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Abstract 

The task of developing, tuning, and debugging compiler optimizations is a difficult 

one which can be facilitated by software visualization. There are many characteris­

tics of the code which must be considered when studying the kinds of optimizations 

which can be performed. These characteristics can include large amounts of data 

which would be difficult to inspect without the appropriate tools. Both static data 

collected at compile-time and dynamic runtime data can reveal opportunities for op­

timization and affect code transformations. In order to expose the behavior of such 

complex systems, visualizations should include as much information as possible and 

accommodate the different sources from which this information is acquired. 

This thesis presents a visualization framework designed to address these issues. 

The framework is based on a new, extensible language called JIL which provides a 

common format for encapsulating intermediate representations and associating them 

with compile-time and runtime data. We present new contributions which extend 

existing compiler and profiling frameworks, allowing them to export the intermediate 

languages, analysis results, and code metadata they collect as JIL documents. Vi­

sualization interfaces can th en combine the JIL data from separate tools, exposing 

both static and dynamic characteristics of the underlying code. We present such an 

interface in the form of a new web-based visualizer, allowing JIL documents to be 

visualized online in a portable, customizable interface. 



Résumé 

La tâche de dvelopper, dentretenir et doptimiser les compilateurs est difficile mais 

peut être facilit par la visualisation des logiciels. Il existe plusieurs caractéristiques 

concernant les codes qui peuvent être considéré dans létude des différents genres 

doptimisation. Ces caractéristiques peuvent inclure de grandes quantités de données 

qui savèrent difficile inspecter sans les outils appropriés. Les données statistiques re­

cueillies au moment de la compilation et les données dexécution peuvent nous indiquer 

des occasions doptimisation et ainsi influer sur la transformation du code apporter. 

Afin dexposer le comportement de systèmes si complexe, la visualisation devrait in­

clure autant dinformation que possible et, du même coup, accommoder les différentes 

sources doù cette information est acquise. 

Cette thèse a pour but de présenter un cadre de visualisation conu pour aborder 

ces problèmes. Il est basé sur un nouveau langage qui savère être aussi un langage 

extensible. Ce langage est appelé JIL et fournit un fournit un format commun afin 

dencapsuler les représentations intermédiaires et les associer aux données au moment 

de la compilation et de lexécution. Nous présenterons les nouvelles contributions qui 

font en sorte de prolonger le compilateur existant et les cadres de profilage leurs 

permettant ainsi dexporter des langages intermédiaires, danalyser des résultats et 

de coder des méga-données sous forme de document JIL. Les interfaces de visuali­

sation peuvent alors combiner les données JIL des autres outils exposant ainsi des 

caractéristiques statiques et dynamiques du code fondamental. Nous présenterons 

donc une telle interface sous forme dun nouveau visualisateur basé sur le web, per­

mettant aux documents JIL dêtre visualiser en ligne laide dune interface portable et 

sur mesure. 
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Chapter 1 

Introduction 

Software visualization is a well-explored research are a which has been applied 

to several aspects of computing. In most cases, visualization is used to encourage 

program understanding during the development or maintenance of software. Visual­

ization has been shown to improve the productivity and effectiveness of programmers, 

especially when working with complex systems which can span the work of several 

people over extended periods of time [3,22,26]. 

Object-oriented programming has become a popular approach to creating such 

systems due to the powerful features of languages such as Java and C++ Unfor­

tunately, object-oriented programs can easily obscure the original solution for which 

they were designed to implement; this has promoted the combination of static and 

dynamic data in the analysis and visualization of these languages. With features such 

as polymorphism and dynamic typing, it is important to consider both compile-time 

and runtime characteristics of modern object-oriented languages. 

Static data is information which can be extracted from the program once it can 

be compiled. This includes the source code itself, any related intermediate languages, 

and the results of static analyses such as locations of variable uses and definitions or 

the potential invoke targets of call sites. Dynamic data is collected by profiling tools 

and includes characteristics of the runtime behavior of the code, such as the number 

of field accesses or the actual methods invoked at a virtual method call site. 

Unfortunately, the tools which are able to perform analyses and extract static 
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information about pro gram code typically associate this data with specifie interme­

diate representations and data structures. These representations are optimized for 

a specific task and exist internally within the tools, making the data unavailable to 

developers who are working with the compilation of this code, or the original code 

itself. Many of these tools do not use the same intermediate languages and fail to pro­

vide a mechanism for exporting the valu able information collected in their analyses. 

Their inability to share data separates the functionality of the tools, and prevents 

developers from benefiting from their combined ability to expose a comprehensive 

model of the program behavior. 

Tools which collect runtime data are subject to the same drawbacks. They are 

typically designed for a high-Ievel evaluation of the software, which is inadequate for 

combining with low-Ievel static information. In addition, the experimental nature of 

these tools and the algorithms used in code analyses make it difficult to achieve any 

kind of standardization. The data they collect is stored in a specifie or proprietary 

format suited for a single visualization system. 

By associating runtime data with low-Ievel code elements and analyses from ad­

ditional tools, it is possible to create a complete model of how the code behaves in 

relation to how it is compiled and executed. 

1.1 Motivation 

The work presented here addresses several different problems which have been en­

countered when studying the compilation and runtime behavior of Java as an object­

oriented language: 

• Comprehensiveness: How can we combine both static and dynamic informa­

tion when visualizing software? 

• Generality: Given the abundance of code and compiler tools, how can we com­

bine their functionality and features when visualizing their results and related 

intermediate languages? 
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• Extensibility: How can we continue to visualize new and undiscovered code 

characteristics? 

In order to solve each of these goals it was clear that we required a system which 

lS highly extensible. Rather than propose an ideal visualization implementation, 

we present a framework which allows the creation of custom visualizers which use 

arbitrary tools as their data sources. Existing and future tools can be extended to 

export any static or dynamic data they can extract from the source code or related 

intermediate languages. 

The framework presented in this thesis is targeted at the visualization of source 

code and intermediate languages used by an optimization framework for Java [21]. 

The scope of the visualization covers the code and structure of the software as weIl as 

its behavior wh en executed by the Java Virtual Machine (JVM) [30]. This data can 

be extracted from different intermediate languages and other representations, as weIl 

as sources of runtime data. In the following section we discuss the overall visualization 

framework, including all key contributions. 

1.2 Framework overview 

In Figure 1.1 we present an overview of the visualization framework, which is designed 

to be customizable and scalable. 

The foundation ofthis system is the new Java Intermediate Language (JIL) , which 

can encapsulate existing intermediate languages. JIL can be annotated with both 

static and dynamic program characteristics of the software which are abstracted by 

the source code. Figure 1.1 (a) shows Java class files where they exist as compiled 

bytecode or as programs being executed by a JVM. 

In Figure 1.1 (b) we see two software tools which are capable of extracting these 

types of program characteristics. Our framework is designed to allow existing and 

future tools to be used for the analysis and inspection of Java bytecode at compile­

time and runtime. 

Any information extracted in (b) is then exported as JIL documents, shown in 
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,'-----------', ,'-----------'\ ,,- - - ------ - - - --,\ ,,- - - - -- - --- --- ... , 

Java classfiles 

MyClass.java 

JVM/JVMPI 
(execution 

profile) 

Il 

:: Toois with JIL 
JIL documents 

1 support 

SOOT 

STEP 

static data 
(JIL) 

I--...I...+~ dynamic data 
(JIL) 

Visualizers with JIL 
support 

JIMPLEX 
(XSUHTML) 

MyVisualizer 
(my language) 

___________ , ,------ _____ ""1 ' .... ______________ , ' .... _____________ , 

(a) (b) (c) (d) 

Figure 1.1: Overview of the visualization framework. (a) Java class files at compile­
time and runtime. (b) Tools which are able to extract data from (a); the data provided 
by each tool is specified in an accompanying DTD. (c) JIL documents containing data 
extracted in (b). (d) Visualizers which use the JIL documents from (c) as sources of 
data. 
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Figure 1.1 (c). JIL documents can contain both static and dynamic data, and multiple 

documents can be used to describe a single class object. Documents can be merged 

in order to provide information collected by several tools in a common format. 

By using these documents as a data source, the visualization interfaces shown 

in Figure 1.1 (d) can expose both static and dynamic characteristics to the user. 

We provide one interface which demonstratBs the versatility of JIL as a data source, 

however our framework is designed to allow arbitrary tools to visualize the data 

contained within JIL documents. 

The main contributions we present in this thesis are: 

• A common intermediate language called JIL, capable of encapsulating Java 

intermediate representations and associating both static and dynamic data with 

individu al code elements. JIL provides a portable and extensible format for 

exchanging data between arbitrary tools and visualizers. 

• Extensions to existing software tools, which allow static characteristics and anal­

ysis results, as weIl as dynamic runtime data, to be exported as JIL documents. 

• A new visualization implementation using JIL as a data source, allowing data 

from the multiple tools to be combined in a customizable interface. 

This thesis is structured as follows: Chapter 2 presents research related to our 

framework. Chapter 3 discusses the design and key features of JIL. Chapter 4 covers 

the creation of JIL, including descriptions of the tools used in our framework as 

JIL data sources. Chapter 5 describes the consumption and visualization of JIL 

documents, and presents the JIMPLEX interface as an example of the customization 

and ease of implementation possible when using JIL as a data source. Chapter 6 

discusses possible future work that could benefit the framework, and the availability 

of the current tools and technologies used in the framework. FinaIly, we evaluate the 

framework and present conclusions in Chapter 7. 
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Chapter 2 

Background and Related Work 

The work presented here combines several aspects of research. Compiler develop­

ment and program understanding are fundamental topics which have been studied for 

many years. Object-oriented programming has brought new challenges to these areas 

of research, and with them new solutions involving visualization and the combination 

of static and dynamic data. The following sections discuss sorne of the research in 

these areas which influenced our work. 

2.1 Program understanding 

As a requirement for software development and maintenance, program understanding 

and reverse engineering has become a popular research area. Many different ap­

proaches have been described for a variety of applications, such as the renovation of 

legacy systems or helping the cognitive development process [10,32,57]. When devel­

opers and documentation are either out-dated, unavailable, or unreliable, the source 

code often becomes the only reliable source of information about a pro gram [42]. Our 

framework relies exc1usively on the code as a source of information about the behavior 

of Java software, based on both compile-time and runtime data. 

This requires the static analysis of Java source code and related intermediate 

languages [9,12,33]. Several compilers and optimization frameworks exist which use 

static analyses to optimize either Java source source or bytecodes, such as FLEX [41], 
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BLOAT [34], Ajax [35,36], and Briki [11]. As a source of static data and analysis 

results, we chose to use the SOOT framework which includes an API for developing 

custom analyses and working with bytecode [51,52,54]. 

Runtime data has become more important in pro gram understanding with the rise 

in popularity of systems which use virtual machines to execute platform independent 

code. Many profiling and benchmarking frameworks exist which can instrument Java 

bytecode in order to observe the runtime behavior of Java software such as BIT [29] 

and ProfBuilder [14]. In order to match the extensible nature of our framework, we 

used a profiling framework, called STEP, as a source of runtime data [5,6]. STEP 

allows the development of custom profiling agents and allows a simple backend im­

plementation to generate JIL documents using this data. 

2.2 Language design 

Our framework uses JIL in order represent both static and dynamic data suit able for 

program understanding. We chose to use a generic language to describe intermediate 

representations of Java and any associated metadata. This technique has been applied 

to similar applications, such as software re-engineering and language-independent 

compilation [16,56]. In order to represent a system at a higher level of abstraction, a 

true language-independent system is required. Such systems use a generic language, 

such as JIL, to describe and annotate other unknown languages [55]. Generic language 

technology allows JIL to support both future languages and any associated data 

extracted from future tools. 

2.3 Code and software visualization 

Price et al. describes the scope of a visualization in terms of the class and scale of 

the programs it can visuaIize [39]. The goal of our framework is to allow developers 

to visualize the intermediate languages and associated metadata of arbitrary Java 

programs. In this thesis, we present a scalable framework which puts no limitations 
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on the size or complexity of the programs being visualized. Generality is also a key 

feature of the framework, which allows visualizations to include any source language. 

Code visualization is a well-explored research are a which has been shown to pro­

mote understanding and reduce the structural complexity of the software it repre­

sents [3J. Much of this effort has been spent creating an ideal representation of soft­

ware for the visual and cognitive consumption by humans. These interfaces can range 

from basic code leads to complex graphical and multi-dimensional interfaces [26, 27J. 

Although such tools can efficiently display large amounts of data to the user, their 

design often depends on the data being visualized. Our framework uses JIL to sep­

arate the data from the interface and store it in an easily accessible format. This 

facilitates the creation of custom interfaces and encourages their implementation to 

be independent of the data and content. 

2.4 Combining static and dynamic data 

Object-oriented languages, such as Java, have introduced many new challenges to 

developers trying to understand the behavior of software. The dynamic nature of 

object-oriented programs has encouraged the combination of both compile-time and 

runtime data in code visualization [37,46,47,49, 58J. Data extracted from object 

code at compile-time can describe static relations and structure obscured within the 

source code. However, the true behavior of the software involves events which occur 

at runtime such as object management, dynamic binding, and dynamic typing. These 

events are recorded at runtime and can reveal more information about the code. 

Many existing software analysis tools include both static and dynamic data in 

their visualizations, such as SCED [28,48J and SoftArch [22J. These tools incorporate 

dynamic data in order to model specific aspects of software architecture, such as state 

machine design and abstraction modelling, however they do not provide a sufficient 

solution for representing arbitrary characteristics of the source code. They allow 

varying degrees of abstraction in their visualizations, however they do not provide 

support for including new types of static and dynamic data, such as undiscovered 
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analysis results. 

In the foIlowing chapter we describe a generic format, named Java Intermediate 

Language (JIL). It is used for storing static data, such as an intermediate representa­

tion of Java, as weIl as dynamic data, such as the runtime behavior of the code. The 

extensible representation of the data contained within JIL documents allows both 

static and dynamic code characteristics to be shared between tools and visualization 

implementations. 

9 



Chapter 3 

Source and Representation 

Now that we have presented an overview of the framework, we can examine the 

design of JIL and how it provides an extensible and language-independent platform 

for visualization. 

3.1 Java Intermediate Language 

The framework we present is based on a generic, language-independent representation 

called the Java Intermediate Language (JIL) [18,19]. This format is designed to allow 

arbitrary code tools to share data with custom visualizers. The key features of the 

format are its language independence, extensibility, and portability. The following 

sections discuss the features and design goals of the language in more detail. 

3.1.1 Intermediate language design 

Intermediate languages are used by optimizing compilers to give the separate mod­

ules a representation to work with which is independent of a machine or platform. 

This encourages modularity throughout the compiler, and allows generated code to 

be retargeted towards another platform without having to re-implement any analyses 

or optimizations. Java itself has been described as an ideal intermediate language, 

providing strong types and other language features which help debug a new language 
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compiler [23]. However, when developing optimizations, transformations and anal­

yses typically operate on a lower-Ievel language, closer to the target representation. 

Three-address code and other kinds of intermediate languages can represent control 

fiow graphs and reveal optimizations which would be obscured or mu ch more com­

plicated in a higher-Ievel or stack-based language. The grammar and syntax of these 

intermediate representations are aIl optimized for their original purpose, which is 

typically a single pro cess or operation. The differences between each representation 

complicate the development oftools and visualizers that support multiple languages. 

In order to provide a format which can support future Java intermediate languages 

without any knowledge of their grammar or syntax, we created JIL as a metalanguage. 

3.1.2 JIL as a metalanguage 

JIL documents are designed to store intermediate languages as data, and any hidden 

code characteristics and analysis results as metadata. JIL documents use arbitrary 

intermediate languages to describe the specification and structure of a Java class, and 

then describe any hidden relations and behavior of the code using annotations. !ts 

design and use differ from traditional intermediate languages in that its content is 

independent of the tools that use it. 

This is to say that tools which consume JIL as input may verify that a specifie in­

termediate language is contained within a document, however there is no requirement 

placed on which languages a JIL document must contain. This encourages JIL con­

sumers, which are typically visualizers, to support arbitrary intermediate languages in 

their interfaces, improving their usefulness and longevity. Similarly, tools which cre­

ate JIL documents as output are able to store any intermediate languages they might 

deal with now or in the future. JIL treats each intermediate language it contains 

independently, allowing the relationships between code elements to be defined by the 

author of the JIL document. This generic strategy also applies to the metadata which 

describes the hidden relations between code elements in the form of analysis results 

and language extensions. Toois can programmatically support whatever extensions 

they wish to take as input or export as output, including both static and dynamic 
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types of data. 

It is important to note that J1L is not designed to be manipulated or decompiled 

into bytecode, or replace the intermediate languages it contains. It merely provides 

a bridge between tools and visualization interfaces. These tools use traditional in­

termediate languages, and the visualization interfaces are designed to present these 

languages and related data to developers. 

3.1.3 JIL as an XML application 

In order to provide a metalanguage that can address our goal of interoperability 

between tools, we based JIL upon the Extensible Markup Language (XML) [4], a 

subset of the Standard Generalized Markup Language (SGML) [25]. SGML is an 

international standard for defining a language, and XML aIlows generic SG ML to be 

used on the Web much like common Hypertext Markup Language (HTML) [40]. JIL 

benefits from many of the features of these weIl established formats. This includes 

a growing number of tools and APIs as weIl as support from a large community of 

developers. Like XML, J1L documents are portable across platforms and networks, 

with native support in most modern web servers and clients. Compatibility is achieved 

by defining language semantics and restrictions using Document Type Definitions 

(DTD). Applications that use this standard schema for validating their input can 

identify which extensions are supported as weIl as their version information. 

Sorne key features of JIL are a direct result of using XML as the defining meta­

language: 

• Accessible: JIL is human readable and edit able using a common text editor, 

which aides in debugging. 

• Extensible: JIL is strictly defined using DTDs, which are themselves easily 

extensible; documents and their specifications never require compilation. 

• Robust: JIL is easy to generate and parse, encouraging the development of 

tools with good reliability and performance. 
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• Modular: JIL is modular and manageable through schemas and basic pro cess­

ing; documents can be separated and combined as required without breaking 

structure or compatibility. 

• Portable: JIL is portable across languages, platforms, and networks. 

• Compatible: JIL is compatible with XML, SGML, and related tools and APIs. 

Every JIL document is a valid SGML and XML document, which means JIL is 

compatible with existing and future SGML and XML tools. This includes software 

for almost any task, including processing and authoring, and sinee these formats are 

license-free, they are widely supported: 

• Client-side: JIL can be browsed using Internet Explorer, Mozilla, Opera, and 

other popular browsers. 

• Server-side: JIL can be imported, exported, and natively served in popular 

databases such as Microsoft SQL Server 2000 and Oracle 8i. 

• Support: Programming APIs are available in many different programming 

languages su ch as C, C++, Java, Perl, Python, etc. 

XML also has sorne disadvantages which it passes on to JIL. For example, JIL is 

extremely verbose, and a JIL document is typically much larger than the correspond­

ing source code it represents. However, the decreasing cost of disk space and the 

progress of compression algorithms for both storage and network transfer are work­

ing towards minimizing this disadvantage. XML is not always the best choice for an 

application, but in the case of JIL its features address many of the design goals. 

3.1.4 J Il specification 

The formaI specification of JIL is available as a DTD. DTDs are a standard schema 

for defining constraints on SG ML documents. They define the order and properties 

of required and optional elements using a grammar similar to Extended Backus­

N aur Form (EBNF). DTDs are a standard format used by XML validation tools and 
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APIs in order to verify that the content of a document complies to the grammar 

they specify. The validation pro cess can also identify the inconsistencies where a 

J1L document do es not comply to the DTD specification. These inconsistencies can 

often be repaired or ignored, or as a worst case cause the document to be rejected 

completely. There are several features of DTDs which make them a natural choice in 

our framework: 

• DTDs are text-based and do not require compilation, making them easily ex­

tensible when language constructs need to be added, updated, or removed. 

• DTDs can reference other DTDs, making them modular. 

• DTDs can be referenced using a URL, allowing them to exist on any device on 

a network and to be shared. 

By using DTDs, applications can ensure that they are generating, parsing, or 

validating documents that will be recognized and understood by other applications. 

The DTDs used in our framework are available in appendix A.l and online [20]; 

however, the following section uses JIL examples to describe them. 

3.2 Modelling Java 

We have introduced an XML-based format for modelling Java classes using inter­

mediate languages. The following sections present the origins of these intermediate 

languages and associated metadata, and show how they can be encapsulated within 

our document format. 

3.2.1 The life of a Java class 

In order to understand the kinds of data associated with intermediate languages and 

code elements we examine the life of a Java class. 

Given a Java source file, the Java compiler creates a Java class file consisting of 

bytecode instructions; see Figure 3.1 (a). Once compiled into bytecode, the source 
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... _______ ------..1 

Java 
compiler 

bytecode 
optimizer 
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optimization 
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myclass 
(native code) 
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1 ______ ----------------------------------

profiling 
agent 

Java virtual 
machine 

Figure 3.1: The life of a Java class. (a) Compilation of Java source code into bytecode; 
(b) Static optimization and analysis of bytecode; (c) Intermediate representations 
(IR) used in (b); (d) Runtime profiling of a Java class. 
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has taken a platform independent form which can be executed by a Java Virtual 

Machine (JVM) [30]. Java bytecode is itself an intermediate language, as it is the 

final representation of the source code before it is passed to a JVM and executed. 

Optimizing compilers often operate directly on Java bytecode, using class files as 

both input and output; see Figure 3.1 (b). By targeting expensive bytecode instruc­

tions, such as virtual method calls and object allocations, these compilers can create 

optimized class files without affecting the functionality and original solution provided 

by the Java class. This kind of implementation provides versatile optimizers which 

create optimized bytecode executable on any JVM implementation. 

Intermediate languages are used within optimizing compilers in order to provide 

a representation suitable for a specific process or operation; see Figure 3.1 (c). Java 

bytecode is designed to be executed by a JVM, but is not necessarily the ideal repre­

sentation for optimization. Bytecode is stack based, where operations can be spread 

across several lines of code, and it also relies on additional data structures, such as 

the constant pool, making it difficult to manipulate and transform. Multiple interme­

diate representations are often used within a compiler at different stages throughout 

the optimization process. Each of these representations is designed with a specific 

motivation in order to facilitate a particular optimization process. Our visualiza­

tion framework uses JIL to associate these intermediate representations with static 

characteristics and analysis results extracted by optimization frameworks. 

The life of a Java class do es not end after static optimization and analysis; see 

Figure 3.1 (d). By using a profiling agent such as JVMPI [43], an instrumented virtual 

machine based on an open source VM such as Kaffe [50], or by instrumenting the 

bytecode directly, dynamic information can be extracted which describes the runtime 

behavior of the code. We discuss the dynamic characteristics of code supported by 

JIL in Section 4.3. 

3.2.2 Document structure 

The content of XML documents is stored in a logical structure which describes a 

hierarchy of elements. This structure supports single inheritance by sim ply nesting 
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markup tags, allowing an element to have a parent, any number of siblings, and 

any number of children. This makes XML (and therefore JIL) a suit able founda­

tion for modelling Java objects and constructs. By nesting elements according to 

an abstract tree representation of the class, they can be annotated with extensions 

while preserving the underlying structure. This allows backwards compatibility with 

JIL consumers which are unaware of the extensions or how to interpret them. Any 

unknown extensions can be ignored or handled separately. 

Each JIL document describes a single Java class. In order to describe inner classes 

or an entire package of Java classes, multiple JIL documents must be used. There 

is no current specification for the packaging of multiple JIL documents. Their only 

association is the Java class or package they represent. Each document contains a 

required set of base elements which describes the underlying structure or skeleton of 

a Java c1ass. These elements include enumerations of the fields and methods of the 

class, and provide a foundation upon which language extensions can be applied. These 

extensions allow any number of tools to annotate base elements with both static and 

dynamic information. This information can come in any form, such as analysis results 

or metadata, exposing characteristics of the code elements which would normally be 

hidden. 

The logical structure of a JIL document is shown in Figure 3.2. The logical 

structure of the document is represented as a tree, where the directed arrows point 

towards child elements. Note that there also exists a virtual structure which includes 

associations between unrelated elements. For example, the use of a parameter is 

stored as a line number which acts as an index to the enumeration of statements in 

the same method. These kinds of abstract relations are defined by the authors of the 

corresponding elements, and they help to reduce the existence of redundant data in 

the document. 

Markup 

JIL is designed to provide a scalable framework where an arbitrary number of doc­

uments can be merged and processed with good performance. Attributes are used 
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Figure 3.2: JIL document structure. The single inheritance hierarchy of XML is 
ideal for modelling Java constructs. Base elements provide a structure upon which 
intermediate languages and metadata can be added. Required elements contain ba­
sic information about base elements which is necessary for identification. Language 
extensions can be associated with any element and provided by arbitrary tools. 
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where possible to annotate and describe objects, since they typically perform better 

than enclosing the data between tags when processed by XML parsers. The prop­

erties of a programming element, such as the name of a field or the type of a local, 

are stored within the attribut es of a tag. Attributes can also be weakly typed using 

a DTD, limiting them to a set of keywords or a name token. The following is an 

example of an element representing a local variable which uses attributes to store 

the name and type information: 

<local name="MyDouble" type="double" /> 

The following is an example of what the above code element would look like if 

attributes were not used in the markup: 

<local> 
<name>MyDouble</name> 
<type>double</type> 

</local> 

By not using attributes, the markup elements become extremely verbose and do 

not provide any benefit to an XML parser or another form of interpreter. Therefore, 

attributes are used where possible in order to simplify and minimize the number of 

characters required for the XML representation of code elements. However, there are 

cases where code elements are represented by this kind of markup. Data is enclosed 

between tags wh en it contains special characters or requires enumeration. AIso, if 

there might be more than one property of the same name then this style of markup 

is used. The following is an ex ample of markup representing a statement of Jimple, 

an intermediate language introduced in section 4.2.2. The statement contains sorne 

special characters which are not allowed to be stored as attributes in XML: 

<jimple> 
<! [CDATA[ $rO = $rl + $r2; ]]> 

</jimple> 
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Enumerations 

Enumerations are used widely in JIL to group and give order to lists of programming 

elements. An option al attribute count can be used to mark the number of nodes to 

expect in the enumeration. A JIL consumer can use this number to decide if, when, 

and how to pro cess the nested nodes. Elements within an enumeration require unique 

identifiers, indicated by the attribute id. 

<modifiers count=12"> 
<modifier id=IO" name="public" /> 
<modifier id=ll" name=" abstract" /> 

</modifiers> 

Note that these attributes are omitted from sorne of the other examples in this 

thesis in order to save space and highlight the other markup being demonstrated. 

language extensions 

JIL language extensions include any data which is not explicitly expressed by an in­

termediate language. This type of information is typically extracted directly from the 

Java source, a related intermediate language, or Java bytecode. Extensions can also 

include runtime data which is collected during the execution of the program. There 

are no constraints on what kind of data can be represented as language extensions, 

however they must be defined using a DTD, just like the base JIL elements. Extension 

DTDs are typically referenced by the base JIL DTD and are associated to a specific 

tool. Their modularity allows them to be easily swapped in and out depending on 

the information required or the tools being used. 

The following fragment follows the example from Section 3.2.2, adding a static 

extension which indicates which variables are live coming in and out of the statement: 

<statement> 
<soot_statement> 

<jimple><! [CDATA[ $rO = $rl + $r2; JJ></jimple> 
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<livevariables> 
<in>$r1</in> 
<in>$r2</in> 
<out>$rO</out> 

</livevariables> 
</soot_statement> 

</statement> 

Extension elements are typically named by taking the extended element 's name 

preceded by the extending generator and an underscore. In the above example, the 

element being extended is a statement and the extending generator is soot, therefore 

the resulting extension element is labelled as soot_statement. Generators can extend 

any element defined in the base DTD, including attributes of existing elements. The 

extension DTDs for the tools used in our framework are available in appendices A.2 

and A.3. 

3.3 JIL document elements 

Each JlL document begins with sorne header tags for XML compliance and self­

description, and can only contain those elements defined in the DTDs being used for 

validation. An example JlL document containing the minimum number of elements 

that are required according to the JlL 1.0 DTD can be found in appendix B.2. 

Please note that sorne of the examples in this section do not refiect the complete 

syntax but merely highlight the particular elements or attributes being demonstrated; 

ellipsis have been included where syntax has been omitted which is not required for 

understanding. 

3.3.1 Naming 

There is no requirement placed on the naming of JIL documents, however they are 

typically associated with a single Java class. The relation between a JlL document 

and the source object is represented internally by the class name, allowing multiple 

JlL documents to refer to the same class file. If multiple JlL documents refer to 
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different versions of the same class file they can be distinguished by their document 

history element, described in section 3.3.3. 

JIL documents should typically use an . xml file extension in order to be identified 

by XML and SGML tools, however the . j il file extension is also used wh en this 

kind of compliance is not required. For example, when serving J1L documents online, 

those documents with an . xml extension will be recognized by client and server-side 

applications as XML documents. 

3.3.2 Headers 

JIL documents are textual, but contain header information in order to self-describe 

the content within. Header tags come at the beginning of the document and exist at 

the root level. They uniquely identify a JIL document, while associating it with any 

related documents. Separate JIL documents might refer to the same Java source code, 

while containing different types or versions of annotated data. These annotations 

must be recognized in order to be accurately parsed and understood. 

The following sections describe those elements included in a J1L document which 

do not directly represent a characteristic of source code or an intermediate language. 

XML decJaration 

Since every JIL document is a valid XML document, it must begin with appropriate 

XML declaration tag [4]. 

<?xml versionIl 1.0 11 ?> 

JI L decJaration 

JIL documents include a header tag at the root level in order to indicate the version 

of the JIL contained within. The version information indicates to a consumer which 

version of JIL it must be prepared to parse. This version corresponds to the version 

of the validating DTD. 
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<jil version"1.0" /> 

3.3.3 Document history 

JIL documents are associated with a single class, but they may be created from 

multiple sources throughout their lifetime. One JIL generator might create a JIL 

document while another might extend the document with additional code character­

istics of which the original generator had no understanding. 

The history element indicates which applications were used to create the JIL 

document. It's an enumeration of identity elements which self-describe a generator 

and the action it took when contributing to the JIL document. Typical information 

found in an identity node would include a time-stamp of when the operation was 

performed and the command line which triggered it. 

<history> 
<soot version;;::"1.2.3" cmd;;::"-X MyClass" /> 
<step version;;::"1.0" mode;;::"field-accesses" /> 

</history> 

3.4 JIL class elements 

JIL documents contain a single c1ass tag at the root level. AU source code charac­

teristics are represented with JIL tags contained within the class tag. Nested classes 

are not supported, and should be handled using separate JIL documents. 

The c1ass name is stored in the name attribute. If this class has a parent in the 

class hierarchy, it can be indicated in the extends attribute. Currently JIL mimics 

Java and supports only single inheritance. 

<class name;;::"MyClass" extends;;::"MyParent" /> 
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Class modifiers 

Class modifiers indicate the accessibility or hierarchical attributes of the class. JIL 

supports any number of modifiers, but only keywords which are used as modifiers in 

Java. Note that sorne other JIL elements also use the modifiers tag. 

<modifiers> 
<modifier name="public" /> 
<modifier name="final" /> 

</modifiers> 

Typical class modifiers include public, final, and abstracto For a complete list 

of accepted modifiers see the base JIL DTD in appendix A.l. 

Interfaces 

If the class implements one or more interfaces this is indicated using the interfaces 

enumeration. 

<interfaces> 
<interface name="my.package.interface" /> 

</interfaces> 

Extensions 

Class extensions are defined using the standard notation. 

<class> 
<generator_class> 

</generator_class> 
</class> 

Java attributes are planned to be included as a class extension. 
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3.4.1 Fields 

Member variables which are global to the entire class are contained within the fields 

tag. Each field is enumerated and assigned a unique identifier, a name, and a type. 

<fields> 
<field name=IMyDouble" type="double" /> 
<field name=IMyLong" type="long" /> 

</field> 

Field modifiers 

Each field can indicate its accessibility and behavior by including a modifiers tag 

within the field tag. 

<field ... > 

<modifiers> 
<modifier name="private" /> 
<modifier name=" static" /> 

</modifiers> 
</field> 

Typical field modifiers include public, private, protected, static, final, 

transient, and volatile. A complete list of accepted modifiers is specified in the 

base lIL DTD found in appendix A.1. 

Extensions 

Field extensions are applied to each field and allow tools to associate metadata to 

each field. 

<field ... > 
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<generator_field> 

<generator_field> 
</field> 

3.4.2 Methods 

Methods are enumerated within the methods tag. Each method tag indicates the 

method's name and return type. 

<methods> 
<method name="main" returntype="void" /> 

</methods> 

Method modifiers 

Method accessibility and behavior is described using an enumeration of modifiers. 

Usage is similar to the class and field modifiers. 

<method ... > 

<modifiers> 
<modifier name="native" /> 
<modifier name="synchronized" /> 

</modifiers> 
</method> 

Parameters 

Parameters are enumerated within the parameters tag for each method. 

<parameters> 
<parameter name="MyString" type="String" /> 
<parameter name="MyDouble" type="double" /> 

</parameters> 
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Extensions 

Method extensions use the standard notation, but they can also exist for child nodes 

as weIl. 

<method> 
<generator_method> 

</generator_method> 
</method> 

One tool used in our framework supports parameter extensions which indicate 

the statements where the associated parameter was used or defined. This static 

data is associated to another element through the statement line numbers, creating 

an abstract relation known only to the generators and consumers supporting this 

extension. 

<parameter ... > 

<soot_parameter uses=lI1" defines=II1"> 
<definition line=lI1" /> 
<use line=1I2 11 /> 

</soot_parameter> 
</parameter> 

3.4.3 locals 

Variables which are local to each method are represented by a locals enumeration tag, 

which is a child of each method tag. 

<loeals> 
<local name="MyLoeal ll /> 

</loeals> 

27 



Locals by type 

Local variables are also stored by type. This is a grouping which could be computed 

by a JIL consumer, but by storing this basic grouping within the JIL it can simplify 

the implementation of a consumer. 

<types> 
<type name=IMyType"> 

<local name=IMyLocal" /> 
</type> 

</types> 

Extensions 

Extensions to locals are stored using the standard notation. 

<local ... > 

<generator_local> 

</generator_local> 
</local> 

The tool used as a source of static data in our framework generates JIL documents 

which contain local extensions indicating the statement where each local was used or 

defined, much like it does for fields. 

<local ... > 

<soot_Iocal> 
<definition line=ll" /> 
<use line=12" /> 

</soot_Iocal> 
</local> 
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3.4.4 labels 

Labels are used in Java bytecode to indicate basic blocks of code which can be used 

as targets for branch operations. JIL contains an enumeration of a method's labels, 

and each statement is associated with a label. 

<labels> 
<label name="MyLabel" /> 

</labels> 

3.4.5 Statements 

Statements represent the actual lines of code stored in an intermediate language. 

<statements> 
<statement label="Mylabel" /> 

</statements> 

Bytecode statements would include an operation and any associated parameters. 

For other intermediate languages, statements can range in complexity and might 

contain special characters. The natural representation of a statement is kept in its 

own tag as content. 

<statement label=IMyLabel"> 
<jimple> 

<! [CDATA[ $rO = $r1 + $r2; ]]> 
</jimple> 

</statement> 

Extensions 

Statement extensions associate data to each individual statement of an intermediate 

language. 
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<statement ... > 

<generator_statement> 

</generator_statement> 
</statement> 

In our frarnework we extend each staternent with annotations, sorne of which 

relate to other elernents such as fields or locals. Analysis results which apply to each 

staternent are also stored as staternent extensions, such as which variables are live 

corning in and out of a given staternent. 

<statement ... > 

<soot_statement> 
<livevariables incount=ll" outcount=ll"> 

<in local=IMyLocal" /> 
<out local=IMyLocal" /> 

</livevariables> 
</soot_statement> 

</statement> 

3.4.6 Exceptions 

Exceptions are also represented III JIL as an enurneration contained within each 

rnethod. Exceptions reference three labels which indicate where the specified excep­

tion catching begins, ends and which handler represents the location of the exception 

handler. 

<exceptions> 
<exception type=IMyException"> 

<begin label="MyBeginLabel" /> 
<end label=IMyEndLabel" /> 
<handler label="MyHandlerLabel" /> 

</exception> 
</exceptions> 
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3.5 Document structure and management 

JIL documents use the nesting structure of XML to represent the hierarchy of code 

elements in a Java class. The current JIL definition requires that documents contain 

a base structure consisting of several required elements. These describe the basic code 

elements which all classes contain, such as enumerations of fields and methods. By 

nesting elements, JIL can contain optional extensions to these base elements which 

will not break the underlying structure of the document wh en removed. This makes 

document extensions easier to manage, since they can be swapped in or out, and 

new extensions can be introduced while maintaining backwards compatibility with 

previous versions of the same document. 

JIL documents achieve this kind of manageability by strictly defining the grammar 

of their contents and self-describing any included extensions. A DTD is used to 

define the restrictions on which elements and attributes cau and must be included. 

This DTD can also be extended with references to extension definitions, allowing 

the base JIL grammar to evolve independently of any extensions. Definitions are 

also iudependently versioned, so that validation can indicate which generation of 

JIL to expect or which extensions are available. Following the trend of other XML 

technologies, DTDs cau be referenced locally or across the internet during validation. 

3.5.1 Merging 

In sorne cases, an entire package of JIL documents might describe a class to be vi­

sualized. A single class could also be represented as separate JIL documents, and 

then later combined during processing in order to improve performance or manage­

ability. This section describes the different types of merging which are possible when 

combining data from multiple JIL documents. 

The most straightforward merging involves JIL documents which represent dif­

ferent classes; in this case there is no merging required. Data in thcse documents 

does not intersect or confiict since it is referring to an entirely separate class. Toois 

that want to browse a complete package or compare the data collected on separate 
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classes can load each document and process them independently. There are no no­

table caveats in this case, and the details of how to handle each document is left up 

to the implementation. 

When a tool merges JIL documents which refer to the same class, it can take 

advantage of the object-oriented document model. Such tools typically treat these 

documents as a single entity describing a Java class. Each document's extensions and 

data can then be associated with this common entity, and their interactions are left up 

to the implementation. A simple union of aIl the data can be performed which presents 

the user with a single class representation which includes aIl the extensions from each 

document. This is a common case wh en a tool is passed JIL documents from separate 

sources, each containing different extensions on the same class. These extensions can 

be combined when loaded by the tool in order to hide their logical separation from 

the user. This can be convenient when visualizing multiple documents from different 

remote sources, where their physical separation becomes more of a convenience. For 

example, if one tool is still being developed and debugged, its extensions can be kept 

separate from those generated by other more stable tools. The ability to separate 

extensions in this way is also convenient for research groups working on different 

extensions independently across the Internet. 

In sorne cases, tools can generate document extensions which intersect, meaning 

they describe the same characteristics of the code with different empirical data. Such 

data is typically collected at runtime by profiling or benchmark tools. Visualizers can 

display averages and other calculations by identifying and processing this intersecting 

data. This pro cess requires sorne basic algorithms used by the visualizer to decide 

how to combine the data and present the user with code characteristics of interest. 

The visualization framework presented in this paper separates the interface from 

the data. An open data representation allows custom interfaces to define how the 

user visualizes intersecting data. The format and structure of JIL is designed to 

give interfaces more flexibility when deciding how to interpret the data. Simple 

interfaces can allow basic filtering of datasets where the user can browse the evolution 

of the code's performance, while complex interfaces might use statistical operations 

and graphics in order to provide a more comprehensive representation. JIL tools 
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which can offer sorne insight into the interpretation of multiple JIL documents can 

export any data they pro duce as additional JIL extensions. For example, given a 

JIL document describing the local variables which are live at each statement, another 

tool could interpret this data and export an addition al JIL document containing lists 

of variabl,es which are unused and could be eliminated in each method. By chaining 

the processing and interpretation of JIL documents, visualizations can become more 

complex and coyer a larger scope of code characteristics. This also allows a many-to­

one relationship between code tools and visualizers. 

The pro cess of merging JIL document extensions is not trivial, but is facilitated by 

the wide array of libraries and APIs which can process and parse XML. Many basic 

combinatory operations are supported by basic interface languages such as XSLT 

[13J and PHP [38J. Such interpreted languages can allow quick prototyping of new 

and experimental visualizations. By using a scalable data format, JIL tools can 

pro cess as many documents or extensions as required by the visualization. Most APIs 

also support the loading of documents using the weIl established HTTP protocol for 

network transmission. This encourages visualizers to support the visualization of 

remote JIL documents, allowing collaboration between tools which might exist on 

different machines or networks. 

3.5.2 Versioning 

JIL documents are unambiguous descriptions of Java classes, allowing tools to di­

rectly construct a hierarchical structure of code elements. Document type definitions 

allow the format of these elements to be recognized and validated using existing XML 

parsers. DTDs can be referenced using a Uniform Resource Locator (URL), allowing 

JIL tools to provide a unique specification for the JIL they support online. Version­

ing of DTDs allows tools to identify documents based on different versions of JIL. 

Extensions are versioned independently of each other, allowing JIL documents to be 

formed from any combination of supported extensions. 

Versioning is also used within JIL content to describe the source and operation 
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which resulted in the JIL being interpreted. Multiple versions of extensions can de­

scribe the same characteristics using different data. Code transformations and opti­

mizations can be versioned in order to compare the resulting code and any associated 

data visually. Dynamic code extensions are typically associated with an execution 

run and a runtime environment. The separation of these data streams is handled by 

versioning the appropriate extensions. 

Each JIL document contains a history of contributors. This history is a list of 

tools with attributes which uniquely identify a set of tags within the document. A JIL 

tool uses the document history to describe the operation or command it performed 

when generating the tags in the document. Version information is usually associated 

to a history element, which indirectly represents the output of a particular version of 

a tool. This allows code elements and extensions to be traced back to a specific tool, 

and then separated by a visualizer when parsing the document. By maintaining this 

versioned history within each JIL document, it allows tools to manage and separate 

both supported and unsupported extensions. 
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Chapter 4 

Creation and construction of JIL 

We have introduced JIL as an extensible metalanguage for encapsulating inter­

mediate languages and associated data. This chapter discusses the creation of JIL 

documents and the construction of the data contained within. We present two ex­

isting code tools which can extract various kinds of information which describe the 

behavior of Java programs. These tools have been extended to support the creation 

of JIL and serve as sources of static and dynamic data. 

4.1 Creation of J Il 

JIL requires no special encoding and can be created by hand using a common text 

editor. This facilitates debugging JIL documents and prototyping new elements and 

extensions. This allows the creation of JIL documents to be implemented using 

standard libraries without any proprietary code. Applications which generate JIL 

documents can also do so by using one of the many APIs available for most major 

programming languages. These APIs provide a quick and efficient way to gener­

ate compliant JIL without having to worry about the implementation details of an 

additional output format. 
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4.1.1 XML processing models 

The implementation of a stand alone JIL generator or an extension to an existing 

system depends largely on the application. Two major processing models exist for 

XML-based documents: DOM [2] and SAX [31]. 

The Document abject Madel (DOM) builds an internaI image of the document in 

memory, and allows the non-linear construction of documents. DOM-based parsing 

can require large amounts of memory, however by modelling the entire document tree, 

programmers are given more freedom when adding, removing, or modifying elements. 

The Simple API for XML (SAX) is an event based model which is designed to 

use as little memory as possible by not building an internaI tree representation of the 

document. Instead, SAX traverses the tree and triggers events based on the elements 

and content it encounters. 

These processing models can be combined to provide the ideal model based on 

the application. For example, when building a document during a computationally 

expensive analysis, a developer would chose to build a DOM-based document tree and 

add elements and attributes as the computation proceeds. However, if a developer 

is working with a profiling tool where they expect the document to comprise of an 

unpredictable amount of data, they would chose to build the tree on the fly using a 

SAX model for processing. 

Many packages exist which allow the developer to use both these kinds of pro­

cessing models. The recent emergence of web-based applications and platforms has 

increased both public and commercial interest in XML related technologies and 

APIs. Sorne popular programming frameworks for XML are JDOM [24], Apache's 

XERCES [1], and Sun's JAXP [44] and related toolsets. 

Generated documents should be validated using a DTD or another schema for 

defining a document grammar. This ensures that the documents contain aIl required 

elements, and helps tools to identify any unsupported elements or attributes. DTD 

validation helps debug JIL generation, and is also supported programmatically in 

most XML APIs. 
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4.2 Static data 

There are many different kinds of static data that can be associated with code el­

ements. Sorne are very simple, such as the line number where a code element is 

stored in a source file. Other, less obvious characteristics are computed by program 

analyses, like those found in optimizing compilers. For example, such an analysis can 

determine the locations where a certain variable is defined and used. The framework 

we present allows aIl of these kinds of static data to be associated to code elements 

by using JIL. 

4.2.1 Static data in JIL 

Every JIL document must contain sorne basic static data. The framework of base 

elements which describes a class is static, since it is based on the unchanging bytecode 

representation of a Java class. For example, the methods and fields of a class are 

aspects of the pro gram which are known once it is compiled. Once a Java program is 

compiled into bytecode, the only way to affect its structure or properties is to either 

directly modify the class file, or change the source code and recompile. Since JIL is 

meant to provide different representations of Java bytecode, its behavior is similar to 

class files; as long as a class file is unchanged, its JIL representation is valid. 

Beyond the basic layout and structure of a Java class file, there are other static 

characteristics of the code which can be discovered once it's compiled. This type of 

static information is not contained within the bytecode directly, but can be computed 

through analysis. 

Figure 3.1 (b) shows the static optimization of a Java class file. This is where 

the static information about a class can be extracted and analyzed by a variety of 

tools. Thus far we have only assumed that such tools exist, however our framework 

required such a tool in order to provide a source of static data. The following section 

describes an existing tool, called SOOT, which is capable of performing the types 

of analyses on Java classes, which expose opportunities for optimization [51,52,54]. 

We extended this tool to be able to convert Java classes into JIL documents, which 
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include the results of these analyses, making it the primary source of static data in 

our framework. 

4.2.2 SOOT bytecode optimization framework 

BOaT is an optimization framework for Java which uses intermediate languages to 

perform static analysis and transformations on Java bytecode [51,52,54]. BOaT 

was a natural choice as an extensible source of static data, providing its own API 

for developing code optimizations and transformations. Sorne of the key features of 

BOaT which influenced the decision to use it in our framework are as follows: 

• Extensibility: BOaT is used as an experimental framework for working with 

Java bytecode, and provides a perfect testbed for new optimization and analysis 

techniques and algorithms; the extensible nature of the JIL document format 

provides a suitable way for exporting and visualizing current and future data 

computed by BOaT. 

• Programmability: BOaT provides its own API for developing code opti­

mizations and transformations, allowing programmatic access to its internaI 

representations of Java bytecode and the analyses it is capable of performing. 

• Availability: BOaT is an ongoing research project of the Sable Research 

Group at McGill University, where this framework was developed as well; this 

meant that we had access to sorne of the original developers and other resources 

which facilitated the addition of support for JIL as an output format. 

Internally, BOaT applies code transformations and analyses using three different 

intermediate representations of Java bytecode. Ba! is an abstract version ofbytecode, 

Jimple is a three-address code where the stack is replaced by local variables, and 

Grimp is an aggregated three-address code suitable for generating stack code. These 

intermediate languages are used as alternative representations for code analysis and 

manipulation operations, which are difficult to apply to stack-based bytecode. 
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Jimple is a typed three-address code suit able for applying transformations which 

might move or remove code elements [53]. Code transformations such as algebraic 

manipulation, common sub-expression elimination, and constant propagation can be 

performed directly on Jimple code, making it an ideal representation for visualization. 

In order to translate stack-based bytecode to Jimple, an algorithm is used which 

converts stack references to temporary variables which can be explicitly used in three­

address code. This can result in verbose code, however this conversion concentrates 

on correctness since Jimple can be further simplified by applying basic optimizations 

such as constant and copy propagation. Jimple is the target of visualization in our 

framework, since it exposes many optimizations to a developer which would not be 

apparent or possible with another representation. 

4.2.3 SOOT as a source of static program data 

The BOaT optimization framework is capable of decompiling Java classes into Jimple 

and other intermediate languages, as illustrated in Figure 4.1. As a contribution 

of this thesis, support for JIL was added to BOaT version 1.2.3 as an optional 

XML output format. BOaT takes a Java class as input and creates a JIL document 

compliant with the base and BOaT DTDs, found in appendices A.l and A.2. This 

makes the current version of BOaT the first bytecode-to-JIL converter. 

BOaT defines sorne basic language extensions for JIL which include static infor­

mation and analysis results extracted from Java classes. For example, each statement 

is associated with a list of variables, indicating which are live before and after that 

line of code. This information is sim ply nested within each statement tag, preserving 

the existing structure of the document. 

In order to demonstrate how BOaT exports analyses as JIL, we consider vir­

tuaI method polymorphism as a characteristic of the code. Figure 4.2 (a) shows a 

fragment of Java code where polymorphism can be explored at compile-time by an­

alyzing the potential targets of calI sites. BOaT supports several types of static 

analyses which can associate potential targets with caU sites. CaU sites within the 
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optimizatlon 
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Baf source 
(.baf 
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(.xml) 

Figure 4.1: The internaI use and generation of intermediate languages in BOaT. JIL 
was added to version 1.2.3 of BOaT as an additional output format. 

JIL documents produced by BOaT can be easily identified as monomorphic or po­

tentially polymorphic by extending each site with these analysis results. Figure 4.2 

(b) shows a simplified example of JIL describing a caU site extended with the results 

of class hierarchy analysis (CHA) [17] and variable type analysis (VTA) [45]. 

We chose virtual method polymorphism as an example since it demonstrates both 

static and dynamic properties of the code. In addition to the static information 

extracted by BOaT, the runtime behavior of these caIl sites can reveal which targets 

are actuaIly being invoked. We continue this example in Section 4.3.3 when we 

describe another tool which is capable of exporting dynamic data as JIL. 

4.3 Dynamic data 

Data and code characteristics discovered at runtime can play a major role in the 

optimization of object-oriented programs. Languages such as Java feature many ex­

pensive features, such as polymorphism and garbage collection, which can drastically 

affect performance. The most effective optimizations target the expensive bytecodes 

which are generated by Java compilers to provide these features. However, these 
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(b) 

(a) // mycIass.java 
mylnterface myObject; 
if ( branchl ) 

myObject = new A(); 
else if( branch2 ) 

myObject = new B(); 
else 

myObject = new Cl); 
myObject.myMethod(); 

<!-- JIL: SOOT output of myclass --> 
<statement> (c) <!-- JIL: STEP output for myclass --> 

<statement> 
<jimpIe>interfacelnvoke 48.mylnterface: 

void MyMethod() </jimpIe> 
<soot invoketargets method="myMethod"> 
<targets analysis="CHA" count="3"> 
<target class="A"/> 
<target class="B"/> 
<target class="C"/> 

</targets> 
<targets analysis="VTA" count="2"> 
<target class="A"/> 
<target class="B"/> 

</targets> 
</soot_invoketargets> 

</statement> 

(d) rB • $r10 
if zO !. 0 goto labelS 

<jimpIe>interfacelnvoke 48.mylnterface: 
void MyMethod() </jimpIe> 

<step callsite method="myMethod"> 
<targets count="2"> 
<target class="A" 

invokecount=" 55"/> 
<target class="B" 

invokecount="45"/> 
</targets> 

</step_callsite> 

</statement> 

interfaceinvoke ra. <mylnterface: void Jn.yMethod() >() 

~;~;i:;;<'.i .. 1~(3):.~iol'2:: ...';,iJt,(2)'iril'2;Ji 
.J41~.i!:~a~::ii.~~j': i~.~~Ai.tJir ..... ; .. 
{~';"":i,:dj" 'ct' w<';'''Y'''' Q'i7 """" " "C:-;'t'('"~)i'W;"<'':: 

~~:~;;if:~!#:~I;Z!=;;i;,~:i!~;;·è:;î,.:'i:;: 
iO • iD + 1 

Figure 4.2: Polymorphism example. (a) A simple polymorphie Java fragment with 
an interface invoke; (b) A JIL fragment produced by SOOT indicating the possible 
targets of the calI site; (c) A JIL fragment produced by a STEP profiling agent 
indicating the actual number of runtime invokes; (d) A slice from the JIMPLEX 
interface focused on the caU site, where the user can browse the extensions from (b) 
and (c). 
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optimizations can not always be implemented based on statie information alone. 

One such optimization is virtual method inlining, which can compensate for un­

necessary use and overhead of virtual methods by directly inlining methods at their 

respective caU sites [45]. Although effective, this optimization is complieated by the 

dynamic dispatching of virtual methods. Sorne static analyses can prove that a caU 

site is monomorphie, aUowing the caUed method to be inlined without breaking the 

code. Those caU sites which can not be proven to be monomorphic require a more 

complicated optimization strategy. The runtime behavior of the code can reveal caU 

sites which execute a single method most often, but are still provably polymorphie. 

Optimization of these virtual caUs is still possible by inserting a runtime check to ver­

ify that inlined code is only executed wh en the dynamic type of the caU site matches 

that of the inlined method. 

4.3.1 Dynamic data in JIL 

Annotating JIL with dynamic data works much like with static data. In order to 

manage both static and dynamic extensions, each JIL document contains a history 

of aU the tools and operations which have authored it. This aUows dynamic data 

from separate executions of the same tool to coexist in a single document. Tools 

which support JIL uniquely identify each execution with an entry in the document's 

history, typically including the profiling or benchmarking agent which was used, a 

timestamp, and information about the execution environment. This allows JIL tools 

to compare and process multiple runtime data sets. The separation and managment 

of JIL documents was discussed in Section 3.5. 

4.3.2 STEP profiling framework 

STEP is a customizable profiling framework for evaluating the performance and be­

havior of object-oriented applications [7J. Existing profiling systems can be difficult to 

apply to such complex applications, or can only coUect a limited set of runtime char­

acteristics. Visualization of such data is typicaUy limited to the same fixed domain of 

events, and is normaUy separated from any static analysis. STEP aUows developers 
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to select the kinds of data they want to collect by building custom profiling agents. 

These agents instrument existing code according to which aspects were requested to 

be profiled. This allows the rapid development of a variety of profilers which apply 

to both standard and unconventional profiling tasks. 

STEP was originally introduced as a common trace format in the STOOP frame­

work [5,8J. STEP provides its own event-based language and accompanying compil­

ers. Profiling agents define events using this language and pass them into an event pipe 

where the data is compressed and prepared for consumption. We provided a backend 

to this event pipe which generates JIL documents. The code elements within these 

documents are annotated with the runtime data collected by the profiling agents. 

The JIL generator is an easily implemented example of an event pipe consumer, and 

the extensible nature of the profiling framework is weIl suited to preserve its output 

in an extensible document format, such as JIL. 

Sorne of the key features of the STEP system mimic those of our own visualization 

framework, sin ce they were both designed to be flexible and extensible: 

• Generality: STEP provides a flexible format for storing traces which is not 

bound to a particular tool, data type, or encoding . 

• Self-descriptive: STEP describes its own traces by specifying the structure, 

proper interpretation, and encoding of data. 

As a result of these fe at ures , STEP is able to remain independent of any event 

producer or consumer. Event producers can include the Java Virtual Machine Pro­

filer Interface (JVMPI) [43], a customized JVM, or another source of runtime events. 

Consumers are typically visualization or analysis tools, and can include our own 

JIMPLEX visualizer described in chapter 5, or any other tool capable of interpret­

ing generic profiling events. JIL matches this kind of interoperability by allowing 

arbitrary tools to produce or consume JIL documents. 
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Java class 
(.class) 

Profiling agent 
(JVMPI, Kaffe, SOOT) 

STEP 

~ ____ ~e~ve~n~t~PiP~e~ ___ ~ JIL document 
(.xml) 

Figure 4.3: The profiling of Java programs in STEP. Profiling agents, such as JVMPI 
[43], Kaffe [50], or SOOT, are used to pass events to to the event pipe. The backend 
of STEP can then output the trace format in several formats, including JIL. 

4.3.3 STEP as a source of dynamic program data 

STEP allows runtime information to be efficiently exported by backend implemen­

tations. These implementations pull data from the event pipe and convert it to a 

specific format; this process is illustrated in Figure 4.3. Since the data coming from 

the event pipe is designed to be visualized, the implementation of the backend is typ­

ically dependent on the visualization system which consumes this data. For example, 

EVolve is a visualizer which is capable of interpreting large amounts of data [59J. It 

creates graphical representations which the user can fiIter and customize. The back­

end implementation which allows STEP to act as a data source for EVolve converts 

the trace data to a specific format with strict requirements. For the framework we 

present here, we designed a simple backend for generating JIL data, following the 

guidelines described in Section 4.1. 

We now revisit our polymorphism example using STEP to generate JIL dynamic 

data. The JIL fragment at the bottom of Figure 4.2 (c) demonstrates how STEP 

associates actual runtime invocation targets to a particular calI site. Although our 

static class hierarchy analysis (CHA) indicated that this calI site had three potential 

targets, according to the data collected from this execution run only two targets were 

invoked. Runtime data must include sorne extra information describing the execution 

environment and any other details that are required to uniquely identify the data 
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associated with it. 
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Chapter 5 

Visualization and Consumption 

We have now described how code tools which can extract both static and dynamic 

characteristics of Java code can be used to create JIL documents. This chapter 

discusses how these documents are visualized. 

5.1 JIL as a data source 

XML has been used as a format for storing data in many different scenarios. As a truly 

portable data source, it glues together many different complex systems by aIlowing 

data to be quickly and reliably queried, much like a common relational database. 

However, there are sorne fundamental differences between a relational database and 

XML. Data in XML is arranged in a hierarchy and lends itself weIl to parent-child and 

sibling relationships, as elements can only have a single parent. This structure applies 

weIl when modelling language constructs and associating metadata to them. Most 

code elements in a Java class can be represented using a hierarchical structure, as 

was demonstrated in Section 3.2. For the application programmer who is considering 

using JIL as input data, they must understand these differences and avoid treating 

the data as a typical database. By taking advantage of the previous work and research 

that has been applied to XML data mining, they can save both time and code. 

Several programming models exist for consuming XML data such as JIL, sorne 

of which are optimized to save memory while others are suited towards repeated 
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processing of random elements. When developing applications which consume JIL, 

developers have a ri ch library of APIs and tools to choose from, which continues to 

grow. In Section 4.1.1 we discussed the two most popular XML processing models, 

DOM [2] and SAX [31], which are both supported by most XML APIs. The choice 

of which model to use when designing a JIL generator is based on different consider­

ations, but is equally important when designing an application which consumes JIL 

as input. 

Applications which consume JIL can vary both in their implementation and their 

functionality. JIL documents typically contain more data about a Java class than a 

user could, and would want to, absorb. Even the Java source code for a complex class 

can be overwhelming for a developer to build a cognitive model, especially if they are 

unfamiliar with the code. For this reason, most J1L consumers build an internaI rep­

resentation of the document and present the user with a high level interface, allowing 

them to focus on the elements of interest and request more detail when required. The 

DOM processing model is ideal for such an implementation, however it requires large 

amounts of memory depending on the size of the JIL document. As a resuIt, when 

building a scalable visualization application the choice of processing model is very 

important. 

As an XML-based format, JIL consumers can base their design and implemen­

tation on existing XML frameworks and applications. This is an excellent way to 

decrease the cost of development, both in time and lines of code. Since its incep­

tion in 1996, XML has proven to be an effective format for transmitting data across 

the Internet. It is often used as a data source wh en generating HTML web pages 

as a means of separating the interface from the data. This allows the interface to 

be implemented as a stylesheet, a generic layout and design which can be rendered 

dynamically as HTML. XML is used as a data source from which the stylesheet can 

extract those elements of the web site which vary from page to page. 

For example, let us consider providing this thesis online in a browsable interface. 

Instead of rendering a large number of different HTML web pages representing the 

different chapt ers and sections of the document, we could store the text as XML and 

design a single interface to the documentation as a stylesheet. The stylesheet would 
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include generic layout information such as margin measurements and how to typeset 

headings, titles, and paragraphs. Using this strategy, when the text of the document 

changes the interface is updated dynamically the next time the XML is transformed 

by the stylesheet into HTML. Otherwise, every affected HTML page would need to 

be identified and reconstructed. Maintaining an updated version of the document 

under these circumstances would require much more work. 

Since the data we want to present when visualizing intermediate languages is 

primarily textual, and because of how XML lends itself weIl to dynamic HTML in­

terfaces, we chose to develop a web-based visualizer for JIL. The following section 

describes the design and implementation of JIMPLEX. 

5.2 JIMPlEX visualization framework 

JIMPLEX is a visualization implementation for JIL documents. It was designed with 

the goal of providing a customizable visualization framework for browsing Jimple. 

Developers working with SOOT and Jimple required a tool which would allow them 

to develop and debug optimizations. By using JIL as a data source, JIMPLEX can 

visually annotate Jimple code elements with any static or dynamic data collected by 

SOOT and STEP. 

This allows the user to browse Jimple annotated with data from multiple tools, 

such as we saw in the JIL fragments in Figure 4.2 (b) and (c). Figure 4.2 (d) is 

a screenshot of the JIMPLEX interface, where the user is focused on the Jimple 

statement containing the polymorphic caU site. By comparing the results of static 

analyses to the actual runtime behavior we can verify that the variable type analysis 

performed by SOOT was accurate in eliminating the potential target from class C, 

based on the last profiling run. 

In order to provide an interface which is portable across networks and platforms, 

JIMPLEX runs in a common web browser using HTML and basic scripting languages, 

such as Javascript, to implement its interface. Figure 5.1 shows a screenshot of the 

JIMPLEX interface running in a web browser. Rather than describing the details 
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of the arbitrary interface, the following sections will focus on how the interface is 

generated dynamically using XSLT and JIL as a data source. 

5.2.1 JIMPLEX as a dynamic web page 

In order to facilitate the visualization of future JIL extensions, the implementation 

of JIMPLEX is easily customizable. JIMPLEX is an XML application which uses 

XSLT to stylize and transform JIL documents, delivering visualization interfaces as 

HTML to common web browsers. XML transformations can be performed on the 

fly in modern browsers, allowing the interface to be customized without having to 

recompile code or learn a complex API. These technologies also encourage collabora­

tion, allowing visualizations to be shared between platforms and devices across the 

Internet. 

In Figure 5.2 we present a general overview of the visualizer. Server A represents 

a computer connected to the internet and equipped with a web server. JIL documents 

stored on this server can be accessed like any other web page, however as an XML file 

they are not useful to a human or a machine without translation. Instead, they are 

referenced using a Uniform Resource Locator (URL) by S'erver B. Server B hosts 

the JIMPLEX stylesheet, which is stored locally on this server as an XSL file with 

an . xsl extension. This stylesheet is the implementation of JIMPLEX and any 

changes to the interface or behavior of the visualizer are applied to this stylesheet on 

Server' B. Multiple clients, represented in the figure as Client 1 through Client n, 

can access the stylesheet on Server B as a common web page. The web server on 

Server B does not transmit the actual XSL file to the clients, but instead transmits 

HTML data which is interpreted as a web page by a browser. This HTML data is the 

result of the transformation of the XML document on Server A by the JIMPLEX 

stylesheet. 

5.2.2 XSLT transformation in JIMPLEX 

The transformation process shown in Figure 5.3 is often applied by the web server it­

self, requiring no addition al software running on the server and simply a web browser 
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Figure 5.1: JIMPLEX running in a cornrnon web browser. 
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(a) 

(b) 

(c) 

r------------------------------
1 
1 
1 

Server A: JIL document storage 

web server 

L _____________________ _ 

..... : XML data i n .... :::::····;·······························: 
~ .............................. .l 

Server B: JIMPLEX server 

Client 1: JIMPLEX 

XMUXSL 
transformation 

n· .. "::······;-······························: 
....... , HTML data i 

L ............................. .i 

Client n: JIMPLEX 

Figure 5.2: Overview of the JIMPLEX visualizer. (a) JIL documents are provided 
online by a web server. (b) The JIMPLEX interface is hosted online and queries data 
from (a) across the Internet; the XML data is transformed by the XSL stylesheet on 
the web server. (c) Any number of clients can th en access the interface using a web 
browser as HTML from (b). 

51 



Source: 
JIUXML 

1 
1 

Stylesheet: 
XSL 

Transformation 
Process 

L __________________ _ 

Figure 5.3: XSLT transformation in JIMPLEX. 

Result: 
HTML 

capable of understanding HTML on the client. It is often the case that Server A 

and Server B in Figure 5.2 are actually the same server, and the XML data being 

transmitted between them is not required to travel across the Internet. However, 

JIMPLEX allows the user to specify an arbitrary JIL data source using an URL, 

which means that the JIL document is referenced as an online resource regardless of 

where it is actually stored. Modern web browsers, such as Microsoft's Internet Ex­

plorer 5 can even apply XSLT transformations on the client, allowing both the XML 

source, the XSLT stylesheet, and the interface to exist on the same machine. This al­

lows the entire visualization pro cess to take place locally without any requirement for 

network transmission. The choice to implement JIMPLEX as an XSLT stylesheet 

was based on the versatility and functionality the technologies make possible. We 

present this XSLT stylesheet in appendix B.3, and describe the kind of functionality 

it makes possible in the following section. 

5.2.3 Dynamic interface generation 

Now that we have outlined the pro cess of transforming JIL data into HTML, we 

examine how we use HTML to create a visualization interface. The basic idea behind 
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Figure 5.4: JIMPLEX interface: the Jimple statements from a simple method. 

the JIMP LEX visualizer is to present the user with a textual representation of the in­

termediate languages stored in a JIL document. We use the basic formatting features 

of HTML in order to pretty-print the program code, which enhances the readability 

and promotes human understanding [15]. However, readability is not the focus of 

the visualizer since intermediate languages tend to lack the types of relationships and 

semantics found in high levellanguages. For example, the indentation of code within 

a for loop written in C allows the programmer to quickly identify which code is called 

repeatedly. If this code were examined in assembly, the same indentation would not 

be possible since the assembly instructions which comprise the for loop do not follow 

the semantics of C. Instead, we focus on presenting the user with the metadata as­

sociated with each code element as intuitively as possible. It is this metadata which 

the user is interested in, otherwise they could simply browse the intermediate code 

itself in their favorite text edit or. JIL makes it possible to associate this metadata 

with the intermediate code, and JIMPLEX allows the user to visualize this metadata 

alongside the code elements. 

In order to illustrate how basic metadata is visualized in JIMPLEX we present a 

slice from the interface in Figure 5.4. It depicts the JIMPLEX representation of a sim­

ple method IsInteger. The eight statements of Jimple source code which comprise 

the method are displayed in the section on the left. These statements are numbered, 
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and include the fiow information using graphicallines and arrows. An arrow pointing 

to the right indicates that the statement contains an invoke. An arrow pointing to 

the left indicates that the program can branch on that statement. The line indicates 

the possible control fiow; when this line has a section missing, such as next to the 

statement labelled 5, it means that the program can not continue past that state­

ment without branching. An arrow pointing down indicates that the method returns 

to its callee after the accompanying statement. Although this is simple example of 

metadata associated to intermediate language statements, it demonstrates how this 

information can be displayed to the user intuitively using only basic HTML. 

Although there are limitations in the functionality of a web-based interface, the 

visualization of programming languages and related metadata is largely text based. In 

addition to HTML, scripting languages, such as Javascript and CSS, which are sup­

ported by modern browers are used to implement the interface. These languages 

can provide the kind of advanced functionality and interactivity associated with 

application-based interfaces. 

This type of functionality can be seen in Figure 5.5. On the right side of this 

section of the JIMPLEX interface there are several enumerations available to the 

user: Labels, Parameters, and Locals. An enumeration of the Exceptions is also 

available, but is not visible in this screenshot. By clicking on the titles of these 

enumerations, the user can expand and coIlapse the data associated with them in 

order to select which enumerations they want to view. In Figure 5.5 the user has 

expanded the list of Locals associated with this method, and can see the number 

of times each variable is defined and used according to the set/ get counts. As the 

user passes their mouse over a particular local variable, the variable is highlighted as 

weIl as aIl the statements in which it is defined and used. In Figure 5.5, the user has 

highlighted the local variable 10 which has triggered the highlighting of its definition 

in statement 0 and the highlighting of its first use in statement 3. Although colors 

are not visible in a monochrome printing of this thesis, it is enough to note that the 

use of color is a feature that even a text-based web interface can take advantage of. 

This kind of highlighting functionality is useful for quickly identifying statements, or 

sections of statements, and is available in each of the enumerations associated with 
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Figure 5.5: JIMPLEX interface: highlighting of variable definitions and uses. 
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Figure 5.6: JIMPLEX interface: analysis results associated with statements. 

each method. 

More advanced metadata, such as the results of static or dynamic analyses are 

also exposed by the JIMPLEX interface. Figure 5.6 shows a slice of the statement 

view in a JIMPLEX interface. By clicking on the statement numbers to the left of 

each statement, the user can expand the metadata associated with that particular 

statement. In this case, the user has clicked on the statement labelled 35, which 

contains an invoke. The metadata presented to the user includes the results of three 

static analyses and one runtime analysis. The local variables which are live passing in 

and out of the statement are listed first. This allows the user to quickly identify which 

variables are not used before and after this particular statement. Next, the results 

of a class hierarchy analysis (CHA) [17] and a variable type analysis (VTA) [45] are 

listed as invoke targets. CHA and VTA are static analyses which can identify which 

methods are potential targets of the invoke contained with this statement, allowing 

the user to explore the polymorphism of the code. The last section of metadata 

shows the results of a dynamic analysis of which methods were actually invoked at 

this calI site. This is data which was collected at runtime during an execution run 

which caused this invoke to be executed 100 times. Out of these 100 invokes, the data 

shows that 55 of them selected method A: : myMethod as the target and 45 of them 

selected method B: : myMethod. The different analyses shown here complement each 

other, and often expose redundant data. For example, the user will notice that the 
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runtime invokes only involve those methods identified by the variable type analysis. 

If this were not the case, the user might speculate that the VTA was inaccurate and 

investigate why the runtime invokes told a different story. JIMP LEX allows the user 

to develop a clear and complete cognitive model of both the intermediate languages 

and characteristics of the code which are contained within JIL documents. 
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Chapter 6 

Availability and Future Work 

We have presented aIl the tools and technologies used in our visualization frame­

work, however there is no substitute for a hands-on demonstration. The following 

chapter describes the availability of the tools and resources used in our framework, 

aIl of which are open source. FinaIly, we will discuss sorne of the ideas for future 

improvements that we were unable to explore or implement due to a lack of time and 

resources. 

6.1 Availability 

The work presented in this thesis is based on the JIL 1.0 specification which is avail­

able online as a Document Type Definition (DTD). These DTDs are meant to demon­

strate the online specification of this intermediate format, allowing documents and 

tools to reference them directly as online resources. They can also be downloaded 

and modified as required, allowing other researchers to improve or build upon the 

current specification. Table 6.1 contains the URLs where the base JIL DTD, as weIl 

as the extension DTDs, can be found online. 

This initial version of JIL includes sorne basic elements of a Java class, and pro­

vides a structure upon which extensions can be added. This base specification ref­

erences another DTD for the BOaT optimization framework which adds extensions 
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DTD 1 Current Version 1 URL 

Base JIL 1.0 http://www.sable.mcgill.ca/jil/jill0.dtd 
SOOT 1.0 http://www.sable.mcgill.ca/jil/jil-sootl0.dtd 
STEP 1.0 http://www.sable.mcgill.ca/jil/jil-stepl0.dtd 

Table 6.1: Document Type Definitions which are available online. 

1 Software Tooi 1 Current Version 1 URL 

JIL 1.0 http://www.sable.mcgill.ca/jil 
JIMPLEX 1.0 http://www.sable.mcgill.ca/jil 

SOOT 1.2.3 http://www.sable.mcgill.ca/soot 
STEP beta http://www.sable.mcgill.ca/step 

Table 6.2: Software framework homepages. 

for sorne static analyses. An extension DTD is also provided for the STEP profiling 

framework which defines sorne basic dynamic profiling extensions. 

Figure 6.2 contains the links to the homepages of the tools used in our framework. 

These tools are constantly evolving and frequently benefit from public contributions 

and input. The JIL homepage has links to related papers and online tools, such 

as the JIMPLEX visualization framework which is provided as a package of client 

and server-side scripts. Current implementations allow the online validation and 

visualization of JIL documents produced by SOOT and STEP. 

The SOOT optimization framework has an extensive website which includes doc­

umentation and tutorials, as well as links to public discussion lists and related papers. 

The current version of the SOOT binaries and source code are available for download 

there. The STEP framework is not currently available for release, however a site 

exists where the source and documentation will soon be available. Currently, only 

related papers are available for download. 
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6.2 Future work 

As an open framework, there are many different are as for future work. The JIL 

specification itself is in its infancy, and only basic extensions are supported. This 

specification is designed to be extended based on the tools that support it. Current 

support is limited to SOOT and STEP but any tool which can provide sorne insight 

into software understanding can extend the JIL definition and generate JIL data. 

Both static and dynamic extensions are easily specified by Document Type Definitions 

or another form of XML schema. When adding support to a tool for generating 

or modifying JIL documents with data extensions, supplying a DTD allows other 

tools to validate and recognize those extensions. Current implementations target the 

optimization of Java classes, but the framework can be applied to many areas of 

visualization. 

6.2.1 JIL language extensions 

The framework presented here is designed to allow visualization interfaces to include 

any data from any source, with minimal development. It allows visualizers to be 

developed based on the information the user wants to analyze rather than what 

information is available. 

Let us consider a user who wants to inspect sorne generated code in relation to 

its benchmarking data. They would first decide what code elements would be as­

sociated to their benchmarking results, such as extending individual methods with 

timing information. These extensions would be defined in a DTD, and support for 

J1L would be added to a benchmarking suite using a popular XML API matching 

their favorite programming language. The extension DTD could then be used by 

a visualization interface to validate JIL documents containing these dynamic exten­

sions. The visualizer could present the user with statistical information based on the 

benchmarking data recorded in the J1L documents. Future improvements to the code 

generator could then be evaluated by comparing successive J1L documents containing 

the benchmarking extensions. 
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6.2.2 Visualization implementations 

The J1MPLEX visualizer presented in Section 5.2 only explores a few of the possibili­

ties available when presenting the user with an interface to the data contained within 

JIL documents. There are two major features of XML and JIL which facilitate the 

design and implementation of a variety of visualizers: 

• Separation of data from presentation: In the case of JIL the data consists 

of a detailed description of Java classes, included intermediate languages and 

associated metadata. The presentation of this data is the visualization interface 

used to expose the data to a user. This allows visualization developers to worry 

more about the interfaces and functionality they can provide, rather than how 

the data is stored and accessed . 

• Interoperability: J1L is easily shared between applications, both because it is 

easy to test for compatibility and to transmit as data. The widespread accep­

tance of XML as a universal format for interchanging data between applications 

and across networks gives developers a strong foundation upon which new vi­

sualizers can build. 

6.2.3 Metadata-enhanced software development 

Although visualization is the current focus of this framework, it is only one example 

of an application for JIL. The future use of JIL could target any application where 

metadata is associated to code. A JIL-aware Integrated Development Environment 

(IDE) could remind the user about methods which are called frequently or suggest the 

most effective strategy to modularize the code. Software development rarely involves 

the inspection of static analyses beyond compiler errors, and dynamic information is 

typically not available until changes to the code may be too costly. M uch effort is 

spent debugging software during development, and most developers target a single 

problem or area of the code when debugging. A debugger which supported JIL could 

preserve such information with the code allowing the developer to reference this data 

without having to execute another costly debugging run. By combining static and 
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dynamic data into an extensible document format, tools can provide a developer with 

information and insight normally obscured by the code. 
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Chapter 7 

Discussion and Conclusion 

This chapter reviews the contributions of our framework and the goals it was 

designed to achieve. We evaluate the success of the overall system, and of each 

module which comprises it. 

7.1 Contributions 

In order to examine the success of the framework we revisit each of the contributions 

made towards this thesis. The problems that were stated in Section 1.1 were solved 

collectively by these contributions, and in this respect they rel y on one another. How­

ever, these contributions were designed and implemented independently, and should 

therefore be evaluated as separate solutions. 

7.1.1 J Il as a common document format 

In order to provide a common document format for sharing data between arbitrary 

code tools, we designed the Java Intermediate Language (JIL). Many of the benefits 

of this language come from its roots as an XML-based format. We now list the key 

benefits and issues we discovered when designing and using this format. 
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Benefits 

• As an XML-based format, the generation, parsing, and processing of JIL is 

facilitated by the numerous applications and APIs available both commercially 

and in the public domain. The popularity of and support for this format allow 

developers to concentrate on the functionality of their tools rather than the 

performance or reliability of their JIL input and output routines. 

• Another benefit of XML compliance is the ability to serve and share JIL docu­

ments online, allowing both people and software to collaborate across existing 

networks and protocols. The JIMPLEX visualizer is an ex ample of this func­

tionality, as an online tool which can provide a visualization interface to any 

JIL document on the web. 

• Extensibility is one of main benefits of JIL. The format is designed to store 

both existing and future intermediate representations of Java, as weIl as related 

metadata. The DTD language used to specify the JIL document format is easily 

extended in order to formally define new elements or attributes. Elements can be 

added or removed from JIL documents without breaking any existing structure, 

allowing documents to evolve freely while maintaining compatibility. 

• JIL elements are self-describing, allowing visualizers to provide support with­

out prior knowledge of the languages or metadata contained within a document. 

They also allow applications which consume JIL as input to implement intelli­

gent data mining, evaluating which elements to parse based on the user's queries 

or the computational cost. 

Issues 

• Since much of the data contained within JIL documents is used to describe 

the structure and relations between document elements, they tend to be much 

larger and more verbose than their corresponding source code and bytecode. In 

the case of large, complex Java classes this can seriously affect the performance 
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of tools which do not handle JIL efficiently. However, the performance of tools 

and APIs is improving as the XML community researches new compression 

techniques. 

7.1.2 SOOT as a static data source 

The choice of BOaT a static data source was based largely on its nature as an 

experimental platform for developing new static analyses for Java bytecode. As a 

contribution to this thesis, support for JIL was added as an additional output format. 

We avoid examining the merits of BOaT as an optimization framework and focus on 

the benefits it provides as a source of static data for JIL. 

Benefits 

• BOaT provides an ideal source of content for JIL documents. Before support 

for JIL was added, BOaT already used several intermediate languages inter­

nally. These languages were used for performing analyses and transformations 

upon. With the addition of JIL support, BOaT acquires a new mechanism 

for exporting the metadata associated with these languages and JIL acquires a 

source of static data. 

• BOaT provides a source of undiscovered data, taking advantage of the exten­

sibility of JIL. As an open source API, BOaT can be used to develop new 

optimizations, analyses, and transformations on Java bytecode, using JIL to 

export and visualize them. 

Issues 

• For the user who simply wants to create a JIL document representation of a 

Java class, the BOaT framework provides much more functionality than they 

require. This cornes at the cost of execution speed and the high complexity of 

the API and framework. 

65 



7.1.3 STEP as a dynamic data source 

The STEP backend implemented for this thesis allows dynamic characteristics of Java 

classes to be stored within JIL documents. 

Benefits 

• The customizable nature of the STEP framework allows developers to collect 

arbitrary runtime data, taking full advantage of the extensibility of JIL as a 

format for storing this data. 

Issues 

• One of the major issues with the STEP framework is its unfinished state of 

release at the time of the writing of this thesis. This has prevented the develop­

ment of a backend compatible with the current specification of the STEP trace 

format, as weIl as a complete evaluation of STEP as a source of dynamic data. 

7.1.4 JIMPLEX as a visualization backend 

JIMPLEX was developed to demonstrate two fundamental properties of using JIL 

as a visualization data source. Firstly, the ability to create a customizable interface 

which is as easily updated with new code characteristics as the JIL specification itself. 

And secondly, the ability to provide this functionality online. 

Benefits 

• The JIMPLEX visualizer is both simple and customizable. The interface con­

sists only of a dynamic web page which queries its data from JIL documents 

and builds its interface using common web languages such as XSL, HTML, and 

Javascript. 

• As a web-based interface, JIMPLEX encourages collaboration and compatibil­

ity. The tool can run on a web server allowing the interface to exist on any 
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machine with a web browser connected to the network. This allows users to 

share the same version of the visualizer and never have to worry about updat­

ing the tool to receive the latest features or bug fixes. 

Issues 

• As a web page, the functionality provided by JIMPLEX is limited. The lan­

guages and technologies supported by web browsers were not designed to imple­

ment an interactive visualization interface. Although web pages are effective at 

displaying textual information, they are not as efficient wh en providing graph­

ical and interactive functionality. 

7.2 Summary 

In this thesis we have presented an open framework for developing visualization in­

terfaces in the interest of studying the compilation and runtime behavior of Java 

programs. We now revisit our solutions for the underlying goals of our framework 

described in Section 1.1. 

• Comprehensiveness: In order to include both static and dynamic data in our 

visualization framework, we designed JIL as a generic format capable of associ­

ating any type of data to each code element. This includes both compile-time 

and runtime characteristics of Java programs, allowing the user to construct a 

comprehensive model of the software's behavior. 

• Generality: We allow any code or compiler tool to contribute content to JIL 

documents, creating a many-to-many relationship between applications which 

can generate and consume JIL; this relationship is illustrated in Figure 7.1. 

Typically, code tools share a one-to-one or a one-to-many relationship with the 

applications which can utilize the intermediate languages they produce. For 

example, BOaT can pro duce Jimple representations of Java classes, however 

no other application can contribute information to the Jimple code making this 

the final representation of the class. 
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Static Visualizers 
code tools 
(SOOT) 

(JIMPLEX) 

JIL documents 

Dynamic JIL consumers 
code tools - (merging/filtering) 

(STEP) 

1 

Figure 7.1: The many-to-many relationship of JIL generators and consumers. Any 
number of static or dynamic code tools can contribute to the J1L representation of a 
Java class. That JIL document can then be used as a data source by visualizers or 
other applications designed to consume JIL; these applications can also be designed 
to merge, filter, or otherwise pro cess elements and output a new J1L document . 

• Extensibility: In order to continue visualizing new and undiscovered char­

acteristics of code elements, we designed JIL and our visualizer J1MPLEX to 

be highly extensible. The formaI specification of JIL is stored as a Document 

Type Definition (DTD), which can be modified without any special tools or 

compilation in order to accept new document elements, attributes, or struc­

tures. Elements which are added or removed from JIL documents do not break 

any existing structure, allowing even existing documents to evolve as their gen­

erating applications are extended to support future metadata or intermediate 

languages. J1MPLEX is implemented as an XSLT stylesheet, allowing the in­

terface to be extended to support these new JIL elements by simply updating 

the stylesheet, requiring no special tools or compilation. 

7.3 Discussion 

The key features of the framework allow existing and future tools to contribute both 

static and dynamic code elements to these visualizations. By using an extensive and 
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portable document format for storing and separating data, our framework encourages 

interoperability between code tools, regardless of their implementation or supported 

languages. Any number of tools can contribute to a JIL document, allowing collab­

oration and modularity between tools which would normally be difficult to achieve. 

Adding support to existing tools requires very little implementation, as many APIs 

exist which can already validate, parse, and generate compliant JIL. 

The approach to visualization presented in this thesis extends object-oriented 

design to software management and visualization. The framework mimics mu ch of 

the flexibility and management possible when using modern object-oriented languages 

and technologies to build extensible and reusable systems. It is a natural progression 

for our compiler development and visualization systems to inherit a modular and 

language-independent design. By encouraging developers to design tools which can 

share the data they extract, they can increase their user audience and prolong the 

lifetime of their software. Although it is not a new concept to attach attributes and 

metadata to source code, this technique has rarely been applied to low levellanguages 

and code tools. Even though this framework has a narrow focus of Java visualization, 

it has demonstrated that the gaps between static and dynamic data, code tools, and 

intermediate representations can be bridged by applying new techniques with existing 

technologies. 
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A.t Base JIL DTD 

Appendix A 

Grammars 

The specification of the Java Intermediate Language (J IL) is provided here as a pack­

age of Document Type Definitions (DTDs). These DTDs are also provided digitally 

on the web [20]. A formaI syntax of DTDs can be found in the W3C XML specifica­

tion [4], however we will describe sorne basic syntax here: 

• ENTITY: Entities in DTDs are variables which represent other values. We use 

entities to define special keywords or values, as weIl as to reference external 

DTDs . 

• ELEMENT: DTD elements correspond to XML elements, meaning XML markup 

which consists of a start and end tag, such as: 

<variable>a</variable> 

In this example, variable is an XML element and would be defined by a DTD 

element with the same name. DTD elements also specify which children, if any, 

this element should contain as weIl as how many of each children the element 

can contain. 
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• ATTLIST: Attributes of XML elements are declared using the DTD ATTLIST key­

word. Attributes are associated to elements and describe additional properties 

about them, such as: 

<variable type=lIint ll >a</variable> 

This continues our previous example, giving the variable a the type int. At­

tributes in a DTD specify which element they are associated to, as weIl as their 

name, basic type, and default value, if any. Attributes can also be marked as re­

quired or optional, which will tell a validating application if a missing attribute 

should result in the document being rejected or not. 

The base JIL DTD specifies a set of fundamental code elements corn mon in every 

Java class. These includes the class itself, fields, methods, exceptions, parameters, 

locals, labels, and associated attributes for each. Future extensions should be associ­

ated to these elements, although new elements may be added. Each element definition 

is preceded by a corresponding J1L fragment, commented out using <! -- and -->. 

<!-- internaI entities --> 
<!ENTITY UNKNOWN "unknown"> 
<!ENTITY UNKNOWN_COUNT "-1"> 

<!-- external generator includes --> 
<!ENTITY % JIL-GENERATOR-SOOT SYSTEM "jil-sootl0.dtd"> 
%JIL-GENERATOR-SOOT; 
<!ENTITY % JIL-GENERATOR-STEP SYSTEM "jil-stepl0.dtd"> 
%JIL-GENERATOR-STEP; 

<!-- root node: <jil version="1.0" /> --> 
<!ELEMENT jil (history, class» 
<!ATTLIST jil version CDATA #FIXED "1.0"> 

<!-- <history> (supported generators) </history> --> 
<!ELEMENT history (soot*, step*» 
<!ATTLIST history created CDATA "&UNKNOWN_COUNT;"> 

<!-- <class name="myclass" extends="unknown"> --> 
<!ELEMENT class (modifiers?, interfaces?, fields?, methods?» 
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<!ATTLIST class name CDATA #REQUIRED> 
<!ATTLIST class extends CDATA n&UNKNOWN;n> 

<!-- <modifiers count=nl n /> --> 
<!ELEMENT modifiers (modifier*» 
<!ATTLIST modifiers count CDATA n&UNKNOWN_COUNT;n> 

<!-- <modifier type=npublic n /> --> 
<!ELEMENT modifier EMPTY> 
<!ATTLIST modifier name (publiclprotectedlprivatelpackagelabstractlfinall 

staticltransientlvolatile) #REQUIRED> 

<!-- <interfaces count=nl n /> --> 
<!ELEMENT interfaces (interface*» 
<!ATTLIST interfaces count CDATA n&UNKNOWN_COUNT;n> 

<!-- <interface name=nmyinterface n /> --> 
<!ELEMENT interface EMPTY> 
<!ATTLIST interface name CDATA #REQUIRED> 

<!-- <fields count=nl n /> --> 
<!ELEMENT fields (field*» 
<!ATTLIST fields count CDATA n&UNKNOWN_COUNT;n> 

<!-- <field id=nQn name=nmyfieldn type=nmytype n /> --> 
<!ELEMENT field (modifiers, stoop_field?» 
<!ATTLIST field id NMTOKEN #REQUIRED> 
<!ATTLIST field name NMTOKEN #REQUIRED> 
<!ATTLIST field type CDATA n&UNKNOWN;n> 

<!-- <methods count=nl n /> --> 
<!ELEMENT methods (method*» 
<!ATTLIST methods count CDATA n&UNKNOWN_COUNT;n> 

<!-- <method name=nmymethodn returntype=nmytype n /> --> 
<!ELEMENT method (declaration, parameters, locals, labels, statements, 

exceptions, stoop_method?» 
<!ATTLIST method name NMTOKEN #REQUIRED> 
<!ATTLIST method returntype CDATA n&UNKNOWN;n> 

<!-- <declaration>my declaration</declaraction> --> 
<!ELEMENT declaration (#PCDATA» 
<!ATTLIST declaration length NMTOKEN n&UNKNOWN_COUNT;n> 

<!-- <parameters count=n2 n> ... </parameters> --> 
<!ELEMENT parameters (parameter*» 
<!ATTLIST parameters count CDATA n&UNKNOWN_COUNT;n> 
<!ATTLIST parameters method CDATA n&UNKNOWN;n> 
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<!-- <parameter id="O" name="myparam" type="mytype" /> --> 
<!ELEMENT parameter (soot_parameter?» 
<!ATTLIST parameter id NMTOKEN #REQUIRED> 
<!ATTLIST parameter name NMTOKEN #REQUIRED> 
<!ATTLIST parameter type CDATA "&UNKNOWN;"> 

<!-- <locals count="2"> ... </locals> --> 
<!ELEMENT locals (local*, types?» 
<!ATTLIST locals count CDATA "&UNKNOWN_COUNT;"> 

<!-- <local id="Q" name="mylocal" type="mytype"> --> <!ELEMENT 
local (soot_local?» <!ATTLIST local id NMTOKEN #REQUIRED> 
<!ATTLIST local name CDATA #REQUIRED> <!ATTLIST local type CDATA 
"&UNKNOWN;"> 

<!-- <types count="2" /> --> 
<!ELEMENT types (type*» 
<!ATTLIST types count CDATA "&UNKNOWN_COUNT;"> 

<!-- <type id="Q" count="2" name="mytype" /> --> 
<!ELEMENT type (local*» 
<!ATTLIST type id NMTOKEN #REQUIRED> 
<!ATTLIST type count NMTOKEN #REQUIRED> 
<!ATTLIST type type CDATA #REQUIRED> 

<!-- <labels count="2"> ... </labels> --> 
<!ELEMENT labels (label*» 
<!ATTLIST labels count CDATA "&UNKNOWN_COUNT;"> 

<!-- <label id="Q" name="mylabel" /> --> 
<!ELEMENT label EMPTY> 
<!ATTLIST label id NMTOKEN #REQUIRED> 
<!ATTLIST label name CDATA #REQUIRED> 

<!-- <statements count="l"> ... </statements> --> 
<!ELEMENT statements (statement*» 
<!ATTLIST statements count CDATA "&UNKNOWN_COUNT;"> 

<!-- <statement id=IQ" label="myl abel" branches="false" 
fallsthrough="true" /> --> 

<!ELEMENT statement (soot_statement*» 
<!ATTLIST statement id NMTOKEN #REQUlRED> 
<!ATTLIST statement label CDATA #REQUIRED> 
<!ATTLIST statement labelid NMTOKEN #IMPLIED> 

<!-- <exceptions count="1" /> --> 
<!ELEMENT exceptions (exception*» 
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<!ATTLIST exceptions count CDATA "&UNKNDWN_COUNTi"> 

<!-- <exception id="Q" type="java.io.IDException"> --> 
<!ELEMENT exception (begin, end, handler» 
<!ATTLIST exception id NMTOKEN #REQUIRED> 
<!ATTLIST exception type CDATA #REQUlRED> 

<!-- <begin label="mylabel" /> --> 
<!ELEMENT begin EMPTY> 
<!ATTLIST begin label CDATA #REQUIRED> 

<!-- <end label="mylabel" /> --> 
<!ELEMENT end EMPTY> 
<!ATTLIST end label CDATA #REQUIRED> 

<!-- <handler label="mylabel" /> --> 
<!ELEMENT handler EMPTY> 
<!ATTLIST handler label CDATA #REQUIRED> 

A.2 SOOT extensions 

A separate DTD is used to specify the extensions supported by the BOaT opti­

mization framework [51]. The extensions found here are specifie to this framework, 

although similar extensions might also be provided by another tool capable of static 

analysis. 

<! -- <soot version="1. 0" /> --> 
<!ELEMENT soot EMPTY> 
<!ATTLIST soot version CDATA #REQUIRED> 
<!ATTLIST soot command CDATA #REQUIRED> 
<!ATTLIST soot timestamp CDATA "&UNKNOWN_COUNTi"> 

<!-- < ... method="myclass" /> --> 
<!ATTLIST method class CDATA #IMPLIED> 
<!ATTLIST local method CDATA #IMPLIED> 
<!ATTLIST label method CDATA #IMPLIED> 
<!ATTLIST statement method CDATA #IMPLIED> 
<!ATTLIST parameter method CDATA #IMPLIED> 
<!ATTLIST exception method CDATA #IMPLIED> 

<! -- <parameter ... ><soot_parameter id="O" 
type="mytype" name="myparam" /></parameter> --> 
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<!ELEMENT soot_parameter (use*» 
<!ATTLIST soot_parameter uses CDATA "&UNKNOWN_COUNT;"> 

<!-- <local ... ><soot_Iocal uses="1" defines="1" /></local> --> 
<!ELEMENT soot_Iocal (use*, definition*» 
<!ATTLIST soot_Iocal uses CDATA "&UNKNOWN_COUNT;"> 
<!ATTLIST soot_Iocal defines CDATA "&UNKNOWN_COUNT;"> 

<!-- <soot_Iocal ... ><use id="O" line="O" /></local> --> 
<!ELEMENT use EMPTY> 
<!ATTLIST use id NMTOKEN #REQUIRED> 
<!ATTLIST use line NMTOKEN #REQUIRED> 
<!ATTLIST use method CDATA "&UNKNOWN;"> 

<! -- <local. .. ><defini tion id="O" line="O" /></local> --> 
<!ELEMENT definition EMPTY> 
<!ATTLIST definition id NMTOKEN #REQUIRED> 
<!ATTLIST definition line NMTOKEN #REQUIRED> 
<!ATTLIST definition method CDATA "&UNKNOWN;"> 

<!-- <label id="O" name="mylabel" stmtcount="1" stmtpercentage="100" /> --> 
<!ATTLIST label stmtcount CDATA "&UNKNOWN_COUNT;"> 
<!ATTLIST label stmtpercentage CDATA "&UNKNOWN_COUNT;"> 

<!-- <soot_statement ... branches="true/false" fallsthrough="true/false" /> --> 
<!ELEMENT soot_statement (uses*, defines*, invoketargets*, livevariables?, 

jimple?» 
<!ATTLIST soot_statement branches ( true 1 false ) #IMPLIED> 
<!ATTLIST soot_statement fallsthrough ( true 1 false ) #IMPLIED> 

<!-- <uses id="O" local="$r1" /> --> 
<!ELEMENT uses EMPTY> 
<!ATTLIST uses id NMTOKEN #REQUIRED> 
<!ATTLIST uses local CDATA #REQUIRED> 
<!ATTLIST uses method CDATA #IMPLIED> 

<!-- <defines id="O" local="$r1" /> --> 
<!ELEMENT defines EMPTY> 
<!ATTLIST defines id NMTOKEN #REQUIRED> 
<!ATTLIST defines local CDATA #REQUIRED> 
<!ATTLIST defines method CDATA #IMPLIED> 

<!-- <livevariables incount="1" outcount="l"><in /><out /></livevariables> --> 
<!ELEMENT livevariables (in*, out*» 
<!ATTLIST livevariables incount NMTOKEN.#REQUIRED> 
<!ATTLIST livevariables outcount NMTOKEN #REQUIRED> 

<!-- <in id="O" local="$r1" /> --> 

82 



<!ELEMENT in EMPTY> 
<!ATTLIST in id NMTOKEN #REQUIRED> 
<!ATTLIST in local CDATA #REQUIRED> 
<!ATTLIST in method CDATA #IMPLIED> 

<!-- <out id="O" local="$r2" /> --> 
<!ELEMENT out EMPTY> 
<!ATTLIST out id NMTOKEN #REQUIRED> 
<!ATTLIST out local CDATA #REQUIRED> 
<!ATTLIST out method CDATA #IMPLIED> 

<!-- <jimple length="10"><![CDATA[ $rl = $r2 JJ></jimple> --> 
<!ELEMENT jimple (#PCDATA» 
<!ATTLIST jimple length NMTOKEN "&UNKNOWN_COUNT;"> 

<!-- <invoketargets analysis="CHA" count="l" /> --> 
<!ELEMENT invoketargets (target*» 
<!ATTLIST invoketargets analysis NMTOKEN #REQUIRED> 
<!ATTLIST invoketargets count NMTOKEN #REQUIRED> 

<!-- <target id="O" class="myclass" method="mymethod" /> --> 
<!ELEMENT target EMPTY> 
<!ATTLIST target id NMTOKEN #REQUIRED> 
<!ATTLIST target class CDATA #REQUIRED> 
<!ATTLIST target method CDATA #REQUIRED> 

A.3 STEP extensions 

The following DTD is used to specify the extensions supported by the STEP profiling 

agent used in this framework. 

<!-- <step version="1.0" /> --> 
<!ELEMENT step EMPTY> 
<!ATTLIST step version CDATA #FIXED "1.0"> 
<!ATTLIST step id NMTOKEN #REQUIRED> 
<!ATTLIST step trace CDATA "&UNKNOWN;"> 

<!-- <method ... ><step_method calls="l" /></method> --> 
<!ELEMENT step_method (stepdeclaration, trace» 
<!ATTLIST step_method calls NMTOKEN #REQUIRED> 

<!-- <stepdeclaration length="10"><! [CDATA[ void main(java.lang.String[J) JJ> 
</stepdeclaration> --> 

<!ELEMENT stepdeclaration (#PCDATA» 

83 



<!ATTLIST stepdeclaration length NMTOKEN "&UNKNOWN_COUNTi"> 

<!-- <trace nesting="1"><entries count="1" /><exits count="1" /></trace> --> 
<!ELEMENT trace (entries, exits» 
<!ATTLIST trace nesting NMTOKEN #REQUIRED> 
<!ELEMENT entries EMPTY> 
<!ATTLIST entries count NMTOKEN #REQUIRED> 
<!ELEMENT exits EMPTY> 
<!ATTLIST exits count NMTOKEN #REQUIRED> 

<!-- <field ... ><stoop_field /></field> --> 
<!ELEMENT stoop_field (accesses» 

<!-- <accesses count="1"><reads /><writes /></accesses> --> 
<!ELEMENT accesses (reads, writes» 
<!ATTLIST accesses count NMTOKEN "&UNKNOWN_COUNTi"> 

<!-- <reads count="1"><access /></reads> --> 
<!ELEMENT reads (access*» 
<!ATTLIST reads count NMTOKEN "&UNKNOWN_COUNTi"> 

<!-- <writes count="1"><access /></writes> --> 
<!ELEMENT writes (access*» 
<!ATTLIST writes count NMTOKEN "&UNKNOWN_COUNTi"> 

<!-- <access declaringtype="mytype" /> --> 
<!ELEMENT access EMPTY> 
<!ATTLIST access declaringtype CDATA #REQUIRED> 
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B.1 JIL document 

Appendix B 

Samples 

Here is a sample Java class represented as a JIL document. This example is used to 

show the minimal elements required to represent a class. 

<!-- declare this a JIL document using the DTD --> <!DOCTYPE jil 
SYSTEM Iji110.dtd"> <ji1> 

<history> 
</history> 

<!-- public MyClass implements Mylnterface extends MySupperClass --> 
<class name=IMyClass" extends=IMySupperClass"> 

<modifiers> 
<modifier name="public" /> 

</modifiers> 
<interfaces> 

<interface name="myinterface" /> 
</interfaces> 

<!-- public MyField --) 
<fields> 

<field id=IO" name=IMyField"> 
<modifiers> 

<modifier name="public" /> 
</modifiers> 
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<!-- dynamic field accesses instrumented by STDDP --> 
<stoop_field> 

<accesses> 
<reads> 

<access declaringtype="MyType" /> 
</reads> 
<writes> 

<access declaringtype="MyType" /> 
</writes> 

</accesses> 
</stoop_field> 

</field> 
</fields> 

<!-- public void MyMethod( MyType Myparam ) --> 
<methods> 

<method name="MyMethod" elass="MyClass"> 

<deelaration> 
<![CDATA[ public void MyMethod( MyType MyParam) ]]> 

</declaration> 

<parameters> 
<parameter id="O" name="MyParam"> 

<soot_parameter uses="1"> 
<use id="O" line="123" /> 

</soot_parameter> 
</parameter> 

</parameters> 

<!-- MyType MyLocal --> 
<locals> 

<local id="O" name="MyLoeal"> 

<!-- static local uses instrumented by SDDT --> 
<soot_Ioeal> 

<use id="O" line="1" /> 
<definition id="O" line="1" /> 

</soot_Ioeal> 

</loeal> 

<!-- loeals by type --> 
<types eount="1"> 

<type id="O" count="1" type="MyType"> 
<local id="0" name="MyLocal"> 

<soot_Ioeal> 
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<use id="Q" line="123" /> 
<definition id="Q" line="123" /> 

</soot_local> 
</local> 

</type> 
</types> 

</locals> 

<!-- labels --> 
<labels> 

<label id="Q" name="MyLabel" /> 
</labels> 

<!-- statements --> 
<statements> 

<statement id="Q" label="MyLabel "> 

<!-- static per-statement analysis results instrumentated by SOOT --> 
<soot_statement> 

<uses id="Q" local="MyLocal" /> 
<defines id="O" local="MyLocal" /> 
<livevariables incount="1" outcount="1"> 

<in id="Q" local="MyLocal" /> 
<out id="Q" local="MyLocal" /> 

</livevariables> 
<jimple> 

<! [CDATA[ $15 = virtualinvoke $r13. 
<java.lang.Long: long longValue(»(); JJ> 

</jimple> 
</soot_statement> 

</statement> 
</statements> 

<!-- exceptions --> 
<exceptions> 

<exception id="Q" type="MyException"> 
<begin label="MyLabel" /> 
<end label="MyLabel" /> 
<handler label="MyLabel" /> 

</exception> 
</exceptions> 

<!-- dynamic method calls instrumented by STOOP --> 
<stoop_method calls="1"> 

<stepdeclaration> 
<! [CDATA[ void MyMethod( MyType ) ]]> 
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</stepdeclaration> 
<trace nesting="l"> 

<entries count="l" /> 
<exits count="l" /> 

</trace> 
</stoop_method> 

</method> 
</methods> 

</class> 

</jil> 

8.2 Hello world example 

The following section demonstrates the differences between the Java source, the Jim­

pIe intermediate representation, and the JIL representation of a Java class. In order 

to conserve space within this document, a simple 'Hello world' pro gram is used as an 

example. Although the Java and Jimple source code for the program are relatively 

small, the JIL representation becomes quite verbose. Here are the relative number of 

lines in each source listing: 

• Java source: 7 lines. 

• Jimple source: 23 lines, a 229% increase from the Java source. 

• JIL document: 151lines, a 557% increase from the Jimple source, and a 2,057% 

increase from the Java source. 

8.2.1 Java source 

The Java source for the 'Hello world' program consists of a class declaration and a 

main method containing a single call to println. 

public class myHelloWorld 
{ 

public static void main( String[] args ) 
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{ 

System.out.println( "Hello world!" ); 
} 

} 

8.2.2 Jimple source 

Once the Java source is compiled into a class file using a Java compiler, we used 

BOaT in order to generate the Jimple representation of the class. This representa­

tion includes the class initialization routine <ini t> which is included automatically 

by the Java compiler, even if it is not explicitly defined in the Java source. The Jim­

ple source for a class will typically contain additional lin es of code since it includes 

Jimple statements for code elements, such as temporary variables, inserted by the 

Java compiler. 

public class myHelloWorld extends java.lang.Object 
{ 

} 

public void <init>() 
{ 

} 

myHelloWorld rO; 

rO := @this: myHelloWorld; 
specialinvoke rO.<java.lang.Object: void <init>(»(); 
return; 

public static void main(java.lang.String[]) 
{ 

} 

java.lang.String[] rO; 
java.io.PrintStream $rl; 

rO := @parameterO: java.lang.String[]; 
$rl = <java.lang.System: java.io.PrintStream out>; 
virtualinvoke $rl.<java.io.PrintStream: void println(java.lang.String» 

("Hello world!"); 
return; 
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8.2.3 JI L document 

Following the steps in Appendix C.I, the following JIL document was generated using 

SOOT. With the extra text required to form markup elements and attributes, the 

document becomes much more verbose than the Java or Jimple sources. 

<?xml version="1.0" ?> 
<!DOCTYPE jil SYSTEM .. http://www.sable.mcgill.ca/jil/jil10.dtd .. > 
<jil> 

<history created="Thu Aug 22 13:15:36 EDT 2002"> 
<soot version="1. 2.3 (build 1. 2.3 .dev .4)" command="--xml myHelloWorld" 

timestamp="Thu Aug 22 13:15:36 EDT 2002" /> 
</history> 
<class name="myHelloWorld" extends="java.lang.Object"> 

<modifiers count="l"> 
<modifier name="public" /> 

</modifiers> 
<interfaces count="O" /> 
<fields count="O" /> 
<methods count="2"> 

<method name="_init_" returntype="void" class="myHelloWorld"> 
<declaration length="20"><! [CDATA [public void <ini t> 0]] ></declaration> 
<parameters method="_init_" count="O" /> 
<locals count="l"> 

<local id="O" method="_init_" name="rO" type="myHelloWorld"> 
<soot_Iocal uses="l" defines="l"> 

<use id="O" line="l" method="_init_" /> 
<definition id="O" line="O" method=" init " /> 

</soot_Iocal> 
</local> 
<types count="l"> 

<type id="O" type="myHelloWorld" count="l"> 
<local id="O" method="_init_" name="rO" type="myHelloWorld"> 

<soot_local uses="l" defines="l"> 
<use id="O" line="l" method="_init_" /> 
<definition id="O" line="O" method=" init " /> 

</soot_local> 
</local> 

</type> 
</types> 

</locals> 
<labels count="l"> 

<label id="O" name="default" method="_init_" stmtcount="3" 
stmtpercentage="100" /> 

</labels> 
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<statements count="3"> 
<statement id="O" label="default" method="_init_" labelid="0"> 

<Soot_statement branches="false" fallsthrough="true"> 
<defines id="O" local="rO" method="_init_" /> 
<livevariables incount="O" outcount="1"> 

<out id="O" local="rO" method="_init_" /> 
</livevariables> 
<jimple length="26"><! [CDATA[rO .- (Othis: myHelloWorldJJ></jimple> 

</soot_statement> 
</statement> 
<statement id="1" label="default" method="_init_" labelid="1"> 

<soot_statement branches="false" fallsthrough="true"> 
<uses id="O" local="rO" method="_init_" /> 
<invoketargets analysis="CHA" count="1"> 

<target id="O" class="java.lang.Object" method=" init_" /> 
</invoketargets> 
<livevariables incount="1" outcount="O"> 

<in id="O" local="rO" method="_init_" /> 
</livevariables> 
<jimple length="53"><! [CDATA[specialinvoke rO.<java.lang.Object: 

void <init>(»()]]></jimple> 
</soot_statement> 

</statement> 
<statement id="2" label="default" method="_init_" labelid="2"> 

<soot_statement branches="false" fallsthrough="false"> 
<livevariables incount="O" outcount="O" /> 
<jimple length="7"><! [CDATA[return]]></jimple> 

</soot_statement> 
</statement> 

</statements> 
<exceptions count="O" /> 

</method> 
<method name="main" returntype="void" class="myHelloWorld"> 

<declaration length="44"><! [CDATA[public static void main 
(java.lang.String[] )]]></declaration> 

<parameters method="main" count="1"> 
<parameter id="O" type="java.lang.String[]" method="main" 

name="_parameterO"> 
<soot_parameter uses="1"> 

<use id="O" line="O" method="main" /> 
</soot_parameter> 

</parameter> 
</parameters> 
<locals count="2"> 

<local id="O" method="main" name="rO" type=" java .lang. String [] "> 
<soot_Iocal uses="O" defines=11"> 

<definition id="O" line="O" method="main" /> 
</soot_Iocal> 
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</local> 
<local id="1" method="main" name="$r1" type="java.io.PrintStream"> 

<soot_local uses="1" defines="1"> 
<use id="O" line="2" method="main" 1> 
<definition id="O" line="1" method="main" 1> 

</soot_local> 
</local> 
<types count="2"> 

<type id="O" type="java.lang. String[]" count=" 1 "> 
<local id="O" method="main" name="rO" type="java.lang.String[]"> 

<soot_local uses="O" defines="1"> 
<definition id="O" line="O" method="main" 1> 

</soot_local> 
</10 cal> 

</type> 
<type id="1" type="java.io.PrintStream" count="1"> 

<local id="1" method="main" name="$r1" type="java.io.PrintStream"> 
<soot_local uses="1" defines="1"> 

<use id="O" line="2" method="main" 1> 
<definition id="O" line="1" method="main" 1> 

</soot_local> 
</10 cal> 

</type> 
</types> 

</locals> 
<labels count="1"> 

<label id="O" name="default" method="main" stmtcount="4" 
stmtpercentage="100" 1> 

</labels> 
<statements count="4"> 

<statement id="O" label="default" method="main" labelid="O"> 
<soot_statement branches="false" fallsthrough="true"> 

<defines id="O" 10cal="rO" method="main" 1> 
<livevariables incount="O" outcount="O" 1> 
<jimple length="38"><! [CDATA[rO := @parameterO: 

</soot_statement> 
</statement> 

java.lang. String[]]] ></jimple> 

<statement id="1" label="default" method="main" labelid="1"> 
<soot_statement branches="false" fallsthrough="true"> 

<defines id="O" 10cal="$r1" method="main" 1> 
<livevariables incount="O" outcount="1"> 

<out id="O" 10cal="$r1" method="main" 1> 
</livevariables> 
<jimple length="50"><![CDATA[$r1 = <java. lang. System: 

java.io.PrintStream out>]]></jimple> 
</soot_statement> 

</statement> 
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<statement id="2" label="defauIt" method="main" labeIid="2"> 
<soot_statement branches="false" fallsthrough="true"> 

<uses id="O" local="$rl" method="main" /> 
<invoketargets anaIysis="CHA" count="l"> 

<target id="O" cIass="java.io.PrintStream" method="println" /> 
</invoketargets> 
<Iivevariables incount="l" outcount="O"> 

<in id="O" local="$rl" method="main" /> 
</livevariabIes> 
<j impIe length="88"><! [CDATA [virtualinvoke $r1. <java. io .PrintStream: 

void printIn(java.Iang. String) > ("Hello world! ")]] > 
</jimpIe> 

</soot_statement> 
</statement> 
<statement id="3" label="defauIt" method="main" labeIid="3"> 

<soot_statement branches="false" fallsthrough="false"> 
<Iivevariables incount=IO" outcount=IO" /> 
<jimple length=17"><! [CDATA[return]]></jimpIe> 

</soot_statement> 
</statement> 

</statements> 
<exceptions count=IO" /> 

</method> 
</methods> 

</class> 
</jil> 

B.3 JIMPLEX 

In order to demonstrate how the JIMPLEX visualization interface described in Sec­

tion 5.2 separates the data from the visualizer, the XSLT source is provided online on 

the JIL web page found in Table 6.2. The XSLT source was too extensive to provide 

a listing directly in this appendix, however we will outline an example of how XSLT 

is used to transform J IL data. 

Those readers who are unfamiliar with XSLT but have experimented with web 

page design will notice that most of the content of XSLT is HTML. XSLT describes 

a web page in a programmatic way, allowing content to be structured and stylized 

using general templates. XSLT is useless by itself, and requires an XML data source 

in order to describe a web page. This is why XSLT is said to transform XML into a 

human-readable format. 
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Let us consider an example of how parameters are stored within a JIL document. 

The following JIL fragment includes two parameters with different types. 

<parameters method="myMethod" count="2"> 
<parameter id="O" type="java.lang.String[J" name="_parameterO" /> 
<parameter id="!" type="java.lang.Long" name="_parameter!" /> 

</parameters> 

Now, consider the following XSLT segment which creates an HTML table with 

two columns labelled class and name. It enumerates the parameters and creates 

a row for each, printing the type and name of each parameter in their respective 

columns. Note that although only enough HTML code is included to create one row, 

the for-each command will enumerate through each parameter, copying the HTML 

code for each parameter in the JIL data source. The value-of command is replaced 

with the value of the named attribute. If an additional attribute were to be added 

to the parameters in the J1L document, the XSLT code could be updated to include 

the new data with minimal changes. 

<table> 
<!-- parameter column headings --> 
<tr> 

<td>class</td> 
<td>name</td> 

</tr> 
<!-- create a row for each parameter --> 
<xsl:for-each select="parameters/parameter"> 
<tr> 

<!-- echo the type attribute of the parameter --> 
<td><xsl:value-of select="@type" /></td> 
<!-- echo the name attribute of the parameter --> 
<td><xsl:value-of select="@name" /></td> 

</tr> 
</xsl:for-each> 
</table> 
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After the transformation process, the following HTML would be the result; this 

is the code which would be generated dynamically each time a web browser accessed 

the interface. Note that comments have been added in order to explain the code, and 

would not normally be included by the XSLT processor. 

<table> 
<!-- parameter column headings --> 
<tr> 

<td>class</td> 
<td>name</td> 

</tr> 
<!-- row for the first parameter --> 
<tr> 

<!-- echo the type attribute of the 
<td>java.lang.String[] </td> 
<!-- echo the name attribute of the 
<td>_parameterO</td> 

</tr> 
<!-- row for the second parameter --> 
<tr> 

lst parameter --> 

lst parameter --) 

<!-- echo the type attribute of the 2nd parameter --> 
<td>java.lang.Long</td> 
<!-- echo the name attribute of the 2nd parameter --> 
<td>_parameterl</td) 

</tr> 
</table> 
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C.I Generating JIL with SOOT 

Appendix C 

How To's 

The following information is based on the JIL support in version 1.2.3 of BOaT. For 

the most current syntax of commands, please refer to the command line help of the 

version of BOaT you are working with. Complete documentation and tutorials on 

the use of BOaT can be found online at the URL in Table 6.2. 

In order to generate JIL with BOaT, it is as simple as selecting an alternative 

XML output format. This is done in the same way Jimple is selected as an output 

format, but by using the --xml command line argument instead of --jimp. For the 

following ex amples we will assume your Java source MyClass. java has been compiled 

into a Java class MyClass. class by javac. 

The following command will generate the JIL .representation of MyClass . class 

as MyClass .xml: 

> java soot.Main --xml MyClass 

C.2 Generating JIL with STEP 

At the time of the writing of this thesis, the BTEP framework was not at a release state 

where we could describe the commands to generate J1L documents. In order to learn 
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more about the current state of STEP and for aIl related papers and documentation, 

please visit the STEP web site found in Table 6.2. 

C.3 Visualizing JI L 

The visualization interfaces implemented as part of this thesis include several online 

tools, include the JIMPLEX visualizer described in Section 5.2. These tools were 

designed to be accessible and compatible with any computer connected to the Internet 

and equipped with a modern web browser. These tools are available from the JIL 

web site [20J. 

In order to visualize a JIL document using an online visualizer, the document 

must be accessible over the Internet. This can be achieved by placing the JIL file in 

a web accessible fol der so that the file can be referenced using an URL. This URL is 

then used in the online tools in order to access the document remotely. 
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