
SC algorithm to decode such a subtree as the exact decision, by definition, is always the all-zero
vector.

2.5.2 Rate-1 Nodes

These are subtrees where all leaf nodes carry information bits, none are frozen. The maximum-
likelihood decoding rule for these nodes is to take a hard decision on the input LLRs:

βv[i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, when αv[i] ≥ 0;

1, otherwise.
(2.4)

With a fixed-point representation, this operation amounts to copying the most significant bit of the
input LLRs.

14 Polar Codes

(a) SC (b) SSC

SPC

(c) Fast-SSC

Figure 2.4: Decoder trees corresponding to the SC, SSC and Fast-SSC decoding algorithms.

2.5.3 Rate-R Nodes

Lastly, Rate-R nodes, where 0 < R < 1, are subtrees such that leaf nodes are a mix of information
and frozen bits. These nodes are decoded using the conventional SC algorithm until a Rate-0 or
Rate-1 node is encountered.

As a result of this categorization, the SSC algorithm trims the SC decoder tree for a (8, 5) polar
code shown in Fig. 2.4a into the one illustrated in Fig. 2.4b. Rate-1 and Rate-0 nodes are shown
in black and white, respectively. Gray nodes represent Rate-R nodes. Trimming the decoder tree
leads to a lower decoding latency and an increased decoder throughput.

2.6 Fast-SSC Decoding

The Fast-SSC decoding algorithm extends both SC and SSC and further prunes the decoder tree
by applying low-complexity decoding rules when encountering certain types of constituent codes.

Three functions—F , G and Combine—are inherited from the original SC algorithm. They
correspond to (2.1), (2.2) and (2.3), respectively. Fast-SSC also integrates the decoding algorithms
for the Rate-1 and Rate-0 nodes of the SSC algorithm.

However, for some Rate-R nodes corresponding to constituent codes with specific frozen-bit
locations, a decoding algorithms with lower latency than SC decoding is used. These special cases
are:

2.6.1 Repetition codes

Repetition codes are constituent codes where only the last bit is an information bit. These codes
are efficiently decoded by calculating the sum of the input LLRs and using threshold detection to

2.6 Fast-SSC Decoding 15

determine the result that is then replicated to form the estimated bits :

βv[i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, when

(∑Nv−1
i=0 αv[i]

)
≥ 0;

1, otherwise,

where Nv is the number of leaf nodes.

2.6.2 SPC codes

Single Parity Check (SPC) codes are constituent codes where only the first bit is frozen. The
corresponding node is indicated by the cross-hatched orange pattern in Fig. 2.4c. The first step in
decoding these codes is to calculate the hard decision of each LLR

βv[i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, when αv[i] ≥ 0;

1, otherwise,
(2.5)

and then calculating the parity of these decisions

parity =
Nv−1⊕

i=0

βv[i]. (2.6)

If the parity constraint is unsatisfied, the estimate of the bit with the smallest LLR magnitude is
flipped:

βv[i] = βv[i] ⊕ parity,where i = arg min
j

(|αv[j]|). (2.7)

2.6.3 Repetition-SPC codes

Repetition-SPC codes, or RepSPC codes, are codes whose left constituent code is a repetition
code and the right an SPC one. They can be speculatively decoded in hardware by simultaneously
decoding the repetition code and two instances of the SPC code: one assuming the output of the
repetition code is all 0’s and the other all 1’s. The correct result is selected once the output of the
repetition code is available. This speculative decoding also provides speed gains in software.

16 Polar Codes

2.6.4 Other Operations

The Fast-SSC algorithm introduces other types of operations with the aim of reducing the number
of memory accesses, and thus of reducing the latency.

Notably the G0R and C0R (or Combine_0R) operations are special cases of the G and Combine

operations, respectively (2.2) and (2.3), where the left child is a frozen node i.e. βl is known a
priori to be the all-zero vector of length Nv.

Fig. 2.4c shows the tree corresponding to a Fast-SSC decoder.

2.7 Other SC-based Decoding Algorithms

Other SC-based algorithms were published where multiple bits are estimated at a time. The next
two sections present a brief overview of the most notable ones.

2.7.1 ML-SSC Decoding

ML-SSC [27] expands on SSC by using an exhaustive-search maximum-likelihood (ML) decoder
to decode rate-R codes once their length and dimension fall below a resource-constrained threshold.
The general rule for ML decoding with LLR inputs is given by

βv = arg max
x∈C

∑

i

(1 − 2xi)αvi; (2.8)

where αv is the LLR input and C is the list of codewords of the constituent code.

2.7.2 Hybrid ML-SC Decoding

The hybrid ML-SC decoding algorithm [28] partitions the polar code graph into M partitions,
where each is decoded using an SC decoder until stage log2 M is reached. At that point different
rules are used based on the location and count of frozen bits. Instead of conducting an exhaustive
search, the ML decoder is simplified by taking advantage of the special structure of polar codes.
Nonetheless, no approximations are made and these rules are thus equivalent to the ML decoding
rule (2.8).

In the hybrid ML-SC algorithm, SC decoders first produce M LLR values that are used by the
following ML decoder section to estimate M bits. These estimated bits are then used to calculate

2.8 Other Decoding Algorithms 17

the next M LLR values according to (2.2), and so on. Since the progression of the decoding process
and the operations applied in hybrid ML-SC are the same as those of ML-SSC, the former can be
seen as a special case of the latter.

2.8 Other Decoding Algorithms

Besides SC-based algorithms, other algorithms can be used to decode polar codes. On one hand,
there are prohibitively complex algorithms, like sphere [29] or linear-programming [30] decoding,
practically restricted to short polar codes because of their complexity with regard to code length.
On the other hand, there are algorithms that may turn out to be interesting but that did not get much
attention yet, in particular the BP and the List-based algorithms. The former is interesting because
of its intrinsic high level of parallelism and the latter has great potential because it can significantly
improve the error-correction performance of short- to moderate-length polar codes.

2.8.1 Belief-Propagation Decoding

The BP algorithm is a well-known algorithm that has been very successfully applied to decode
LDPC codes. It was shown in [31] that it can be adapted to decode polar codes as well. BP decod-
ing of a polar code can be seen as applying a flooding decoding schedule to the graph representation
of a polar code as opposed to a serial schedule such as the one used in SC-based decoding.

LLRs are iteratively propagated in the graph until a stopping criterion is met. This criterion
can either be an early-stopping criterion [32] or simply a fixed maximum number of iterations.
Threshold detection is then applied to the resulting LLRs to generate the codeword estimate.

It was shown that BP decoding may require a very large number of iterations to achieve the
same error-correction performance as SC. Fig. 2.5 shows an example where BP decoding of a
(2048, 1723) polar code requires at least 100 iterations of a flooding schedule to match the perfor-
mance of SC decoding. At equal error-correction performance, even a fully-parallel BP decoder
has a greater latency than an SC decoder.

2.8.2 List-based Decoding

In list-based decoding algorithms, several decoding paths are explored using an SC-based algo-
rithm and a constrained list of the L-best candidate codewords is built. These L-best candidates are

18 Polar Codes

3.75 4 4.25 4.5 4.75 5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e-
er

ro
rr

at
e

3.75 4 4.25 4.5 4.75 5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)
B

it-
er

ro
rr

at
e

BP: I = 10 I = 20 I = 50 I = 100 I = 1000
SC:

Figure 2.5: Error-correction performance of BP and SC decoding for a (2048, 1723) polar code,
where I is the maximum number of iterations. Data from [26] and used with author’s permission.

determined by calculating reliability metric for each of the explored paths. It was shown in [33]
that list decoding a polar code concatenated with a Cyclic Redundancy Check (CRC)—List-CRC
decoding—greatly improves the error-correction performance over list decoding of a polar code
alone. This improvement is significant enough to have polar codes exceed the performance of
LDPC codes of similar length and rate.

Fig. 2.6 shows the error-correction performance of List-based decoding of a (2048, 1753) polar
code. The performance of SC decoding as well as that of the (1944, 1620) LDPC code from the
802.11n WIFI standard are included for comparison. A maximum of 10, 20 or 30 iterations of
offset min-sum BP decoding with a flooding schedule were used for the LDPC code. All List-CRC
decoding curves are for a 16-bit CRC.

In a list-based decoder, the L paths can either be processed in parallel using up to L SC-based
decoders or serially by time-multiplexing the use of M < L SC-based decoders. The former results
in increased hardware complexity, and the latter in higher latency and lower throughput decoders.
Efficient hardware implementations of list-based decoders for polar codes capable of achieving a
throughput greater than 5 Gbps was an open problem when we started this thesis and so it remains
to this day.

2.9 SC-based Decoder Hardware Implementations 19

3 3.25 3.5 3.75 4 4.25

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e-
er

ro
rr

at
e

3 3.25 3.5 3.75 4 4.25

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)
B

it-
er

ro
rr

at
e

List-CRC: L = 8 L = 4 L = 2
List: L = 8
SC:

LDPC: I = 30 I = 20 I = 10

Figure 2.6: Error-correction performance of List, List-CRC and SC decoding of a (2048, 1723)
polar code versus that of the (1944, 1620) 802.11n LDPC code. L is the maximum number of
candidate codewords and I is the maximum number of iterations.

2.9 SC-based Decoder Hardware Implementations

Since this thesis proposes SC-based hardware decoders, this section briefly reviews the notable
and state-of-the-art SC-based hardware decoders from the literature. But first, a module central to
most SC-based decoders is briefly discussed: the Processing Element (PE).

2.9.1 Processing Element for SC Decoding

In SC decoding, the soft-value messages are calculated using (2.1) and (2.2). Very early on, a block
integrating both calculations was proposed and designated as a PE [34]. Later, it was proposed to
use a special PE for the last calculation stage in order to estimate 2 bits simultaneously [35]–[37].
As will be shown below, a different approach was taken in the Fast-SSC implementation.

20 Polar Codes

2.9.2 Semi-Parallel Decoder

The Semi-Parallel Successive-Cancellation (SP-SC) decoder, first proposed in [38] to be later im-
proved in [36], puts a constraint on the number of implemented PEs. It was observed that, in the
line SC decoder [39]—which represented the state of the art at the time—, the N/2 PEs were only
used twice per decoded frame.

It was shown in [38] that by implementing P = 64 PEs instead of N/2, a SP-SC decoder would
reach 97% of the speed of a line decoder when decoding a polar code of length N = 211, while
reducing the hardware complexity by an order of magnitude.

2.9.3 Two-Phase Decoder

The Two-Phase Successive-Cancellation (TP-SC) decoder [40] mainly aimed at reducing the mem-
ory requirements in a SC-based decoder. As its name suggests, the decoding process is broken
down into two parts. Phase 1 and phase 2 are for constituent codes of lengths Nv >

√
N and

Nv ≤
√

N, respectively.
A pipelined-tree architecture is used to increase the clock frequency and memory is saved by

not saving all intermediate LLRs to Random-Access Memory (RAM), instead they are recalculated
when then are needed again.

2.9.4 Processor-like Decoder or the Original Fast-SSC Decoder

The Fast-SSC implementation of [8] proposed a decoder architecture that contained, at its core,
what resembles a processor. As illustrated in Fig. 2.7, the processor featured all the modules
required to implement the nodes and operations described in sections 2.4, 2.5 and 2.6.

The decoder could be configured at run time to load a set of instructions corresponding to given
polar code. At the time however, the code length was fixed at synthesis time. It was later improved
to support any polar code of length N ≤ Nmax [25].

2.9.5 Implementation Results

In this section, results for implementations of the decoders discussed above are presented. All
results are for the Altera Stratix IV EP4SGX530KH40C2 FPGA. Table 2.1 shows the resource
usage and execution frequency while table 2.2 presents latency and throughput results for a few

2.9 SC-based Decoder Hardware Implementations 21

α

β0

0
m0

G

SPC

m2

Rep

Rep
SPC

01

m3

Sign

β1

C
om

bi
ne

F
m1 α′

β′
0

β′
1

Figure 2.7: Architecture of the data processing unit proposed in [8].

polar codes of various lengths and rates. It should be noted that the TP-SC decoder implementation
of [40] lacks the buffers required to sustain its throughput.

22 Polar Codes

Table 2.1: Post-fitting results for SC-based decoder implementations.

Implementation N LUTs Regs.
RAM f
(kbits) (MHz)

SP-SC [38] 1024 2,888 1,388 11.9 196
SP-SC [41] 2,618 1,292 13.8 169
TP-SC [40] 1,940 748 7.1 239
SP-SC [38] 16,384 29,897 17,063 184.1 113
SP-SC [41] 2,769 1,230 206.6 168
TP-SC [40] 7,815 3,006 114.6 230
Fast-SSC [8] 25,219 6,529 285.3 106
SP-SC [38] 32,768 58,480 33,451 364.3 66
SP-SC [36], [41] 3,263 1,304 411.6 167
Fast-SSC [8] 25,866 7,209 536.1 108

Table 2.2: Latency and information throughput for SC-based decoder implementations.

Implementation Code
(N, k)

Latency Info. T/P
(Mbps)(CCs) (μs)

SP-SC [38] (1024, 512) 2,304 12 44
SP-SC [41] 2,604 15 33
TP-SC [40] 2,656 11 56
SP-SC [38] (16384, 14746) 34,304 304 48
SP-SC [41] 43,772 261 57
TP-SC [40] 41,600 181 106
Fast-SSC [8] 1,433 14 1,091
SP-SC [38] (32768, 29492) 69,120 1,047 28
SP-SC [36], [41] 88,572 530 56
Fast-SSC [8] 2,847 26 1,081

23

Chapter 3

Fast Low-Complexity Hardware Decoders

for Low-Rate Polar Codes

In this chapter, we show how the state-of-the-art low-complexity decoding algorithm can be im-
proved to better accommodate low-rate codes. More constituent codes are recognized in the up-
dated algorithm and dedicated hardware is added to efficiently decode these new constituent codes.
We also alter the polar code construction to further decrease the latency and increase the throughput
with little to no noticeable effect on error-correction performance. Rate-flexible decoders for polar
codes of length 1024 and 2048 are implemented on FPGA and ASIC. Over the previous FPGA
work, they are shown to have from 22% to 28% lower latency and 26% to 34% greater throughput
when decoding low-rate codes. On 65 nm ASIC CMOS technology, the proposed decoder for a
(1024, 512) polar code is shown to compare favorably against the state-of-the-art ASIC decoders.
With a clock frequency of 400 MHz and a supply voltage of 0.8 V, it has a latency of 0.41 μs and
an area efficiency of 1.8 Gbps/mm2 for an energy efficiency of 77 pJ/info. bit. At 600 MHz with a
supply of 1 V, the latency is reduced to 0.27 μs and the area efficiency increased to 2.7 Gbps/mm2

at 115 pJ/info. bit

3.1 Introduction

While the Fast-SSC [8] algorithm represents a significant improvement over the previous decoding
algorithms, the work in [8] and the optimization presented therein targeted high-rate codes. In this
chapter, we propose modifications of the Fast-SSC algorithm and a code construction alteration

24 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

process targeting low-rate codes. We present results using the proposed methods, algorithms and
implementation. These results show a 22% to 28% latency reduction and a 22% to 28% throughput
improvement with little to negligible coding loss for low-rate moderate-length polar codes.

The rest of this chapter is organized as follows. Section 3.2 discusses polar code construc-
tion alteration along with our proposed method leading to improved latency and throughput of a
hardware decoder. In Section 3.3, modifications to the original Fast-SSC algorithms are proposed
in order to further reduce the latency and increase the decoding throughput. Sections 3.4 and
3.5 present the implementation details along with the detailed results on FPGA. Section 3.5 also
provides ASIC results for our proposed decoder decoding a (1024, 512) polar code for a compari-
son against state-of-the-art ASIC decoders from the literature. Finally, Section 3.6 concludes this
chapter.

3.2 Altering the Code Construction

3.2.1 Original Construction

As mentioned in Chapter 2, a good polar code is constructed by selecting which bits to freeze,
according to the type of channel and its conditions [6], [22], [42], [43]. Fig. 3.1 shows the decoder
tree corresponding to the (1024, 512) polar code constructed using the technique of [22] where
only the node types defined in Table 3.1 are used with the same constraints of [8]. The polar
code was optimized for an Eb/N0 of 2.5 dB. The F , G, G_0R, Combine and Combine_0R blocks are
constrained to a maximum of P = 512 inputs meaning that, for nodes with a length Nv > P,

⌈
Nv/P
⌉

cycles are required. The Rep, RepSPC and 01 blocks are all executed in one clock cycle. Finally,
the SPC-based nodes—0SPC and RSPC—use pipelining and require

⌈
Nv/P
⌉
+ 4 clock cycles. Thus

the decoding latency to decode the tree of Fig. 3.1 using the algorithm and implementation of [8]
is 220 Clock Cycles (CCs) and the information throughput is 2.33 bits/CC.

Altering a polar code to further trim the decoder tree can result in a significant latency reduc-
tion, without affecting the code rate. By making these modifications however, the error-correction
performance is degraded. Although, as will be shown in the next section, the impact can be small,
especially if the number of changes is limited.

3.2 Altering the Code Construction 25

Table 3.1: Decoder tree node types supported by the original Fast-SSC polar decoder [8].

Name Color Description

0R White and gray Left-half side is frozen.
R1 Gray and black Right-half side is all information.

RSPC Gray and yellow Right-half side is an SPC code.
0SPC White and yellow Left-half side is frozen, right-half side is an SPC code.
Rep Green Repetition code, maximum length Nv of 16.

RepSPC Green and yellow Concatenation of a repetition code on the left and an SPC code on
the right, Nv = 8.

01 Black and white Fixed-length pattern Nv = 4 where the left-half side is frozen and the
right-half side is all information.

rate-R Gray Mixed rate node.

3.2.2 Altered Polar Code Construction

In all SC-based decoders, the size of the decoder tree depends on the distribution of frozen and
information bit locations in the code. Arıkan’s original polar code construction only focuses on
maximizing the reliability of the information bits. Several altered polar-like code constructions
have been proposed in the literature [44]–[46] and their objective is to trade off error-correction
performance for decoding complexity reduction by slightly changing the set of information bits,
while keeping the code rate fixed. The main idea behind all the altered code constructions is to
exchange the locations of a few frozen bits and information bits in order to get more bit patterns
that are favorable in terms of decoding latency. In all cases, care must be taken in order to avoid
using bit locations that are highly unreliable to transmit information bits.

The method in [44] first defines a small set of bit locations which contains the ns − h least
reliable information bit locations along with the h most reliable frozen bit locations. Then, in
order to keep the rate fixed, it performs an exhaustive search over all

(
ns
h

)
possible combinations of

the ns elements containing exactly h frozen bit locations and selects the combination that leads to
the smallest decoding latency. In [45], the altered construction problem is formalized as a binary
integer linear program. Consequently, it is shown that finding the polar code with the lowest
decoding complexity under an error-correction performance constraint is an NP-hard problem. For
this reason, a greedy approximation algorithm is presented which provides reasonable results at
low complexity even for large code lengths. A similar greedy algorithm is presented in [46] for
polar codes with more general code lengths of the form N = ln, l ≥ 2.

26 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

Figure 3.1: Decoder tree for the (1024, 512) polar code built using [22] and decoded with the
nodes and operations of Table 3.1.

3.2.3 Proposed Altered Construction

The methods of [45], [46] only considered rate-0 and rate-1 nodes. As such, the results can not be
directly applied to Fast-SSC decoding, where several additional types of special nodes exist. For
this reason, in this work we follow the more general exhaustive search method of [44], augmented
with a human-guided approach.

More specifically, bit-state alterations that would lead to smaller latency are identified by vi-
sual inspection of the decoder tree for the unaltered polar code. This list of bit locations is then
passed to a program to be added to the bit locations considered by the technique described in [44].
Hence, two lists are composed: one that contains frozen bit locations proposed by the user as well
as locations that were almost reliable enough to be used to carry information bits, and one that
contains the information bit locations proposed by the user and the locations that barely made it
into information bit locations.

The code alteration algorithm then proceeds by gradually calculating the decoding latency for
all possible bit swap combinations. A constrained-size and ordered list of the combinations with
the lowest decoding latency is kept. Once that list needs to be trimmed, only one entry per latency
value is kept by simulating the error-correction performance of the altered code at an Eb/N0 value
of interest. The entry with the best frame-error rate is kept and the others with the same latency
are removed from the list. That list containing the best candidates is further trimmed by removing

3.2 Altering the Code Construction 27

all candidates that feature both a greater latency and worse error-correction performance compared
to those of their predecessor. Similarly to the technique of [44], our proposed technique does not
alter the code rate as the total number of information and frozen bits remains the same.

Human-guided Criteria

The suggested bits to swap are selected to improve the latency and throughput. Thus, these bit
swaps must eliminate constituent codes for which we do not have an efficient decoding algorithm
and create ones for which we do. We classify the selection criteria under two categories: the bit
swaps that transform frozen bit locations into information bit locations and bit swaps that do the
opposite. The former increase the coding rate while the latter reduce it.

In addition to the node type definitions of Table 3.1, the below descriptions of criteria use the
following types of subtrees or nodes:

• R1-01: subtree rooted in a R1 node with a 01 leaf node, may contain a chain of R1 nodes

• Rep1: subtree rooted in a R1 node with a leaf Rep node; in Section 3.3, that subtree is
made into a node where the left-half side is a repetition code and the right-half side is all
information

• R1-RepSPC: subtree rooted in a R1 node with a RepSPC leaf node, may contain a chain of
R1 nodes

• Rep-Rep1: subtree where the rate-R node has a left-hand-side and right-hand-side nodes are
Rep and Rep1 nodes, respectively

• 0-RepSPC: subtree rooted in a 0R node with a leaf RepSPC node; in Section 3.3, that subtree
is made into a node where the left-half side is frozen and the the right-half side is a RepSPC
node

Dedicated hardware to efficiently decode Rep1 and 0RepSPC nodes are presented in Sec-
tion 3.3.

From frozen to information locations:

1. Unfreezing the second bit of a 01 node that is part of a R1-01 subtree creates an RSPC node.

28 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

2. Changing an RepSPC into an RSPC node by adding the second, third and fifth bit locations.

3. Changing a RSPC node into a R1 node by changing the SPC code into a rate-1 code.

Criterion 1 is especially beneficial where the R1-01 subtree contains a chain of R1 nodes,
e.g., Pattern 5 in Fig. 3.2. Similarly, Criterion 2 has a significant impact on R1-RepSPC subtrees
containing a chain of R1 nodes, e.g., Pattern 3 in Fig. 3.2.

From information to frozen locations:

4. Changing a 0R-01 subtree into a Repetition node.

5. Freezing the only information bit location of a Rep node to change it into a rate-0 code.

6. A specialization of the above, changing a Rep-RepSPC subtree into a 0-RepSPC subtree by
changing the left-hand-side Rep node into a rate-0 node.

7. Transforming a Rep-Rep1 subtree into a 0-RepSPC subtree by changing the left-hand-side
repetition code into a rate-0 code and by freezing the fifth bit location of the Rep1 subtree to
change the rate-1 code into an SPC code.

Consider the decoder tree for a (512, 376) polar code as illustrated in Fig. 3.2a, where some
frozen bit patterns are circled in blue and numbered for reference. Its implementation results in
a decoding latency of 106 clock cycles. That latency can be significantly reduced by freezing
information bit locations or by transforming previously frozen locations into information bits.

Notably, five of the bit-swapping criteria—leading to latency reduction—described above are
illustrated in Fig. 3.2a. The patterns numbered 1 and 2 are repetition nodes meeting the fourth
criterion. Changing both into rate-0 nodes introduces two new 0R nodes. The patterns 3 to 6 are
illustrations of the fourth, second, sixth and first criteria, respectively.

Fig. 3.2b shows the resulting decoder tree after the alterations were made. The latency has been
reduced from 106 to 82 clock cycles.

Example Results

Applying our proposed altered construction method, we were able to decrease the decoding latency
of the (1024, 512) polar code illustrated in Fig. 3.1 from 220 to 189 clock cycles, a 14% improve-

3.2 Altering the Code Construction 29

(a) Before

[1] [2]

[4] [6]

[5]

[3]

(b) After

Figure 3.2: Decoder trees for two different (512, 376) polar codes, where (a) and (b) are before
and after construction alteration, respectively.

30 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

Figure 3.3: Decoder tree for the altered (1024, 512) polar code.

ment, with 5 bit swaps. That increases the information throughput to 2.71 bits/CC, up from 2.33
bits/CC. The corresponding decoder tree is shown in Fig. 3.3.

The error-correction performance of the (1024, 512) altered code is degraded as illustrated by
the markerless black curves in Fig. 3.4. The loss amounts to less than 0.25 dB at a FER of 10−4.
For wireless applications, which are usually the target for codes of such lengths and rates, this
represents the FER range of interest.

Fig. 3.4 also shows the error-correction performance of three other polar codes altered using
our proposed method. In the case of these other codes, the alterations have a negligible effect on
error-correction performance

3.3 New Constituent Decoders

Looking at the decoder tree of Fig. 3.3, it can be seen that some frozen bit patterns occur often.
Adding support for more constituent codes to the Fast-SSC algorithm will result in a reduced
latency and increased throughput under the constraint that the corresponding computation nodes
do not significantly lengthens the critical path of a hardware implementation. As a result of an
investigation, the constituent codes of Table 3.2 were added. Furthermore, post-place and route
timing analysis showed that the maximum length Nv of a Repetition node could be increased from
16 to 32 without affecting the critical path.

3.3 New Constituent Decoders 31

1 2 3 4

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e-
er

ro
rr

at
e

1 2 3 4
10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
it-

er
ro

rr
at

e

Original: Altered:

(1024, 342) (1024, 342)
(1024, 512) (1024, 512)
(2048, 683) (2048, 683)
(2048, 1024) (2048, 1024)

Figure 3.4: Error-correction performance using BPSK over an AWGN channel of the altered codes
compared to that of the original codes constructed using the Tal and Vardy method [22].

Table 3.2: New functions performed by the proposed decoder.

Name Color Description

Rep1 Green and black Repetition code on the left, rate-1 code on the right, maxi-
mum length Nv of 8.

0RepSPC White and lilac Rate-0 code on the left, RepSPC code on the right, Nv = 16.
001 3

4 white and 1
4 black Rate-0 code on the left, 01 code on the right, Nv = 8.

32 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

Figure 3.5: Decoder tree for the altered polar code with the added nodes.

The new decoder tree shown in Fig. 3.5 has a decoding latency of 165 clock cycles, a 13%
reduction over the decoder tree of Fig. 3.3 decoded with the original Fast-SSC algorithm. Thus,
the information throughput of that polar code has been improved to 3.103 bits/CC.

To summarize, Table 3.3 lists the frozen bit patterns that can be decoded by leaf nodes. It can
be seen that the smallest possible leaf node has length Nv = 4 while our proposed decoder tree
shown in Fig. 3.5 has a minimum length Nv = 8. In other words, Fig. 3.5 is representative of the
patterns listed in Table 3.3 but not comprehensive.

Table 3.3: Frozen bit patterns decoded by leaf nodes.

Name Pattern

Rep 0001
0000 0001
0000 0000 0000 0001
0000 0000 0000 0000 0000 0000 0000 0001

Rep1 0001 1111
0SPC 0000 0111

RepSPC 0001 0111
0RepSPC 0000 0000 0001 0111

01 0011
001 0000 0011

3.4 Implementation 33

3.4 Implementation

3.4.1 Quantization

Let Qi be the total number of bits used to represent LLRs internally, Qc be the total number of
bits to represent channel LLRs, and Qf be the number of bits among Qi or Qc used to represent
the fractional part of any LLR. It was found through simulations that using Qi.Qc.Qf = 6.5.1
quantization led to an error-correction performance very close to that of the floating-point number
representation as can be seen in Fig. 3.6.

1 2 3 4

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e-
er

ro
rr

at
e

1 2 3 4
10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
it-

er
ro

rr
at

e

Floating-point Fixed-point 6.5.1

Figure 3.6: Impact of quantization on the error-correction performance of the proposed
(1024, 512) polar code.

3.4.2 Rep1 Node

The Rep1 node decodes Rep1 codes—the concatenation of a repetition code and a rate-1 code—of
length Nv = 8. Its bit-estimate vector β 7

0 is calculated using operations described in the previ-
ous sections. However, instead of performing the required operations sequentially, the dedicated
hardware preemptively calculates intermediate soft values.

Fig. 3.7 shows the architecture of the Rep1 node. It can be seen that there are two G blocks.
One preemptively calculates soft values assuming that the Rep block will output β = 0 and the

34 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

other for β = 1. The Rep block provides a single bit estimate corresponding to the information
bit the repetition code of length Nv = 4 it is decoding. The outputs of the G blocks go through a
Sign block to generate hard decisions. The correct hard decision vector is then selected using the
output of the Rep block. Finally, the bit estimate vector β 7

0 is built. The highest part, β 7
4 , is always

comprised of the multiplexer output. The lowest part, β 3
0 , is either a copy of same output or its

binary negation. The negated version is selected when the output of the Rep block is 1.

α7
0 F Rep

G
∣∣∣β = 0 Sign β 7

0

G
∣∣∣β = 1 Sign

β

M
ix

Figure 3.7: Architecture of the Rep1 Node.

Calculations are carried out in one clock cycle. The output of the F , G and Rep blocks are not
stored in memory. Only the final result, the bit-estimate vector β 7

0 , is stored in memory.

3.4.3 High-Level Architecture

The high-level architecture of the decoder is presented in Fig. 3.8. Instructions representing the
polar decoding operations to be performed are loaded before decoding starts. When the decoder
is started, the controller signals the channel loader to start storing channel LLRs, 32 LLRs (160
bits) per clock cycle, into the channel RAM. The controller then starts to execute functions on the
processing unit. The processing unit reads LLRs from the Channel or α-RAM and writes LLRs to
the α-RAM. It reads or writes hard decisions to the β -RAM. The last Combine operation writes
the estimated codeword into the Codeword RAM, a memory accessible from outside the decoder.

The decoder is complete with all input and output buffers to accommodate loading a new frame
and reading an estimated codeword while a frame is being decoded. The required memory could
be made smaller if the nominal throughput required is lower. The loading or outputting of a full
frame takes fewer clock cycles than the actual decoding, we have a pipelined operation; under
normal operation, the decoder should not be slowed down by the Input/Output (I/O) operations.

3.5 Results 35

α-RAM Channel RAM

α-Router Channel Loader Channel

Processing Unit Controller

β -Router Instruction RAM Instructions

β -RAM Codeword RAM Estimate

Figure 3.8: High-level architecture of the decoder.

3.4.4 Processing Unit or Processor

The core of the decoder is the processing unit illustrated in Fig. 3.9 and based on the Fast-SSC
implementation of [8]. Thus, the processing unit features all the modules required to implement
the nodes and operations listed in Table 3.1 and described in Section 3.3. Notably, the 01 and
RepSPC blocks connected to the G block implement the 001 and 0RepSPC nodes, respectively,
where the all-zero vector input is selected at the multiplexer m0. The critical path of the decoder
corresponds to the 0RepSPC node i.e. goes through G, RepSPC, the multiplexer m3, Combine and
the multiplexer m2. It is slightly longer than that of [8].

3.5 Results

3.5.1 Verification Methodology

A software model was used to generate random codewords for transmission using Binary Phase-
Shift Keying (BPSK) over an Additive White Gaussian-Noise (AWGN) channel. The functionality
of the designs was verified both at the Register-Transfer Level (RTL) and at the post-place and
route level through simulations. Finally, the same frames were also decoded on an FPGA using an
FPGA-in-the-loop setup. For all Eb/N0 values, a minimum of 100 frames in errors were simulated.

36 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

α

β0

0
m0

G
SPC

Rep
SPC

01

m2

Rep

Rep1

Rep
SPC

01

m3

Sign

β1

C
om

bi
ne

F
m1 α′

β′
0

β′
1

Figure 3.9: Architecture of the processing unit.

3.5.2 Comparison with State-of-the-art Decoders

In this section, post-fitting results are presented for the Altera Stratix IV EP4SGX530KH40C2
FPGA. All results are worst-case using the slow 900 mV 85◦C timing model. Table 3.4 shows the
results for two rate-flexible implementations for polar codes of length 1024 and 2048, respectively.
The decoder of [40] is also included for comparison.

Looking at the results for our proposed decoders, it can be observed that the number of Look-
Up Tables (LUTs) and registers required are very similar for both code lengths. However, the
RAM usage differs significantly where decoding a longer code requires more memory as expected.
Timing reports show that the critical path corresponds to the 0RepSPC node.

Table 3.4 also compares the proposed decoders against the decoder of [40] as well as the orig-
inal Fast-SSC implementation [8]. The latter was resynthesized so that the decoder only has to
accommodate polar codes of length N = 1024 or N = 2048 and is marked with an asterisk (*) in

3.5 Results 37

Table 3.4: Post-fitting results for rate-flexible decoders for moderate-length polar codes.

Implementation N LUTs Regs.
RAM f
(kbits) (MHz)

[40] 1024 1,940 748 7.1 239
[8]* 1024 23,020 1,024 42.8 103

2048 23,319 5,923 60.9 103
this work 1024 23,353 5,814 43.8 103

2048 23,331 5,923 61.2 103

Table 3.4.
Our work requires at most a 1.4% increase in used LUTs compared to [8]. The difference in

registers can be mostly attributed to register duplication, a measure taken by the fitter to shorten the
critical path to meet the requested clock frequency. The Static Random-Access Memory (SRAM)
usage was also increased by 2.3%.

Table 3.5 shows the latency and information throughput of the decoders of Table 3.4 when
decoding low-rate moderate-length polar codes. It also shows the effect of using a polar codes
with altered constructions—as described in Section 3.2—with all Fast-SSC-based decoders. For
both [8]* and our work, the results listed as ‘altered codes’ have the same resource usage and clock
frequency as listed in Table 3.4 since these decoders can decode any polar code of length N = 1024
or N = 2048 by changing the code description in memory.

Applying the proposed altered construction alone, Table 3.5 shows that decoding these altered
codes with the original decoders of [8] results in a 14% to 21% latency reduction and a 16% to
27% throughput improvement. From the same table, it can be seen that decoding the unaltered
codes with the updated hardware decoder integrating the proposed new constituent decoders, the
latency is reduced by 4% to 10% and the throughput is improved by 4% to 10%.

Combining the contribution of both the altered construction method and the new dedicated
constituent decoders, the proposed work achieves the best latency among all compared decoders.
For the polar codes of length N = 1024, the throughput is 5.7 to 6.1 times greater than that of the
two-phase decoder of [40]. Finally, the latency is reduced by 22% to 28% and the throughput is
increased by 26% to 34% over the Fast-SSC decoders of [8].

Table 3.6 presents a comparison of this work against the state-of-the-art ASIC implementations.
Our ASIC results are for the 65 nm CMOS GP technology from TSMC and are obtained with

38 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

Table 3.5: Latency and information throughput comparison for low-rate moderate-length polar
codes.

Implementation Code
(N, k)

Latency Info. T/P
(Mbps)(CCs) (μs)

[40] (1024, 342) 2185 9.14 37
(1024, 512) 2185 9.14 56

[8]* (1024, 342) 201 1.95 175
(1024, 512) 220 2.14 240
(2048, 683) 366 3.55 192
(2048, 1024) 389 3.78 271

altered codes (1024, 342) 173 1.68 204
(1024, 512) 186 1.81 284
(2048, 683) 289 2.81 243
(2048, 1024) 336 3.26 314

this work (1024, 342) 193 1.87 183
(1024, 512) 204 1.98 259
(2048, 683) 334 3.24 211
(2048, 1024) 367 3.56 287

altered codes (1024, 342) 157 1.52 224
(1024, 512) 165 1.60 320
(2048, 683) 274 2.66 257
(2048, 1024) 308 2.99 342

Cadence RTL Compiler. Only registers were used for memory due to the lack of access to an
SRAM compiler. Normalized results for the decoders from the literature are also provided. For
consistency, only results for a (1024, 512) polar code are compared to match what was done in the
other works. It should be noted that [15] provides measurement results.

From Table 3.6, it can be seen that both implementations of our proposed decoder—at different
supply voltages—are 46% and 42% the size of the BP decoder [15] and the combinational decoder
[47], respectively, when all areas are normalized to 65nm technology. Our work has two orders of
magnitude lower latency than the BP decoder of [15], and two to five times lower latency than [37].
The latency of the proposed design is 1.05 times and 0.7 times that of [47], when operating at 400
and 600 MHz, respectively. The BP decoder [15] employs early termination and its throughput at
Eb/N0 = 4 dB is the fastest followed by our proposed design. Since the area reported in [15] excludes

3.6 Conclusion 39

Table 3.6: Comparison of state-of-the-art ASIC decoders decoding a (1024, 512) polar code.

This work [15]� [47] [37]

Algorithm Fast-SSC BP SC 2-bit SC
Technology 65 nm 65 nm 90 nm 45 nm
Supply (V) 0.8 1.0 1.0 1.3 N/A
Oper. temp. (◦C) 25 25 ≈ 25 N/A N/A
Area (mm2) 0.69 0.69 1.48 3.21 N/A
Area @65nm (mm2) 0.69 0.69 1.48 1.68 0.4
Frequency (MHz) 400 600 300 2.5 750
Latency (μs) 0.41 0.27 50 0.39 1.02
Info. T/P (Gbps) 1.24 1.86 2.4 @ 4dB 1.28 0.5
Sust. Info. T/P (Gbps) 1.24 1.86 1.0 1.28 0.5
Area Eff. (Gbps/mm2) 1.8 2.7 1.6 @ 4dB 0.4 N/A
Power (mW) 96 215 478 191 N/A
Energy (pJ/bit) 77 115 203 @ 4dB 149 N/A

� Measurement results.

the memory necessary to buffer additional received vectors to sustain the variable decoding latency
due to early termination, we also report the sustained throughput for that decoder. The sustained
throughput is 1.0 Gbps as a maximum of 15 iterations is required for the BP decoder to match the
error-correction performance of the SC-based decoders. Comparing the information throughput
of all decoders—using the best-case values for BP,— it can be seen that the area efficiency of our
decoder is the greatest. Lastly, the power consumption estimations indicate that our decoders are
more energy efficient than the BP decoder of [15]. Our proposed decoders are also more energy
efficient than that of [47]. However, due to the difference in implementation technology, the results
of this latter comparison could change if [47] were to be implemented in 65nm.

3.6 Conclusion

In this chapter, we showed how the original Fast-SSC algorithm implementation could be improved
by adding dedicated decoders for three new types of constituent codes frequently appearing in low-
rate codes. We also used polar code construction alterations to significantly reduce the latency and
increase the throughput of a Fast-SSC decoder at the cost of a small error-correction performance

40 Fast Low-Complexity Hardware Decoders for Low-Rate Polar Codes

loss. Rate-flexible polar decoders for polar codes of lengths 1024 and 2048 were implemented
on an FPGA. Four low-rate polar codes with competitive error-correction performance were pro-
posed. Their resulting latency and throughput represent a 22% to 28% reduction and a 26% to
34% improvement over the previous work, respectively. The information throughput was shown
to be 224, 320, 257, and 342 Mbps at approximately 100 MHz on the Altera Stratix IV FPGAs
for the (1024, 342), (1024, 512), (2048, 683) and (2048, 1024) polar codes, respectively. On 65 nm
ASIC CMOS technology, the proposed decoder for a (1024, 512) polar code was shown to com-
pare favorably against the state-of-the-art ASIC decoders. With a clock frequency of 400 MHz and
a supply voltage of 0.8 V, it has a latency of 0.41 μs and an area efficiency of 1.8 Gbps/mm2 for
an energy efficiency of 77 pJ/info. bit. At 600 MHz with a supply of 1 V, the latency is reduced to
0.27 μs and the area efficiency increased to 2.7 Gbps/mm2 at 115 pJ/info. bit.

41

Chapter 4

Low-Latency Software Polar Decoders

The low-complexity encoding and decoding algorithms render polar codes attractive for use in
SDR applications where computational resources are limited. In this chapter, we present low-
latency software polar decoders that exploit modern processor capabilities. We show how adapting
the algorithm at various levels can lead to significant improvements in latency and throughput,
yielding polar decoders that are suitable for high-performance SDR applications on modern desk-
top processors and embedded-platform processors. These proposed decoders have an order of
magnitude lower latency and memory footprint compared to state-of-the-art decoders, while main-
taining comparable throughput. In addition, we present strategies and results for implementing
polar decoders on graphical processing units. Finally, we show that the energy efficiency of the
proposed decoders is comparable to state-of-the-art software polar decoders.

4.1 Introduction

In SDR applications, researchers and engineers have yet to fully harness the error-correction capa-
bility of modern codes due to their high computational complexity. Many are still using classical
codes [9], [10] as implementing low-latency high-throughput—exceeding 10 Mbps of information
throughput—software decoders for turbo or LDPC codes is very challenging. The irregular data
access patterns featured in decoders of modern error-correction codes make efficient use of SIMD
extensions present on today’s Central Processing Units (CPUs) difficult. To overcome this diffi-
culty and still achieve a good throughput, software decoders resorting to inter-frame parallelism
(decoding multiple independent frames at the same time) are often proposed [11]–[13]. Inter-frame

42 Low-Latency Software Polar Decoders

parallelism comes at the cost of higher latency, as many frames have to be buffered before decoding
can be started. Even with a split layer approach to LDPC decoding where intra-frame parallelism
can be applied, the latency remains high at multiple milliseconds on a recent desktop processor
[14]. This work presents software polar decoders that enable SDR systems to utilize powerful and

fast error-correction.
Polar codes provably achieve the symmetric capacity of memoryless channels [6]. Moreover

they are well suited for software implementation, due to regular memory access patterns, on both
x86 and embedded processors [18], [48], [49]. To achieve higher throughput and lower latency on
processors, software polar decoders can also exploit SIMD vector extensions present on today’s
CPUs. Vectorization can be performed intra-frame [18] or inter-frame [48], [49], with the former
having lower decoding latency as it does not require multiple frames to start decoding.

In this work, we explore intra-frame vectorized polar decoders. We propose architectures and
optimization strategies that lead to the implementation of high-performance software polar de-
coders tailored to different processor architectures with decoding latency of 26 μs for a (32768,
29492) polar code, an order of magnitude performance improvement compared to that of our ear-
lier work [18]. We start Section 4.2 by presenting two different software decoder architectures
with varying degrees of specialization. Implementation and results on an embedded processor are
discussed in Section 4.3. We also adapt the decoder to suit GPUs, an interesting target for applica-
tions where many hundreds of frames have to be decoded simultaneously, and present the results
in Section 4.4. Finally, Section 4.5 compares the energy consumption of the different decoders and
Section 4.7 concludes this chapter.

This chapter builds upon the work we published in [18] and co-authored in [50]. It provides
additional details on the approach as well as more experimental results for modern desktop pro-
cessors. Both floating- and fixed-point implementations for the final desktop CPU version—the
unrolled decoder—were further optimized leading to an information throughput of up to 1.4 Gbps.
It also adds results for the adaptation of our strategies to an embedded processor leading to a
throughput and latency of up to 2.25 and 36 times better, respectively, compared to that of the
state-of-the-art software implementation. Compared to the state of the art, both the desktop and
embedded processor implementations are shown to have one to two orders of magnitude smaller
memory footprint. Lastly, strategies and results for implementing polar decoders on a GPU are
presented for the first time.

4.2 Implementation on x86 Processors 43

4.2 Implementation on x86 Processors

In this section we present two different versions of the decoder in terms of increasing design spe-
cialization for software; whereas the first version—the instruction-based decoder—takes advantage
of the processor architecture it remains configurable at run time and the second one—the unrolled
decoder—presents a fully unrolled, branchless decoder fully exploiting SIMD vectorization. In
the second version of the decoder, compile-time optimization plays a significant role in the per-
formance improvements. Performance is evaluated for both the instruction-based and unrolled
decoders.

It should be noted that, contrary to what is common in hardware implementations e.g. [8], [38],
natural indexing is used for all software decoder implementations. While bit-reversed indexing is
well-suited for hardware decoders, SIMD instructions operate on independent vectors, not adjacent
values within a vector. Using bit-reverse indexing would have mandated data shuffling operations
before any vectorized operation is performed.

Both versions, instruction-based decoders and unrolled decoders, use the following functions
from the Fast-SSC algorithm [8]: F , G, G0R, Combine, C0R, Repetition, 0SPC, RSPC, RepSPC
and P01. An Info function implementing eq. (2.5) is also added.

Methodology for the Experimental Results

We discuss throughput in information bits per second as well as latency. Our software was com-
piled using the C++ compiler from GCC 4.9 using the flags “-march=native -funroll-loops
-Ofast”. Additionally, auto-vectorization is always kept enabled. The decoders are inserted in
a digital communication chain to measure their speed and to ensure that optimizations, including
those introduced by -Ofast, do not affect error-correction performance. In the simulations, we
use BPSK over an AWGN channel with random codewords.

The throughput is calculated using the time required to decode a frame averaged over 10 runs of
50,000 and 10,000 frames each for the N = 2048 and the N > 2048 codes, respectively. The time
required to decode a frame, or latency, also includes the time required to copy a frame to decoder
memory and copy back the estimated codeword. Time is measured using the high precision clock
provided by the Boost Chrono library.

In this work we focus on decoders running on one processor core only since the targeted ap-
plication is SDR. Typically, an SDR system cannot afford to dedicate more than a single core to

44 Low-Latency Software Polar Decoders

error-correction as it has to perform other functions simultaneously. For example, in SDR imple-
mentations of long term evolution (LTE) receivers, the orthogonal frequency-division multiplexing
(OFDM) demodulation alone is approximately an order of magnitude more computationally de-
manding than the error-correction decoder [9], [10], [51].

4.2.1 Instruction-based Decoder

The Fast-SSC decoder implemented on a FPGA in [8] closely resembles a CPU with wide SIMD
vector units and wide data buses. Therefore, it was natural to use a similar design for a software
decoder—Fast-SSC instructions are parsed from a text file—, leveraging SIMD instructions. This
section describes how the algorithm was adapted for a software implementation. As fixed-point
arithmetic can be used, the effect of quantization is shown.

Using Fixed-Point Numbers

On processors, fixed-point numbers are represented with at least 8 bits. As illustrated in Fig. 4.1,
using 8 bits of quantization for LLRs results in a negligible degradation of error-correction per-
formance over a floating-point representation. At a FER of 10−8 the performance loss compared
to a floating-point implementation is less than 0.025 dB for the (32768, 27568) polar code. With
custom hardware, it was shown in [8] that 6 bits are sufficient for that polar code. It should be noted
that in Fast-SSC decoding, only the G function adds to the amplitude of LLRs and it is carried out
with saturating adders.

With instructions that can work on registers of packed 8-bit integers, the SIMD extensions
available on most general-purpose x86 and ARM processors are a good fit to implement a polar
decoder.

Vectorizing the Decoding of Constituent Codes

On x86-64 processors, the vector instructions added with SSE support logic and arithmetic oper-
ations on vectors containing either 4 single-precision floating-point numbers or 16 8-bit integers.
Additionally, x86-64 processors with AVX instructions can operate on data sets of twice that size.
Below are the operations benefiting the most from explicit vectorization.

F : the f operation (2.1) is often executed on large vectors of LLRs to prepare values for other
processing nodes. The min() operation and the sign calculation and assignment are all vectorized.

4.2 Implementation on x86 Processors 45

(2048, 1024)

2 2.5 3 3.5 4 4.5

10−2

10−4

10−6

10−8

10−10

Eb/N0 (dB)

E
rr

or
ra

te
(32768, 27568)

3.75 4 4.25 4.5

10−2

10−4

10−6

10−8

10−10

10−12

Eb/N0 (dB)
E

rr
or

ra
te

BER: Floating-point 8-bit fixed-point
FER: Floating-point 8-bit fixed-point

Figure 4.1: Effect of quantization on error-correction performance.

G and G0R: the g operation is also frequently executed on large vectors. Both possibilities,
the sum and the difference, of (2.2) are calculated and are blended together with a mask to build
the result. The G0R operation replaces the G operation when the left hand side of the tree is the
all-zero vector.

Combine and C0R: the Combine operation combines two estimated bit-vectors using an XOR
operation in a vectorized manner. The C0R operation is to Combine what G0R is to G.

SPC decoding: locating the LLR with the minimum magnitude is accelerated using SIMD
instructions.

Data Representation

For the decoders using floating-point numbers, the representation of β is changed to accelerate the
execution of the g operation on large vectors. Thus, when floating-point LLRs are used, βl[i] ∈
{+1,−1} instead of {0, 1}. As a result, (2.2) can be rewritten as

g(αv[i],αv[i + Nv/2], βl[i]) = αv[i] ∗ βl[i] + αv[i + Nv/2].

46 Low-Latency Software Polar Decoders

This removes the conditional assignment and turns g() into a multiply-accumulate operation, which
can be performed efficiently in a vectorized manner on modern CPUs. For integer LLRs, multipli-
cations cannot be carried out on 8-bit integers. Thus, both possibilities of (2.2) are calculated and
are blended together with a mask to build the result. The Combine operation is modified accord-
ingly for the floating-point decoder and is computed using a multiplication with βl[i] ∈ {+1,−1}.

Architecture-specific Optimizations

The decoders take advantage of the SSSE 3, SSE 4.1 and AVX instructions when available. No-
tably, the sign and abs instructions from SSSE 3 and the blendv instruction from SSE 4.1 are
used. AVX, with instructions operating on vectors of 256 bits instead of the 128 bits, is only used
for the floating-point implementation since it does not support integer operations. Data was aligned
to the 128 (SSE) or 256-bit (AVX) boundaries for faster accesses.

Implementation Comparison

Here we compare the performance of three implementations. First, a non-explicitly vectorized
version1 using floating-point numbers. Second an explicitly vectorized version using floating-
point numbers. Third, the explicitly vectorized version using a fixed-point number representation.
In Table 4.1, they are denoted as Float, SIMD-Float and SIMD-int8 respectively.

Results for decoders using the floating-point number representation are included as the efficient
implementation makes the resulting throughput high enough for some applications. The decoders
ran on a single core of an Intel Core i7-4770S clocked at 3.1 GHz with Turbo disabled.

Comparing the throughput and latency of the Float and SIMD-Float implementations in Ta-
ble 4.1 confirms the benefits of explicit vectorization in this decoder. The performance of the
SIMD-Float implementation is only 21% to 38% slower than the SIMD-int8 implementation. This
is not a surprising result considering that the SIMD-Float implementation uses the AVX instruc-
tions operating on vectors of 256 bits while the SIMD-int8 version is limited to vectors of 128 bits.
Table 4.1 also shows that vectorized implementations have 3.6 to 5.8 times lower latency than the
floating-point decoder.

1As stated above, compiler auto-vectorization is always kept enabled.

4.2 Implementation on x86 Processors 47

Table 4.1: Decoding polar codes with the instruction-based decoder.

Code
(N, k) Implementation

Info T/P Latency
(μs)(Mbps)

(2048, 1024) Float 20.8 49
SIMD-Float 75.6 14
SIMD-int8 121.7 8

(2048, 1707) Float 41.5 41
SIMD-Float 173.9 10
SIMD-int8 209.9 8

(32768, 27568) Float 32.4 825
SIMD-Float 124.3 222
SIMD-int8 175.1 157

(32768, 29492) Float 40.8 723
SIMD-Float 160.1 184
SIMD-int8 198.6 149

4.2.2 Unrolled Decoder

The goal of this design is to increase vectorization and inlining and reduce branches in the re-
sulting decoder by maximizing the information specified at compile-time. It also gets rid of the
indirections that were required to get good performance out of the instruction-based decoder.

Generating an Unrolled Decoder

The polar codes decoded by the instruction-based decoders presented in Section 4.2.1 can be spec-
ified at run-time. This flexibility comes at the cost of increased branches in the code due to con-
ditionals, indirections and loops. Creating a decoder dedicated to only one polar code enables the
generation of a branchless fully-unrolled decoder. In other words, knowing in advance the dimen-
sions of the polar code and the frozen bit locations removes the need for most of the control logic
and eliminates branches there.

A tool was built to generate a list of function calls corresponding to the decoder tree traversal. It
was first described in [50] and has been significantly improved since its initial publication notably
to add support for other node types as well as to add support for GPU code generation. Listing 1
shows an example decoder that corresponds to the (8, 5) polar code whose dataflow graph is shown

48 Low-Latency Software Polar Decoders

Listing 1 Unrolled (8, 5) Fast-SSC Decoder
F<8>(αc, α1);
G0R<4>(α1, α2);
In f o<2>(α2, β1);
C0R<4>(β1, β2);
G<8>(αc, α2, β2);
SPC<4>(α2, β3);
Combine<8>(β2, β3, βc);

α1

α2
β1

β2
α1

β3

αc βc

(a) Messages

F<8>

G0R<4>
I<2>
C0R<4>

G<8>
SPC<4>

αc C<8>

(b) Operations

Figure 4.2: Dataflow graph of a (8, 5) polar decoder.

in Fig. 4.2. For brevity and clarity, in Fig. 4.2b, I corresponds to the Info function.

Eliminating Superfluous Operations on β -Values

Every non-leaf node in the decoder performs the combine operation (2.3), rendering it the most
common operation. In (2.3), half the β values are copied unchanged to βv. One method to sig-
nificantly reduce decoding latency is to eliminate those superfluous copy operations by choosing
an appropriate layout for β values in memory: Only N β values are stored in a contiguous array
aligned to the SIMD vector size. When a combine operation is performed, only those values cor-
responding to βl will be updated. Since the stage sizes are all powers of two, stages of sizes equal
to or larger than the SIMD vector size will be implicitly aligned so that operations on them are
vectorized.

Improved Layout of the α-memory

Unlike in the case of β values, the operations producing α values, f and g operations, do not copy
data unchanged. Therefore, it is important to maximize the number of vectorized operations to
increase decoding speed. To this end, contiguous memory is allocated for the log2 N stages of the

4.2 Implementation on x86 Processors 49

decoder. The overall memory and each stage is aligned to 16 or 32-byte boundaries when SSE
or AVX instructions are used, respectively. As such, it becomes possible to also vectorize stages
smaller than the SIMD vector size. The memory overhead due to not tightly packing the stages
of α memory is negligible. As an example, for an N = 32,768 floating-point polar decoder using
AVX instructions, the size of the α memory required by the proposed scheme is 262,208 bytes,
including a 60-byte overhead.

Compile-time Specialization

Since the sizes of the constituent codes are known at compile time, they are provided as template
parameters to the functions as illustrated in Listing 1. Each function has two or three implemen-
tations. One is for stages smaller than the SIMD vector width where vectorization is not possible
or straightforward. A second one is for stages that are equal or wider than the largest vectoriza-
tion instruction set available. Finally, a third one provides SSE vectorization in an AVX or AVX2
decoder for stages that can be vectorized by the former, but are too small to be vectorized using
AVX or AVX2. The last specialization was noted to improve decoding speed in spite of the switch
between the two SIMD extension types.

Furthermore, since the bounds of loops are compile-time constants, the compiler is able to
unroll loops where it sees fit, eliminating the remaining branches in the decoder unless they help
in increasing speed by resulting in a smaller executable.

Architecture-specific Optimizations

First, the decoder was updated to take advantage of AVX2 instructions when available. These new
instructions benefit the fixed-point implementation as they allow simultaneous operations on 32
8-bit integers.

Second, the implementation of some nodes were hand-optimized to better take advantage of
the processor architecture. For example, the SPC node was mostly rewritten. Listing 2 shows a
small but critical subsection of the SPC node calculations where the index within a SIMD vector
corresponding to the specified value is returned. The reduction operation required by the Repetition
node has also been optimized manually.

Third, for the floating-point implementation, β was changed to be in {+0,−0} instead of
{+1,−1}. In the floating-point representation [52], the most significant bit only carries the in-

50 Low-Latency Software Polar Decoders

Listing 2 Finding the index of a given value in a vector
std::uint32_t findIdx(α∗ x, α xmin) {

__mm256 minVec = _mm256_broadcastb_epi8(xmin);
__mm256 mask = _mm256_cmpeq_epi8(minVec, x);
std::uint32_t mvMask = _mm256_movemask_epi8(mask);
return __tzcnt_u32(mvMask);

}

Listing 3 Vectorized floating-point G function (g operation)
template<unsigned int Nv>

void G(α∗ αin, α∗ αout , β ∗ βin) {
for (unsigned int i = 0; i < Nv/2; i += 8) {

__m256 αl = _mm256_load_ps(αin + i);
__m256 αr = _mm256_load_ps(αin + i + Nv/2);
__m256 βv = _mm256_load_ps(βin + i);
__m256 α ′l = _mm256_xor_ps(βv, αl);
__m256 αv = _mm256_add_ps(αr, α ′l);
__mm256_store_ps(αout + i, αv);

}
}

formation about the sign. Flipping this bit effectively changes the sign of the number. By changing
the mapping for β , multiplications are replaced by faster bitwise XOR operations. Similarly, for
the 8-bit fixed-point implementation, β was changed to be in {0,−128} to reduce the complexity
of the Info and G functions.

Listings 3 and 4 show the resulting G functions for both the floating-point and fixed-point
implementations as examples illustrating bottom-up optimizations used in our decoders.

Memory Footprint

The memory footprint is considered an important constraint for software applications. Our pro-
posed implementations use 2 contiguous memory blocks that correspond to the α and β values,
respectively. The size of the β -memory is

Mβ = NWβ , (4.1)

where N is the frame length, Wβ is the number of bits used to store a β value and Mβ is in bits.

4.2 Implementation on x86 Processors 51

Listing 4 Vectorized 8-bit fixed-point G function (g operation)
static const __m256i ONE = _mm256_set1_epi8(1);
static const __m256i M127 = _mm256_set1_epi8(−127);

template<unsigned int Nv>

void G(α∗ αin, α∗ αout , β ∗ βin) {
for (unsigned int i = 0; i < Nv/2; i += 32) {

__m256i αl = _mm256_load_si256(αin + i);
__m256i αr = _mm256_load_si256(αin + i + Nv/2);
__m256i βv = _mm256_load_si256(βin + i);
__m256i β ′v = _mm256_or_si256(βv, ONE);
__m256i α ′l = _mm256_sign_epi8(αl , β ′v);
__m256i αv = _mm256_add_ps(αr, α ′l);
__m256i α ′v = _mm256_max_epi8(M127, αv);
__mm256_store_si256(αout + i, α ′v);

}
}

The size of the α-memory can be expressed as

Mα =

⎡⎢⎢⎢⎢⎢⎢⎣(2N − 1) + A log2 A −

⎛⎜⎜⎜⎜⎜⎜⎝
log2(A)−1∑

i=0

2i

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦Wα , (4.2)

where N is the frame length, Wα is the number of bits used to store an α value, A is the number of α
values per SIMD vector and Mα is in bits. Note that the expression of Mα contains the expression
for the overhead MαOH due to tightly packing the α values as described in Section 4.2.2:

MαOH =

⎡⎢⎢⎢⎢⎢⎢⎣A log2 A −

⎛⎜⎜⎜⎜⎜⎜⎝
log2(A)−1∑

i=0

2i

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦Wα . (4.3)

The memory footprint can thus be expressed as

Mtotal = Mβ +Mα

= NWβ +

⎡⎢⎢⎢⎢⎢⎢⎣(2N − 1) + A log2 A −

⎛⎜⎜⎜⎜⎜⎜⎝
log2(A)−1∑

i=0

2i

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦Wα .
(4.4)

52 Low-Latency Software Polar Decoders

Table 4.2: Decoding polar codes with floating-point precision using SIMD, comparing the
instruction-based decoder (ID) with the unrolled decoder (UD).

Code
(N, k)

Info T/P (Mbps) Latency (μs)

ID UD ID UD

(2048, 1024) 75.6 229.8 14 4
(2048, 1707) 173.9 492.2 10 3

(32768, 27568) 124.3 271.3 222 102
(32768, 29492) 160.1 315.1 184 94

The memory footprint in kilobytes can be approximated with

Mtotal (kbytes) ≈
N(Wβ + 2Wα)

8000
. (4.5)

Implementation Comparison

We first compare the SIMD-float results for this implementation—the unrolled decoder—with
those from Section 4.2.1—the instruction-based decoder. Then we show SIMD-int8 results and
compare them with that of the software decoder of Le Gal et. al [49]. As in the previous sections,
the results are for an Intel Core i7-4770S running at 3.1 GHz when Turbo is disabled and at up to
3.9 GHz otherwise. The decoders were limited to a single CPU core.

Table 4.2 shows the impact of the optimizations introduced in the unrolled version on the
SIMD-float implementations. It resulted in the unrolled decoders being 2 to 3 times faster than the
flexible, instruction-based, ones. Comparing Tables 4.1 and 4.2 shows an improvement factor from
3.3 to 5.7 for the SIMD-int8 implementations. It should be noted that some of the improvements
introduced in the unrolled decoders could be backported to the instruction-based decoders, and is
considered for future work.

Compared to the software polar decoders of [49], Table 4.3 shows that our throughput is lower
for short frames but can be comparable for long frames. However, latency is an order of magnitude
lower for all code lengths. This is to be expected as the decoders of [49] do inter-frame parallelism
i.e. parallelize the decoding of independent frames while we parallelize the decoding of a frame.
The memory footprint of our decoder is shown to be approximately 24 times lower than that of
[49]. The results in [49] were presented with Turbo frequency boost enabled; therefore we present
two sets of results for our proposed decoder: one with Turbo enabled, indicated by the asterisk (*)

4.2 Implementation on x86 Processors 53

Table 4.3: Comparison of the proposed software decoder with that of [49].

Decoder Target L3
Cache

f
(GHz)

Code
(N, k)

Mem. footprint
(kbytes)

Info T/P
(Mbps)

Latency
(μs)

[49]* Intel Core i7-4960HQ 6MB 3.6+ (2048, 1024) 144 1,320 25
(2048, 1707) 144 2,172 26

(32768, 27568) 2304 1,232 714
(32768, 29492) 2304 1,557 605

this work Intel Core i7-4770S 8MB 3.1 (2048, 1024) 6 398 3
(2048, 1707) 6 1,041 2

(32768, 27568) 98 886 31
(32768, 29492) 98 1,131 26

this work* Intel Core i7-4770S 8MB 3.1+ (2048, 1024) 6 502 2
(2048, 1707) 6 1,293 1

(32768, 27568) 98 1,104 25
(32768, 29492) 98 1,412 21

*Results with Turbo enabled.

and the 3.1+ GHz frequency in the table, and one with Turbo disabled. The results with Turbo
disabled are more indicative of a full SDR system as all CPU cores will be fully utilized, not
leaving any thermal headroom to increase the frequency. The maximum Turbo frequencies are 3.8
GHz and 3.9 GHz for the i7-4960HQ and i7-4770S CPUs, respectively.

Looking at the first two, or last two rows of Table 4.2, it can be seen that for a fixed code
length, the decoding latency is smaller for higher code rates. The tendency of decoding latency
to decrease with increasing code rate and length was first discussed in [27]. It was noted that
higher rate codes resulted in SSC decoder trees with fewer nodes and, therefore, lower latency.
Increasing the code length was observed to have a similar, but lesser, effect. However, once the
code becomes sufficiently long, the limited memory bandwidth and number of processing resources
form bottlenecks that negate the speed gains.

The effects of unrolling and using the Fast-SSC algorithm instead of SC are illustrated in Ta-
ble 4.4. It can be observed that unrolling the Fast-SSC decoder results in a 5 time decrease in
latency. Using the Fast-SSC instead of SC decoding algorithm decreased the latency of the un-
rolled decoder by 3 times.

54 Low-Latency Software Polar Decoders

Table 4.4: Effect of unrolling and algorithm choice on decoding speed of the (2048, 1707) code
on the Intel Core i7-4770S

Decoder Info T/P (Mbps) Latency (μs)

ID Fast-SSC 210 8.1
UD SC 363 4.7

UD Fast-SSC 1041 1.6

4.3 Implementation on Embedded Processors

Many of the current embedded processors used in SDR applications also offer SIMD extensions,
e.g. NEON for ARM processors. All the strategies used to develop an efficient x86 implementation
can be applied to the ARM architecture with changes to accommodate differences in extensions.
For example, on ARM, there is no equivalent to the movemask SSE/AVX x86 instruction.

The equations for the memory footprint provided in Section 4.2.2 also apply to our decoder
implementation for embedded processors.

Comparison with Similar Works

Results were obtained using the ODROID-U3 board, which features a Samsung Exynos 4412
System on Chip (SoC) implementing an ARM Cortex A9 clocked at 1.7 GHz. Like in the previous
sections, the decoders were only allowed to use one core. Table 4.5 shows the results for the
proposed unrolled decoders and provides a comparison with [48]. As with their desktop CPU
implementation of [49], inter-frame parallelism is used in the latter.

It can be seen that the proposed implementations provide better latency and greater throughput
at native frequencies. Since the ARM CPU in the Samsung Exynos 4412 is clocked at 1.7 GHz
while that in the NVIDIA Tegra 3 used in [48] is clocked at 1.4 GHz, we also provide linearly
scaled throughput and latency numbers for the latter work, indicated by an asterisk (*) in the table.
Compared to the scaled results of [48], the proposed decoder has 1.4–2.25 times the throughput and
its latency is 25–36 times lower. The memory footprint of our proposed decoder is approximately
12 times lower than that of [48]. Both implementations are using 8-bit fixed-point values.

4.4 Implementation on Graphical Processing Units 55

Table 4.5: Decoding polar codes with 8-bit fixed-point numbers on an ARM Cortex A9 using
NEON.

Code
(N, k) Decoder

Mem.
Footprint
(kBytes)

T/P (Mbps) Latency
(μs)Coded Info

(1024, 512) [48] 38 70.5 35.3 232
[48]* 38 80.6 42.9 191

this work 3 113.1 56.6 9

(32768, 29492) [48] 1,216 33.1 29.8 15,844
[48]* 1,216 40.2 36.2 13,048

this work 98 90.8 81.7 361

*Results linearly scaled for the clock frequency difference.

4.4 Implementation on Graphical Processing Units

Most recent GPUs have the capability to do calculations that are not related to graphics. These
GPUs are often called GPGPU. In this section, we describe our approach to implement software
polar decoders in CUDA C [53] and present results for these decoders running on a NVIDIA Tesla
K20c.

Most of the optimization strategies cited above could be applied or adapted to the GPU. How-
ever, there are noteworthy differences. Note that, when latency is mentioned below we refer to the
decoding latency including the delay required to copy the data in and out of the GPU.

4.4.1 Overview of the GPU Architecture and Terminology

A NVIDIA GPU has multiple microprocessors with 32 cores each. Cores within the same micro-
processor may communicate and share a local memory. However, synchronized communication
between cores located in different microprocessors often has to go through the CPU and is thus
costly and discouraged [54].

GPUs expose a different parallel programming model than general purpose processors. Instead
of SIMD, the GPU model is single-instruction-multiple-threads (SIMT). Each core is capable of
running a thread. A computational kernel performing a specific task is instantiated as a block.
Each block is mapped to a microprocessor and is assigned one thread or more.

As it will be shown in Sect. 4.4.3, the latency induced by transferring data in and out of a GPU

56 Low-Latency Software Polar Decoders

0 50 100 150 200 250 300 350
0

200

400

600

800
T/P

Threads per block

In
fo

T
/P

(M
bp

s)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

dec. latency

de
co

di
ng

la
te

nc
y

(m
s)

Figure 4.3: Effect of the number of threads per block on the information throughput and decoding
latency for a (1024, 922) polar code where the number of blocks per kernel is 208.

is high. To minimize decoding latency and maximize throughput, a combination of intra- and inter-
frame parallelism is used for the GPU contrary to the CPUs where only the former was applied.
We implemented a kernel that decodes a single frame. Thus, a block corresponds to a frame and
attributing e.g. 10 blocks to a kernel translates into the decoding of 10 frames in parallel.

4.4.2 Choosing an Appropriate Number of Threads per Block

As stated above, a block can only be executed on one microprocessor but can be assigned many
threads. However, when more than 32 threads are assigned to a block, the threads starting at 33 are
queued for execution. Queued threads are executed as soon as a core is free.

Fig. 4.3 shows that increasing the number of threads assigned to a block is beneficial only until
a certain point is reached. For the particular case of a (1024, 922) code, associating more than 128
threads to a block negatively affects performance. This is not surprising as the average node width
for that code is low at 52.

4.4.3 Choosing an Appropriate Number of Blocks per Kernel

Memory transfers from the host to the GPU device are of high throughput but initiating them
induces a great latency. The same is also true for transfers in the other direction, from the device
to the host. Thus, the number of distinct transfers have to be minimized. The easiest way to do so
is to run a kernel on multiple blocks. For our application, it translates to decoding multiple frames

4.4 Implementation on Graphical Processing Units 57

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

Blocks per kernel

L
at

en
cy

(m
s)

Kernel
Host to device
Device to host

Figure 4.4: Effect of the number of blocks per kernel on the data transfer and kernel execution
latencies for a (2048, 1707) polar code where the number of threads per block is 128.

in parallel as a kernel decodes one frame.
Yet, there is a limit to the number of resources that can be used to execute a kernel i.e. decode

a frame. At some point, there will not be enough computing resources to do the work in one pass
and many passes will be required. The NVIDIA Tesla K20c card features the Kepler GK110 GPU
that has 13 microprocessors with 32 cores and 16 load and store units each [55]. In total, 416
arithmetic or logic operations and 208 load or store operations can occur simultaneously.

Fig. 4.4 shows the latency to execute a kernel, to transfer memory from the host to the GPU and
vice versa for a given number of blocks per kernel. The number of threads assigned per block is
fixed to 128 and the decoder is built for a (2048, 1707) polar code. It can be seen that the latency of
memory transfers grows linearly with the number of blocks per kernel. The kernel latency however
has local minimums at multiples of 208. We conclude that the minimal decoding latency, the sum
of all three latencies illustrated in Fig. 4.4, is bounded by the number of load and store units.

4.4.4 On the Constituent Codes Implemented

Not all the constituent codes supported by the general purpose processors are beneficial to a GPU
implementation. In a SIMT model, reduction operations are costly. Moreover, if a conditional
execution leads to unbalanced threads, performance suffers. Consequently, all nodes based on the
SPC codes, that features both characteristics, are not used in the GPU implementation.

Experiments have shown that implementing the SPC node results in a throughput reduction by
a factor of 2 or more.

58 Low-Latency Software Polar Decoders

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1,000

Blocks per kernel

In
fo

T
/P

(M
bp

s)

Shared
Global

Figure 4.5: Information throughput comparison for a (1024, 922) polar code where intermediate
results are stored in shared or global memory. The number of threads per block is 128.

4.4.5 Shared Memory and Memory Coalescing

Each microprocessor contains shared memory that can be used by all threads in the same block.
The NVIDIA Tesla K20c has 48 kB of shared memory per block. Individual reads and writes to
the shared memory are much faster than accessing the global memory. Thus, intuitively, when
conducting the calculations within a kernel, it seems preferable to use the shared memory as much
as possible in place of the global memory.

However, as shown by Fig. 4.5, it is not always the case. When the number of blocks per
kernel is small, using the shared memory provides a significant speedup. In fact, with 64 blocks
per kernel, using shared memory results in a decoder that has more than twice the throughput
compared to a kernel that only uses the global memory. Past a certain value of blocks per kernel
though, solely using the global memory is clearly advantageous for our application.

These results suggest that the GPU is able to efficiently schedule memory transfers when the
number of blocks per kernel is sufficiently high.

4.4.6 Asynchronous Memory Transfers and Multiple Streams

Transferring memory from the host to the device and vice versa induces a latency that can be equal
to the execution of a kernel. Fortunately, that latency can be first reduced by allocating pinned or
page-locked host memory. As page-locked memory can be mapped into the address space of the
device, the need for a staging memory is eliminated [53].

4.4 Implementation on Graphical Processing Units 59

More significantly, NVIDIA GPUs with compute capability of 2.0 or above are able to transfer
memory in and out of the device asynchronously. By creating three streams—sequences of opera-
tions that get executed in issue-order on the GPU—memory transfers and execution of the kernel
can be overlapped, effectively multiplying throughput by a factor of 3.

This also increases the memory footprint by a factor of three. On the GPU, the memory foot-
print is

Mtotal (kbytes) =
N(Wβ +Wα)BS

8000
, (4.6)

where B is the number of blocks per kernel—i.e. the number of frames being decoded simultane-
ously—, S is the number of streams, and where Wβ and Wα are the number of bits required to store
a β and an α value, respectively. For best performance, as detailed in the next section, both β and
α values are represented with floating-point values and thus Wβ =Wα = 32.

4.4.7 On the Use of Fixed-Point Numbers on a GPU

It is tempting to move calculations to 8-bit fixed-point numbers in order to speedup performance,
just like we did with the other processors. However, GPUs are not optimized for calculations with
integers. Current GPUs only support 32-bit integers. Even so, the maximum number of operations
per clock cycle per multiprocessor as documented by NVIDIA [53] clearly shows that integers are
third class citizens behind single- and double-precision floating-point numbers. As an example,
Table 2 of [53] shows that GPUs with compute capability 3.5—like the Tesla K20c—can execute
twice as many double-precision floating-point multiplications in a given time than it can with 32-
bit integers. The same GPU can carry on 6 times more floating-point precision multiplications than
its 32-bit integer counterpart.

4.4.8 Results

Table 4.6 shows the estimated information throughput and measured latency obtained by decoding
various polar codes on a GPU. The throughput is estimated by assuming that the total memory
transfer latencies are twice the latency of the decoding. This has been verified to be a reasonable
assumption, using NVIDIA’s profiler tool, when the number of blocks maximizes throughput.

Performing linear regression on the results of Table 4.6 indicates that the latency scales lin-
early with the number of blocks, leading to standard error values of 0.04, 0.04 and 0.14 for the
(1024, 922), (2048, 1707) and (4096, 3686) polar codes, respectively. In our decoder, a block cor-

60 Low-Latency Software Polar Decoders

Table 4.6: Decoding polar codes on an NVIDIA Tesla K20c.

(N, k) Nbr of blocks Info T/P (Mbps) Latency (ms)

(1024, 922) 208 1,022 0.6
416 1,046 1.1
624 1,060 1.6
832 1,070 2.2

(2048, 1707) 208 915 1.1
416 936 2.2
624 953 3.3
832 964 4.5

(4096, 3686) 208 959 2.6
416 1,002 4.9
624 1,026 6.9
832 1,043 9.4

responds to the decoding a single frame. The frames are independent of each other, and so are
blocks. Thus, our decoder scales well with the number of available cores.

Furthermore, looking at Table 4.6 it can be seen that the information throughput is in the
vicinity of a gigabit per second. Experiments have shown that the execution of two kernels can
slightly overlap, making our throughput results of Table 4.6 worst-case estimations. For example,
while the information throughput to decode 832 frames of a (4096, 3686) polar code is estimated
at 1,043 Mbps in Table 4.6, the measured average value in NVIDIA’s profiler tool was 1,228 Mbps,
a 18% improvement over the estimated throughput.

Our experiments have also shown that our decoders are bound by the data transfer speed that
this test system is capable of. The PCIe 2.0 standard [56] specifies a peak data throughput of
64 Gbps when 16 lanes are used and once 8b10b encoding is accounted for. Decoding 832 frames
of a polar code of length N = 4096 requires the transfer of 3,407,872 LLRs expressed as 32-bit
floating-point numbers for a total of approximately 109 Mbits. Without doing any computation on
the GPU, our benchmarks measured an average PCIe throughput of 45 Gbps to transfer blocks of
data of that size from the host to the device and back. Running multiple streams and performing
calculations on the GPU caused the PCIe throughput to drop to 40 Gbps. This corresponds to 1.25
Gbps when 32-bit floats are used to represent LLR inputs and estimated-bit outputs of the decoder.
In light of these results, we conjecture that the coded throughput will remain approximately the

4.5 Energy Consumption Comparison 61

Table 4.7: Comparison of the power consumption and energy per information bit for the
(2048, 1707) polar code.

Decoder Target
Mem. Footprint

(kbytes)
Info. T/P
(Gbps)

Latency
(μs)

Power
(W)

Energy
(nJ/info. bit)

[49] Intel Core i7-4960HQ* 144 2.2 26 13 6
this work Intel Core i7-4770S 6 1.0 2 3 3

Intel Core i7-4770S* 6 1.3 1 5 4
ARM Cortex A9 6 0.1 14 0.8 7

NVIDIA Tesla K20c 3,408† 0.9 1100 108 118

*Results with Turbo enabled.
†Amount required per stream. Three streams are required to sustain this throughput.

same for any polar code as the PCIe link is saturated and data transfer is the bottleneck.

4.5 Energy Consumption Comparison

In this section the energy consumption is compared for all three processor types: the desktop
processor, the embedded processor and the GPU. Unfortunately the Samsung Exynos 4412 SoC
does not feature sensors allowing for power usage measurements of the ARM processor cores.
The energy consumption of the ARM processor was estimated from board-level measurements.
An Agilent E3631A DC power supply was used to provide the 5V input to the ODROID-U3 board
and the current as reported by the power supply was used to calculated the power usage when the
processor was idle and under load.

On recent Intel processors, power usage can be calculated by accessing the Running Average
Power Limit (RAPL) counters. The LIKWID tool suite [57] is used to measure the power usage
of the processor. Numbers are for the whole processor including the Dynamic Random-Access
Memory (DRAM) package. Recent NVIDIA GPUs also feature on-chip sensors enabling power
usage measurement. Steady state values are read in real-time using the NVIDIA Management
Libray (NVML) [58].

Table 4.7 compares the energy per information bit required to decode the (2048, 1707) polar
code. The SIMD-int8 implementation of our unrolled decoder is compared with that of the imple-
mentation in [49]. The former uses an Intel Core i7-4770S clocked at 3.1 GHz. The latter uses an
Intel Core i7-4960HQ clocked at 3.6 GHz with Turbo enabled. The results for the ARM Cortex

62 Low-Latency Software Polar Decoders

A9 embedded processor and NVIDIA Tesla K20c GPU are also included for comparison. Note
that the GPU represents LLRs with floating-point numbers.

The energy per information bit is calculated with

E (J/info. bit) =
P (W)

info. T/P (bits/s)
.

It can be seen that the proposed decoder is slightly more energy efficient on a desktop processor
compared to that of [49]. For that polar code, the latter offers twice the throughput but at the cost
of a latency that is at least 13 times greater. However, the latter is twice as fast for that polar code.
Decoding on the embedded processor offers very similar energy efficiency compared to the Intel
processor although the data throughput is an order of magnitude slower. However, decoding on a
GPU is significantly less energy efficient than any of the decoders running on a desktop processor.

The power consumption on the embedded platform was measured to be fairly stable with only
a 0.1 W difference between the decoding of polar codes of lengths 1024 or 32,768.

4.6 Further Discussion

4.6.1 On the relevance of the instruction-based decoders

Some applications require excellent error-correction performance that necessitates the use of polar
codes much longer than N = 32,768. For example, Quantum Key Distribution benefits from frames
of 221 to 224 bits [59]. At such lengths, current compilers fail to compile an unrolled decoder.
However, the instruction-based decoders are very suitable and are capable of throughput greater
than 100 Mbps with a code of length 1 million.

4.6.2 On the relevance of software decoders in comparison to hardware decoders

The software decoders we have presented are good for systems that require moderate throughput
without incurring the cost of dedicated hardware solutions. For example, in a SDR communication
chain based on USRP radios and the GNU Radio software framework, a forward error-correction
(FEC) solution using our proposed decoders only consumes 5% of the total execution time on the
receiver. Thus, freeing FPGA resources to implement functions other than FEC, e.g. synchroniza-
tion and demodulation.

4.6 Further Discussion 63

By building such a setup to demonstrate one of our software polar encoder and decoder pair,
we were awarded the first place of the microsystems experimental demonstration competition at
the 2015 edition of the Innovation Day event jointly organized by the IEEE Circuits and Systems
Society and the Regroupement Stratégique en Microélectronique du Québec.

4.6.3 Comparison with LDPC codes

LDPC codes are in widespread use in wireless communication systems. In this section, the error-
correction performance of moderate-length polar codes is compared against that of standard LDPC
codes [60]. Similarly, the performance of the state-of-the-art software LDPC decoders is compared
against that of our proposed unrolled decoders for polar codes.

The fastest software LDPC decoders in literature are those of [14], which implements decoders
for the 802.11n standard and present results for the Intel Core i7-2600 x86 processor. That wireless
communication standard defines three code lengths: 1944, 1296, 648; and four code rates: 1/2,
2/3, 3/4, 5/6. In [14], LDPC decoders are implemented for all four codes rates with a code length
of 1944. A layered offset-min-sum decoding algorithm with five iterations is used and early-
termination is not supported.

Fig. 4.6 shows the FER of these codes using 10 iterations of a flooding-schedule offset min-
sum floating-point decoding algorithm which yields slightly better results than the five iteration
layered algorithm used in [14]. The FER of polar codes with a slightly longer length of 2048 and
matching code rates are also shown in Fig. 4.6.

Table 4.8 that provides the latency and information throughput for decoding 524,280 informa-
tion bits using the state-of-the-art software LDPC decoders of [14] compared to our proposed polar
decoders. To remain consistent with the result presented in [14], which used the Intel Core i7-2600
processor, the results in Table 4.8 use that processor as well.

While the polar code with rate 1/2 offers a better coding gain than its LDPC counterpart, all
other polar codes in Fig. 4.6 are shown to suffer a coding loss close to 0.25 dB at a FER of 10−3.
However, as Table 4.8 shows, there is approximately an order of magnitude advantage for the
proposed unrolled polar decoders in terms of both latency and throughput compared to the LDPC
decoders of [14].

64 Low-Latency Software Polar Decoders

1.5 2 2.5 3 3.5 4 4.5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e-
er

ro
rr

at
e

Polar: R=1/2 R=2/3 R=3/4 R=5/6
LDPC: R=1/2 R=2/3 R=3/4 R=5/6

Figure 4.6: Error-correction performance of the polar codes of length 2048 compared with the
LDPC codes of length 1944 from the 802.11n standard.

4.7 Conclusion

In this chapter, we presented low-latency software polar decoders adapted to different processor
architectures. The decoding algorithm is adapted to exploit different SIMD instruction sets for
the desktop and embedded processors (SSE, AVX and NEON) or to the SIMT model inherent
to GPU processors. The optimization strategies go beyond parallelisation with SIMD or SIMT.
Most notably, we proposed to generate a branchless fully unrolled decoder, to use compile-time
specialization, and adopt a bottom-up approach by adapting the decoding algorithm and data rep-
resentation to features offered by processor architectures. For desktop processors, we have shown
that intra-frame parallelism can be exploited to get a very low-latency while achieving informa-
tion throughputs greater than 1 Gbps using a single core. For embedded processors, the principle
remains but the achievable information throughputs are more modest at 80 Mbps. On the GPU
we showed that inter-frame parallelism could be successfully used in addition to intra-frame par-
allelism to reach better speed, and the impact of two critical parameters on the performance of
the decoders was explored. We showed that given the right set of parameters, GPU decoders are
able to sustain an information throughput around 1 Gbps while simultaneously decoding hundreds

4.7 Conclusion 65

Table 4.8: Information throughput and latency of the polar decoders compared with the LDPC
decoders of [14] when estimating 524,280 information bits on a Intel Core i7-2600.

Decoder N Rate
Latency Info. T/P

(Mbps)total (ms) per frame (μs)

[14] 1944 1/2 17.4 N/A 30.1
2/3 12.7 N/A 41.0
3/4 11.2 N/A 46.6
5/6 9.3 N/A 56.4

this work 2048 1/2 2.0 3.83 267.4
2/3 1.0 2.69 507.4
3/4 0.8 2.48 619.4
5/6 0.6 2.03 840.9

of frames. Finally, we showed that the memory footprint of our proposed decoder is at least an
order of magnitude lower than that our the state-of-the-art polar decoder while being slightly more
energy efficient. These results indicate that the proposed software decoders make polar codes inter-
esting candidates for SDR applications. In fact, we won an award at a experimental demonstration
competition by using our software solution in a over-the-air radio communication setup.

67

Chapter 5

Unrolled Hardware Architectures for

Polar Decoders

In this chapter, we demonstrate that polar decoders can achieve extremely high throughput val-
ues and retain moderate complexity. We present a family of architectures for hardware polar
decoders using a reduced-complexity successive-cancellation decoding algorithm that employ un-
rolling. The resulting fully-unrolled architectures are capable of achieving a coded throughput
in excess 400 Gbps and 1 Tbps on an FPGA or an ASIC, respectively—two to three orders of
magnitude greater than current state-of-the-art polar decoders—while maintaining a competitive
energy efficiency of 6.9 pJ/bit on ASIC. Moreover, the proposed architectures are flexible in a way
that makes it possible to explore the trade-off between area, throughput and energy efficiency. We
present the associated results for a range of pipeline depths, and code lengths and rates. We also
discuss how the throughput and complexity of decoders are effected when implemented for an
I/O-bound system.

5.1 Introduction

Conventional polar decoders implement one or a few specialized computational units and reuse
them multiple times during the decoding process [8], [35]–[38], [40]. It was shown in [50] that
unrolling the decoding process can lead to significant speed improvements in software polar de-
coders.

The goal of this chapter is to show how unrolling and pipelining the decoder tree can lead to

68 Unrolled Hardware Architectures for Polar Decoders

hardware architectures that can achieve throughput values greater than 1 Tbps on a 28 nm CMOS
technology ASIC operating at 1 GHz—three orders of magnitude faster than the state of the art.
On FPGAs, the fastest architectures can reach hundreds of Gbps. Moreover, we present a family
of architectures that offers a flexible trade-off between throughput, area and energy efficiency.

We start this chapter with Section 5.2 to provide a brief review of state-of-the-art polar decoder
architectures. Section 5.3 presents the proposed family of architectures, and the operations and
processing nodes used. It also specifies how code shortening can be used with the proposed ar-
chitectures. Section 5.4 discusses the implementation and presents both FPGA and ASIC results
for various code lengths and rates. Results are compared against state-of-the-art polar decoder im-
plementations. The coded throughput of our decoders is shown to be in excess of 400 Gbps for a
(2048, 1024) polar code decoded on an FPGA and of 1 Tbps for a (1024, 512) polar code decoded
on an ASIC, respectively two and three orders of magnitude over the current state of the art. Some
power estimations are also provided for both FPGA and ASIC. Finally, Section 5.5 concludes this
paper.

Preliminary results of this work were presented in a letter [20]. In this chapter, we generalize
the architecture into a family of architectures offering a flexible trade-off between throughput, area
and energy efficiency, give more details on the unrolled architecture and provide more results. We
also significantly improve the (1024, 512) fully-unrolled deeply-pipelined polar decoder imple-
mentation results on all metrics. Finally, ASIC results for the 28 nm FD-SOI technology from
STMicroelectronics are provided as well as power estimations for both FPGA and ASIC.

5.2 State-of-the-Art Architectures with Implementations

Most hardware polar decoder architectures presented in the literature, [8], [27], [35]–[38], [40],
use the SC decoding algorithm or an SC-based algorithm. These decoders require little logic area
(ASIC) or resource usage (FPGA). As an example, the fastest of these SC-based decoders, the
Fast-SSC decoder of [8], utilizes a processor-like architecture where the different units are used
one to many times over the decoding of a frame. With the algorithmic improvements reviewed
in Section 2.6, the Fast-SSC decoder was shown to be capable of achieving a 1.2 Gbps coded
throughput (1.1 Gbps information throughput) at 108 MHz on an FPGA for a polar code with a
length N = 215.

Recently, two polar decoders capable of achieving a coded throughput greater than 1 Gbps with

5.3 Architecture, Operations and Processing Nodes 69

a short (1024, 512) polar code were proposed. An iterative BP fully-parallel decoder achieving
a throughput of 4.7 Gbps at 300 MHz on a 65 nm CMOS ASIC was proposed in [15]. More
recently, a fully-combinational, SC-based decoder with input and output registers was proposed in
[47]. That decoder reaches a throughput of 2.9 Gbps at 2.79 MHz on a 90 nm CMOS ASIC and of
1.2 Gbps at 596 kHz on a 40 nm CMOS Xilinx Virtex 6 FPGA.

While these results are a significant improvement, their throughput, less than 6 Gbps, is still
under the projected minimal peak throughput for future 5G communication standards [61]–[63].
Therefore, in this paper we propose a family of architectures capable of achieving one to three
orders of magnitude greater throughtput than the current state-of-the-art polar decoders.

5.3 Architecture, Operations and Processing Nodes

Similar to some decoders presented in the previous section, in order to significantly increase de-
coding throughput, our family of architectures does not focus on logic reuse but fully unrolls and
pipelines the required calculations. A fully-unrolled decoder is a decoder where each and every
operation or node required in estimating a codeword is instantiated with dedicated hardware. As
an example, if a decoder for a specific polar code requires two executions of an F operation with a
length of 8, a fully-unrolled decoder for that code will feature two F modules with inputs of size 8
instead of reusing the same block twice.

The idea of fully unrolling a decoder has previously been applied to decoders for other families
of error-correcting codes. Notably, in [64], [65], the authors propose a fully-unrolled deeply-
pipelined decoder for an LDPC code. Polar codes are more suitable to unrolling as they do not
feature a complex interleaver like LDPC codes.

In this section, we provide details on the proposed family of architectures and describe the
operations and processing nodes used by our architectures.

5.3.1 Fully Unrolled (Basic Scheme)

Building upon the work done on software polar decoders described in Chapter 4, we propose
fully-unrolled hardware decoder architectures built for a specific polar code using a subset of the
low-complexity Fast-SSC algorithm.

In the fully-unrolled architecture, all the nodes of a decoder tree exist simultaneously. Fig. 5.2
shows a fully-unrolled decoder for the (8, 4) polar code illustrated as a decoder tree in Fig. 5.1b.

70 Unrolled Hardware Architectures for Polar Decoders

(a) SSC

Repetition SPC

(b) Fast-SSC

Figure 5.1: Decoder trees for an (8, 4) polar code decoded with the (a) SSC and (b) Fast-SSC
algorithms.

αc αc

F8 α1
Rep4 β1

G8 α2
SPC4 β2

C8

βc
βc

Figure 5.2: Fully-unrolled decoder for a (8, 4) polar code. Clock and enable signals omitted for
clarity.

White blocks represent operations in the Fast-SSC algorithm and the subscripts of their labels
correspond to their input length Nv. Rep denotes a Repetition node, and C stands for the Combine

operation. Grayed rectangles are registers. The clock and enable signals for those blocks are
omitted for clarity. As it will be shown in Section 5.3.3, even with the multi-cycle paths, the enable
signals for that decoder may always remain asserted without affecting the correctness as long as
the input to the decoder remains stable for 3 clock cycles. This constitutes our basic scheme. On
FPGA, it takes advantage of the fact that registers are available right after LUTs in logic blocks,
meaning that adding a register after each operation does not require any additional logic block.

The code rate and frozen bit locations both affect the structure of the decoder tree and, in
turn, the number of operations performed in a Fast-SSC decoder. However, as it will be shown in
Section 5.4.4, the growth in logic usage or area for unrolled decoders remains O(N log N), where
N is the code length.

5.3 Architecture, Operations and Processing Nodes 71

αc αc αc

F8 α1

αc

Rep4 β1

G8 α2

β1

SPC4 β2

β1

C8

βc
βc

Figure 5.3: Fully-unrolled deeply-pipelined decoder for a (8, 4) polar code. Clock signals omitted
for clarity.

5.3.2 Deeply Pipelined

In a deeply-pipelined architecture, a new frame is loaded into the decoder at every clock cycle.
Therefore, a new estimated codeword is output at each clock cycle as each register is active at each
rising edge of the clock (no enable signal required). In that architecture, at any point in time, there
are as many frames being decoded as there are pipeline stages. This leads to a very high throughput
at the cost of high memory requirements. Some pipeline stage paths do not contain any processing
logic, only memory. They are added to ensure that the different messages remain synchronized.
These added memories yield register chains, or SRAM blocks, as will be shown in Section 5.3.5.

The unrolled decoder of Fig. 5.2 can be transformed into a deeply-pipelined decoder by adding
four registers. Two registers are needed to retain the channel LLRs, denoted αc in the figure, during
the 2nd and 3rd clock cycles. Similarly, two registers have to be added for the persistence of the
hard-decision vector β1 over the 4th and 5th clock cycles. Making these modifications results in
the fully-unrolled deeply-pipelined decoder shown in Fig. 5.3. Fig. 5.4 shows another example of
a fully-unrolled deeply-pipelined decoder, but for a (16, 14) polar code featuring more operations
and node types compared to Fig. 5.3, where I denotes a Rate-1 node.

For this architecture, the amount of memory required is quadratic in code length and, similarly
to resource usage, affected by rate and frozen bit locations. As will be shown in Section 5.4, this
growth in memory usage limits the proposed deeply-pipelined architecture to codes of moderate
lengths, under 4096 bits, at least for implementations using the target FPGA.

Information throughput is defined as P f R bps, where P is the width of the output bus in bits,
f is the execution frequency in Hz and R is the code rate. In a deeply-pipelined architecture, P

72 Unrolled Hardware Architectures for Polar Decoders

αc αc αc

F16 α1

αc

α1

F8 α2

αc

α1

G0R4 I2 β1

αc

C0R4

G8 I4 β2

β3

αc

C8

β4

G16 I8 β5

β4

C16

βc
βc

Figure 5.4: Fully-unrolled deeply-pipelined decoder for a (16, 14) polar code. Clock signals
omitted for clarity.

is assumed to be equal to the code length N. The decoding latency depends on the frozen bit
locations and the constrained maximum width for all processing nodes, but is less than N log2 N.
In our experiments, with the operations and optimizations described below, the decoding latency
never exceeded N/2 clock cycles.

5.3.3 Partially Pipelined

In a deeply-pipelined architecture, a significant amount of memory is required for data persistence.
That memory quickly increases with the code length N. Instead of loading a new frame into
the decoder and estimating a new codeword at every cycle, we propose a compromise where the
unrolled decoder can be partially pipelined to reduce the required memory. Let I be the initiation
interval, where a new estimated codeword is output every I clock cycles. The case where I = 1
translates to a deeply-pipelined architecture.

Setting I> 1 leads to a significant reduction in the memory requirements. An initiation interval
of I translates to an effective required register chain length of �L/I� instead of L, where L is the
length of the register chain. Using I = 2 leads to a ∼ 50% reduction in the amount of memory
required for that section of the circuit. This reduction applies to all register chains present in the
decoder.

The unrolled decoder of Fig. 5.2 can be seen as a partially-pipelined decoder with an initiation
interval I = 3. A partially-pipelined decoder with I = 2 can be obtained for a (16, 14) polar code
by removing the dotted registers in Fig. 5.4, leading to the decoder shown in Fig. 5.5.

The initiation interval I can be increased further in order to reduce the memory requirements,

5.3 Architecture, Operations and Processing Nodes 73

αc αc

F16 α1

αc

F8 α2

α1

G0R4 I2 β1

αc

C0R4

G8 I4 β2

β3

C8

β4

G16 I8 β5

C16

βc
βc

Figure 5.5: Fully-unrolled partially-pipelined decoder for a (16, 14) polar code with I = 2. Clock
and enable signals omitted for clarity.

but only up to a certain limit (corresponding to the basic scheme). We call that limit the maximum
initiation interval Imax, and its value depends on the decoder tree. By definition, the longest register
chain in a fully-unrolled decoder is used to preserve the channel LLRs αc. Hence, the maximum
initiation interval corresponds to the number of clock cycles required for the decoder to reach
the last operation in the decoder tree that requires αc, GN , the operation calculated when going
down the right edge linking the root node to its right-hand-side child. Once that GN operation is
completed, αc is no longer needed and can be overwritten. As an example, consider the (8, 4) polar
decoder illustrated in Fig. 5.2. As soon as the switch to the right-hand side of the decoder tree
occurs, i.e. when G8 is traversed, the register containing the channel LLRs αc can be updated with
the LLRs for the new frame without affecting the remaining operations for the current frame. Thus
the maximum initiation interval, Imax, for that decoder is 3.

The resulting information throughput is P f R/I bps, where I is the initiation interval. Note that
this new definition can also be used for the deeply-pipelined architecture. The decoding latency
remains unchanged compared to the deeply-pipelined architecture.

The partially-pipelined architecture requires a more elaborate controller than the deeply-pipelined
architecture. For both fully- and partially-pipelined architectures, the controller generates a done
signal to indicate that a new estimated codeword is available at the output. For the partially-
pipelined architecture, the controller also contains a counter with maximum value of (I−1) which
generates the I enable signals for the registers. An enable signal is asserted only when the counter
reaches its value, in [0,I− 1], otherwise it remains deasserted. Each register uses an enable signal
corresponding to its location in the pipeline modulo I. As an example, let us consider the de-
coder of Fig. 5.5, i.e. I is set to 2. In that example, two enable signals are created and a simple

74 Unrolled Hardware Architectures for Polar Decoders

counter alternates between 0 and 1. The registers storing the channel LLRs αc are enabled when
the counter is equal to 0 because their input resides on the even (0, 2 and 4) stages of the pipeline.
On the other hand, the two registers holding the α1 LLRs are enabled when the counter is equal to
1 because their inputs are on odd (1 and 3) stages. The other registers follow the same rule.

The required memory resources could be further reduced by performing the decoding opera-
tions in a combinational manner, i.e. by removing all the registers except the ones labeled αc and
βc, as in [47]. However, the resulting reachable frequency is too low for the desired throughput
level.

5.3.4 Operations and Processing Nodes

In order to keep the critical paths as short as possible, only a subset of the operations and processing
nodes proposed in the original Fast-SSC algorithm are used. Furthermore, for some nodes, the
maximum processing node length Nv is constrained to smaller values than the ones used in [8].

Notably, the Repetition and SPC nodes are limited to Nv = 8 and 4, respectively. The remainder
of the operations—F , G, G0R, Combine, C0R—are not constrained, as their lengths do not affect
the critical paths. While it was not required in the original Fast-SSC algorithm, our architecture
includes a Rate-1 processing node, implementing (2.4). That Rate-1 node is not constrained in
length either.

In order to reduce latency and resource usage, improvements were made to some operations
and nodes. They are detailed below.

C0R Operations: A C0R operation is a special case of a Combine operation (2.3) where the left-
hand-side constituent code, βl , is a Rate-0 node. Thus, the operation is equivalent to copying
the estimated hard values from the right-hand-side constituent code over to the left-hand
side.

In other words, a C0R does not require any logic, it only consists of wires. All occurrences
of that operation were thus merged with the following modules, saving a clock cycle without
negatively impacting the maximum clock frequency and reducing memory.

Rate-1 or Information Nodes: With a fixed-point number representation, a Rate-1 (or Informa-
tion) node amounts to copying the most significant bit of the input LLRs. Similarly to the
C0R operation, the Information node does not require any logic and is equivalent to wires.

5.3 Architecture, Operations and Processing Nodes 75

Contrary to the C0R operation though, we do not save a clock cycle by prepending the
Information node to its consumer node. Instead, the register storing LLRs at the output of
its producer is removed and the Information node is appended, along with its register used
to store the hard decisions. Not only is the decoding latency reduced by a clock cycle, but a
register storing LLR values is removed.

Repetition Nodes: The output of a Repetition node is a single bit estimate. The systematic polar
decoder of [8] copies that estimated information bit Nv times to form the estimated bit vector,
before storing it. In our implementation, we store only one bit that is later expanded just
before a consumer requires it. This reduces the width of register chains carrying bit estimates
generated by Repetition nodes, thus decreasing resource usage.

5.3.5 Replacing Register Chains with SRAM Blocks

As the code length N grows, long register chains start to appear in the decoder, especially with a
smaller I. In order to reduce the number of registers required, register chains can be converted
into SRAM blocks.

Consider the register chain of length 6 used for the persistence of the channel LLRs αc in
the fully-unrolled deeply-pipelined (16, 14) decoder shown in top row of Fig. 5.4. That register
chain can be replaced by an SRAM block with a depth of 6 along with a controller to generate the
appropriate read and write addresses. Similar to a circular buffer, if the addresses are generated to
increase every clock cycle, the write address is set to be one position ahead of the read address.

SRAM blocks can replace register chains in a partially-pipelined architecture as well. In both
architectures, the SRAM block depth has to be equal or greater than the register chain length. The
same constraint applies to the width.

In scenarios where narrow SRAM blocks are not desirable, register chains can be merged to
obtain a wider SRAM block even if the register chains do not have the same length. If the lengths
of 2 register chains to be merged differ, the first registers in the longest chain are preserved, and
only the remaining registers are merged with the other chain.

76 Unrolled Hardware Architectures for Polar Decoders

5.4 Implementation and Results

5.4.1 Methodology

In our experiments, decoders are built with sufficient memory to accommodate storing an extra
frame at the input, and to preserve an estimated codeword at the output. As a result, the next frame
can be loaded while a frame is being decoded. Similarly, an estimated codeword can be read while
the next frame is being decoded. To facilitate comparison between the fully and partially-pipelined
architectures, we define decoding latency to only include the time required for the decoder to
decode a frame; loading channel LLRs and offloading estimated codewords are excluded from the
calculations.

The quantization used was determined by running fixed-point simulations with bit-true models
of the decoders. A smaller number of bits is used to store the channel LLRs compared to that
of the other LLRs used in the decoder. All LLRs share the same number of fractional bits. We
denote quantization as Qi.Qc.Qf , where Qc is the total number of bits to store a channel LLR, Qi is
total the number of bits used to store internal LLRs and Qf is the number of fractional bits in both.
Fig. 5.6 shows the effect of quantization on the error-correction performance of a (1024, 512) polar
code modulated with BPSK and transmitted over an AWGN channel. Note that more fixed-point
combinations are illustrated compared to previous chapters. Looking at Fig. 5.6, it can be seen that
using Qi.Qc.Qf equal to 5.4.0 results in a 0.1 dB performance degradation at a BER of 10−6. Thus
we used that quantization for the hardware results.

FPGA results are for an Altera Stratix IV EP4SGX530KH40C2 to facilitate comparison against
most polar decoder implementations in the literature. That FPGA features 637,440 LUTs, 424,960
registers and 21,233,664 bits of SRAM. Better results are to be expected if more recent FPGAs
were to be targeted. ASIC synthesis results for the 28 nm FD-SOI CMOS technology from STMi-
croelectronics are obtained by running Synopsys Design Compiler in topographical mode for a
typical library at 1.0 V and 125◦C, and a timing constraint set to 1 ns. Furthermore, on ASIC, only
registers are used as we did not have access to an SRAM compiler.

5.4.2 Effect of the Initiation Interval

In this section, we explore the effect of the initiation interval on the implementation of the fully-
unrolled architecture. The decoders are built for the same (1024, 512) polar code used in [20],
although many improvements were made since the publication of that work (see Section 5.3.4).

5.4 Implementation and Results 77

1.5 2 2.5 3 3.5 4

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e-
er

ro
rr

at
e

1.5 2 2.5 3 3.5 4
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)
B

it-
er

ro
rr

at
e

Floating-point:

Fixed-point: 6.5.1 5.4.0 5.4.1

Figure 5.6: Effect of quantization on the error-correction performance of a (1024, 512) polar code.

Regardless of the initiation interval, all decoders use 5.4.0 quantization and have a decoding latency
of 364 clock cycles.

Tables 5.1 and 5.2 show the results for various initiation intervals on the FPGA and ASIC
implementations, respectively. Besides the effect on coded throughput, increasing the initiation
interval causes a significant reduction in the FPGA resources required or of the ASIC area. On
FPGA, while the throughput is approximately cut in half, using I = 2 reduces the number of re-
quired LUTs, registers and RAM bits by 9%, 12% and 88%, respectively, compared to the deeply-
pipelined decoder. Also on FPGA, with a throughput over 50 Gbps, using an initiation interval
as small as 4 removes the need for any SRAM blocks, while the usage of LUTs and registers de-
creases by 20% and 23%, respectively. Finally, from Table 5.1, if a coded throughput of 1.5 Gbps
is sufficient for the application, I = 167 will result in savings of 32%, 77% and 100% in terms of
LUTs, registers and RAM bits, compared to the deeply-pipelined architecture (I = 1). On ASIC,
the area is largely dominated by registers and thus increasing the initiation interval has great effect
on the total area as shown in Table 5.2. For example, using I = 50 results in an area that is more
than 12 times smaller, at the cost of a throughput that is 50 times lower.

As expected, increasing the initiation interval I offers a diminishing return as it gets closer to

78 Unrolled Hardware Architectures for Polar Decoders

Table 5.1: Decoders for a (1024, 512) polar code with various initiation interval I implemented
on an FPGA.

I LUTs Regs.
RAM f T/P Latency
(kbits) (MHz) (Gbps) (μs)

1 136,874 188,071 83.92 248 254.1 1.47
2 124,532 166,361 9.97 238 121.7 1.53
3 114,173 152,182 4.68 208 71.1 1.75
4 110,381 145,000 0 203 52.1 1.79
50 86,998 65,618 0 218 4.5 1.67
167 93,225 43,236 0 239 1.5 1.52

Table 5.2: Decoders for a (1024, 512) polar code with various initiation interval I implemented
on an ASIC.

I Tot. Area Mem. Area f T/P Latency
(mm2) (mm2) (MHz) (Gbps) (μs)

1 4.627 3.911 1245 1,274.9 0.29
2 3.326 3.150 1020 522.2 0.36
3 2.314 2.138 1005 343.0 0.36
4 1.665 1.063 1003 256.8 0.36
50 0.366 0.143 1003 20.5 0.36
167 0.289 0.089 1003 6.2 0.36

the maximum of 167. Table 5.1 also shows that on FPGA increasing I first reduces the maximum
execution frequency but, eventually, it reincreases almost back to the value it had with I = 1.
Inspection of the critical paths reveals that this frequency increase is a result of shorter wire delays.
As the number of LUTs and registers decreases with an increasing I, at some point, it becomes
easier to use resources that are close to each other.

5.4.3 Comparison with State-of-the-Art Decoders

In this section, we compare our work with that of the fastest state-of-art polar decoder implemen-
tations: [15], [17], [47]. The work of [17] was presented in Chapter 3. In [15], ASIC results
are provided. The work of [17] and [47] provide results for both ASIC and FPGA implementa-
tions. The BP decoder of [15] is an iterative decoder utilizing early termination to improve the

5.4 Implementation and Results 79

average throughput. However, as it does not include the necessary buffers to accommodate that
functionality, we add the sustainable throughput for consistency.

Table 5.3 shows that regardless of the implementation technology, our family of architectures
can deliver from one to three orders of magnitude greater coded throughput. On ASIC, the latency
is more than 10 times lower than that of [15] and about the same as both [17] and [47].

Table 5.3: Comparison with state-of-the-art polar decoders.

This work [17] [15]� [47]

Algorithm Fast-SSC Fast-SSC BP SC
Code (1024, 512) (1024, 512) (1024, 512) (1024, k)
IC Type FPGA ASIC ASIC ASIC ASIC
Technology 40 nm 28 nm 65 nm 65 nm 90 nm
Init. Interval (I) 167 50 1 167 50 1 - - -
Supply (V) 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.3
Area (mm2) - - - 0.29 0.37 4.63 0.69 1.48 3.21
Frequency (MHz) 239 218 248 1003 1003 1245 600 300 2.5
Latency (μs) 1.5 1.7 1.5 0.4 0.4 0.3 0.4 50 0.4
T/P (Gbps) 1.5 4.5 254 6.2 20.5 1275 3.7 4.7 @ 4 dB 2.9
Sust. T/P (Gbps) 1.5 4.5 254 6.2 20.5 1275 3.7 2.0 2.9
Area Eff. (Gbps/mm2) - - - 21.45 56.01 275.53 5.4 3.18 @ 4 dB 0.8
Power (mW) 1420 1454 5532 169 271 8793 215 478 191
Energy (pJ/bit) 946.7 323.2 21.8 27.3 13.2 6.9 57.5 102.1 74.5

Normalized results for 28 nm and 1.0 V.

Area (mm2) - - - 0.29 0.37 4.63 0.13 0.27 0.31
Frequency (MHz) 341 311 354 1003 1003 1245 1392 696 8.0
Latency (μs) 1.1 1.2 1.1 0.4 0.4 0.3 0.2 21.5 0.1
Sust. T/P (Gbps) 2.1 6.4 363 6.2 20.5 1275 8.6 4.6 9.2
Area Eff. (Gbps/mm2) - - - 21.45 56.01 275.53 66.2 17.2 29.6
Power (mW) 1227 1257 4781 169 271 8793 93 206 35
Energy (pJ/bit) 818.1 279.2 18.8 27.3 13.2 6.9 25.0 44.8 3.8

� Measurement results.

Normalizing the results of [15], [17], [47] to 28 nm CMOS technology with a supply voltage of
1.0 V, the coded throughput is still one or two orders of magnitude greater. Latency is two orders
of magnitude lower than [15] but approximately 3 to 4 times greater than [47]. Looking at the
energy efficiency for the deeply-pipelined architecture on ASIC, the proposed decoder is 6 times
more efficient than [15], 3.5 times more efficient than [17] and about 2 times less efficient than

80 Unrolled Hardware Architectures for Polar Decoders

Table 5.4: Comparison with other FPGA implementations.

Impl. LUTs Regs.
RAM f T/P Latency
(kbits) (MHz) (Gbps) (μs)

This work 93,225 43,236 0 239 1.5 1.5
[17] 23,353 5,814 44 103 0.6 1.6
[47]† 193,456 6,151 N/A 1 0.6 3.4

[47]. In terms of area efficiency, the same decoder is 4.2, 16 and 9.4 times more efficient than that
of [17], [15] and [47], respectively.

Table 5.4 compares our proposed fully-unrolled partially-pipelined architecture, with the max-
imum initiation interval Imax = 167, against the fastest FPGA implementations of [17], [47]. The
work of [47] is marked with (†) as these results are for a different FPGA, the Xilinx Virtex-6
XC6VLX550T. Note however that this Xilinx FPGA is implemented in 40 nm CMOS technology
and features 6-input LUTs, like the Altera Stratix IV FPGA.

It can be seen that a decoder built with one of our proposed architectures can achieve nearly
3 times the throughput of both [17] and [47] with a slightly lower latency. In terms of resources,
compared to the decoder of [17], our decoder requires almost 4 and 7 times the number of LUTs
and registers, respectively. Note however that we do not require any RAM for the proposed im-
plementation, while the other decoder from Chapter 3 uses 44 kbits. Compared to the SC decoder
of [47], our decoder requires less than half the LUTs, but needs more than 7 times the number of
registers. It should be noted that the decoder of [47] does not contain the necessary memory to load
the next frame while a frame is being decoded, nor the necessary memory to offload the previously
estimated codeword as decoding is taking place.

5.4.4 Effect of the Code Length and Rate

Results for other polar codes are presented in this section where we show the effect of the code
length and rate on performance and resource usage.

Tables 5.5, 5.6, 5.7 and 5.7 show the effect of the code length on resource usage, coded through-
put, and decoding latency for polar codes of short to moderate lengths. Tables 5.5 and 5.6 contain
results for the fully-unrolled deeply-pipelined architecture (I = 1) and the code rate R is fixed to
1/2 for all polar codes. Tables 5.7 and 5.8 contain results for the fully-unrolled partially-pipelined

5.4 Implementation and Results 81

Table 5.5: Deeply-pipelined decoders for polar codes of various lengths with rate R = 1/2 imple-
mented on an FPGA.

N LUTs Regs.
RAM f T/P Latency
(kbits) (MHz) (Gbps) (μs)

128 9,917 18,543 0 357 45.7 0.21
256 27,734 44,010 0 324 83.0 0.41
512 64,723 105,687 4 275 141.1 0.74
1024 136,874 188,071 84 248 254.1 1.47
2048 217,175 261,112 5,362 203 415.7 3.21

Table 5.6: Deeply-pipelined decoders for polar codes of various lengths with rate R = 1/2 imple-
mented on an ASIC.

N
Tot. Area Log. Area Mem. Area f T/P Latency

(mm2) (mm2) (mm2) (MHz) (Gbps) (ns)

128 0.125 0.027 0.098 1383 177.0 55.0
256 0.412 0.079 0.332 1353 346.4 99.0
512 1.263 0.217 1.045 1328 679.9 156.6
1024 4.627 0.715 3.911 1245 1,274.9 292.4

architecture where the maximum initiation interval (Imax) is used and the code rate R is fixed to 5/6.
As shown in Tables 5.5 and 5.6, with a deeply-pipelined architecture, both the logic usage and

memory requirements are close to being quadratic in code length N.
On FPGAs, the decoders for the three longest codes of Table 5.5 are capable of a coded through-

put greater than 100 Gbps. Notably, the N = 2048 code reaches 400 Gbps. On ASIC, a throughput
exceeding 1 Tbps can be achieved with a decoder for a polar code of length N = 1024 as shown in
Table 5.6. The decoder for the (2048, 1024) polar code could not be synthesized for ASIC on our
server due to insufficient memory.

Table 5.7 shows that for a partially-pipelined decoder where the initiation interval is set to Imax,
it is possible to fit a code of length N = 4096 on the Stratix IV GX 530. The amount of RAM
required is not illustrated in the table as none of the decoders are using any of the available RAM.
Also note that no LUTs are used as memory. In other words, for pipelined decoders using Imax

as the initiation interval, registers are the only memory resources needed. Table 5.7 also shows
that these maximum initiation intervals lead to a much more modest throughput. In the case of

82 Unrolled Hardware Architectures for Polar Decoders

Table 5.7: Partially-pipelined decoders with initiation interval set to Imax for polar codes of various
lengths with rate R = 5/6 implemented on an FPGA.

N I LUTs Regs.
f T/P Latency

(MHz) (Gbps) (μs)

1024 206 75,895 42,026 236 1.17 1.11
2048 338 165,329 75,678 220 1.33 2.02
4096 665 364,320 172,909 123 0.76 7.04

Table 5.8: Partially-pipelined decoders with initiation interval set to Imax for polar codes of various
lengths with rate R = 5/6 implemented on an ASIC clocked at 1 GHz.

N I Tot. Area Log. Area Mem. Area T/P Latency
(mm2) (mm2) (mm2) (Gbps) (μs)

1024 206 0.230 0.169 0.070 5.0 0.26
2048 338 0.509 0.345 0.164 6.1 0.44
4096 665 1.192 0.820 0.372 6.2 0.87

the (4096, 3413) polar code, we can see a major latency increase compared to the shorter codes.
This latency increase can be explained by the maximum clock frequency drop which in turn can
be explained by the fact that 94% of the total available logic resources in that FPGA were required
to implement this decoder.

At some point on FPGAs, a fully-unrolled architecture is no longer advantageous over a more
compact architecture like the one of [8]. With the Stratix IV GX 530 as an FPGA target, a fully-
unrolled decoder for a polar code of length N = 4096 is too complex to provide good throughput
and latency. Even with the maximum initiation interval, 94% of the logic resources are required
for a coded throughput under 1 Gbps. By comparison, a decoder built with the architecture of [8]
would result in a coded throughput in the vicinity of 1 Gbps at 110 MHz. Targeting a more recent
FPGA could lead to different results and conclusions.

On ASIC, both the memory and total area scale linearly with N for a partially-pipelined ar-
chitecture with Imax. The results of Table 5.8 also show that it was possible to synthesize ASIC
decoders for larger code lengths than what was possible with a deeply-pipelined architecture.

The effect of using different code rates for a polar code of length N = 1024 is shown in
Tables 5.9 and 5.10. We note that the higher-rate codes do not have noticeably lower latency

5.4 Implementation and Results 83

Table 5.9: Deeply-pipelined decoders for polar codes of length N = 1024 with common rates
implemented on an FPGA.

R LUTs Regs. RAM
(bits)

f
(MHz)

T/P
(Gbps)

Latency

(CCs) (μs)

1/2 136,874 188,071 83,924 248 254.1 364 1.47
2/3 137,230 183,957 73,020 250 256.0 326 1.30
3/4 151,282 204,479 83,288 227 232.7 373 1.64
5/6 145,659 198,876 82,584 229 234.4 323 1.41

Table 5.10: Deeply-pipelined decoders for polar codes of length N = 1024 with common rates
implemented on an ASIC.

R Tot. Area
(mm2)

Log. Area
(mm2)

Mem. Area
(mm2)

f
(MHz)

T/P
(Gbps)

Latency

(CCs) (ns)

1/2 4.627 0.715 3.911 1245 1,274.9 364 292.4
2/3 4.896 0.740 4.156 1300 1,331.2 326 250.8
3/4 5.895 0.872 5.023 1245 1,274.9 373 299.6
5/6 5.511 0.816 4.694 1361 1,393.7 323 237.3

compared to the rate-1/2 code, contrary to what was observed in [8]. This is due to limiting the
width of SPC nodes to 4 in this work, whereas it was left unbounded in [8], [16], [17]. The result
is that long SPC codes are implemented as trees whose left-most child is a width-4 SPC node and
the others are all rate-1 nodes. Thus, for each additional stage (log2 Nv− log2 NSPC) of an SPC code
of length Nv > NSPC, four nodes with a total latency of 3 CCs are required: F , G followed by I, and
Combine. This brings the total latency of decoding a long SPC code to 3(log2 Nv − log2 NSPC) + 1
CCs compared to

⌈
Nv/P
⌉
+ 4 in [8], where P is the number of LLRs that can be read simultaneously

(256 was a typical value for P in [8]).
Fig. 5.7 gives a graphical overview of the maximum resource usage requirements on FPGA for

a given achievable coded throughput. The fully-unrolled deeply- and partially-pipelined decoders
were taken from Tables 5.1 and 5.5, respectively. The resynthesized polar decoder of [8] is also
included for reference. The red asterisks show that with a deeply-pipelined decoder architecture
(initiation interval I = 1), the coded throughput increases at a higher rate than the maximum re-
source usage as the code length N increases. The blue diamonds illustrate the effect of various

84 Unrolled Hardware Architectures for Polar Decoders

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

I = 50

I = 4

I = 3 I = 2
I = 1

N = 128
N = 256

N = 512

N = 1024

N = 2048

Coded T/P (Gbps)

M
ax

.R
es

ou
rc

e
U

sa
ge

(%
)

Table 5.1
Table 5.5

[8]*

Figure 5.7: Overview of the maximum FPGA resource usage and coded throughput for some
partially-pipelined (Table 5.1) and deeply-pipelined (Table 5.5) polar decoders. The resynthesized
polar decoder of [8] is also included for reference.

initiation intervals for the same (1024, 512) polar code. We see that decreasing I leads to in-
creasingly interesting implementation alternatives, as the gains in throughput are obtained at the
expense of a smaller increase in the maximum resource usage. When it can be afforded and that
the FPGA input data rate is sufficient, the extra 2.9% in maximum resource usage allows doubling
the throughput, from I = 2 to I = 1.

5.4.5 On the Use of Code Shortening in an Unrolled Decoder

Code shortening is a well-known technique used to create a rate- and length-flexible error-correction
system. Multiple such schemes were proposed for use with polar codes [24], [66], [67]. The tech-
nique presented in [24] could be used with this work. It starts from a systematic (N, k) polar code
and shortens it by h bits, resulting in a (Ns, ks) polar code, where Ns = N − h and ks = k − h. At the
encoder, the h information bit locations of highest indices are set to a predetermined value (usually
0). After encoding, these bits are discarded from x before being transmitted over the channel. At
the decoder, the corresponding soft-inputs channel values are set to a certain 0 or 1, depending on
the predetermined value used at the encoder.

To support a shortened (N − h, k − h) polar code, an unrolled decoder requires additional cir-
cuitry at the input to insert LLR values for the discarded bits—the maximum LLR value when the

5.5 Conclusion 85

discarded bits are assumed to be 0. Since, the scheme of [24] chooses the information bits with
largest indices to discard, the routing overhead would be minor.

5.4.6 I/O Bounded Decoding

The family of architectures that we propose requires tremendous throughput at the input of the
decoder, especially with a deeply-pipelined architecture. For example, if a quantization of Qc = 4
bits is used for channel LLRs, for every estimated bit, 4 times as many bits have to be loaded into
the decoder. In other words, the total data rate is 5 times that of the output. This can be a significant
challenge on both FPGAs and ASICs.

On FPGA, if 38 of the 48 high-speed transceivers (approximately 4/5) featured on a Stratix IV
GX are to be used to load the channel LLRs and the remainder to output the estimated codewords,
the maximum theoretical input data rate achievable will be of 323 Gbps. On the more recent Stratix
V GX, using 53 of the 66 transceivers at their peak data rate of 14.1 Gbps sums up to 747 Gbps
available for input. However, the fully-unrolled deeply-pipelined (1024, 512) and (2048, 1024)
polar decoders discussed above require an input data rate that is over 1 Tbps.

If only for that reason, partially-pipelined architectures are certainly more attractive, at least
using current FPGA technology. Notice however that data rates in the vicinity of 1 Tbps are
expected to be reachable in the incoming Xilinx UltraScale [68] and Altera Generation 10 [69]
families of FPGAs. On ASICs, the number of high-speed transceivers is not fixed and a custom
solution can be built.

5.5 Conclusion

In this chapter we presented a new family of architectures for fully-unrolled polar decoders. With
an initiation interval that can be ajusted, these architectures make it possible to find a trade-off
between area (or resource usage) and achievable throughput without affecting decoding latency.
We showed that a fully-unrolled deeply-pipelined decoder implemented on an FPGA can achieve
a throughput greater than 400 Gbps, which is two orders of magnitude greater than state-of-the-
art polar decoders while maintaining a good latency. On ASICs, we showed that the proposed
fully-unrolled deeply-pipelined decoders could achieve a throughput that would be two or three
orders of magnitude greater than the state-of-the-art decoders with an order of magnitude better
normalized area efficiency and a competitive energy efficiency. One of the proposed decoder has a

86 Unrolled Hardware Architectures for Polar Decoders

coded throughput in excess of 1 Tbps at 6.9 pJ/bit on ASICs. We believe that these architectures
make polar codes a promising candidate for future 5G communications.

87

Chapter 6

Multi-mode Unrolled Polar Decoding

Unrolled decoders are architectures that provide the greatest decoding speed, by orders of mag-
nitude compared to their more compact counterparts. However, unrolled decoders are built for
a specific, fixed, code. In this chapter, we present a new method to enable the use of multiple
code lengths and rates in a fully-unrolled polar decoder architecture. This novel method leads to a
length- and rate-flexible decoder while retaining the very high speed typical to those decoders. We
present results for two versions of a multi-mode decoder supporting eight and ten different polar
codes, respectively. Both are capable of a peak throughput of 25.6 Gbps. For each decoder, the
energy efficiency for the longest supported polar code is shown to be of 14.8 pJ/bit at 250 MHz
and of 8.8 pJ/bit at 500 MHz on an ASIC built in 65 nm CMOS technology.

6.1 Introduction

In the previous chapter (and in [21]), unrolled hardware architectures for polar decoders were pro-
posed. Results showed a very high throughput, greater than 1 Tbps. However, these architectures
are built for a fixed polar code i.e. the code length or rate cannot be modified at execution time.
This is a major drawback for most modern wireless communication applications that largely benefit
from the support of multiple code lengths and rates.

The goal of this chapter is to show how an unrolled decoder built specifically for a polar code,
of fixed length and rate, can be transformed into a multi-mode decoder supporting many codes
of various lengths and rates. More specifically, we show how decoders for moderate-length polar
codes contain decoders for many other shorter—but practical—polar codes of both high and low

88 Multi-mode Unrolled Polar Decoding

rates. The required hardware modifications are detailed, and ASIC synthesis and power estimations
are provided for the 65 nm CMOS technology from TSMC. Results show a peak information
throughput greater than 25 Gbps at 250 MHz in 4.29 mm2 or at 500 MHz in 1.71 mm2. Latency is
of 2 μs and 650 ns for the former and latter.

The remainder of this chapter starts with Sections 6.2 and 6.3 where a supporting decoder tree
example is provided along with its unrolled hardware implementation. Section 6.4 then explains
the concept, hardware modifications and other practical considerations related to the proposed
multi-mode decoder. Error-correction performance and implementation results are provided in
Section 6.5. Comparison against the fastest state-of-the-art polar decoder implementations in the
literature is carried out in Section 6.5 as well. Finally, a conclusion is drawn in Section 6.6.

6.2 Polar Code Example and its Decoder Tree Representations

Fig. 6.1a illustrates the decoder tree for a (16, 12) polar code, where black and white nodes are
information and frozen bits, respectively. The Left-Hand-Side (LHS) and Right-Hand-Side (RHS)
subtrees rooted in the top node are polar codes of length N/2. In the remainder of this chapter, we
designate the polar code, of length N, decoded by traversing the whole decoder tree as the master

code and the various codes of lengths smaller than N as constituent codes.

v

αv

βvαl

βl
αr

βr

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

(a) SC

v

αv

αl

βl αr

βr

βv

u3
0 u7

4

u15
8

(b) Fast-SSC

Figure 6.1: Decoder trees for SC (a) and Fast-SSC (b) decoding of a (16, 12) polar code.

6.3 Unrolled Architectures 89

6.3 Unrolled Architectures

In an unrolled decoder, each and every operation required is instantiated so that data can flow
through the decoder with minimal control. Unrolled architectures for polar decoders are described
in depth in Chapter 5.

α15
0 αc

F
m1

α7
0

α1

αc

F
m2

α3
0

α2

α1

Rep
β1

αc

G
m3

α7
4

α3
SPC β2

β1

αc

C
om

bi
ne β3

G I β4

C
om

bi
ne

m4
&

m5

& βc
β 15

0
[15..8]

[7..0]

Figure 6.2: Unrolled partially-pipelined decoder for a (16, 12) polar code with initiation interval
I = 2. Clock, flip-flop enable and multiplexer select signals are omitted for clarity.

Fig. 6.2 shows a fully-unrolled partially-pipelined decoder [21] with an initiation interval I = 2
for the (16, 12) polar code of Fig. 6.1b—the initiation interval can be seen as the minimum number
of clock cycles between two codeword estimates. Some control and routing logic was added to
make it multi-mode as proposed in this chapter, details are provided in the next section. The α and
β blocks illustrated in light blue are registers storing LLRs or bit estimates, respectively. White
blocks are Fast-SSC functions as detailed in Section 2.6, with the exception of the “&” blocks that
are concatenation operators.

6.4 Multi-mode Unrolled Decoders

It can be noted that an unrolled decoder for a polar code of length N is composed of unrolled
decoders for two polar codes of length N/2, which are each composed of unrolled decoders for two
polar codes of length N/4, and so on. Thus, by adding some control and routing logic, it is possible
to directly feed and read data from the unrolled decoders for subcodes of length smaller than N.
The end result is a multi-mode decoder supporting frames of various lengths and code rates.

90 Multi-mode Unrolled Polar Decoding

6.4.1 Hardware Modifications to the Unrolled Decoders

Consider the decoder tree shown in Fig. 6.1b along with its unrolled implementation as illustrated
in Fig. 6.2. In Fig. 6.1b, the constituent code taking root in v is an (8, 4) polar code. Its correspond-
ing decoder can be directly employed by placing the 8 channels LLRs into α7

0 and by selecting
the bottom input of the multiplexer m1 illustrated in Fig. 6.2. Its estimated codeword is retrieved
from reading the output of the Combine block feeding the β4 register i.e. by selecting the top and
bottom inputs from m4 and m5, respectively, and by reading the 8 least-significant bits from β 15

0 .
Similarly, still in Fig. 6.2, the decoders for the repetition and SPC constituent codes can be fed via
the m2 and m3 multiplexers and their output eventually recovered from the output of the Rep and
SPC blocks, respectively.

Although not illustrated in Fig. 6.2, the unrolled decoders proposed in the previous chapter
feature a minimal controller. As described at the end of Section 5.3.3, its main task is twofold.
First, it generates a done signal to indicate that a new estimated codeword is available at the out-
put. Second, in the case of a partially-pipelined decoder i.e. with an initiation interval I greater
than 1 like in Fig. 6.2, it asserts the various flip-flop enable signals at the correct time. Both are
accomplished using a counter, albeit independently.

While not mandatory, the functionality of these counters is altered to better accommodate the
use of multiple polar codes. Two LUTs are added. One LUT stores the decoding latency, in CCs,
of each code. It serves as a stopping criteria to generate the done signal. The other LUT stores the
clock cycle “value” istart at which the enable-signal generator circuit should start. Each non-master
code may start at a value (istart mod I) � 0. In such cases, using the unaltered controller would
result in the waste of (istart mod I) CCs. It can be significant for short codes, especially with large
values of I. For example, without these changes, for the implementation with a master code of
length 1024 and I = 20 presented in Section 6.5 below, the latency for the (128, 96) polar code
would increase by 20% as (istart mod I) = 17 and the decoding latency is of 82 CCs.

Lastly, the modified controller also generates the multiplexer select signals, allowing proper
data routing, based on the selected mode.

6.4.2 On the Construction of the Master Code

Conventional approaches construct polar codes for a given channel type and condition. In this
work, many of the constituent codes contained within a master code are not only used internally

6.4 Multi-mode Unrolled Decoders 91

to detect and correct errors, they are used separately as well. Therefore, we propose to assemble
a master code using two optimized constituent codes in order to increase the number of optimized
polar codes available. Doing so, the number of information bits, or the code rate, of the second
largest supported codes can be selected. In the following, a master code of length 2048 is con-
structed by concatenating two constituent codes of length 1024. The LHS and RHS constituent
codes are chosen to have a rate of 1/2 and of 5/6, respectively. As a result, the assembled master
code has rate 2/3. The location of the frozen bits in the master code is dictated by its constituent
codes. Note that the constituent code with the lowest rate is put on the left—and the one with the
highest rate on the right—to minimize the coding loss associated with a non-optimized polar code.

2 2.5 3 3.5 4

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e-
er

ro
rr

at
e

2 2.5 3 3.5

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
it-

er
ro

rr
at

e

Optimized with [22] Assembled

Figure 6.3: Error-correction performance of two (2048, 1365) polar codes with different construc-
tions.

Fig. 6.3 shows both the FER (left) and the BER (right) of two different (2048, 1365) polar
codes. The black-solid curve is the performance of a polar code optimized using the method
described in [22] for Eb/N0 = 4 dB. The dashed-red curve is for the (2048, 1365) constructed
by assembling (concatenating) a (1024, 512) polar code and a (1024, 853) polar code. Both polar
codes of length 1024 were also optimized using the method of [22] for Eb/N0 values of 2.5 and 5
dB, respectively.

From the figure, it can be seen that constructing an optimized polar code of length 2048 with

92 Multi-mode Unrolled Polar Decoding

rate 2/3 results in a coding gain of approximately 0.17 dB at a FER of 10−3—an FER appropriate
for certain applications—over one assembled from two shorter polar codes of length 1024. The
gap is increasing with the signal-to-noise ratio, reaching 0.24 dB at a FER of 10−4. Looking at the
BER curves, it can be observed that the gap is much narrower. Compared to that of the assembled
master code, the optimized polar code shows a coding gain of 0.07 dB at a BER of 10−5.

6.4.3 About Constituent Codes: frozen bit locations, rate and practicality

The location of the frozen bits in non-optimized constituent codes is dictated by their parent code.
In other words, if the master code of length N has been assembled from two optimized (constituent)
polar codes of length N/2 as suggested in the previous section, the shorter optimized codes of length
N/2 determine the location of the frozen bits in their respective constituent codes of length < N/2.
Otherwise, the master code dictates the frozen bit locations for all constituent codes.

Assuming that the decoding algorithm takes advantage of the a priori knowledge of these lo-
cations, the code rate and frozen bit locations of constituent codes cannot be changed at execution
time. However, there are many constituent codes to choose from and code shortening can be used
[24] to create more, e.g. in order to obtain a specific number of information bits or code rate.

Because of the polarization phenomenon, given any two sibling constituent codes, the code
rate of the LHS one is always lower than that of the RHS one for a properly constructed polar code
[25]. That property plays to our advantage as, in many wireless applications, it is desirable to offer
a variety of codes of both high and low rates.

It should be noted that not all constituent codes within a master code are of practical use e.g.
codes of very high rate offer negligible coding gain over an uncoded communication. For example,
among the four constituent codes of length 4 included in the (16, 12) polar code illustrated in
Fig. 6.1a, two of them are rate-1 constituent codes. Using them would be equivalent to uncoded
communication. Moreover, among constituent codes of the same length, many codes may have a
similar number of information bits with little to no error-correction performance difference in the
region of interest.

Fig. 6.4 shows the frame-error rate of all four constituent codes of length 128 with a rate of
approximately 5/6 that are contained within the proposed (2048, 1365) master code. It can be seen
that, even at such a short length, at a FER of 10−3 the gap between both extremes is under 0.5 dB.
Among those constituent codes, only the (128, 108) was selected for the implementation presented
in Section 6.5. It is beneficial to limit the number of codes supported in a practical implementation

6.4 Multi-mode Unrolled Decoders 93

2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e-
er

ro
rr

at
e

5 5.25 5.5 5.75
10−3.2

10−3

10−2.8

Eb/N0 (dB)
Fr

am
e-

er
ro

rr
at

e
(128, 100) (128, 102) (128, 107) (128, 108)

Figure 6.4: Error-correction performance of the four constituent codes of length 128 with a rate
of approximately 5/6 contained in the proposed (2048, 1365) master code.

of a multi-mode decoder in order to minimize routing circuitry.

6.4.4 Latency and Throughput Considerations

If a decoding algorithm taking advantage of the a priori knowledge of the frozen bit locations is
used in the unrolled decoder, such as Fast-SSC [8], the latency will vary even among constituent
codes of the same length. However, the coded throughput will not. The coded throughput of an
unrolled decoder for a polar code of length N will be twice that of a constituent code of N/2, which
in turn, is double that of a constituent code of length N/4, and so on.

In an unrolled decoder, the coded and information throughput are defined by the code length
N, the clock frequency in Hz f , the initiation interval I and the code rate R [21]. They can be
represented as

TC =
N · f
I

and TI =
R · N · f
I

, (6.1)

respectively.
In wireless communication standards where multiple code lengths and rates are supported, the

94 Multi-mode Unrolled Polar Decoding

peak information throughput is typically achieved with the longest code that has both the greatest
latency and highest code rate. It is not mandatory to reproduce this with our proposed method,
but it can be done if considered desirable. It is the example that we provide in the implementation
section of this chapter.

Another possible scenario would be to use a low-rate master code, e.g. R = 1/3, that is more
powerful in terms of error-correction performance. The resulting multi-mode decoder would reach
its peak information throughput with the longest constituent code of length N/2 that has the highest
code rate, a code with a significantly lower decoding latency than that of the master code.

6.5 Implementation Results

In this section, we present results for two implementations of our proposed multi-mode unrolled
decoder with the objective of building decoders with a throughput in the vicinity of 20 Gbps. These
examples are built around (1024, 853) and (2048, 1365) master codes. In the following, the former
is referred to as the decoder supporting a maximum code length Nmax of 1024 and the latter as the
decoder with Nmax = 2048. A total of ten polar codes were selected for the decoder supporting
codes of lengths up to 2048. The other decoder with Nmax = 1024 has eight modes corresponding
to a subset of the ten polar codes supported by the bigger decoder. The master codes used in this
section are the same as those used in Section 6.4.2.

For the decoder with Nmax = 1024, the Repetition and SPC nodes were constrained to a max-
imum size Nv of 8 and 4, respectively, as proposed in the previous chapter. For the decoder with
Nmax = 2048, we found it more beneficial to lower the execution frequency and increase the max-
imum sizes of the Repetition and SPC nodes to 16 and 8, respectively. Additionally, the decoder
with Nmax = 2048 also uses RepSPC [8] nodes to reduce latency.

ASIC synthesis results are for the 65 nm CMOS GP technology from TSMC and are obtained
with Cadence RTL Compiler. Power consumption estimations are also obtained from Cadence
RTL Compiler, switching activity is derived from simulation vectors. Four and five bits of quan-
tization are used for the channel and internal LLRs, respectively. Only registers were used for
memory due to the lack of access to an SRAM compiler.

We start by showing the error-correction performance of the various polar codes supported by
the implementations. We later present the latency and throughput results for each of these polar
codes. This section ends with synthesis results along with power consumption estimations and a

6.5 Implementation Results 95

comparison against the state-of-the-art polar decoder implementations.

6.5.1 Error-correction Performance

Fig. 6.5 shows the frame-error rate performance of ten different polar codes. The decoder with
Nmax = 2048 supports all ten illustrated polar codes whereas the decoder with Nmax = 1024 supports
all polar codes but the two shown as dotted curves. All simulations are generated using random
codewords modulated with BPSK and transmitted over an AWGN channel.

2 3 4 5 6 7 8
10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e-
er

ro
rr

at
e

2 3 4 5 6 7 8
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
it-

er
ro

rr
at

e
(2048, 1365)
(1024, 512)
(1024, 853)
(512, 490)
(512, 363)
(256, 228)
(256, 135)
(128, 108)
(128, 96)
(128, 39)

Figure 6.5: Error-correction performance of the polar codes.

It can be seen from the figure that the error-correction performance of the supported polar codes
varies greatly. As expected, for codes of the same lengths, the codes with the lowest code rates
performs significantly better than their higher rate counterpart. For example, at a FER of 10−4, the
performance of the (512, 363) polar code is almost 3 dB better than that of the (512, 490) code.

While the error-correction performance plays a role in the selection of a code, the latency and
throughput are also important considerations. As it will be shown in the following section, the ten
selected polar codes perform much differently in that regard as well.

96 Multi-mode Unrolled Polar Decoding

6.5.2 Latency and Throughput

Table 6.1 shows the latency and information throughput for both decoders with Nmax ∈ {1024, 2048}.
To reduce the area and latency while retaining the same throughput, the initiation interval I can be
increased along with the clock frequency (6.1) [21].

If both decoders have initiation intervals of 20—as used in the section below—Table 6.1 as-
sumes clock frequencies of 500 MHz and 250 MHz for the decoders with Nmax = 1024 and
Nmax = 2048, respectively. While their master codes differ, both decoders feature a peak infor-
mation throughput in the vicinity of 20 Gbps. For the decoder with the smallest Nmax, the seven
other polar codes have an information throughput in the multi-gigabit per second range with the
exception of the shortest and lowest-rate constituent code. That (128, 39) constituent code still has
an information throughput close to 1 Gbps. The decoder with Nmax = 2048 offers multi-gigabit
throughput for most of the supported polar codes. The minimum information throughput is also
with the (128, 39) polar code at approximately 500 Mbps.

Table 6.1: Information throughput and latency for the multi-mode unrolled polar decoders based
on the (2048, 1365) and (1024, 853) master codes, respectively with a Nmax of 1024 and 2048.

Code
(N, k)

Rate
(k/N)

Info. T/P (Gbps) Latency (CCs) Latency (ns)

Nmax = 1024 2048 1024 2048 1024 2048

(2048, 1365) 2/3 - 17.1 - 503 - 2,012
(1024, 853) 5/6 21.3 10.7 323 236 646 944
(1024, 512) 1/2 - 6.4 - 265 - 1,060
(512, 490) 19/20 12.3 6.2 95 75 190 300
(512, 363) 7/10 9.1 4.5 226 159 452 636
(256, 228) 9/10 5.7 2.6 86 61 172 244
(256, 135) 1/2 3.4 1.7 138 96 276 384
(128, 108) 5/6 2.7 1.4 54 40 108 160
(128, 96) 3/4 2.4 1.2 82 52 164 208
(128, 39) 1/3 0.98 0.49 54 42 108 168

In terms of latency, the decoder with Nmax = 1024 requires 646 ns to decode its longest sup-
ported code. The latency for all the other codes supported by that decoder is under 500 ns. Even
with its additional dedicated node and relaxed maximum size constraint on the Repetition and SPC
nodes, the decoder with Nmax = 2048 has greater latency overall because of its lower clock fre-
quency. For example, its latency is of 2.01 μs, 944 ns and 1.06 μs for the (2048, 1365), (1024, 853)

6.5 Implementation Results 97

and (1024, 512) polar codes, respectively.
Using the same nodes and constraints as for Nmax = 1024, the Nmax = 2048 decoder would

allow for greater clock frequencies. While 689 CCs would be required to decode the longest polar
code instead of 503, a clock of 500 MHz would be achievable, effectively reducing the latency
from 2.01 μs to 1.38 μs and doubling the throughput. However, this reduction comes at the cost
of much greater area and an estimated power consumption close to 1 W.

6.5.3 Synthesis Results and Comparison with the State of the Art

Table 6.2 shows the synthesis results along with power consumption estimations for the two im-
plementations of the proposed multi-mode unrolled decoder. The work in the first two columns is
for the decoder with Nmax = 1024, based on the (1024, 853) master code. It was synthesized for
clock frequencies of 500 MHz and 650 MHz, respectively, with initiation intervals I of 20 and
26. Our work shown in the third and fourth columns is for the decoders with Nmax = 2048, built
from the assembled (2048, 1365) polar code. These decoders have an initiation interval I of 20 or
28, with lower clock frequencies of 250 MHz and 350 MHz, respectively. For comparison with
other works, the same table also includes results for a dedicated partially-pipelined decoder for a
(1024, 512) polar code as presented in Chapter 5.

Table 6.2: Comparison with state-of-the-art polar decoders.

Multi-mode Dedicated [17] [15]� [47] [37]

Algorithm Fast-SSC Fast-SSC Fast-SSC BP SC 2-bit SC
Technology 65 nm 65 nm 65 nm 65 nm 90 nm 45 nm
Nmax 1024 2048 1024 1024 1024 1024 1024
Code (1024, 853) (2048, 1365) (1024, 512) (1024, 512) (1024, 512) (1024, k) (1024, 512)
Init. Interval (I) 20 26 20 28 20 - - - -
Supply (V) 0.72 1.0 0.72 1.0 1.0 1.0 1.0 1.3 N/A
Oper. temp. (◦C) 125 25 125 25 25 25 ≈ 25 N/A N/A
Area (mm2) 1.71 1.44 4.29 3.58 1.68 0.69 1.48 3.21 N/A
Area @65nm (mm2) 1.71 1.44 4.29 3.58 1.68 0.69 1.48 1.68 0.4
Frequency (MHz) 500 650 250 350 500 600 300 2.5 750
Latency (μs) 0.65 0.50 2.01 1.44 0.73 0.27 50 0.39 1.02
Coded T/P (Gbps) 25.6 25.6 25.6 25.6 25.6 3.7 4.7 @ 4 dB 2.56 1.0
Sust. Coded T/P (Gbps) 25.6 25.6 25.6 25.6 25.6 3.7 2.0 2.56 1.0
Area Eff. (Gbps/mm2) 15.42 17.75 5.97 7.16 15.27 5.40 3.18 @ 4 dB 0.80 N/A
Power (mW) 226 546 379 740 386 215 478 191 N/A
Energy (pJ/bit) 8.8 21.3 14.8 28.9 15.1 57.7 102.1 74.5 N/A

� Measurement results.

98 Multi-mode Unrolled Polar Decoding

The four fastest polar decoder implementations from the literature are also included for com-
parison along with normalized area results. For consistency, only the largest polar code supported
by each of our proposed multi-mode unrolled decoders is used and the coded throughput, as op-
posed to the information one, is compared to match what was done in most of the other works.

From Table 6.2, it can be seen that the area for the proposed decoders with Nmax = 1024 are
similar to that of the BP decoder of [15] as well as the normalized area for the unrolled SC decoder
from [47]. However, their area is from 2.1 to 2.5 times greater than that of [17]. Comparing the
multi-mode decoders, the area for the decoder with Nmax = 2048 is over twice that of the ones with
Nmax = 1024, however the master code for the former has twice the length of the latter and supports
two more modes.

All proposed decoders have a coded throughput that is an order of magnitude greater than
the other works. Latency is one to two orders of magnitude lower than that of the BP decoder.
Comparing against the SC decoder of [47], the latency is 1.7 or 3.7 times greater for decoders with
an Nmax of 1024 and 2048, respectively. It should be noted that the decoder of [47] support codes
of any rate, where the proposed multi-mode decoders support a limited number of code rates.

The latency of the proposed decoders is higher than the programmable Fast-SSC decoder of
[17]. This is due to greater limitations on the specialized repetition and SPC decoders. The decoder
in [17] limits repetition decoders to a maximum length of 32, compared to 8 or 16 in this work,
and does not place limits on the SPC decoders.

Finally, among the decoders with Nmax = 1024 implemented in 65 nm with a power supply
of 1 V and operating at 25◦C, our proposed implementation offers the greatest area and energy
efficiency. The proposed multi-mode decoder exhibits 3.3 and 5.6 times better area efficiency than
the decoders of [17] and [15], respectively. The energy efficiency is estimated to be 2.7 and 4.8
times higher compared to that of the same two decoders from the literature.

Recently, a List-based multi-mode decoder was proposed in [70], where the definition of the
word “multi-mode” differs greatly with our work: in our work, it is used to indicate that the decoder
is capable of decoding codes with varying length and rate. Whereas in [70], a “mode” indicates the
level of parallelism in the decoder. The decoder of [70] is capable of decoding 4 paths in parallel
by implementing 4 processing units. It can be configured to either do SC-based decoding of 4
frames or List-based decoding. For the latter, two list sizes L are supported. If L = 2, 2 frames are
decoded in parallel otherwise if L = 4, only 1 frame is decoded at a time.

6.6 Conclusion 99

6.6 Conclusion

In this chapter we presented a new method to transform an unrolled architecture into a multi-mode
decoder supporting various polar code lengths and rates. We showed that a master code can be
assembled from two optimized polar codes of smaller length, with desired code rates, without
sacrificing too much coding gain. We provided results for two decoders, one built for a (1024, 853)
master code and the other for a longer (2048, 1365) polar code. Both decoders support from seven
to nine other practical codes. On 65 nm ASIC, they were shown to have a peak throughput greater
than 25 Gbps. One has a worst-case latency of 2 μs at 250 MHz and an energy efficiency of
14.8 pJ/bit. The other has a worst-case latency of 646 ns at 500 MHz and an energy efficiency of
8.8 pJ/bit. Both implementation examples show that, with their great throughput and support for
codes of various lengths and rates, multi-mode unrolled polar decoders are promising candidates
for future wireless communication standards.

101

Chapter 7

Conclusion and Future Work

Error-correcting codes play a crucial role in reliable and robust communication and storage sys-
tems. The dream of researchers would be to achieve the channel capacity at low implementation
complexity without compromising the latency and throughput requirements of living a modern
connected life. Polar codes are the latest class of modern error-correcting codes and they show
high potential. The early decoder implementations greatly suffered from high latency and low
throughput. The state-of-the-art low-complexity algorithm improved the situation but contained
improvements targeted at high-rate codes and the throughput was still an order of magnitude lower
than the expected requirements for future wireless communication standards. Initially there was
a lack of software implementations suitable for high-performance SDR applications and then the
work that appeared suffered from a high latency and memory footprint. This thesis presented
solutions to address those issues.

The optimization presented in the original Fast-SSC algorithm [8], the fastest low-complexity
decoding algorithm, targeted high-rate codes. In Chapter 3, we showed how to improve the Fast-
SSC algorithm by adding dedicated decoders for three new types of constituent codes frequently
appearing in low-rate codes. We also introduced a human-guided polar code construction alter-
ation method to significantly reduce the latency and increase the throughput of a Fast-SSC decoder
at the cost of a small error-correction performance loss. The resulting decoders for codes of rate 1/2

and 1/3 presented in this work achieved an information throughput greater 1.2 Gbps at an operating
frequency of 400 MHz, while retaining the low complexity of the original Fast-SSC implementa-
tion.

With their low-complexity encoding and decoding algorithms, polar codes are attractive for

102 Conclusion and Future Work

applications where computational resources are limited and a custom hardware solution too costly.
Chapter 4 presented low-latency software polar decoders exploiting the capabilities offered in mod-
ern processors. By adapting the algorithms at various levels, the software decoders presented in
this work had an order of magnitude lower latency and memory footprint compared to the state-of-
the-art decoders, while maintaining a comparable throughput. In addition, we presented strategies
for implementing polar decoders on graphical processing units and showed that hundreds of frames
could be simultaneously decoded while sustaining a throughput greater than 1 Gbps.

Chapter 5 introduced a family of hardware architectures using a reduced-complexity successive-
cancellation decoding algorithm that employs unrolling. It demonstrated that polar decoders can
achieve extremely high throughput values and retain moderate complexity. The resulting fully-
unrolled architectures were shown to be capable of achieving a throughput that is two to three
orders of magnitude greater than current state-of-the-art polar decoders, while retaining a good
energy efficiency.

Many communication standards mandate the error-correction system to support various code
lengths and rate in order to adapt to varying channel conditions or latency requirements. Multi-
mode unrolled hardware architectures and implementations were proposed in Chapter 6. This novel
method lead to a length- and rate-flexible decoder while retaining the very high speed typical to
unrolled decoders. Results were presented for two versions of a multi-mode decoder supporting
eight and ten different polar codes, respectively. Both showed that, with their throughput greater
than 25 Gbps, latency below 2 μs and support for codes of various lengths and rates, multi-mode
unrolled polar decoders are promising candidates for future wireless communication standards.

7.1 Future Work

The research presented in this thesis showed that polar codes are a new class of modern error-
correcting codes that already show great potential for use in some practical applications. For
example, encoding and decoding of polar codes on modern processors for use in SDR applications
already makes sense. However, the software implementations we presented were not suitable for
micro-controller processors omnipresent in Internet of Things (IoT) devices. Also, as the error-
correction performance of moderate-length polar codes—when an SC-based decoding algorithm is
used—is less than that of LDPC codes, polar codes will not take over the world of error correction
just yet. List-based decoding can close that gap [33] but its hardware implementations suffer from

7.1 Future Work 103

low throughput [71], [72] even if there is hope for improvements [73], [74]. Here is a list of
suggested future research topics that would help broaden the scope of interesting applications for
polar codes.

7.1.1 Software Encoding and Decoding on APU Processors

The GPU implementation results presented in Chapter 4 showed that hundreds of frames could
be simultaneously decoded at a sustained throughput greater than 1 Gbps. That throughput was
shown to be I/O bound to the capabilities of the PCIe bus. Even with a GPU and motherboard
supporting a faster, more recent, iteration of the PCIe, the memory copy latency for moving data
from the host memory to the card memory will remain a significant barrier to a better throughput.
There exists processors coupled with a GPGPU on the same die sharing the same memory. AMD’s
APU are among those. It would be interesting to investigate the use of APUs to conduct software
decoding of polar codes.

7.1.2 Software Encoding and Decoding on Micro-controllers

A great share of the optimization strategies presented in Chapter 4 cannot be applied to micro-
controllers, processors that do not have SIMD instructions. Most IoT devices of today either use
micro-controllers or a SoC that features one because of their relative low cost. While these devices
are not powerful enough to implement a practical LDPC or turbo decoder, an error-correction
solution based on polar codes instead of a classic codes such as BCH or RS codes is certainly an
interesting avenue to explore.

7.1.3 High-speed Systematic Encoder

Throughout this thesis we have introduced decoders capable for very-high throughput e.g. unrolled
decoders with a throughput beyond 1 Tbps in Chapter 5. The fastest encoder for systematic polar
codes from the literature, [25], achieves a throughput well under 100 Gbps. One possible research
avenue would be to investigate if, as hinted by the techniques used in fast decoding of polar codes,
taking advantage of the a priori knowledge of the frozen bit locations could lead to orders of
magnitude throughput improvement and latency reduction by simplifying the encoding algorithm.

104 Conclusion and Future Work

7.1.4 Multi-mode Unrolled List Decoders

The focus is shifting away from SC-based decoding in favor of List-based decoding as CRC-aided
List decoding of polar codes can outperform the error-correction performance of LDPC codes.
However, the current state of the art in hardware List decoders suffers from a low throughput
and high latency. The multi-mode unrolled hardware architectures in Chapter 6 can be applied to
List-based decoding. In order to keep complexity practical, it would be interesting to adapt and
implement such architectures for small list sizes.

105

Bibliography

[1] C. Shannon, “A mathematical theory of communication”, Bell Syst. Tech. J., vol. 27, no. 3,
pp. 379–423, Jul. 1948, issn: 0005-8580. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding
and decoding: turbo-codes”, in IEEE Int. Conf. Commun. (ICC), vol. 2, May 1993, pp. 1064–
1070. doi: 10.1109/ICC.1993.397441.

[3] R. Gallager, “Low-density parity-check codes”, IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–
28, Jan. 1962, issn: 0096-1000. doi: 10.1109/TIT.1962.1057683.

[4] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of low density parity
check codes”, IET Electron. Lett., vol. 33, no. 6, pp. 457–458, Mar. 1997, issn: 0013-5194.
doi: 10.1049/el:19970362.

[5] E. Arıkan, “Channel polarization: a method for constructing capacity-achieving codes”, in
IEEE Int. Symp. on Inf. Theory (ISIT), Jul. 2008, pp. 1173–1177. doi: 10.1109/ISIT.
2008.4595172.

[6] E. Arıkan, “Channel polarization: a method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels”, IEEE Trans. Inf. Theory, vol. 55, no. 7,
pp. 3051–3073, 2009. doi: 10.1109/TIT.2009.2021379.

[7] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation decoder for
polar codes”, IEEE Commun. Lett., vol. 15, no. 12, pp. 1378–1380, 2011. doi: 10.1109/
LCOMM.2011.101811.111480.

[8] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders: algorithm
and implementation”, IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 946–957, May 2014,
issn: 0733-8716. doi: 10.1109/JSAC.2014.140514. arXiv: 1307.7154.

[9] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker, “Sora: high-performance
software radio using general-purpose multi-core processors”, Commun. ACM, vol. 54, no.
1, pp. 99–107, Jan. 2011, issn: 0001-0782. doi: 10.1145/1866739.1866760.

[10] J. Demel, S. Koslowski, and F. Jondral, “A LTE receiver framework using GNU Radio”, J.
Signal Process. Syst., vol. 78, no. 3, pp. 313–320, 2015, issn: 1939-8018. doi: 10.1007/
s11265-014-0959-z.

106 Bibliography

[11] J. Xianjun, C. Canfeng, P. Jaaskelainen, V. Guzma, and H. Berg, “A 122Mb/s turbo decoder
using a mid-range GPU”, in Int. Wireless Commun. and Mobile Comput. Conf. (IWCMC),
Jul. 2013, pp. 1090–1094. doi: 10.1109/IWCMC.2013.6583709.

[12] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High throughput low latency LDPC decoding
on GPU for SDR systems”, in IEEE Glob. Conf. on Sign. and Inf. Process. (GlobalSIP), Dec.
2013, pp. 1258–1261. doi: 10.1109/GlobalSIP.2013.6737137.

[13] B. Le Gal, C. Jego, and J. Crenne, “A high throughput efficient approach for decoding LDPC
codes onto GPU devices”, IEEE Embedded Syst. Lett., vol. 6, no. 2, pp. 29–32, Jun. 2014,
issn: 1943-0663. doi: 10.1109/LES.2014.2311317.

[14] X. Han, K. Niu, and Z. He, “Implementation of IEEE 802.11n LDPC codes based on general
purpose processors”, in IEEE Int. Conf. on Commun. Technol. (ICCT), Nov. 2013, pp. 218–
222. doi: 10.1109/ICCT.2013.6820375.

[15] Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68Gb/s belief propagation polar decoder with
bit-splitting register file”, in Symp. on VLSI Circ. Dig. of Tech. Papers, Jun. 2014, pp. 1–2.
doi: 10.1109/VLSIC.2014.6858413.

[16] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “A 638 Mbps low-complexity rate 1/2 po-
lar decoder on FPGAs”, in IEEE Int. Workshop on Signal Process. Syst. (SiPS), Hangzhou,
CHN, Oct. 2015, pp. 1–6. doi: 10.1109/SiPS.2015.7345007.

[17] P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thibeault, and W. J. Gross, “Fast low-
complexity decoders for low-rate polar codes”, Springer J. Signal Process. Syst., 2016.
doi: 10.1007/s11265-016-1173-y. arXiv: 1603.05273, invited, to appear and pre-
published.

[18] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Fast software polar decoders”, in IEEE
Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP), Florence, ITA, May 2014,
pp. 7555–7559. doi: 10.1109/ICASSP.2014.6855069. arXiv: 1306.6311.

[19] P. Giard, G. Sarkis, C. Leroux, C. Thibeault, and W. J. Gross, “Low-latency software polar
decoders”, Springer J. Signal Process. Syst., 2016, issn: 1939-8115. doi: 10.1007/s11265-
016-1157-y, to appear and pre-published.

[20] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “237 Gbit/s unrolled hardware polar
decoder”, IET Electron. Lett., vol. 51, no. 10, pp. 762–763, May 2015, issn: 0013-5194. doi:
10.1049/el.2014.4432. arXiv: 1412.6043.

[21] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Multi-mode unrolled hardware architec-
tures for polar decoders”, IEEE Trans. Circuits Syst. I, vol. 63, no. 9, pp. 1443–1453, Sep.
2016, issn: 1549-8328. doi: 10.1109/TCSI.2016.2586218. arXiv: 1505.01459.

[22] I. Tal and A. Vardy, “How to construct polar codes”, IEEE Trans. Inf. Theory, vol. 59, no.
10, pp. 6562–6582, Oct. 2013, issn: 0018-9448. doi: 10.1109/TIT.2013.2272694.

Bibliography 107

[23] E. Arıkan, “Systematic polar coding”, IEEE Commun. Lett., vol. 15, no. 8, pp. 860–862,
2011. doi: 10.1109/LCOMM.2011.061611.110862.

[24] Y. Li, H. Alhussien, E. Haratsch, and A. Jiang, “A study of polar codes for MLC NAND
flash memories”, in Int. Conf. on Comput., Netw. and Commun. (ICNC), Feb. 2015, pp. 608–
612. doi: 10.1109/ICCNC.2015.7069414.

[25] G. Sarkis, I. Tal, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Flexible and low-
complexity encoding and decoding of systematic polar codes”, IEEE Trans. Commun.,
vol. 64, no. 7, pp. 2732–2745, Jul. 2016, issn: 0090-6778. doi: 10.1109/TCOMM.2016.
2574996. arXiv: 1507.03614.

[26] G. Sarkis, “Efficient encoders and decoders for polar codes: algorithms and implementa-
tions”, PhD thesis, McGill University, 2016.

[27] G. Sarkis and W. J. Gross, “Increasing the throughput of polar decoders”, IEEE Commun.
Lett., vol. 17, no. 4, pp. 725–728, 2013, issn: 1089-7798. doi: 10.1109/LCOMM.2013.
021213.121633.

[28] B. Li, H. Shen, D. Tse, and W. Tong, “Low-latency polar codes via hybrid decoding”, in
Int. Symp. on Turbo Codes and Iterative Inf. Process. (ISTC), Aug. 2014, pp. 223–227. doi:
10.1109/ISTC.2014.6955118.

[29] S. Kahraman and M. E. Çelebi, “Code based efficient maximum-likelihood decoding of
short polar codes”, in IEEE Int. Symp. on Inf. Theory (ISIT), Jul. 2012, pp. 1967–1971. doi:
10.1109/ISIT.2012.6283643.

[30] N. Goela, S. B. Korada, and M. Gastpar, “On lp decoding of polar codes”, in IEEE Inf.
Theory Workshop (ITW), Aug. 2010, pp. 1–5. doi: 10.1109/CIG.2010.5592698.

[31] N. Hussami, R. Urbanke, and S. B. Korada, “Performance of polar codes for channel and
source coding”, in IEEE Int. Symp. on Inf. Theory (ISIT), 2009, pp. 1488–1492. doi: 10.
1109/ISIT.2009.5205860.

[32] B. Yuan and K. K. Parhi, “Early stopping criteria for energy-efficient low-latency belief-
propagation polar code decoders”, IEEE Trans. Signal Process., vol. 62, no. 24, pp. 6496–
6506, Dec. 2014. doi: 10.1109/TSP.2014.2366712.

[33] I. Tal and A. Vardy, “List decoding of polar codes”, IEEE Trans. Inf. Theory, vol. 61, no. 5,
pp. 2213–2226, May 2015, issn: 0018-9448. doi: 10.1109/TIT.2015.2410251.

[34] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for successive cancel-
lation decoding of polar codes”, in IEEE Int. Conf. on Acoust., Speech and Signal Process.
(ICASSP), 2011, pp. 1665–1668. doi: 10.1109/ICASSP.2011.5946819.

108 Bibliography

[35] A. Mishra, A. Raymond, L. Amaru, G. Sarkis, C. Leroux, P. Meinerzhagen, A. Burg, and
W. Gross, “A successive cancellation decoder ASIC for a 1024-bit polar code in 180nm
CMOS”, in IEEE Asian Solid State Circuits Conf. (A-SSCC), 2012, pp. 205–208. doi: 10.
1109/IPEC.2012.6522661.

[36] A. J. Raymond and W. J. Gross, “Scalable successive-cancellation hardware decoder for
polar codes”, in IEEE Glob. Conf. on Signal and Inf. Process. (GlobalSIP), Dec. 2013,
pp. 1282–1285. doi: 10.1109/GlobalSIP.2013.6737143.

[37] B. Yuan and K. Parhi, “Low-latency successive-cancellation polar decoder architectures us-
ing 2-bit decoding”, IEEE Trans. Circuits Syst. I, vol. 61, no. 4, pp. 1241–1254, Apr. 2014,
issn: 1549-8328. doi: 10.1109/TCSI.2013.2283779.

[38] C. Leroux, A. Raymond, G. Sarkis, and W. Gross, “A semi-parallel successive-cancellation
decoder for polar codes”, IEEE Trans. Signal Process., vol. 61, no. 2, pp. 289–299, 2013,
issn: 1053-587X. doi: 10.1109/TSP.2012.2223693.

[39] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross, “Hardware imple-
mentation of successive-cancellation decoders for polar codes”, J. Signal Process. Syst., vol.
69, no. 3, pp. 305–315, 2012. doi: 10.1007/s11265-012-0685-3.

[40] A. Pamuk and E. Arıkan, “A two phase successive cancellation decoder architecture for
polar codes”, in IEEE Int. Symp. on Inf. Theory (ISIT), Jul. 2013, pp. 1–5. doi: 10.1109/
ISIT.2013.6620368.

[41] A. J. Raymond, “Design and hardware implementation of decoder architectures for polar
codes”, Master’s thesis, McGill University, 2014.

[42] R. Mori and T. Tanaka, “Performance and construction of polar codes on symmetric binary-
input memoryless channels”, in IEEE Int. Symp. on Inf. Theory (ISIT), 2009, pp. 1496–1500.
doi: 10.1109/ISIT.2009.5205857.

[43] P. Trifonov, “Efficient design and decoding of polar codes”, IEEE Trans. Commun., vol. 60,
no. 11, pp. 3221–3227, 2012. doi: 10.1109/TCOMM.2012.081512.110872.

[44] Z. Huang, C. Diao, and M. Chen, “Latency reduced method for modified successive cancel-
lation decoding of polar codes”, IET Electron. Lett., vol. 48, no. 23, pp. 1505–1506, Nov.
2012, issn: 0013-5194. doi: 10.1049/el.2012.2795.

[45] A. Balatsoukas-Stimming, G. Karakonstantis, and A. Burg, “Enabling complexity-performance
trade-offs for successive cancellation decoding of polar codes”, in IEEE Int. Symp. on Inf.
Theory (ISIT), 2014, pp. 2977–2981. doi: 10.1109/ISIT.2014.6875380.

[46] L. Zhang, Z. Zhang, X. Wang, C. Zhong, and L. Ping, “Simplified successive-cancellation
decoding using information set reselection for polar codes with arbitrary blocklength”, IET
Communications, vol. 9, no. 11, pp. 1380–1387, Jul. 2015. doi: 10.1049/iet-com.2014.
0988.

Bibliography 109

[47] O. Dizdar and E. Arıkan, “A high-throughput energy-efficient implementation of successive
cancellation decoder for polar codes using combinational logic”, IEEE Trans. Circuits Syst.
I, vol. 63, no. 3, pp. 436–447, Mar. 2016, issn: 1549-8328. doi: 10.1109/TCSI.2016.
2525020.

[48] B. Le Gal, C. Leroux, and C. Jego, “Software polar decoder on an embedded processor”, in
IEEE Int. Workshop on Signal Process. Syst. (SiPS), Belfast, UK, Oct. 2014. doi: 10.1109/
SiPS.2014.6986083.

[49] B. Le Gal, C. Leroux, and C. Jego, “Multi-Gb/s software decoding of polar codes”, IEEE
Trans. Signal Process., vol. 63, no. 2, pp. 349–359, Jan. 2015. doi: 10.1109/TSP.2014.
2371781.

[50] G. Sarkis, P. Giard, C. Thibeault, and W. J. Gross, “Autogenerating software polar de-
coders”, in IEEE Global Conf. on Signal and Inf. Process. (GlobalSIP), Atlanta, USA, Dec.
2014, pp. 6–10. doi: 10.1109/GlobalSIP.2014.7032067.

[51] S. Bang, C. Ahn, Y. Jin, S. Choi, J. Glossner, and S. Ahn, “Implementation of LTE system
on an SDR platform using CUDA and UHD”, Analog Integr. Circuits and Signal Process.,
vol. 78, no. 3, pp. 599–610, 2014. doi: 10.1007/s10470-013-0229-1.

[52] “IEEE standard for floating-point arithmetic”, IEEE Std 754-2008, pp. 1–70, Aug. 2008.
doi: 10.1109/IEEESTD.2008.4610935.

[53] NVIDIA, “Performance guidelines”, CUDA C Programming Guide, Aug. 2014.

[54] W.-C. Feng and S. Xiao, “To GPU synchronize or not GPU synchronize?”, in IEEE Int.
Symp. on Circuits and Syst. (ISCAS), May 2010, pp. 3801–3804. doi: 10.1109/ISCAS.
2010.5537722.

[55] NVIDIA, “Kepler GK110 - the fastest, most efficient HPC architecture ever built”, NVIDIA’s
Next Generation CUDA Computer Architecture: Kepler GK110, Dec. 2012.

[56] “PCI express base specification revision 2.0”, PCI-SIG, Dec. 2006.

[57] J. Treibig, G. Hager, and G. Wellein, “LIKWID: a lightweight performance-oriented tool
suite for x86 multicore environments”, in Int. Conf. on Parallel Process. Workshops (ICPPW),
Sep. 2010, pp. 207–216. doi: 10.1109/ICPPW.2010.38.

[58] NVIDIA, “NVIDIA management library (NVML)”, NVML API Reference Guide, Mar.
2014.

[59] P. Jouguet and S. Kunz-Jacques, “High performance error correction for quantum key dis-
tribution using polar codes”, Quantum Inf. & Computation, vol. 14, no. 3-4, pp. 329–338,
2014.

110 Bibliography

[60] “IEEE standard for information technology–telecommunications and information exchange
between systems local and metropolitan area networks–specific requirements part 11: wire-
less LAN medium access control (MAC) and physical layer (PHY) specifications”, IEEE Std
802.11-2012 (Revision of IEEE Std 802.11-2007), pp. 1–2793, Mar. 2012. doi: 10.1109/
IEEESTD.2012.6178212.

[61] W. Roh, “5G mobile communications for 2020 and beyond - vision and key enabling tech-
nologies”, IEEE Wireless Commun. and Netw. Conf. (WCNC), Apr. 2014.

[62] J. Karjalainen, M. Nekovee, H. Benn, W. Kim, J. Park, and H. Sungsoo, “Challenges and
opportunities of mm-wave communication in 5G networks”, in Int. Conf. on Cognitive Ra-
dio Oriented Wireless Netw. and Commun. (CROWNCOM), Jun. 2014, pp. 372–376. doi:
10.4108/icst.crowncom.2014.255604.

[63] J. F. Monserrat, G. Mange, V. Braun, H. Tullberg, G. Zimmermann, and Ö. Bulakci, “METIS
research advances towards the 5G mobile and wireless system definition”, EURASIP J. Wire-
less Commun. Netw., vol. 2015, no. 1, pp. 1–16, 2015. doi: 10.1186/s13638-015-0302-
9.

[64] P. Schläfer, N. Wehn, M. Alles, and T. Lehnigk-Emden, “A new dimension of parallelism in
ultra high throughput LDPC decoding”, in IEEE Workshop on Signal Process. Syst. (SiPS),
2013, pp. 153–158. doi: 10.1109/SiPS.2013.6674497.

[65] N. Wehn, S. Scholl, P. Schläfer, T. Lehnigk-Emden, and M. Alles, “Challenges and limita-
tions for very high throughput decoder architectures for soft-decoding”, in Advanced Hard-
ware Design for Error Correcting Codes, C. Chavet and P. Coussy, Eds., Springer Interna-
tional Publishing, 2015, pp. 7–31, isbn: 978-3-319-10568-0. doi: 10.1007/978-3-319-
10569-7_2.

[66] R. Wang and R. Liu, “A novel puncturing scheme for polar codes”, IEEE Commun. Lett.,
vol. 18, no. 12, pp. 2081–2084, Dec. 2014, issn: 1089-7798. doi: 10.1109/LCOMM.2014.
2364845.

[67] V. Miloslavskaya, “Shortened polar codes”, IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4852–
4865, Sep. 2015, issn: 0018-9448. doi: 10.1109/TIT.2015.2453312.

[68] Xilinx, “UltraScale architecture and product overview”, Product Specification, Dec. 2014.

[69] Altera, “Meeting the performance and power imperative of the zettabyte era with generation
10”, White Paper, Jun. 2013.

[70] C. Xiong, J. Lin, and Z. Yan, “A multimode area-efficient SCL polar decoder”, IEEE Trans.
VLSI Syst., vol. PP, no. 99, pp. 1–14, 2016, issn: 1063-8210. doi: 10.1109/TVLSI.2016.
2557806.

[71] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list decoder for polar codes
with cyclic redundancy check”, IEEE Commun. Lett., vol. 16, no. 12, pp. 2044–2047, Dec.
2012, issn: 1089-7798. doi: 10.1109/LCOMM.2012.111612.121898.

Bibliography 111

[72] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based successive cancel-
lation list decoding of polar codes”, IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5165–
5179, Oct. 2015, issn: 1053-587X. doi: 10.1109/TSP.2015.2439211.

[73] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast list decoders for polar
codes”, IEEE J. Sel. Areas Commun. - Special Issue on Recent Advances In Capacity Ap-
proaching Codes, vol. 34, no. 2, pp. 318–328, Feb. 2016, issn: 0733-8716. doi: 10.1109/
JSAC.2015.2504299. arXiv: 1505.01466.

[74] S. A. Hashemi, A. Balatsoukas-Stimming, P. Giard, C. Thibeault, and W. J. Gross, “Parti-
tioned successive-cancellation list decoding of polar codes”, in IEEE Int. Conf. on Acous-
tics, Speech, and Signal Process. (ICASSP), Shanghai, CHN, Mar. 2016, pp. 957–960. doi:
10.1109/ICASSP.2016.7471817.

113

List of Acronyms

ASIC Application-Specific Integrated Circuit. 4, 5, 7, 8, 23, 24, 37, 40, 67–69, 76–79, 81, 82,
85–88, 94

AVX Advanced Vector eXtensions. 6, 44, 46, 49, 54, 64

AWGN Additive White Gaussian-Noise. 35, 43, 76, 95

BCH Bose-Chaudhuri-Hocquenghem. 1, 103

BER Bit-Error Rate. 11, 76, 91, 92

BP Belief Propagation. 3, 17, 18, 69, 78

BPSK Binary Phase-Shift Keying. 35, 43, 76, 95

CC Clock Cycle. 24, 30, 32, 83, 90, 97

CPU Central Processing Unit. 41, 42, 44, 46, 52–56

CRC Cyclic Redundancy Check. 18

DRAM Dynamic Random-Access Memory. 61

Fast-SSC Fast Simplified Successive Cancellation. 2, 3, 5, 6, 14, 16, 19, 20, 22–24, 26, 30, 32,
35–37, 39, 43, 44, 53, 68–70, 74, 89, 93, 101

FER Frame-Error Rate. 11, 44, 63, 91, 92, 95

FPGA Field-Programmable Gate-Array. 4, 6, 7, 20, 23, 24, 35, 36, 40, 44, 62, 67–71, 76–78,
80–85

114 List of Acronyms

GPGPU General Purpose GPU. 7, 55, 103

GPU Graphical Processing Unit. 6, 42, 47, 55–62, 64, 103

I/O Input/Output. 34, 67, 103

IoT Internet of Things. 102, 103

LDPC Low-Density Parity-Check. 1, 2, 17, 18, 41, 42, 63, 69, 103, 104

LHS Left-Hand-Side. 88, 91, 92

LLR Log-Likelihood Ratio. 12–17, 20, 33, 34, 44–46, 60, 62, 71, 73–76, 83–85, 89, 90, 94

LUT Look-Up Table. 36, 70, 76–78, 80, 81, 90

ML maximum-likelihood. 16, 17

PE Processing Element. 19, 20

RAM Random-Access Memory. 20, 34, 36, 77, 80, 81

RHS Right-Hand-Side. 88, 91, 92

RS Reed-Solomon. 1, 103

RTL Register-Transfer Level. 35

SC Successive-Cancellation. 2, 3, 12–14, 16–20, 25, 53, 68, 69, 80, 102, 104

SDR Software-Defined Radio. 2, 4, 41–44, 53, 54, 62, 65, 101, 102

SIMD Single-Instruction Multiple-Data. 2, 6, 7, 41–45, 48, 49, 51, 54, 55, 64, 103

SoC System on Chip. 54, 61, 103

SPC Single Parity Check. 15, 24, 25, 28, 45, 49, 57, 74, 83, 90, 94, 96

SP-SC Semi-Parallel Successive-Cancellation. 20, 22

List of Acronyms 115

SRAM Static Random-Access Memory. 37, 71, 75–77, 94

SSC Simplified Successive Cancellation. 2, 14, 16, 17, 53

SSE Streaming SIMD Extensions. 6, 44, 46, 49, 54, 64

TP-SC Two-Phase Successive-Cancellation. 20–22

