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Abstract 

A computational methodology for the optimization of the thermal performance of 

straight ducts with non-twisted, uninterrupted, longitudinal internaI fins is formulated 

and demonstrated in the context of steady, laminar, fully-developed forced convection, 

accounting for conjugate heat conduction in the fins. The fluid flow and heat transfer 

problems are solved using control-volume-based finite difference and finite element 

methods. The optimization is done using a gradient method. The fins shapes are 

approximated using non-uniform rational B-splines (NURBS). The control points of 

the NURBS curves are among the design variables. In the demonstration problems, the 

objective was to maximize the total rate of heat transfer to the fluid per unit length of 

the duct, subject to the constraint of keeping the corresponding pumping power 

constant. Results pertaining to four sample ducts with fins made of stainless steel, 

aluminum, and copper, and air as the working fluid, are presented and discussed. 
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Résumé 

Une méthodologie utilisant des outils numériques est formulée et démontrée pour 

l'optimisation des performances thermiques de tuyaux rectilignes à ailettes internes 

non-rotationnelles et non-interrompues pour un écoulement développé, laminaire et 

constant, considérant la conduction de chaleur à l'intérieur des ailettes. La solution aux 

problèmes fluidique et thermique est obtenue à l'aide des méthodes d'éléments finis et 

de différences finies. L'optimisation est performée avec la méthode du gradient. La 

forme des ailettes est approximée à l'aide d'une courbe B-spline non-uniforme et 

rationnelle (NURBS), où les points de contrôle font partie des variables de design. Pour 

les problèmes démonstratifs, l'objectif est de maximiser le taux total de transfert de 

chaleur au fluide par unité de longueur de tuyau, assujetti à la contrainte de garder la 

puissance de pompage correspondante fixe. Les résultats obtenus pour quatre tuyaux 

dont les ailettes sont faites d'acier inoxydable, d'aluminium et de cuivre, sont ensuite 

présentés et discutés. 
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Chapter 1. Introduction 

1.1 OVERALL GOAL, MOTIVATION, AND BACKGROUND 

The overall goal of this research is to propose, implement, and demonstrate a 

computational methodology for the optimization of the convective heat transfer in 

internally finned ducts. The particular optimization criterion adopted in this work is to 

maximize the rate of heat transfer for a fixed value of pumping power, and aIso other 

constraints, as required. In internally finned ducts, the number of fins, the base thickness 

of the fins, the height (length) of the fins, the shape of the fins and the flow passage, and 

the thermofluid properties of the fluid influence the pumping power needed to force the 

fluid through it at the desired rate. These parameters, as well as the thermal conductivity 

of the fin material, influence the rate ofheat transfer from the internally finned duct to the 

fluid, or vice versa. Rence, all combinations of these parameters must be explored to find 

one that meets the thermal optimization criteria. The computational methodology put 

forward in this thesis is formulated to achieve such thermally optimal designs of 

internally finned ducts. 

The proposed optimization methodology does not depend on the specific application. In 

this work, it is demonstrated in the context of steady, fully-developed, laminar forced 

convection in straight internally finned ducts; the fins considered are straight, continuous, 

and longitudinal; the fluid considered is air; and in the range of operation considered, the 

average thermofluid properties of the fluid and the fin material are assumed to remain 

essentially constant. The reasons for the choice of this particular demonstration problem 

are the following: it is conceptually simple, yet practical; and the mathematical models 

for the associated fluid flow and heat transfer are well established. 

The motivation for this thesis is derived from a desire, on the part of both the author and 

his supervisor, to contribute to ongoing global efforts of heat transfer engineers to 

Improve and optimize the thermal performance of energy exchange and conversion 

devices. Such efforts translate directly into improved energy utilization and reduced 

energy wastage, and thus have significant economic, social, and health-related benefits. 
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Figure 1.1 presents sorne typical tube heat exchangers and cooling blocks with internaI 

flow passages. In this figure, the parts number 2, 5, 6, 8, and 12 have ernbedded ducts 

with srnooth (finless) circular and oval internaI cross-sections. Part number 1 is an 

example of an arrangement with internally finned annuli. Parts number 9 and 10 have 

internally finned ducts with longitudinal rectangular fins; and parts number 3, 4, 7, and Il 

have externally finned ducts. Additional examples of internally finned ducts and annuli 

are given in Figure 1.2. 

Figure 1.1 Tubular and finned heat exchange surfaces (courtesy Britannia Heat 

Transfer) 

Internally finned ducts are routinely encountered in the cores of compact heat exchangers. 

These heat exchangers are characterized by cores in which the heat-transfer-area-to­

volume ratio (or area density) exceeds 700 m2/m3
. They are commonly used in the 

chemical, aeronautical, automotive, and heating, ventilating and air-conditioning 

(HV AC) industries, and also in industrial gas turbine engines and cooling systems for 

electronics. They are also extensively used for heat recovery and steam generation 

applications in thermal and nuc1ear power plants. The cores of compact heat exchangers 
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are often constructed out ofplates and fins that together create so-called plate-fin ducts or 

flow passages. The fins, which are placed in between the plates, enhance the rate of heat 

transfer, and often play a secondary role as structural spacers and supports. A wide 

variety of fins, such as continuous, rectangular offset, zigzag, chevron, perforated, and 

louvered fins, are used in the cores of compact heat exchangers [Kays (1972); Kays and 

London (1964, 1984); Shah et al. (2001); Kakaç and Liu (2002)]. 

Figure 1.2 Photograph of sorne commonly used intemally finned tubes (courtesy 

Wolverine Tube) 

Over the last 100 years, heat ex chang ers have been studied experimentally using actual 

heat exchangers, full-scale models, and simplified laboratory models designed to 

facilitate accurate overall and local measurements. However, since the advent of high­

speed digital computers and efficient numerical methods in the 1970s, computational 

techniques have been increasingly employed for investigating the thermofluid phenomena 

that occur in heat exchangers. Today, such computational investigations are used to 

complement and sometimes even replace laboratory experiments. 

The proposed methodology for the computational optimization of the thermal 

performance of intemally finned ducts consists of two main parts. In the first part, either 

control-volume-based finite difference or finite element methods (CVFDM or CVFEM) 

are used to solve the mathematical models of steady, laminar, fully-developed fluid flow 

and heat transfer phenomena in an intemally finned duct with a specified geometry (the 

so-called direct problem). In the second part, an optimization algorithm, based on a 
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gradient approach and inputs of results from the aforementioned tirst part, is used to 

calculate a new geometry of the intemally tinned duct that moves it towards the optimal 

design. These two parts are used repeatedly until the optimal design is achieved. 

In this thesis, steady, laminar, fully-developed fluid flow and heat transfer in straight 

intemally finned ducts of rectangular, triangular, and circular cross-sections, as shown in 

Figure 1.3, are considered. Air is considered as the working fluid. Three different fin 

materials (commonly used in compact heat exchangers) are explored: stainless steel, 

aluminium, and copper. As was stated earlier, in the range of operating conditions 

considered, the average values of the thermofluid properties of the working fluid and the 

fin material are assumed to remain essentially constant. The fluid flow and heat transfer 

problems of interest are govemed by the continuity, Navier-Stokes, energy, and quasi 

one-dimensional fin equations [White (1991); Incropera and DeWitt (2002)]. At all solid 

surfaces, the no-slip and impermeability conditions are imposed on the fluid flow. At 

symmetry surfaces, the normal fluxes of momentum and energy are set to zero. The 

unfinned portions of the duct walls are subjected to the following two thermal boundary 

conditions: 

• Uniform heat input per unit axial length and uniform cross sectional 

temperature (indicated by H); 

• Constant wall temperature (indicated by 7). 

Fins 

Plates 

---­Unit length domain of 

~ interest _-

~ ~ _--------- Fins 

--- ~~~~~~ Pmres 

Entrance 
region 

Fully-developed 
flow region 

Figure 1.3 Plate Heat Exchangers: Schematic Drawing and Domains Considered 
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These two thermal boundary conditions were chosen because they represent extreme or 

bounding cases of the actual conditions in compact heat exchangers [Sparrow and 

Patankar (1977)]. In practice, the thermal boundary conditions encountered will lie 

between those two extremes [Kay and London (1984)]. 

1.2 SPECIFIC OBJECTIVES 

The specific objectives ofthis investigation can be summarized as follows: 

• To propose suitable criteria and constraints for thermal optimization of the 

aforementioned intemally finned ducts. These criteria and constraints are key 

element of the optimization problem, as they define what is considered as thermal 

performance, and dictate the behaviour of the optimization algorithm; 

• To propose a simple but effective methodology for achieving the above criteria 

for the thermal optimization of the intemally finned ducts of interest, in the 

context of the proposed criteria and constraints; 

• To demonstrate the potential of the proposed computational optimization 

methodology by applying it to a selection of practical cases. 

1.3 LITERATURE REVIEW 

An exhaustive review of the literature related to the vast subjects of fluid flow and heat 

transfer in ducts and compact heat exchangers is not intended in this section. Rather, this 

review is limited to works that are relevant or closely related to the research presented in 

this thesis. This section is subdivided as follows: (a) books and review articles related to 

fluid flow and heat transfer in ducts and heat exchangers; (b) papers related to fluid flow 

and heat transfer in ducts and heat exchangers; (c) books and review articles related to 

optimization techniques; (d) papers related to optimization techniques. 

1.3.1 Books and Review Articles on Fluid Flow and Heat Transfer 

There are many excellent books on the basic and more advanced aspects of fluid flow and 

heat transfer in ducts: examples include the works of Streeter (1962), Batchelor (1967), 
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Eckert and Drake (1971), Rouse (1978), Schlichting (1979), Landau and Lifshitz (1987), 

Churchill (1988), Kays and Crawford (1993), Bejan (1995), Panton (1996), Fox and 

McDonald (1998), White (1991), Wilkes (1999), Incropera and De Witt (2002), and 

Cebeci (2002). The topics of laminar flow and heat transfer in ducts of various shapes 

have been covered comprehensively by Shah and London (1978). The Handbook of Heat 

Transfer Fundamentals edited by Rohsenow et al. (1985) is a very useful source of 

information on fluid flow and heat transfer in ducts. Many review articles on the recent 

advances in heat exchangers can be found in Afgan et al. (1996) and Kakaç et al. (1999). 

The book by Webb (1994) reviews the theory and applications of heat transfer 

enhancement devices. 

The fundamentals of computational methods for the prediction of fluid flow and heat 

transfer in ducts are covered in books authored by Roache (1998), Patankar (1980), 

Reddy and Gartling (1994), and Ferziger and Peric (1999), among others. The Handbook 

of Numerical Heat Transfer (2nd Edition) edited by Minkowycz, Sparrow, and Murthy 

(2006) and the series Advances in Numerical Heat Transfer (Vols. 1 and 2) edited by 

Minkowycz and Sparrow (1997, 2000) provide many useful review articles on various 

aspects of computational fluid dynamics and heat transfer. Control-volume-based finite 

difference and finite element methods (CVFDMs and CVFEMs) are reviewed in Baliga 

and Atabaki (2006). 

The work of Kays and London (1984) is one of the main references on the subject of 

compact heat exchangers. A recent book by Hesselgreaves (2001) provides a discussion 

of the basic methodology used to design compact heat exchangers and descriptions of 

several compact heat ex chang ers used in industrial applications. A review article by Shah 

et al. (2001) pro vides an excellent overview of issues related to computer simulations of 

fluid flow and heat transfer in the cores of compact heat exchangers. Bejan (1982) has 

covered the subject of entropy generation and used it in an alternative characterization of 

the efficiency of heat transfer in ducts. 
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1.3.2 Fluid Flow and Heat Transfer in Internally Finned Ducts 

Masliyah and Nandkumar (1976) studied laminar, fully-developed, forced convection in 

an internally finned circular tube, with axially uniform heat flux and peripherally uniform 

temperature. The fins used were of triangular cross section. They found that for a given 

fin geometry, the Nusselt number based on inside tube diameter was higher than for a 

smooth tube. They also observed that there exists an optimum number of fins that yields 

the highest Nusselt number. Soliman et al. (1980) conducted numerical studies of the 

same type of problem, but with a uniform outside wall temperature condition, and 

inc1uded the fin conductance in the model as a single parameter. They observed that the 

local heat flux distribution at the side of the fin is strongly dependent on the fin length 

and number of fins. They also observed that for a large number of small fins, the fluid 

temperature has a single extremum value at the centre of the duct, and for a small number 

of long fins, this extremum was instead found between each fin. The results were 

compared using the Nusselt number as a criteria for thermal performance. Patankar et al. 

(1979) analyzed, via a mixing length model, fully-developed turbulent flow and heat 

transfer characteristics of tubes and annuli with longitudinal internaI fins; the working 

fluid considered was agas; thus, the temperature variation along the fins was considered 

negligible. They found that the local heat transfer coefficients exhibited a substantial 

variation along the fin length, with the smallest values at the base and the highest values 

at the tip of the fins. They also observed that as the number of fins increased, the portion 

of the total gas flow rate in the regions in between the fins decreased, due to the higher 

resistance of these inter-fin spaces. Webb and Scott (1980) have conducted a parametric 

analysis of forced convection in internally finned tubes. They identified key fin 

geometric parameters and elaborated the benefits of internaI fins in circular tubes. Based 

on their results, they made the following observations: 1) the use of tall fins of reduced 

thickness is not an advantage in improving thermal efficiency, for given pumping power 

and heat load; 2) to obtain reduced pumping power with minimum frontal area of the fins, 

a small number of relatively tall axial fins are advantageous; and 3) it is possible to select 

internaI fin geometries which provide higher thermal performance than rib-type 

roughness elements, again for a given pumping power. In all of the publications 
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mentioned in this paragraph, it is conc1uded that the fin surfaces transfer heat more 

effectively than the unfinned surfaces of the tube-wall. 

Kroger (1986) has proposed an experimental method to characterize the heat transfer and 

pressure drop of extemally finned tubes commonly used in the heat exchanger industry. 

Baliga and Azrak (1986) have conducted numerical studies of laminar fully-developed 

flow and heat transfer in plate-fin ducts of triangular cross-section. They determined the 

heat transfer characteristics of such ducts by analyzing the conjugate problem of quasi 

one-dimensional conduction in the fins and two-dimensional forced convection in the 

fluid region. Their results highlighted the need to consider such a conjugate problem, 

rather than an analysis based on standard fin the ory with a computed average heat 

transfer coefficient as an input, as the latter can lead to significant eITors. Witte (1988) 

has developed a method to study the performance of heat exchangers, using a criterion 

based on the second-Iaw of thermodynamics rather than the first-Iaw, which ensures that 

the most efficient use of available energy is being made. His method allows the 

determination of the number-of-heat-transfer units (NTU) at which the benefits of 

reduced availability losses are offset by the costs of added are a, and applies to any heat 

exchanger whose effectiveness to NTU relation is known. Bergles (1988) has reviewed 

the historical background, driving trends, and the various and numerous heat transfer 

enhancement techniques developed over the years, and suggested that such techniques 

belong to the second generation heat transfer technology. One of his conclusions is that 

in order to fully understand the thermofluid phenomena present in heat exchangers, 

modelling using analytical or numerical prediction techniques should be used. He states 

that such techniques can also be used to effectively develop improved heat transfer 

surfaces or inserts. Cowell (1990) has proposed a family of methods for the comparison 

of compact heat transfer surfaces. He compared the hydraulic diameter, frontal area, total 

volume, pumping power, and NTU for many different surfaces. Several charts were 

produced which allow a wide range of easily comprehensible comparisons to be made 

between different heat exchangers. Zhang and Faghri (1995) have conducted a numerical 

study of intemally finned tubes for applications in latent heat thermal energy storage 

systems: they found that the melting volume fraction - a key module parameter for 

assessing performance efficiency - can be significantly increased by increasing the 
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thickness, height, and number of fins. The heat transfer enhancement by fins in the 

microscale regime for applications in electronics has been covered by Chou et al. (1999). 

Cheng and Cheng (2002) have investigated the heat transfer and pressure drop of fractal 

branching nets for the design of a micro heat ex changer of rectangular shape. They 

assumed laminar fully-developed flow, and neglected the pressure drop at the branch 

bifurcations. They found that the fractal net can increase the total heat transfer rate, while 

reducing the total pressure drop, which is surprising. As the number of branchings 

(levels) in the fractal increased, the heat transfer increased even more and the pressure 

drop decreased. It is envisaged in this paper that such devices will find a wide range of 

applications in the future. Vyver et al. Meyer (2003) have proposed a computational 

fluid dynamics (CFD) model for the fluid flow and heat transfer in a three-dimensional 

tube-in-tube heat exchanger. First, they validated their model by applying it to problems 

with available correlations and experimental results. Then, the model was used to test 

new duct designs: the inner tube was replaced by a quadratic Koch island fractal, which 

produced increases in thermal performance of up to four times that of a simple smooth 

tube-in-tube design. They concluded that CFD is a valuable tool in heat exchanger 

design. 

Dul'kin and Garas'ko (2002) have published two papers (one reporting a study in two 

parts) on an analytical investigation of a one-dimensional heat conduction problem for a 

single fin with temperature dependent heat transfer coefficient, with 1) a closed-form 

inverse solution, and 2) a recurrent direct solution. First, an expression for the direct 

evaluation of the fin-tip temperature was proposed. Then, this expression was used to 

solve in ordinary functions the heat transfer rates yielded by each of the different fin 

designs considered, with a power-law-type dependence of the heat transfer coefficient on 

the local temperature excess. 

Ko and Ting (2006), in a work that complements that of Bejan (1982), conducted a 

numerical investigation of entropy generation for laminar forced convection in curved 

rectangular ducts. The effect of the Dean number, external wall heat flux, and cross­

sectional aspect ratio were investigated. Their results show that this entropy generation is 
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mostly govemed by frictional irreversibility when the Dean number is large and the wall 

heat flux is small; however, for a small Dean number and large wall heat flux, it is 

provoked primarily by heat transfer irreversibility. Thus, they conc1uded that the optimal 

duct aspect ratio is dependent on the Dean number and the wall heat flux. 

1.3.3 Books and Review Articles on Optimization Techniques 

There are manY books on the different optimization techniques developed and applied 

over the years, mainly in the vast fields of economics and engineering. The optimization 

techniques in engineering became increasingly well-established and used in the late 

1950s, with the advent of computers, and the first complete books on this subject started 

to appear in the late 1960s and the early 1970s. The work of Denn (1969) covers the 

techniques based on the variational method and emphasizes applications in chemical 

engineering. A book by Converse (1970) is one of the first to present a c1ear and 

universal formulation of an optimization problem; one entire chapter in this book is solely 

dedicated to the formulation of the problem, and another whole chapter is devoted to the 

definition of the objective function. In a book by Dixon (1972), one part is devoted to 

static problems - it inc1udes a historical survey of the development of optimization 

techniques and presents details of techniques based on the gradient search method; and in 

a second part, the then-new field of optimization of dynamic problems is discussed. 

Conley (1981) has presented optimization techniques based on sampling distributions and 

the Monte Carlo method, with applications to business and economics, chemical yield, 

pharmacology, and packaging and shipping: applications to each of these subjects are 

presented in a separate chapter along with a corresponding computer program. 

Over the last two decades, several publications and books on optimization have focused 

on overall reviews, recent advances in optimization techniques, and specific applications. 

Pironneau (1994) has presented an in-depth review of the basic theory related to elliptic 

partial differential equations (PDEs), the existence of solutions, optimization based on the 

gradient method, optimal control theory, and the use of finite element methods. He has 

aiso demonstrated and discussed the applications of these concepts and methods for the 

optimal designs of airfoils and electromagnets. Seireg and Rodriguez (1997) have 

dedicated their book to the optimization of the shape of mechanical elements and 
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structures and have also presented a number of specifie applications. Hemandez et al. 

(1999) have also published a book of review articles on computer-aided optimal designs 

of structures. A book by Mohammadi and Pironneau (2001) covers shape optimization of 

wings and nozzles using techniques that utilize finite element methods. This book also 

contains an overview of the concept of "optimization platforms", where an optimization 

algorithm controls computer-aided design (CAD) and computational fluid dynamics 

(CFD) software, for manipulations of complex shapes and solutions of the related fluid 

flow problems. The field of dynamic optimization has been reviewed and expanded in a 

book by Bryson (1999). 

A highly valuable resource in this area is a book by Rao (1996) entitled Engineering 

Optimization: Theory and Practice. This book presents clear and concise discussions of 

most of the optimization techniques employed today. It was one of the key references 

used in the development of the optimization method proposed in this thesis. Deb (2001) 

has written a book on multi-objective optimization using evolutionary algorithms. In this 

book, a class of genetic algorithms are used for the solution of complex problems 

involving multiple objectives and constraints. A very powerful and useful application of 

optimization methods in engineering is the solution of inverse heat transfer problems, 

where the objective is to obtain a design that produces desired measurements or results as 

precisely as possible. This subject is covered in books by Kurpisz and Nowak (1995) and 

Ozisik and Orlande (2000), among others. 

Onwubolu and Babu (2004) have reviewed recent optimization techniques in engineering. 

The methods presented in this book represent the next, or new generation of optimization 

methods, based on techniques such as genetic algorithms, ant colony optimization, 

memetic algorithms, and self-organizing migrating algorithms. Many current 

applications of these methods are also presented in this book. An excellent book that 

complements the aforementioned books on optimization is one by Piegl and Tiller (1997) 

on nonuniform rational B-splines (NURBs), which covers the various ways that shapes 

can be effectively approximated, controlled, and modified during the design process. 
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1.3.4 Optimization Techniques 

Mohammadi and Pironneau (2004) have surveyed sorne recent developments in optimal 

shape design for applications involving fluid flow. According to this survey, recent 

applications include those in which the Hemlholtz equation for waves is solved in the 

direct problem: examples include the design of a harbour that minimizes incoming waves, 

microfluidic applications, and large paper-making machines. However, this survey 

concludes that the biggest demand for optimization is in the airplane industry, where even 

a small decrease in drag translates into strong reductions of operating costs, and is thus a 

strong incentive for buyers. Other applications of optimization covered in this survey 

include weight reduction, aeroacoustic design of engines, cars, musical instruments, 

electromagnetics, and wave cancelling for boats. This survey also examines unsolved 

optimization problems: examples include shockwave minimization and shape 

optimization involving unsteady turbulent flows. It suggests that future optimization 

methods will probably involve coupling between gradient-based approaches and genetic 

algorithms. 

The gradient method in one of the most widely used method for shape optimization, 

because of its simplicity, versatility, and robustness. In this context, it should be noted 

that the computation of the gradient may be performed by either direct numerical 

differentiation, which requires more computing time but is intuitive and easy to 

implement, or by the adjoint method, which requires relatively much less computing time 

but is more prone to errors and harder to implement efficiently. Shape optimization for 

heat conduction problems has been discussed by Dems and Mroz (1998), Meric (1998), 

Cheng and Wu (2000), and Lan et al. (2001). In each of these four works, the problem 

was to find the optimal shape that leads to a desired surface or internaI temperature 

distribution for applications involving an internaI heat source. Ashrafizadeh et al. (2002) 

have solved a similar problem, where the objective was to achieve a given surface 

temperature or heat flux. In works related to aeronautics, the efforts have been almost 

exclusively directed towards airfoil shape optimization: Burgreen and Baysal (1994) have 

focused on the optimization of airfoils in steady, two-dimensional, inviscid transonic flow 

at zero angle of attack; Pandya and Baysal (1997) have optimized an airfoil, but in three­

dimensions, using an alternating direction implicit scheme, which breaks up the problem 
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into multiple sub-problems, in order to reduce the computer memory requirements, and 

obtains the solution to the full problem by solving the sub-problems iteratively. Soto and 

Lohner (2001) have optimized a hydrofoil with a method based on the adjoint 

formulation. Here, the Euler equation for incompressible flows was solved in the direct 

problem; and the shape of the hydrofoil was controlled via a pseudo-shell surface 

parametrization, which is similar to the use of splines and control points. They 

demonstrated the cost effectiveness of manipulating such surface parameters rather than 

multiple grid points present on the hydrofoil surface. A review of many of the methods, 

implementations, results, and future directions of airfoil optimization is available in a 

paper by Jameson (1994). 

Other examples of the applications of the gradient method inc1ude the optimization of a 

radar cross section [Bondeson et al. (2004)], and the optimization of a shaft cross-section 

using an adaptive shape refinement technique akin to an automatic adjustment of the 

number of control points on a spline [Kohli and Carey (1993)]. An adaptive shape 

refinement technique, based on the gradient and the finite element methods, has been 

used by Schleupen et al. (2000) to optimize sorne mechanical objects subjected to applied 

stresses. A drastically new approach to shape optimization has been envisioned by 

Borrvall and Petersson (2003): they have proposed a method for internaI or external fluid 

flows in the Stokes regime, in which not only the boundaries but also the topology of the 

whole do main of interest are optimized. Holzleitner (1997) has suggested sorne 

improvements to the way in which the objective and constraint functions are prescribed in 

order to facilitate the convergence of shape optimization procedures involving static 

stresses: he modified these functions so that high stress concentrations, which are 

primarily responsible for the divergence in the optimization process, are penalized. Saidi 

et al. (2005) have optimized the overall performance of a fuel cell, based on an exergy 

analysis of this device. 

Optimization techniques are also widely used in inverse heat transfer investigations to 

obtain thermal parameters, desired fluid flow and thermal boundary conditions, and 

optimal shapes. Jarny, Ozisik, and Bardon (1991) have presented an optimization 

method, based on the adjoint formulation coupled to the conjugate gradient algorithm, to 
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solve multidimensional inverse heat conduction problems. They demonstrated their 

method by solving a problem related to parameter and surface condition estimation from 

transient temperature measurements. Park and Chung (1999) have compared the adjoint 

method to the direct differentiation method for the minimization of a performance 

function used for the estimation of the time-varying strength of a heat source. Although 

each of these two methods reached the same result, they suggested a new method that is a 

blend of both: it avoids the increased computation cost of the direct differentiation 

approach (but has the same accuracy), and it is easier to implement than the adjoint 

formulation. Berdnik and Mukhamedyarov (2003) have used the method of neural 

networks to obtain solutions of inverse heat transfer problems. Their method has low 

computing costs and very good accuracy; thus, they suggested that it could be used in 

real-time applications. Dowding and Beck (1999) have used a sequential gradient 

method along with the adjoint formulation to solve the inverse heat conduction problem 

of estimating a wall heat flux distribution from temperature measurements. 

Inverse methods have also been successfully used for the estimation of shapes, first with 

the conjugate gradient approach [Cheng and Chang (2003); Cheng et al. (2003)] and then 

by using truncated singular value decomposition [França et al. (2001)]. These methods 

have also been used successfully for the estimation of interface shape from boundary 

measurements [Kunisch and Pan (1994); Keanini and Desai (1995); Prabhu and Ashish 

(2002); Xu and Natener (2003); Cheng and Chang (2003a, 2003b, 2003c); and Cheng and 

Chang (2004)]. 

In the aeronautical industry, Zangenen et al. (1999) have successfully applied a three­

dimensional inverse design method for the design of turbomachinery blades: in this 

method, the blade geometry is computed for a specified distribution of circulation. 

Huang and Hsiung (1999) have used the conjugate gradient method, along with the 

boundary element method, to solve the direct, sensitivity, and adjoint problems for 

optimize the shape of cooling passages in gas turbine blades. Shape optimization has 

been achieved with a gradient approach by Arkadan et al. (1996) to obtain a permanent 

magnet shape that minimizes the leakage flux in high-power equipment. Fic (2004) has 

proposed a procedure for solving the steady-state inverse convection-diffusion heat 
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transfer problem involving two-dimensional potential fluid flow: it employs a finite­

e1ement method and sensitivity coefficients for estimating the boundary velocity based on 

desired temperature measurements, or inputs. 

Cingoski et al. (1999) have used a dynamically adjustable genetic algorithm to perform 

inverse shape optimization on a magnetic pole, where the shape of the pole was defined 

using several control points and ordinary spline functions. Annicchiarico and Cerrolaza 

(1999) have combined a finite element method, genetic algorithms, and B-splines to 

formulate a novel technique for shape optimization: in it, the design variables controlled 

by the genetic algorithm are the spline control points. Their method was successfully 

used to optimize the shape of a plate subjected to tension and a connecting rod. 

Beliakov (2004) has investigated the sensitivity of the optimal shape with respect to the 

spline curve knot distribution in order to find the global minimum, which is often 

surrounded by local minima: he used the simplex method, together with a discrete 

gradient method applied to each element of the simplex procedure to improve the 

accuracy of the results. His algorithm also guarantees the achievement of the global 

minimum. 

In the published literature, there are also numerous publications on the optimization of 

ducts and intemally finned ducts. Ashrafizadeh et al. (2003) have proposed a method to 

optimize the shape of nozzles, diffusers, and elbows. In their method, an optimal shape is 

achieved by iterative1y adjusting the coefficients in the discretized equations of a finite 

volume method (in which the coefficients depend on the dependent variable) during the 

overall solution process, based on the latest available distribution of the dependent 

variable, solving the direct fluid flow problem, and repeating the process until 

convergence. This proposed method is considered as an extension of the typical finite 

volume method for the solution of the fluid flow problem, since the coefficients of the 

discretized equations are adjusted as a part of the optimization process. The resulting 

duct shapes achieved pressure distributions along the wall exactly as prescribed. 

A study by Tsukamoto and Seguchi (1984) is among the first ones in which the optimal 

shape of cooling fins is considered. They numerically solved a quasi one-dimensional 
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model of heat conduction in the fin and approximated the fin shape with a second-order 

polynomial, the coefficients of which were the design variables. The objective in their 

optimization procedure was to minimize the fin volume without any decrease in thermal 

efficiency or increase in pumping power. They compared the results obtained with the 

optimized shape to those corresponding to an initial rectangular fin (zeroth-order 

polynomial). Snider et al. (1990) studied analytically the effect of ripples on the surface 

of cooling fins, and compared the efficiencies of the such fins to those of the 

corresponding fins without ripples; the initial fin shape considered was the so-called 

"Schmidt fin" (a parabolic fin). They concluded that for the range of operating 

conditions considered, the addition of ripples on a given fin surface increases the 

corresponding heat transfer, regardless of its temperature. This work was later 

constructively criticized and complemented by the work of Razelos (1995). In the work 

of Razelos and Krikkis (2003), a procedure for the optimization of the thermal design of 

longitudinal rectangular fin is presented along with sorne results. They derived 

polynomial correlations for the optimal fin base and width, where the objective was to 

either minimize the specified weight (volume) or maximize the rate ofheat transfer in the 

context of certain specified constraints. For the range of conditions considered in their 

work, they also concluded that the heat transfer from the tip of the fin could be neglected 

without incurring any appreciable errors. 

Lorenzini, Spiga and Fabbri (1994) have proposed a method for optimizing the shape of 

fins attached to planar surfaces, in the context of fully-developed laminar flow: the 

objective function was the average Nusselt number, and the constraint was fixed fin 

volume. The fin surface was approximated with a polynomial, and the design variables 

were the polynomial coefficients. They found that the optimal fin shape included as 

many undulations on the side of the fins as the order of the polynomial permitted, and the 

increase in thermal effectiveness, presented as the ratio of the rate of heat transfer to that 

achieved with a reference fin of rectangular shape, reached over 300%. Following this 

work, Fabbri (1997) published a paper in which he validated the relation between the 

increase in thermal effectiveness and the order of the polynomial used to approximate the 

fin profile. Fabbri (1998) has also successfully used the methods developed in the 

aforementioned works to optimize intemally finned annular ducts, used to remove heat 
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from a cylindrical heat source. Here again, as the order of the polynomial increased, 

multiple undulations were observed on the fin surface. In another paper [Fabbri (1998a)], 

he has presented the optimization of the shape of four internaI fins in a tube, with a 

polynomial to approximate the fin profile and a fixed fin volume as a constraint. The 

resulting optimized fin shapes all had an outgrowth located approximately at half the 

length of the fin, regardless of the fin volume. As the order of the polynomial increased, 

the outgrowth became more defined and concentrated at the centre of the fin, with a 

corresponding noticeable increase in the Nusselt number. This outgrowth was also 

observed in the context of longitudinal, parallel fins on a plate dissipator [Fabbri 

(1998b)]. In all cases, he used a genetic algorithm for the optimization process. It should 

also be noted that although the resulting fin shapes increased the thermal effectiveness of 

the finned ducts studied, the possible fin shapes that can be obtained from a polynomial 

approximation are limited by the order of the polynomial. 

Laor and Kalman (1995) have presented a theoretical and numerical analysis of the 

performance and optimum dimensions of ducts with external fins with various fin shapes: 

longitudinal, spine, and annular fins with rectangular, triangular, and parabolic profiles. 

The heat transfer coefficient at the fin surface was temperature dependent. Yeh (1994, 

1996) has proposed an analytical fin shape model that depends on the heat load at the fin 

base, sides, and tip, and investigated its effect and the effect of the Biot number on the fin 

shape, with the minimum fin volume as the constraint. He observed that as the Biot 

number increases, the shape of the optimum fin alters from a trapezoidal to a concave 

profile. Kundu and Das (1999) analysed the performance and optimized the shape of 

eccentric annular disk fins subject to convective cooling, using a semi-analytical method. 

Optimization was performed with this analytical model, using the Lagrange multiplier 

technique, with the fin volume or the heat load as the constraint. They compared the 

thermal performance of concentric and eccentric fins. They came to the following 

conclusions: first, there is a minimum heat load over which optimal shape has an effect of 

the performance of the fins; second, when a space restriction is imposed on one si de of 

the tube, optimum utilization of fin material becomes impossible above a certain heat 

load (higher than that for the first conclusion) by using circular fins. Under these 

circumstances, eccentric annular fins are better alternatives. 
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There are also many papers on the optimization of other types of finned surfaces, such as 

pin fin arrays. Examples of such papers include the works of Bejan and Morega (1993), 

Jubran et al. (1993), Gerencser and Razani (1995), Kacimov and Obnosov (1997), and 

Bonjour et al. (2003). 

1.4 THESIS OVERVIEW 

In earlier sections of this first chapter, the motivation for this work, its objectives, and a 

review of the literature directly relevant to this research were presented. In Chapter 2, 

relevant theoretical aspects of the fluid flow and heat transfer applicable to this work are 

presented and discussed concisely. The numerical methods employed for the calculation 

of the fluid flow and heat transfer in the intemally finned ducts of interest, inc1uding 

conjugate heat conduction in the fins, are presented in Chapter 3. In Chapter 4, the 

optimization technique and related developments used in this work are described. The 

results ofthis investigation are presented and discussed in Chapter 5. Finally, in Chapter 

6, the contributions of this thesis are summarized and sorne recommendations for 

extensions of this work are given. 
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Chapter 2. Theoretical Considerations 

In this chapter, the assumptions and the equations that govern the fluid flow and heat 

transfer problems of interest in this work, and also the corresponding boundary 

conditions, are presented first. Following that, the dimensionless versions of these 

equations and boundary conditions are presented concisely. 

2.1 LAMINAR FULLY DEVELOPED FLOW AND HEAT TRANSFER IN 

FINNED DUeTS 

2.1.1 Overview 

As was mentioned in Chapter 1, for compact heat exchangers, the values of the ratio of 

heat transfer area to core volume exceed 700 m2/m3 [Kays and London (1984)]. With 

these high values of this ratio, the hydraulic diameters of the plate-fin ducts of interest are 

usually rather small. Thus, with air as the working fluid, the Reynolds number based on 

the hydraulic diameter usually faIls weIl within the laminar regime [Shah and London 

(1978)]. Furthermore, the entrance length of the flows in such plate-fin ducts is small 

compared to their totallength: thus, fully-developed flow can be assumed to prevail over 

most of the length [Shah and London (1978)]. The cores of such heat ex chang ers are 

commonly made up of a very large matrix of similar plate-fin flow passages. Therefore, 

spatial edge effects, such as proximity to heat exchanger outer surfaces and corners, can 

be ignored: thus, for each core considered, the study can be limited to a single 

representative plate-fin flow passage, as illustrated in Figure 2.1. 

In the present study, the proposed optimization methodology is developed and 

demonstrated in the context of laminar, fully-developed flow and heat transfer in straight, 

continuous, plate-fin ducts. However, as was mentioned in Chapter 1, the proposed 

optimization methodology is independent of the particular problem considered. 

Therefore, inclusion of phenomenon such as turbulence and the entrance flow region 

would only alter the optimal shape of the flow passages and the fins, and are not essential 

to the demonstration of the capabilities of the optimization methodology itself. 
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The thermal conductance of the fins is considered finite in this work: thus, the conjugate 

problem of forced convection in the flow and heat conduction inside the fin is solved. A 

quasi one-dimensional model is used for the heat conduction model inside the fins, akin 

to the approach adopted by Baliga and Azrak (1986) for investigating triangular plate-fin 

ducts. 
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Figure 2.1 Coordinate systems used for the ducts considered 

The coordinate systems used in the mathematical models of the fluid flow and heat 

transfer phenomena in the plate-fin ducts considered in this work are presented in Figure 

2.1. In aU such ducts, the z axis is paraUel to the duct axis, and points in the direction of 

the main flow. 

2.1.2 Assumptions 

The assumptions presented below apply to aU plate-fin ducts investigated in this work. 

• The plate-fin duct is straight and non-twisted, and its inner surface lS 

uninterrupted and smooth; 

• The continuum hypothesis applies, and the working fluid is Newtonian; 
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• The fluid and duct material properties are considered constant: fixed at suitably 

averaged values, as is commonly done in heat exchanger design methods [Kays 

and London (1984)]; 

• The Reynolds number range of interest is 1 00 ~ Re ~ 1500 and the Mach number 

is weIl less than 0.1. Therefore, the fluid flow is in the laminar regime and 

compressibility effects are negligible; 

• The buoyancy-driven free convection effects are negligible; 

• In each plate-fin duct considered in this work, the heat conduction inside the fin 

can be approximated as quasi one-dimensional, as is commonly done in classical 

fin theory: thus, the temperature inside the fin varies only in the direction along its 

length, and is uniform in the cross-section normal to this direction. For further 

details of this quasi one-dimensional assumption in fin theory and a discussion of 

the conditions for its validity, the reader is referred to the work of Incropera and 

De Witt (2002); 

• The rate of heat conduction in the axial direction (in the duct wall, the fin, and the 

fluid) is negligible compared to that in the cross-section of the duct; 

• No heat source is present in the fluid and the viscous dissipation is negligible; 

• The fluid flow and heat transfer are steady and fuUy-developed; 

• For each of the plate-fin ducts considered, for a given pumping power, there is a 

unique duct-fin shape that maximizes the rate ofheat transfer to or from the fluid. 

These assumptions apply to aU discussions in the remainder of this thesis. 

2.1.3 Governing Equations 

The equations that go vern Newtonian fluid flows in the context of the continuum mode1 

have been weIl established since the second half of the 19th century, as discussed, for 

example, by Batche10r (1967), Rouse (1978), Schlichting (1979), and White (1991). 

They are the continuity equation, the three momentum equations (the so-caUed Navier­

Stokes equations) and the energy equation. For details of the derivations of these 

equations, the reader is referred to the works of Schlichting (1979), White (1991), and 
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Kays and Crawford (1993). The assumptions in the previous subsection allow major 

simplifications of these goveming equations. The simplified equations are presented in 

the following subsections with respect to the Cartesian coordinate systems illustrated in 

Figure 2.1. 

2.1.3.1 Continuity equation 

The general continuity equation is the following: 

Bp B(pu) B(pv) B(pw) 
-+ + + =0 
Bt Bx ay Bz 

(2.1) 

In this equation, p is the mass density of the fluid, and in this work, as was stated 

earlier, it is assumed to remain constant; the velocity components in the x, y, and z 

directions are denoted as u, v, and w, respectively. Using the assumption that the flow is 

steady, Bp / Bt = 0 (this equation also follows from the assumption of constant density). 

In the fully-developed region, for laminar flow, the components of the velocity in the 

duct cross section, u and v, are zero, and the w remains invariant with z: thus, aw / Bz = 0 . 

Thus, in the context of the assumptions stated earlier, the continuity equation is satisfied. 

2.1.3.2 Momentum equations 

For the steady, fully-developed, laminar flows under consideration here, the x- and y­

momentum equations reduce to u = 0 and v = 0, respectively. Furthermore, as was 

mentioned earlier, aw / Bz = o. The reduced pressure, P, is defined as follows: 

P=p+pgz (2.2) 

In this equation, p is the static pressure and g is the component of the gravitational 

acceleration in the z direction. In the fully-developed region, p is uniform in the duct 

cross-section (is not a function of x and y), and the pressure gradient in the z direction 

remains constant: dp / dz = constant. Thus, the z-momentum equation reduces to a 

balance between the driving pressure force and the retarding shear forces, as follows 

[White (1991); Kays and Crawford (1993)]: 

(2.3) 
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2.1.3.3 Energy equation 

In the context of the assumptions given earlier, for steady, laminar, fully-developed heat 

transfer, the energy equation reduces to the following form [Kays and Crawford (1993)]: 

(2.4) 

where cp is the specific heat ofthe fluid and kf is its thermal conductivity. 

2.1.3.4 Fin heat conduction equation 

Inside the fins, heat transfer occurs by conduction. In the context of the assumptions 

given previously, heat is first transferred from the wall of the duct into (or out of) each fin 

across its base, and then transferred from its other surfaces to (or from) the fluid flowing 

in the duct by convection. The equation that govems the quasi one-dimensional steady 

temperature distribution in the fin is derived by making an energy balance on a slice of 

the fin: this control volume is shown in Figure 2.2. 

I-------.;".....-----~ -
1 

Figure 2.2 Control volume for the fin energy balance 

In this figure, t is the thickness of the fin; L1ç is the control volume (CV) thickness 

(thickness of the slice of the fin); qç is the rate ofheat conduction into the CV across its 

cross-section at ç; q ç+,',ç is the rate of heat conduction leaving the CV across its cross-

section at ç + L1ç ; and qu and q, are the rates of heat transfer from the upper and lower 

surfaces of the fin, respectively, to the adjoining fluid. The extent of the CV in the z 

direction is unity. It is assumed that the rate of heat transfer by conduction in the z 
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direction is insignificant in comparison with those in the If/ and ç directions. Thus, a 

steady-state energy balance on the CV shown in Figure 2.2 yields the following equation: 

(2.5) 

F or the rectangular and the circular plate-fin ducts (see Figure 2.1), the fin central surface 

is a symmetry surface: therefore, the rates of heat transfer leaving the fin from the top and 

bottom surfaces of the CV in Figure 2.2 are equal (qu = q,). For the triangular plate-fin 

duct, however, the fluid flows in the passages adjacent to each fin over its upper and 

lower surfaces are skew-symmetric: the corresponding heat fluxes, q: and q;' , reflect this 

skew symmetry, as shown in Figure 2.3, and the following equation applies: 

where L is the length of the fin. 

l , 
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, . , 

(2.6) 

Figure 2.3 (a) Symmetric and (b) skew-symmetric distributions ofheat fluxes on the 
upper and lower surfaces of the fin 

Keeping in mind the unit extent of the fin in the z direction, qç' q" and qu can be 

expressed in terms of their respective surface heat fluxes as follows: 

qç = tq~ = t( -ksBT / Bç) lç 

q, = !J.çq;' = !J.ç(-k[BT / By) [,1 

qu =!J.çq: =!J.ç{(k[BT/By)[,u 

(2.7) 

(2.8) 

(2.9) 

where ks and k[ are the thermal conductivities of the solid (fin) and the fluid, 

respectivel y. 
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Dividing both sides of equation (2.5) by ~~ and taking the limit as ~~ ~ 0 on the left­

hand side yield: 

aq~ " " 
- a~ =qu+q, (2.10) 

Combining equations (2.7) and (2.10) and rearranging leads to the following equation: 

tk a
2

T = k . (_ aT + aT ) 
s ae j ay ay 

u , 

(2.11) 

For the rectangular and circular ducts, the top and bottom heat fluxes are symmetric and 

equation (2.11) reduces to: 

(2.12) 

Table 2.1 presents a summary of the goveming equations. The corresponding boundary 

conditions are presented in the following subsection. 

Table 2.1 Summary of the goveming equations 

z-momentum 

Energy equation in the 
fluid 

Quasi one-dimensional 
heat conduction in the 

fin 

2.1.4 Boundary Conditions 

For the fluid flow, the boundaries conditions are: 

• Along the duct wall and the fin surfaces, w = 0 ; 

• Along the symmetry surfaces, V 1- w = 0 . 
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where V'.l is the gradient perpendicular to the symmetry plane. 

As was stated earlier, for the thermal problem, along the duct wall-fluid interface, the 

following two boundary conditions, which represent the extremes of the conditions 

encountered in practice [Sparrow and Patankar (1977)], are considered: 

• Uniform heat input per unit axial length (q~a/l = constant) and uniform cross­

sectional wall temperature. Such a condition could be found, for example, in the 

electrical heating of duct walls having high thermal conductivity, or counter-flow 

exchangers with equal heat capacity rates for the hot and cold fluid streams. In 

this case, in the fully-developed heat transfer regime, all temperatures (in the 

fluid, fin, and duct wall) rise linearly with z [Kays and Crawford (1993)]; 

• Uniform wall temperature (Tw = constant). This condition is approximated in 

ducts in si de the shells of condensers or boilers [Kays and Crawford (1993); Kays 

and London (1984)]. In this case, in the fully-developed heat transfer regime, 

(Tw -~) decays exponential with z [Kays and Crawford (1993)], where ~ is the 

bulk temperature of the fluid. 

In all cases, along symmetry surfaces, V'.l T = 0 . 

2.2 DIMENSIONAL ANAL YSIS 

Suitable dimensionless forms of the z-momentum and the energy equations for the 

problems of interest are presented in this section. 

2.2.1 Non-Dimensionalization of the z-momentum Equation 

Following Shah and London (1978), Patankar (1980), and Kays and Crawford (1993), the 

following dimensionless variables are introduced: 

(2.13) 

In this equation, Dh is the hydraulic diameter, defined as follows: 



D = 4Ac_s 
h P . 

erlwetted 
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(2.14) 

Here, Ac_s is the cross-sectional area for the fluid flow and Periwelled is the so-called 

wetted perimeter of this area (total length of the solid-fluid interface portion of the 

bounding curve ofthis cross-sectional area). 

Introducing these dimensionless variables III equation (2.3) and rearranging, the 

following dimensionless form of the z-momentum equation is obtained: 

a2w a2w 
--+--+1=0 ax2 ay2 

Equation (2.15) is two-dimensional. The boundary conditions are the following: 

• Along the duct wall and the fin surfaces, W = 0 ; 

• Along the symmetry surfaces, V.l W = 0 . 

(2.15) 

A solution of equation (2.15) subject to the above-mentioned boundary conditions 

provides the dimensionless velocity field, W. The dimensional velocity field w can be 

obtained from W by using the dynamic viscosity of the fluid, the axial pressure gradient, 

and the duct hydraulic diameter. 

There are no dimensionless parameters III equation (2.15). The only dimensionless 

parameters in this problem are those that characterize the duct cross-sectional geometry 

(they come in through the non-dimensionalization of the boundary conditions). However, 

as the focus here is on laminar flows, it is important to ensure that the value of the 

Reynolds number is less than 2000 (conservative value): here, the Reynolds number is 

based on the average z-direction velocity component, W av ' and the hydraulic diameter, 

(2.16) 
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Furthermore, the constant axial (z-direction) gradient of the reduced pressure in the fully­

developed region is commonly non-dimensionalized and expressed as the Darcy friction 

factor, defined as follows: 

The Darcy friction factor-Reynolds number product is: 

2 dP D; 
fD· Re=---­

Il dz Wav 

2.2.2 Non-Dimensionalization of the Energy Equation 

(2.17) 

(2.18) 

The axial variations of the temperature for the two above-mentioned thermal boundary 

conditions are different. Thus, following the recommendations of Patankar (1980) and 

Kays and Crawford (1993), the non-dimensionalization of the energy equation for these 

two thermal boundary conditions is done differently, as described in the following 

subsections. 

2.2.2.1 Thermal boundary condition H: uniform heat input per unit axial 

length and uniform cross sectional wall temperature 

For this thermal boundary condition, in the fully-developed region, the axial gradients of 

aIl the temperatures in the duct are the same and constant [Patankar (1980); Kays and 

Crawford (1993)], as shown in Figure 2.4. Thus, 

ôT dT. dT _ = _b = _w = constant 
ôz dz dz 

(2.19) 

where Tb is the bulk temperature of the fluid. 
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T 

z 
Figure 2.4 Constant increase of aIl temperatures in the z direction 

An energy balance on a slice of the duct yields: 

. d~, . " 
mcp - = qw = Penwettedqw av 

dz ' 
(2.20) 

Knowing that rh = PWavAc-s and using equation (2.20) ,equation (2.4) can be rewritten 

as follows: 

(2.21) 

Since the temperature variation along the duct axis is driven by the imposed heat input at 

the wall, the following non-dimensional temperature is used [Patankar (1980); Kays and 

Crawford (1993)]: 

(2.22) 

In terms of X, Y, and e, equation (2.21) can be cast in the following dimensionless form: 

(2.23) 

In equation (2.23), the non-dimensional temperature e is independent of the position 

along the duct axis. Moreover, once the velocity field has been computed, the e field 

can be readily obtained since the source term in this equation is independent of e. 

For the boundary conditions, using equation (2.22) and noting that on the duct wall, 

T = Tw ' e = o. At symmetry surfaces, V.L e = o. Along the fin surfaces, the following 

dimensionless forms of equations (2.11) and (2.12) apply: 
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Q a
2

e =- ael + ael 
as} ay u ay 1 

(2.24) 

Q a2e = ael 
2 as2 ay 1 

(2.25) 

where S = ç / Dh , and Q is the fin conductance parameter given by: 

Q=~ 
Dhkf 

(2.26) 

The dimensional temperature T can be retrieved from e by using the specified wall 

temperature, Tw, the specified wall heat flux q:,av = q~ / Periwelled' and the duct hydraulic 

diameter, Dh' For this boundary condition, the average Nusselt number is related to the 

dimensionless bulk temperature, eb , by the following equation: 

NuH = havDh = {( q~ / Periwetted) /(Tw - r;,)} Dh = Dh / Periwelled = Dh / Periwelled 
av k f k f (Tw - r;, ) eb 

(2.27) 

(q~/kf) 

where the superscript H refers to the CUITent thermal boundary condition. 

2.2.2.2 Thermal boundary condition T: constant du ct wall temperature 

For this thermal boundary condition, the wall temperature is specified and constant 

throughout the duct, and the following dimensionless temperature is used [Patankar 

(1980); Kays and Crawford (1993)]: 

(2.28) 

Therefore, 

(2.29) 

In this case, in the thermally fully-developed region, aIl temperature differences (Tw - T ), 

including (Tw - r;,), decay exponentially to zero at the same rate, as shown in figure 2.5; 
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and h (and also hav) , or equivalently, cp, remain invariant with z [Kays and Crawford 

(1993)]. 

T 

'--------------.z 
Figure 2.5 Exponential decay of Tw - T;, in the z direction 

In this case, following the c1assical analysis of Graetz, as described in Kays and Crawford 

(1993), the z coordinate is non-dimensionalized as follows: 

• Z/Dh 
Z =--

RePr 
(2.30) 

Here, Pr is the Prandtl number of the fluid: 

Pr = /-lep / kf (2.31) 

The exponential decay of (Tw - T;,) is expressed as follows: 

(2.32) 

where A and l are arbitrary constants. 

Differentiating equation (2.32) with respect to z': 

~(T - T. ) = -lAe-,l/ = -l(T - T. ) Bz' w b w b 
(2.33) 

Furthermore, in the fully-developed region BT / Bz' = -rpB(Tw - T;,) / Bz·. Therefore, 

(2.34) 

Noting that in the thermally fully-developed region, cp is not a function of z, and using X, 

Y, z", and equations (2.29) and (2.34), the following form of the dimensionless energy 

equation can be obtained [Patankar (1980); Kays and Crawford (1993)]: 
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(2.35) 

Regarding the boundary conditions, on the duct wall, the temperature is Tw and cp = 0 ; at 

symmetry surfaces, V 1- cp = o. Equation (2.35) and these boundary conditions set up an 

eigenvalue problem [Patankar (1980); Kays and Crawford (1993)]. An iterative method 

is used to solve it. First, following Sparrow and Patankar (1977) and Patankar (1980), to 

facilitate the iterative solution of this eigenvalue problem, a new dimensionless 

temperature is defined: cp. = Âcp. In terms of cp. , equation (2.35) becomes: 

(2.36) 

The dimensionless forms of the fin equations (2.11) and (2.12) are, respectively, the 

following: 

(2.37) 

(2.38) 

Only one combination of the eigenvalue Â and the corresponding dependent variable cp. 

(the eigenfunction) satisfy these equations. First, the fluid flow problem is solved (W 

distribution is computed). Then, the aforementioned combination of Â and cp. is found 

using the following iterative procedure [Patankar (1980)]: 

1. Guess an initial cp. field, ca1culate cp;, and then obtain Â = 1/ cp; ; 

2. Solve equations (2.36) to (2.38) and obtain cp.; and then use this solution 
to obtain the corresponding value of the dimensionless bulk temperature: 

. _ f W cp. BAc_s . 

CPb - fW8A-s ' 

3. Knowingcp;, obtain a new value for Â: 
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4. Replace the old value of À in equation (2.36) with the new one; 

5. Return to step 2 until convergence. 

Once convergence has been reached, the qJ field can be retrieved using qJ = qJ' / À. The 

temperature field T can, in tum, be retrieved by specifying the wall and the bulk 

temperature in equation (2.29): the bulk temperature is a function of the position in the z 

direction, which, in tum, needs to be specified. 

The average heat transfer coefficient is defined as follows: h., ~ q~/ Peri_rd Then, the 
Tw - I;, 

average Nusselt number is: 

NuT = havDh = Dh / Periwelled 
av k f (Tw - I;, ) 

(2.39) 

q~ / kf 

where the superscript T refers to the CUITent boundary condition. 

By performing an energy balance on a slice of the duct, in the context of the assumptions 

stated earlier, it can be established that q~ =mcp aI;, [Kays and Crawford (1993)], and 
az 

equation (2.39) becomes: 

(2.40) 

However, 

aI;, 
= 

pCp wavD~ az' 
(2.41 ) az 
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A 
NuT = c-s lrp 

av P' Db enwetted h 

(2.42) 

Finally, us mg the definition of the hydraulic diameter, the following convenient 

expression for the Nusselt number for the constant wall temperature thermal boundary 

condition is found: 

(2.43) 

2.2.2.3 Summary 

Table 2.2 presents a summary of the dimensionless goveming equations for the problems 

of interest. 

Table 2.2 Summary of the dimensionless goveming equations 

Fluidjlow 

a2
() a2

() w D Energy equation with H __ + __ + 4- h = 0 
boundary condition BX2 ay2 wav Periwetted 

Fin 

Energy equation with T 
boundary condition 

Fin 

B2cp" Bcp" B" Q __ = __ +1. 
a'8,z ay u ay 1 

These goveming equations, subject to the corresponding boundary conditions discussed 

earlier, are solved using the numerical methods described in the following chapter. 
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Chapter 3. Overview of Numerical Methods 

The two numerical methods that were used to solve the goveming equations described in 

the previous chapter are presented in this chapter. They are a control volume finite 

difference method (CVFDM) and a control volume finite element method (CVFEM). In 

addition, a one-dimensional version of the CVFDM is described for the solution of the 

equation that govems quasi one-dimensional heat conduction in the fin. The formulation 

of the CVFDM is based on rectangular control volumes: thus, it is specially suited for the 

solution of problems involving the plate-fin rectangular ducts. In the CVFEM, the 

do main discretization is based on three-node triangular elements. Thus, it is very weIl 

suited for the solution of problems involving the triangular plate-fin ducts and also the 

intemally finned ducts of circular cross-section. Here, it should be noted that the 

problems involving the rectangular plate-fin ducts could also be solved using the 

CVFEM, but it computationally less expensive, in terms of both storage and time, to 

solve such problems using the CVFDM. 

3.1 GENERAL FORM OF THE GOVERNING EQUATIONS 

The fully-developed fluid flow and heat transfer problems of interest are govemed by 

partial differential equations that are akin to those that govem steady, two-dimensional, 

heat conduction or diffusion phenomena. The full details of these goveming equations 

were presented in the previous chapter. With reference to the Cartesian coordinate system 

(x,y), these equations can be cast in the following general form [Patankar (1980)]: 

~(r 8tP)+~(r 8tP J+S = 0 ax ~ax 8y ~8y ~ 
(3.1) 

In this equation, tP is a general scalar dependent variable, r ~ is the corresponding 

diffusion coefficient, and S~ is the appropriate volumetrie generation rate, or source 

term. The CVFDM and CVFEM described in the following sections of this chapter are 

formulated to solve this equation subject to appropriate boundary conditions. 
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3.2 CONTROL VOLUME FINITE DIFFERENCE METHOD 

The control volume finite difference method (CVFDM) presented in this section is based 

on the work ofPatankar (1980). Its formulation involves the following four steps: 

1. Discretization of the calculation domain into rectangular control volumes, 

nodes, and grid lines; 

2. Prescription of appropriate interpolation functions for the dependent 

variable, diffusion coefficient, and source term; 

3. Derivation of discretized equations, which are algebraic approximations of 

integral conservation equations applied to the rectangular control volumes; 

4. Prescription of a procedure to solve the discretized equations. 

3.2.1 Domain Discretization 

The do main of interest is first discretized into a grid of rectangular control volumes 

following the so-called "Practice B" of Patankar (1980), where the control volume 

boundaries are first placed, and then the nodes are placed midway between the control 

volume boundaries. This domain discretion is schematically presented in figure 3.1. 

",' , 
1 1 1 1 1 1 L _____ L ____ _____ ~ _____ _____ 1 _____ _____ L _____ ____ ~ __ _ 

1 1 1 1 1 1 

, , , , , , , , , , 
~-_ ---1----- -----+----- -----~~~;~:;S~: ~@~~t ---------....04---, , , , , , , , 

~0~&11:::'::: -'~ -:'f' 0- - - - -

l';;:::; ,~;;j 
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1 , 
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-----.---
1 , 

-----T----- - - - - -,- - - - - - - - - - T - - - - - - - - -,- --

, , , , , , , , 
___ ~____ _ ___ 1 ____ - _____ 1 ____ _ 1 _____ 1 _ 

~ 

Figure 3.1 A Cartesian calculation domain and its discretization into rectangular 

control volumes, nodes, and grid lines 



37 

3.2.2 Profile Assumptions and Discretized Equations 

The discretized equations are obtained by deriving algebraic approximations to an 

integral conservation equation applied to rectangular control volumes of unit depth in the 

z direction. With reference to the control volume and notation shown in figure 3.2, this 

integral conservation equation is approximated as follows: 

(r 84J) ~y-(r 84J ) ~y+(r 84JJ llx-(r 84JJ llx+ JSlodA=O (3.2) 
rp 8x e rp 8x w rp Gy n rp Gy s cv V' 

w 

(ÔXL-I"';f--- (ôx),--I-+I 

Figure 3.2 An internaI control volume for the CVFDM 

N 

E 

1_+_-- (ôx ).--1-+1 

Figure 3.3 A control volume adjacent to a boundary for the CVFDM 
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In order to evaluate algebraic approximations to the derivatives and the integral in 

equation (3.2), profile assumptions (or interpolation functions) must be prescribed for the 

dependent variable, the diffusion coefficient, and the source term. Following Patankar 

(1980), the source term is first linearized, if required, as follows: S" = Sc + S prjJp. Then, 

in the integration of this term in equation (3.2), the nodal values of Sc, S p' and rjJp are 

assumed to prevail over the corresponding control volumes. For the approximation of the 

derivatives of rjJ at the faces of the control volume, it is assumed to vary in a piecewise­

linear manner along the grid lines between adjacent nodes. Again following Patankar 

(1980), a locally one-dimensional resistance analogy is used along the grid lines to 

interpolate the adjacent nodal values of the diffusion coefficient, r", and obtain its values 

at the locations e, w, n, and s (see figures 3.2 and 3.3). 

Using the above-mentioned profile assumptions, equation (3.2) can be approximated by: 

Equation (3.3) can be rearranged in the following convenient form: 

where 

(r ,,)e~Y 
aE = (8x). 

(r,,)w~Y 

aw = (oxL 

(r,,)n~ 

aN = (8Yt 

(r,,)s~ 

as = (8Yt 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 



The product ~~y is the volume of the control volume with unit depth. 

3.2.2.1 Discretized equations for internai nodes 
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(3.9) 

(3.10) 

Equation (3.4) is represented in the following compact form for control volumes around 

the internaI nodes in the ca1culation domain: 

(3.11) 
n 

where the summation is taken over the n neighbour nodes (four in this case) ofnode i. 

3.2.2.2 Discretized equations for boundary nodes 

For nodes that lie on a boundary of the ca1culation domain, either the value of the 

dependent variable is given, as in equation 3.12, or the boundary is a symmetry plane. 

rPj = rPspecified (3.12) 

In the latter case, a higher-order (quadratic) interpolation lS used to satisfy the 

requirement of zero gradient of rP normal to symmetry boundaries, and equation (3.11) is 

modified accordingly. Full details of this treatment are available in Baliga and Atabaki 

(2006), so they are not repeated here. 

At the boundaries adjacent to fins, the discretized equations presented are solved 

conjointly with another set of discretized equations for the quasi one-dimensional heat 

conduction in the fin. The derivation of those equations is presented in section 3.4. The 

overall steps for solving this conjugate problem are presented in section 3.5. 

3.3 CONTROL VOLUME FINITE ELEMENT METHOD 

The control volume finite element method (CVFEM) presented III this chapter is 

primarily based on the works of Baliga and Patankar (1980, 1988), LeDain-Muir and 

Baliga (1986), and Baliga and Atabaki (2006). The formulation of this CVFEM involves 

the following five steps: 
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1. Discretization of the calculation domain first into three-node triangular 

elements and then into polygonal control volumes; 

2. Prescription of appropriate element-based interpolation (or shape) 

functions for the dependent variables; 

3. Derivation of discretized equations, which are algebraic approximations of 

integral conservation equations, applied to the polygonal control volumes; 

4. An element-by-element compilation of the discretized equations; 

5. Prescription of a procedure to solve the discretized equations. 

3.3.1 Domain Discretization 

The ca1culation domains are first discretized into three-node triangular elements, as 

shown in figure 3.4. Then, the centroid of each triangular element is joined to the 

midpoints of the three element sides. Collectively, this procedure creates a polygonal 

control volume around each no de in the domain: three such control volumes are shown as 

shaded are as in figure 3.5. The solid lines in figure 3.5 represent the elements boundaries 

and the dashed lines represent the faces of the polygonal control volumes. With this 

method, the curved boundary lines are represented by piecewise linear curves. 

The choice of triangular elements is appropriate here as the proposed CVFEM is intended 

for the solution of problems involving triangular plate-fin ducts and intemally finned 

ducts with circular cross-section (taking advantage of symmetry planes, the ca1culation 

domains for such ducts can be limited to pie-shaped portions of the cross-section). The 

ca1culation domains for such ducts do not lend themselves to discretization using 

quadrilateral elements. 



Figure 3.4 An irregularly shaped calculation domain and its discretization into 

three-node triangular elements and polygonal control volumes 

3.3.2 Integral Conservation Equation for a Control Volume 
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Consider a typical node i, as shown in figure 3.5. An integral formulation corresponding 

to equation (3.1) can be obtained by applying the conservation principle for ljJ over the 

control volume surrounding such nodes in the calculation domain. 

~ __ .. b 
0,\ ' . 

i a 

(a) (b) (c) 

Figure 3.5 Details of the discretization in figure 3.4 and related 

nomenclature: (a) an internaI node; (h) a boundary node with three 

associated elements; (c) a boundary node with one associated element 

The resulting integral conservation equation can be expressed as follows: 



[[Jends + [Jends - LocS;dS] 
+ [similar contribution from other elements associated with node il 
+ [boundary contributions, if applicable] = 0 
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(3.13) 

where n is a unit outward vector normal to the differential area element ds, and J is the 

diffusion flux of ljJ : 

(3.14) 

Equation (3.13) emphasizes that it can be assembled usmg an element-by-element 

procedure. 

3.3.3 Interpolation Functions 

The derivation of an algebraic approximation of equation (3.13) requires the specification 

of the interpolation functions for the source term, the diffusion coefficient, and the 

dependent variable, in every triangular element. 

In each triangular element, the centroidal value of the diffusion coefficient, r rp' is 

assumed to prevail. The source term is linearized, if needed, and expressed as follows 

[Patankar (1980)]: 

(3.15) 

In the integrals involving this source term, in each triangular element, the nodal values of 

Sc' Sp, and ljJ are assumed to prevail over the corresponding portions of the associated 

polygonal control volumes. 

In each triangular element, the scalar dependent variable ljJ is interpolated linearly from 

its value at the three nodes that define an element: 

ljJ=Ax+By+C (3.16) 

The constants A, B and C are uniquely determined in terms of the x, y coordinates of the 

three nodes (see figure 3.6) and their corresponding ljJ values: 

(3.17) 



B=[(x3 -x2M +(XI -X3 )rp2 +(X2 -xl)rpJIDET 

C = [(X2Y3 - X3Y2)~ + (X3YI - X1Y3 )rp2 + (X1Y2 - X2YI )rp3] 1 DET 

where 

3 

2 
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(3.18) 

(3.19) 

(3.20) 

Figure 3.6 A typical three-node triangular element, the related nomenclature, and the 

local coordinate system (x,y) 

3.3.4 Discretized Equations 

The discretized equations are obtained by deriving algebraic approximations to the 

element contributions to the integral conservation equation (3.13), and assembling these 

contributions appropriately using an element-by-element procedure. Aigebraic 

approximations of the boundary contributions are also derived and added up to the 

assembled element contributions, if needed. The following derivation refers to the node 

1 of the element 123 shown in figure 3.6. 

In each element, the diffusion flux J is expressed in terms of its components in the x and 

y directions: 

J ~ J)+J,i ~(-r, :}+( -r, :} (3.21) 

where i and j are unit vectors in the x and Y directions, respectively. 

The interpolation function for the dependent variable is used to approximate J x and J y : 
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(3.22) 

These expressions, with reference to the element in figure 3.6, are used to approximate 

the integrals that represent the diffusion transport of cp in equation (3.13): 

r Jends = (Ar; )Ya -(Br; )xa 

r Jends = -(Ar; )Yc + (Br; )xc 

The integral involving the source term is expressed as follows: 

where Ae is the area of the element 1-2-3: 

IDETI 
A =--

e 2 

with DET given by equation (3.20). 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

Substituting equations (3.17) and (3.18) into equations (3.23) and (3.24), and adding up 

equations (3.23)-(3.25), the total contribution of the element 1-2-3 to the conservation 

equation for the control volume surrounding node 1 is obtained. This total element 

contribution can be compactly expressed as follows [Baliga and Patankar (1988)]: 

where 

r; [ ] ~ CI = DET (Ya - yJ(Y2 - Y3)+(Xa -xJ(x2 -x3) -3Sp (3.28) 

r; ] C2 =--[(Ya - yJ(Y3 - YI) +(xa -xJ(x3 -XI) 
DET 

(3.29) 

C3 = :;T[(Ya - Yc)(YI - Y2)+(Xa -xc)(xi -x2)] (3.30) 

B =_Ae S 
1 3 c 

(3.31 ) 
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3.3.4.1 Discretized equations for internaI nodes 

Equation (3.27) accounts for the contribution of a single element to the integral 

conservation equation for the control volume surrounding node 1. Such contributions 

from all elements associated with any internaI node, i, are assembled appropriately, using 

an element-by-element procedure, to obtain the complete discretized equation. Such 

discretized equations for the internaI nodes in the ca1culation domain can be expressed 

compactly as follows: 

(3.32) 
n 

where the summation is taken over the n neighbour nodes ofnode i. 

3.3.4.2 Discretization equations for boundary nodes 

If the nodes lie on a boundary of the calculation domain, either the value of the dependent 

variable is given, as in equation (3.33), or the boundary is a symmetry plane. 

(3.33) 

In the latter case, no special boundary modifications are needed, and equation (3.32), 

obtained from only the assembly of the aforementioned element contributions, applies. 

3.3.5 Solution of the Discretized Equations 

Here again, the discretized equations derived for the CVFEM are solved conjointly with 

those of the fin. This solution procedure is presented in section 3.5. 

3.4 CONTROL VOLUME FINITE DIFFERENCE METHOD FOR THE FIN 

For the conjugate problem ofheat conduction in the fin, the quasi one-dimensional model 

presented in section 2.1.3.4 is solved using a one-dimensional control volume finite 

difference method (CVFDM) akin to the one presented in section 3.2 for the solution of 

the thermofluid problem for rectangular plate-fin ducts. The formulation of this one­

dimensional CVFDM involves the same four steps as those given in section 3.2. 
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3.4.1 Domain Discretization 

The domain discretization scheme used for the fin depends on the duct shape. For the 

rectangular plate-fin ducts, the control volumes in the fluid flow region are rectangular 

and the nodes are placed midways between these control volume boundaries. Since the 

energy balance between the fin and the fluid do main is performed on a control volume 

basis, the faces of the corresponding adjacent control volumes must match: so for the 

rectangular plate-fin ducts, the domain discretization for the fin must follow "Practice B" 

of Patankar (1980). For the triangular plate-fin ducts and the intemally finned circular 

ducts, the CVFEM is used, and the nodes in the fin are placed at the center of adjacent 

control-volume faces along the fin-fluid interface. Therefore, for these triangular and 

circular ducts, the domain discretization in the fins must follow "Practice A" of Patankar 

(1980). These fin domain discretizations are presented in figure 3.7. 

-- 1 t : : rFin 
1 - , 

Fluid 
flow 

(a) 

Fin 

Triangular duct Circular duct 

(b) 

Figure 3.7 Fin domain discretization schemes (shaded regions) for (a) the rectangular 

plate-fin ducts and (b) the triangular plate-fin ducts and the intemally finned ducts of 

circular cross-section 
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3.4.2 Profile Assumptions and Discretized Equations 

The discretized equations for the fin are obtained by deriving algebraic approximations to 

the integral conservation equation applied to the control volumes of unit depth in the z 

direction (see figures 3.7 and 3.8). With reference to figure 3.8, equation (2.24) is 

integrated over the control volume of unit-depth and expressed as follows (here, 17 = y): 

(3.34) 

L 

Figure 3.8 An internaI control volume for the one-dimensional CVFDM 

(a) (b) 

Figure 3.9 A fin control volume adjacent to a boundary for (a) Practice Band (b) 

Practice A 

In order to evaluate the derivatives and the integrals in equation (3.34), assumptions must 

again be made regarding the profiles of the dependent variable, diffusion coefficient, and 

source terms inside the control volume. For the source term, the value at the node 

prevails over the control volume. The resistance analogy is used to interpolate the values 

of the diffusion coefficient at adjacent nodes [Patankar (1980)]. The derivatives of the 
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dependent variable at the faces of the control volumes are obtained by using piecewise­

linear interpolation along grid lines between adjacent nodes. 

Using these above-mentioned profile assumptions (interpolation functions), equation 

3.34) is approximated as follows: 

Equation (3.35) can be rearranged in the following convenient form: 

where 

n /}.7] a = ----,,-w--,-

w (8çL 

b = SLiç/}.7] 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

Here, S /}.ç/}.7] is the algebraic approximation to the right-hand side of equation (3.34). 

3.4.2.1 Discretized equations for internai nodes 

Equation (3.36) for the internaI nodes in the fin can be expressed compactly as follows: 

(3.41) 

3.4.2.2 Discretized equations for boundary nodes 

If the value of the dependent variable is fixed at a boundary node, i, the discretized 

equation for that node becomes: 

(3.42) 
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3.5 SOLUTION TO THE DISCRETIZED EQUATIONS 

The discretized equations derived in sections 3.2 to 3.4 were solved using the following 

iterative procedure: 

1. Guess all unknown values of the dependent variables in the fluid flow and 

in the fin calculation domains; 

2. Calculate the coefficients in the linearized forms of the discretized 

equations in the fluid flow region using the currently available values of 

the dependent variables; 

3. Solve the resulting set of linear algebraic equations for the fluid flow; 

4. Compute the heat fluxes on the upper and lower surfaces of the fin, and 

calculate the S /1ç/11] terms in the discretized fin equations; 

5. Calculate the coefficients in the linearized forms of the discretized fin 

equations, using the currently available values of the dependent variables; 

6. Solve the resulting set of linear algebraic equations for the temperature 

distribution in the fin; 

7. Repeat steps 2 to 6 until convergence. 

The set of linear algebraic equations in steps 3 are solved using a line-Gauss-Seidel 

method with block correction to accelerate convergence [Patankar (1980)]. In this method 

and also for the solution of the linearized forms of the discretized fin equations, the 

tridiagonal matrix algorithm (TDMA) is used. For full details ofthis method, the reader is 

referred to the work of Sebben and Baliga (1995). 

3.6 CALCULATION DOMAINS 

For each of the three families of ducts considered in this work, the presence of symmetry 

and/or skew symmetry planes allows the restriction of the calculation domain to only one 

side of each of these planes. Advantage is taken of the feature of the problems of interest 

to decrease the number ofnodes required for a desired grid density. Once the solution has 

been obtained for one side ofthese planes, it can be used, if desired, to construct it on the 

other side of the planes. Figure 3.10 presents the calculation domains for the three 
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families of ducts considered in this work. The types of grid used for each of these ducts 

are presented in the following suhsections of this section. 

For the rectangular and triangular plate-fin ducts, the calculation domain is limited to one 

quarter of the duct cross-sectional area between two similar fins, taking advantage of the 

presence of two syrnmetry planes for the rectangular duct, and the symmetry and the 

skew-symmetry planes for the triangular duct. For the circular duct with njin internaI fins, 

there are 2njin syrnmetry planes and only a pie-like portion ofthe duct cross-section, with 

an angle of 7r / n jin' is considered. 

w"e~ 
1 

1 

1 

(a) (h) 

Figure 3.10 The calculation domains (indicated hy shaded regions) for (a) the 

rectangular plate-fin ducts, (b) the triangular plate-fin ducts, and (c) the internally 

finned circular ducts 
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3.6.1 Grid for the Rectangular Plate-Fin Ducts 

For the rectangular plate-fin ducts, the shaded region of figure 3.1 0 (a) is discretized 

using a unifonn Type-B rectangular grid. The resulting node arrangement is presented in 

figure 3.11. The appropriate number of nodes in both the ix and the iy directions is 

detennined in the validation of the fluid flow and heat transfer models presented in 

section 5.1.1.1. 
FIN 

L. 'x 
SYMMETRY PLANE 

Figure 3.11 Type-B grid and nodes for the rectangular plate-fin ducts 

3.6.2 Grid for the Triangular Plate-Fin Ducts 

For the triangular plate-fin ducts, the shaded region of figure 3.10 (b) is discretized using 

three-node triangular elements, as presented in figure 3.12. 
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Figure 3.12 Grid and nodes for the triangular plate-fin ducts 
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The orientation of the triangular elements was chosen to fit the shape of the calculation 

domain, which has the fin boundary oriented from the bottom left to the top right corners. 

The number of nodes along the bottom and right boundaries in the ix and the iy directions, 

respectively, are the same; again, the appropriate number ofthese nodes is determined in 

the validation of the fluid flow and heat transfer models presented in section 5.1.1.1. The 

node spacing is uniform in the ix and the iy directions. 

3.6.3 Grid for the Internally Finned Circular Ducts 

For the internally finned circular ducts, two different grid configurations were used. The 

first configuration was designed and used for circular ducts with fins of triangular cross­

section, as illustrated in figure 3.13. It was used for discretization of the calculation 

domains of the baseline cases, which were later optimized using the second grid 

configuration. Here, the angle 1r/njin' the radius r, the length of the fin 1j, and the base 

angle of the fin 2a are specified by the user. The total number of nodes along the bottom 

symmetry plane, L+N, is also specified by the user. The value of L is obtained according 

to the following equation: 

L ~ Closest integer roundoff 0[[ (L + N) 1; ] 

N is then equal to (L + N) - L. The portion of the calculation domain beyond L + 1 in the 

ix direction is discretized into triangular elements with the longest side oriented in the top 

left to bottom right direction, matching the top symmetry plane; the number of nodes in 

the ix and the iy directions is the same and the node spacing is uniform. For the remaining 

portion of the domain, the nodes along the bottom, left, and top boundaries are initially 

spaced uniformly. 
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Figure 3.13 Grid and nodes for the circular ducts with triangular fins 

53 

The second configuration was used with circular ducts in which the shapes of the fins are 

dictated by the positions of the control points of nonuniform rational B splines (NURBS) 

used in the optimization procedure: the related details are elaborated in Chapter 4. An 

example of a computational domain for a circular duct with a control-point-shaped fin is 

presented in figure 3.14. For both of the aforementioned grid configurations, in the 

region of the calculation domain with nodes numbers less than L + 1, the vertical positions 

of the nodes are first set uniformly between the top and bottom locations for each grid 

lines, and then the horizontal position of these same nodes are set to averages of the four 

surrounding nodes. This procedure creates nicely balanced domain discretizations. 

~ 

CONTROL POINTS 
SHAPEDFIN 

SYMMETRY 
PLANE 

Li ~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
ix 1 2 3 4... L L+l L+2 ... ... N 

SYMMETRY PLANE 

Figure 3.14 Grid and nodes for the circular duct with control-point-shaped fins 

It should be noted that the above-mentioned grid generation procedure can create 

elements with large aspect ratios, or even overlapping elements, when the computational 

domain has a high angle, 7r / nfin - that is, when the number of fins is below 4 or 5. 

Therefore, care should be taken to examine the generated grids, and make modifications, 

ifneeded. 
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Chapter 4. Optimization Methodology 

In this chapter, the following topics are presented: an overview of several optimization 

techniques available in the literature; approximation of the fin shape using non-uniform 

rational B-Spline (NURS); formulation ofthe optimization problem, inc1uding the chosen 

objective functions and constraints; and the overall optimization algorithm. 

4.1 OVERVIEW 

The existence of optimization methods can be traced to the days of Newton, Lagrange, 

and Cauchy [Rao (1996)]. Research on optimization techniques intensified following the 

development of the simplex method by Dantzig (1947) for the solution of linear 

programming problems. Subsequently, most of the innovations in this area occurred in 

the 1950s and 1960s, with the apparition of various search methods: examples inc1ude 

random se arch methods; evolutionary algorithms; direct search methods involving the 

first and second derivatives of the design variables; and many variations and 

improvements ofthese methods [Converse (1970)]. 

Optimization problems, at the most general leve1, can be grouped into two mam 

categories: static and dynamic problems [Denn (1969), Dixon (1972), Bryson (1999)]. 

Static problems are those where an optimal solution is obtained for a steady (non time­

varying) system by me ans of a search method that manipulates a set of design variables. 

They are sometimes referred to as hill-c1imbing problems. Dynamic problems involve a 

changing optimal solution. Therefore, not only the optimal arrangement of the design 

variables at any particular instance is of interest, but also the variation of these variables 

between the various dynamic states of the system. 

The optimization problem can be constrained or unconstrained [Rao (1996), Bouchard 

(1999)]. In unconstrained problems, the only goal is to optimize an objective, or cast, 

function: every value of the design variables is allowed. Such would be the case for a 

convex function that is known to have only one optimal state. In constrained problems, 

the objective is to find an optimal solution while satisfying to one or more constraints. 

These constraints can be equality constraints (for example, constant pumping power for 
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flow in a duct, or a constant fin volume), or inequality constraints (for example, 

minimizing the losses in a process while keeping the production above a certain value, or 

minimizing the drag on a wing while keeping its shape within design limits). 

The problem to be optimized can also be linear or non-linear, regardless of whether it is 

static or dynamic. Linear optimization problems, which are often called linear 

programming problems, involve objective function(s) and constraint(s) that are aIl 

linearly dependent on the design variables. The solutions to such problems, with or 

without constraints, can be obtained by simply solving a set of coupled linear equations 

[Converse (1970)]. 

Non-linear optimization problems are more general, in the sense that the methods that are 

used to solve them also apply to linear problems. In the se problems, the shapes of the 

objective and constraint functions are not known a priori. Most of the difficulties in 

solving a non-linear optimization problem arise from the unknown form, or shape, of the 

optimization function in the n-dimensional hyperspace spanned by the n design variables. 

For instance, there could be several local maxima surrounding a current state of the 

system, inhibiting the ability of the search algorithm to reach the hypothetical highest 

maximum, which could be located elsewhere. 

In aIl static (linear or non-linear) optimization problems, the common goal is to find an 

optimal solution. For non-linear problems, this solution can only be reached by searching 

through the objective function hyperspace, while, if applicable, searching and satisfying 

one or more constraint function(s). This search process can be driven by direct search 

methods, where information from the previous solution is not used, or by guided search 

methods, where the search direction is intimately linked to the previous solution(s). 

Direct methods, often referred to as sectioning methods, inc1ude the following: the Monte 

Carlo method, which is based on random sampling; the Fibonacci and the Grid methods, 

which are based on "divide and conquer alike" schemes in the optimization space; and 

the Hooke and Jeeves method and the Davies, Swann and Campey method, where the 

search direction follows the so-called design-variables axis [Bouchard (1999)]. Guided 

methods are based on the evaluation of the first and, if applicable, the second derivatives 
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of the objective function(s). They are quite powerful, since trends in the variations of the 

objective and the constraint functions are extracted from knowledge of the previous states 

of the system. The more the information about the previous states of the system is used, 

the faster the optimal state can be reached. One must, however, keep in mind that the 

calculation of higher-order derivatives of the objective function(s) is computationally 

expensive, and should be used only if a significant advantage is to be gained from it. 

Guided techniques in multi-dimensional problems are based on variations of a common 

theme: the computation of the gradient of the objective and/or the constraint function(s). 

The gradient of an objective function provides the direction of the steepest ascent toward 

increasing values of this function, ultimately reaching the maximum feasible objective 

function in that direction. Since the gradient vector represents the direction of steepest 

ascent, the negative of the gradient vector denotes the direction of steepest descent. As 

such, any method that makes use of the gradient vector can be expected to yield the 

maximum point faster than one that does not make use ofthis vector [Rao (1996)]. One 

drawback of these methods is that the gradient is a local property, and thus the path 

toward optimum is not necessarily the shortest one, but rather one that is tangent to the 

local gradient at each point along this path. For unconstrained problems, the simplest of 

such methods is the Cauchy method, where the step size is set and used to reach a 

minimum along the local gradient direction. Other examples of such methods include the 

Fletcher-Reeves, the Newton, the Marquardt, the quasi-Newton, the Davidon-Fletcher­

Powell, and the Broyden-Fletcher-Goldfarb-Shanno methods [Rao (1996)]. AlI of these 

methods, however, necessitate an analytic objective function in order to obtain the 

optimal step length along the local gradient direction, without re-computing the function 

iteratively in that direction. In this work, since the objective functions of interest are 

based on the results of a numerical solution to a thermofluid problem, and are therefore 

not analytical, these methods can not be used. For constrained problems, a feasible 

search direction that points toward an increasing objective function while satisfying the 

constraint function must be resolved. Rosen's method uses the projection ofthe negative 

of the objective function gradient onto the constraint hyper-plane, ensuring that the 

direction is toward the optimal solution while satisfying multiple inequality constraints. 

However, the effectiveness of this method is confined primarily to problems in which the 
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constraints are aH linear. The sequential quadratic programming method, which is also 

known as the projected Lagrangian method, is one of the most recently developed and 

perhaps one of the best methods in optimization. It is a generalization of Newton's 

method for unconstrained optimization, in that it maximizes (or minimizes) a quadratic 

model (sub-problem) of the problem. If the constraints are explicit functions of the 

design variables, it is possible to perform a transformation of the design variables such 

that the constraints are satisfied automatically, and the problem becomes an 

unconstrained one. The reader is referred to the work of Rao (1996) for more details on 

the methods outlined in this paragraph. 

Another class of search methods is based on the genetic, or evolutionary, algorithm. It 

can be seen as a blend between direct and guided search techniques: akin to guided 

methods, the search direction is not chosen arbitrarily, and the possible movement and 

step sizes are restricted, as in the case of direct methods. It searches for the optimum by 

mimicking evolutionary principles and chromosomal processing observed in natural 

genetics: reproduction, crossover, and mutation toward an improved state until the 

optimal state is reached. 

Most of the recently proposed search techniques in optimization are variations of the 

evolution algorithm, which are also known as metaheuristic methods [Onwubolu and 

Babu (2004)]. Among these, the self-organizing migrating algorithm is a more efficient 

variation of the genetic algorithm - the difference being that it considers the mutation of 

a group of individuals (solutions) rather than that of a single individual (solution). The 

memetic algorithm, developed in the late 1980s, includes the concept of competition 

between individuals to promote genetic improvement. Scatter se arch and path relinking 

algorithms are evolutionary methods that construct solutions by combining others by 

means of strategie design that exploit the knowledge of the problem considered. Other 

evolution algorithms include the ant colony optimization algorithm, the differential 

evolution algorithm, and the discrete particle swarm optimization algorithm. The reader 

is referred to the work of Onwubolu and Babu (2004) for more information on these 

techniques. 
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The optimization problem of interest in this work is a static problem, since the optimal 

duct shape is to be obtained only once for each duct. It is also non-linear, since the 

objective function(s) and the constraint(s) vary in a very non-linear manner with changes 

of each of the design variables considered. Moreover, the problem is one of constrained 

optimization, since an objective function is optimized while satisfying an equality 

constraint. Considering these characteristics of the problem, the se arch method adopted 

here is based on the gradient method with an adaptive step size. This method was chosen 

not only because of the nature of the problem, but also for efficiency reasons, since the 

computation of the objective and constraint functions requires the solution to the direct 

thermofluid problem, as described in Chapters 2 and 3. With the chosen method, the 

increase in computational cost associated with the calculation of the gradient is more than 

offset by the reductions in these costs provided by the knowledge of optimal direction 

and the use of an adaptive step size. 

4.2 ApPROXIMATION OF THE FIN SHAPE 

In this section, the method used to approximate, control, and modify the shape of the fin 

is presented. This method applies to the internaI fins present in the circular duct only; in 

the case of the rectangular and triangular plate-fin ducts, only fins of straight plate-like 

shape are considered. 

In order to be able to modify the shape of the fin, the interface between the fin and the 

fluid region of the ducts must first be described mathematically, in order to attain control 

over its shape. A polynomial representation of this interface is often inefficient or 

unsuitable, as discussed in the work of Piegl and Tiller (1997), for the following reasons: 

• A high-degree polynomial is required when there are many constraints: a n-l 

degree polynomial is needed to pass through n points; 

• A high-degree polynomial is required to accurately fit sorne complex shapes; 
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• High-degree polynomials are inefficient to process and can lead to numerical 

instabilities; 

• Single-segment curves are not well-suited to interactive shape design. 

In order to overcome such barriers, a common practice is to split the curve into multiple 

piecewise polynomials or piecewise rational curves. By setting rules that ensure 

continuity and smoothness at the location where these curves meet (such as continuity of 

second and third derivatives), it becomes possible, by controlling the location of these 

meeting points, to shape the curve as desired, with a greater control on local portions of 

the curve. Such curves are called splines. They are the mathematical equivalent of long 

flexible strips of wood used by ship builders, which are also called splines. On a spline 

curve, the locations in space where the piecewise curves meet are called the control 

points. The list of all the control points for a curve can be conveniently expressed in 

vector form as follows: 

(4.1) 

The polygon whose summits are the control points is called the control polygon (see 

Figure 4.1). A useful and more commonly used variation of a spline curve is aB-spline 

curve, for which each control point is associated with a basis function. These basis 

functions define the portion of the curve that is affected by each control point. By setting 

the basis functions of each control point adequately, it becomes possible - by moving 

the location of a given control point - to modify the shape of the curve locally (that is, 

only the portion of the curve close to the control point is affected). On aB-spline curve, 

each control point affects a user defined portion of the curve and they all have the same 

weights. 

4.2.1 The NURBS Curve 

A generalised version of aB-spline is the so-called non-uniform rational B-spline 

(NURBS) curve. A NURBS curve is defined by its order, a set of weighted control 

points, and a knot vector. The primary difference in comparison to aB-spline is the 

weighting of the control points, which makes NURBS curves rational. One of the 

advantages of NURBS curves (and B-spline curves in general) is that they offer a way to 
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represent arbitrary shapes while maintaining mathematical exactness and resolution 

independence. Among their useful properties are the following: 

• They can represent virtually any desired shape, from points, straight lines, and 

polylines, to conic sections (circles, ellipses, parabolas, and hyperbolas), to free­

form curves with arbitrary shapes; 

• They provide great control over the shape of the curve. The set of control points 

and knots, which guide the shape of the curve, can be directly manipulated to 

control its smoothness and curvature; 

• They can represent very complex shapes with remarkably little data. 

NURBS curves evolve along one parametric direction: u. The knot vector is a sequence 

of parameter values that determine where and how the control points affect the NURBS 

curve along its parametric length. It is defined as follows: 

O~u ~ 1 (4.2) 

The number of knots is always equal to the number of control points, minus the curve 

degree, plus one. The values of the knot vector must be in ascending order, so, for 

example, [0, 0, Y4, ~, %, 1] is valid while [0, Y4, %, ~, 1, 1] is not. Even if only the ratios 

of the difference between the knot values matter, their values are kept inclusively 

between 0 and 1 to be consistent with the parametric representation of the curve, which is 

also kept between 0 and 1. Further, no knot value is allowed to have so many duplicates 

that it occurs more times than the degree of the curve. Knot vectors are generally placed 

into one of three categories: uniform, open uniform, or non-uniform (the most general 

case). In a uniform knot vector, the knot spacing between every knot is uniform and 

ti+1 - ti = constant, Vi. An open uniform knot vector is a uniform knot vector, but with 

k equal knots at both ends: 

ti = tl , i ~ k 

ti+1 - ti = constant, k ~ i < n + 2 (4.3) 

t -t i~n+2 i - k+(n+I)' 
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Here, the fact of having multiple identical knots at both ends of the vector ensures that 

the two extremities of the curves coincide with the two control points at both ends of the 

control polygon and tangentially to it. A non-uniform knot vector is the general case, the 

only constraint being t;+1 :::;; t;, Vi. This type of knot vector is the most flexible, since 

every control point Can act on a custom portion of the curve, and by adding identical 

knots at a given parametric location on the curve, discontinuities can be obtained. For 

most applications with a smooth continuous curve with no sharp corners, a uniform knot 

vector is adequate, since controlling the shape with the number and position of the 

control points and their weights can fit almost any shape. This type of knot vector is 

implemented to approximate the fin shape in this study. 

The arder of a NURBS curve defines the number of nearby control points that influence 

any given control point. The curve is represented mathematically by a polynomial having 

a degree one less than the order of the curve. Hence, second-order curves (which are 

represented by linear polynomials) are called linear curves and fourth-order curves are 

called cubic curves. The number of control points must be greater than or equal to the 

order of the curve. In practice, fourth order (cubic) NURBS curves are sufficient to fit 

almost any shapes and are the most commonly used. A i h degree NURBS curve is 

defined by: 

n 

LN;,p(u)w;P; 
ecu) = ..:.::;=~o ----

n 

"N (u)w L...J I,p 1 

;=0 

0:::;; u:::;; 1 (4.4) 

where the {P;} are the control points (forming a control polygon), the {w;l are the 

weights associated with each control points, and the {N;,/u)} are the pth degree B-spline 

basis functions associated with each control point and defined on the following open 

uniform knot vector: 

U = {a, ... ,a,up+p""um_p_pb, ... ,b} 
~ ~ 

(4.5) 
p+1 p+1 
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where a = 0, b = 1 and w; > 0 for aIl i. Again, the fact that the knot situated at both ends 

of the vector are repeated p + 1 times ensures that the end points of the curve faIls on the 

end control points tangentially to the two end portions of the control polygon. Figure 4.1 

shows the impact of varying the weight of a control point, while aIl other control points 

have their weights fixed at 1.0, on an open uniform third degree NURBS curve. 

Setting: 

W3 = 1.0 

4-1---- W3 = 2.0 

W3 = 0.5 

Figure 4.1 A cubic NURBS curve with W3 varying 

N;,p(u)W; 
R;,/u) = -n-:":""'---

LNj,p(u)wj 
j=O 

aIlows the rewriting of equation (4.4) in the foIlowing form: 

n 

ecu) = LR;,/u)P; 
;=0 

(4.6) 

(4.7) 

where the {R;,p(u)} are the rational basis functions of the NURBS curve. They are 

rational functions on U E [0,1]. In principle, the basis functions can be defined in any 

way, as long as they provide the information about the type and range of influence of 

each control point on the curve. The next section describes the basis functions 

implemented in this work. 
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4.2.2 The Basis Functions 

There are a number of ways of prescribing the basis functions needed to set the effect of 

each control point on the curve. Here, a recurrence formula is used, because it is 

convenient for computer implementation. Thus, the basis functions are defined as 

follows: 

NiO(u) = {O , 1 
'f < < 1 U i - U - U i+1 

otherwise 
(4.8) 

Note: 

• Ni,o (u) is a step function equal to 1 on the half open interval U E [ui ,Ui+1 ] ; 

• For p > 0, N;,p (u) is a linear combination oftwo (p -1) -degree basis functions; 

• Ni,p (u) are piecewise polynomials defined on the entire range of the parametric 

variable u; 

• The computation of a set of basis function requires specification of the knot 

vector U and the degree p. 

Figure 4.2 presents an example of the 3rd degree basis functions (p = 3 ) for 6 control 

points associated with the knot vector U = {O,O,O,O,~,~,I,I,I,I}. Note that for every 

value of U E [0,1], the sum of every basis functions always sums up to 1, which means 

that every point on the curve is influenced by the corresponding fraction of the 

surrounding control points. AIso, since there are multiple knots for the two end-control 

points, the basis functions NI,3 and N6,3 ensure that only the end control points influence 

the curve at its two ends. 
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Figure 4.2 Basis functions for an open, uniform, rational curve 

with 6 control points 
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In the next subsection, the application of a NURBS curve to obtain a conveniently 

modifiable fin shape is presented. 

4.2.3 Approximation of the Fin Shape by a NURBS Curve 

Figure 4.3 shows the control polygon and its associated open uniform rational curve that 

is used to approximate the shape of the fin, using 6 control points for the demonstration . 

...... ...... 

Figure 4.3 Control points approximation of the fin shape 

for the circular duct 

...... 

The position of each control point Pi is defined by its axial distance from the wall of the 

circular duct side, ri, and its elevation above the fin central symmetry axis, hi. The first 

control point, Pl, is situated directly on the duct wall and its height hl sets the fin width at 



65 

the base. The last control point, P n, is situated directly on the fin central symmetry axis 

so that its height hn is 0 and its radial position, r n, is equal to the length of the fin, f.t. The 

radial positions of the remaining interior control points, ri, are set uniformly within the 

fin length, and the choice of their heights, hi, depend on the desired fin shape. 

Once the position of each control point is set, the NURBS curve is computed, and the 

position of each grid point (no de) along the fin is interpolated equidistantly on the 

NURBS curve. Then, the nodes on the duct wall are also interpolated equidistantly 

between the first control point and the bottom symmetry plane. The position of the 

remaining interior nodes is interpolated between the surrounding bounding nodes (see 

section 3.6.4 for sorne more details). 

It is possible, by changing the following parameters, to modify the shape of the fin 

according to the configuration presented in Figure 4.3: 

• The number of control points, n; 

• The height of the first (n -1) control points, hi; 

• The radial position of the nth control point, r n; 

• The weight, Wi, of each control point. 

The radial positions of the interior control points are kept equidistant because the same 

effect can be obtained by changing the quantity and/or the individual weight of the 

control points. The parameters presented above are the ones that are left available to the 

optimization algorithm, in order to search for an optimal shape, as presented in the 

following sections. 

The number of control points that were used to optimize the fin shape In the 

demonstration problems is discussed and validated in Chapter 5. 

4.3 FORMULATION OF THE QPTIMIZATION PROBLEM 

AIl optimization problems have in common the goal of finding the values of a list of 

variables that will optimize a certain objective function. As was stated in section 4.1, the 
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problems to be optimized in this study are static, non-linear, multivariable problems with 

two different objective functions (specifie to the two different thermal boundary 

conditions of interest), subject to an equality constraint. The mathematical formulation of 

such an optimization problem can be expressed in the following form: 

subject to the constraint: 

Xl 

X2 Find X = which maxirnizesf(X) 

g(X) = constant 

(4.9) 

(4.1 0) 

where X is a n-dimensional vector called the design vector containing the design 

variables, f(X) is the objectivefunction, and g(X) is the equality constraintfunction. 

Other classes of optimization problems can involve multiple objective functions, the 

minimization instead of the maximization of the objective function(s), multiple equality 

constraints, one or more inequality constraints, or the absence of any constraint (which 

becomes an unconstrained optimization problem). These variations of the optimization 

problem are not pertinent to this work and the interested reader is referred to the work of 

Rao (1996) for complementary information. 

The designs variables, the objective functions, and the equality constraint considered in 

this studyare presented concisely in the following subsections. 

4.3.1 The Design Variables 

In the process of designing an engineering system or component, there is a set of 

quantities that can be viewed as variables. Given a set of constraints and conditions, 

these quantities take on specific values that define the characteristics of the system or 

component in question. In general, certain quantities are fixed and can not be changed. 

The other quantities are treated as variables in the design process and are called the 
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design variables: Xi' where i = 1,2, ... , n, and n is the total number of variables. These 

design variables are collectively represented as a design vector: 

(4.11) 

There are no restrictions on the number or type of variables. If an n-dimensional space 

with each coordinate axis representing a design variable is considered, the space is called 

the design space, and each point X in it is called a design point and represents each 

possible or impossible solution to the optimization problem. The solution to the 

optimization problem is expressed as an optimal value of the design vector X. For a 

rectangular plate-fin duct of fixed width, for example, the design variables could be the 

thickness of the fin and the height of the duct (see Figure 3.10), and the corresponding 

design vector would be: 

X = {trec1 
} 

Hrecl 

(4.12) 

For an intemally finned circular duct, the design variables could be the height of the first 

(n -1) control points above the fin central axis, and the length of the fin for the nth 

control point ( If = rn , see Figure 4.3): 

~ 
~ 

X= (4.13) 

hn_l 

If 

In most optimization problems, the dimensional inhomogeneity of the design variables 

leads to a situation of non-Euclidian geometry [Seireg and Rodriguez (1997)]. An 

example would be the optimization of the fluid bearing problem, where the design 

variables may be the shaft speed with magnitudes of the order of 103
, and fluid viscosity 
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with magnitudes in the order of 10-6• In such a case, if the variables are not properly 

scaled, the gradient (and thus the search direction) is distorted, and the convergence 

would be very slow, if not absent. In order to scale the design variables, a minimum and 

maximum value must be provided for each variable, and its value can only be inc1usively 

within those two limits. They are set either by physicallimits (for example, a length can 

not be lower than 0) or by structural integrity requirements (for example, a minimum 

thickness), and depend on the problem being optimized. Once the minimum and/or 

maximum limits are provided, the range between these two limits is scaled between 0 and 

1. The transformation for this scaling is linear and is: 

(4.14) 

An example of such a scaling is presented in the following table. 

Table 4.1 Example of scaling for a design variable 

Min 6.35E-05 0.000 

CUITent 1.83E-03 0.478 

Max 3.77E-03 1.000 

Each variable in the design space is not allowed to take a value outside the range bounded 

by 0 and 1. If any variable in the next step in the optimization path is outside this 

allowed range, special care must be taken to ensure that the size and direction of the next 

step always lead back inside this domain. This special case of domain boundary 

treatment is elaborated further in section 4.4.3. This procedure is a way of indirectly 

taking into account the various physical constraints associated with each design variable. 

The optimization algorithm only deals with non-dimensionalized design variables. Every 

time the algorithm needs to obtain the value of the objective function or the constraint 

function, the following procedure is used: 

1. The dimensional versions of the design variables are computed with equation 

(4.14); 
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2. The direct thermofluid problem is solved using the CVFDM or CVFEM described 

in Chapter 3; 

3. The objective function and the constraint function are computed using the 

solution from step 2; 

4. The variables are nondimensionalized again, and the control is given back to the 

optimization algorithm. 

4.3.2 Objective Functions 

The goal of any design procedure is to find an acceptable or adequate design which 

satisfies the functional and other requirements of the problem in question. In general, 

there will be more than one acceptable design, and the best one must be chosen among 

them. Thus, a criterion has to be prescribed for comparing the different designs and 

choosing the best one. Such a criterion, with respect to which the design is to be 

optimized, is called the objective function. It is a function of the design variables and 

takes a finite value for each point in the design space. The choice of the objective 

function is govemed by the nature of the problem. For instance, the objective is often 

taken as the minimization of weight in aircraft and aerospace design. In can also be the 

maximization of efficiency in a given mechanical or process design. 

For the optimization problem studied here, the goal is to find the best plate-fin duct 

shape, or design, that provides the best thermal performance for a given operating 

condition. This thermal performance has to be maximized, and is thus the criterion with 

respect to which the optimal design is sought. As was stated earlier, two different 

thermal boundary conditions are considered in this work; thus, two distinct objective 

functions have to be defined and treated as two separate optimization problems. The 

expressions for the derivation of the objective function for the two thermal boundary 

conditions considered are now presented. 



4.3.2.1 

70 

Objective function for the thermal boundary condition H: uniform 

heat input per unit axial length and uniform cross-section al duct wall 

temperature 

For this thermal boundary condition (of uniform heat input per unit axial length and 

uniform cross-sectional duct wall temperature), all temperature in a given cross section of 

the duct rises linearly with z, and q: is constant everywhere. As a result, the average 

heat transfer coefficient, hav = qw iJ periwred , can only be increased by either: 
Tw - I;, 

decreasing the wetted perimeter; or decreasing (Tw - I;, ). In this sense, maximizing the 

average heat transfer coefficient is equivalent to minimizing (Tw - I;,) - or, in other 

words, maximizing 1/ (Tw - I;, ) . A dimensionless equivalent to this quantity must be 

obtained since the direct problem is solved in dimensionless form. The dimensionless 

bulk temperature is equal to: 

(4.15) 

Since q~ / k J is constant throughout the duct, the objective stated above is equivalent to 

maximizing q ~ / k J / (Tw - I;, ) , or maximizing 1/ Ob' The average N usselt number for this 

boundary condition is the following (see Chapter 2): 

(4.16) 

Thus, the objective function for this H thermal boundary condition is the following: 

fH(X) = Nu~ 
DH/ 

!Periwelled 

(4.17) 

For a given duct shape subject to this thermal boundary condition, maximizing fH (X) 

leads to a duct shape that ensures the optimal thermal performance. 
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Objective function for the thermal boundary condition T: constant 

duct wall temperature 

For this thermal boundary condition - constant duct wall temperature - the average 

heat flux at the wall and all temperature differences (Tw - T) in the fluid region decrease 

in exponentially along the duct axis in the thermally fully developed region. In this 

problem, the objective function is chosen to be q~ /(Tw -7;,), so that the optimal solution 

maximizes q~ and minimizes (Tw - 7;,). Using the definition of the average heat transfer 

coefficient, the Nusselt number can be expressed as follows (see Chapter 2): 

(4.18) 

Isolating ( qw ) in equation (4.18): 
Tw -7;, 

(4.19) 

With the remaining terms on the right side of equation (4.19), an expression for the 

objective function for the T thermal boundary condition is obtained: 

fT (X) = Nu~v 
DH/ 
1 Periwetted 

(4.20) 

k f has been omitted from this objective function because it is constant and, therefore, has 

only a scaling effect on it and it does not change the location of the optimum for fT (X) . 

For a given duct shape subject to this thermal boundary condition, maximizing fT (X) 

leads to a duct shape that ensures the optimal thermal performance. 
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Equations (4.17) and (4.20) are the objective functions for a single duct subject to the two 

different thermal boundary conditions considered. They are used conjointly with the 

appropriate constraint functions, which are presented in section 4.3.3. As dimensionless 

mathematical models are used in each case, the circular plate-fin duct shapes obtained by 

the optimization of the aforementioned objective functions are valid throughout the 

length of the ducts in the fully developed regions, regardless of the local bulk 

temperature. 

For the rectangular and triangular ducts, the number of ducts in a unit height of the heat 

exchanger varies during the optimization process. The more duct-fin combinations are 

present in a unit height, the more heat can be transferred from the plates, and that must be 

taken into account in the objective functions. In sections 4.3.2.3 and 4.3.2.4, modified 

versions of the objective functions are presented, specific to rectangular and triangular 

plate-fin ducts, respectively. 

4.3.2.3 Objective functions for the rectangular plate-fin duct 

The maximization of the two objective functions given in the previous subsection is akin 

to the maximization of the heat transfer coefficient, hav ' for a single duct. For the case of 

rectangular plate-fin ducts, the number of ducts per unit height of the heat exchanger 

must be factored into the objective functions. The number of rectangular plate-fin duct 

combinations present in a unit height ofthe heat ex changer is: 

1 
(4.21) 

nrect = (2H ) 
rect + trect 

where the 2 in the denominator accounts for the fact that the computational domain is 

limited to one quarter of the domain (half of the height by half of the length). The 

modified versions of the objective functions are obtained by multiplying equations (4.17) 

and (4.20) by equation (4.21). Thus, the resulting modified objective functions for the 

rectangular plate-fin ducts are the following: 
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l'H (X) Nu! 
J reci = nreci • DH / 

/ Periwetted 

(4.22) 

j,T (X) Nu~v 
reci = nrect • DH / 

1 Periwetted 

(4.23) 

4.3.2.4 Objective function for the triangular du ct 

For the triangular duct, the objective functions must also account for the total number of 

duct-fin combinations present in a unit height of heat exchanger. The component of the 

half-fin thickness t in the y direction is given by: 

ttri 
ttri y =-­

- cosr 
(4.24) 

where r is the halfangle of the triangular duct (see Figure 3.10). The number of plate­

fin ducts present in a unit height is then given by: 

1 
(4.25) 

The modified objective functions are obtained by multiplying equations (4.17) and (4.20) 

by equation (4.25). The resulting objective functions for the triangular duct are the 

following: 

l'H(X) Nu! 
Jtri = ntri • DH / 

1 Periwetted 

(4.26) 

j,T(X) Nu: 
tri = ntri • DH / 

/ Periwetted 

(4.27) 

4.3.2.5 Objective function for the circular duct 

For the circular duct, the number of ducts in a unit height of heat exchanger is invariant. 

Therefore, the objective functions are the following: 
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{'H (X) = Nu:' 
Je"e DH / 

/ Periwetted 

(4.28) 

{'T (X) Nu: 
Jeire - DH / 

1 Periwetted 

(4.29) 

4.3.3 The Constraint Functions 

In most practical problems, the design variables can not be chosen arbitrarily; rather, they 

have to satisfy certain specified functional and other requirements. The restrictions that 

must be satisfied for a certain design to be acceptable are called the design constraints. 

In heat exchangers, the pumping power that provides the pressure needed to drive the 

flow through it is a crucial factor: 

• Various pie ces of equipment in the process rely on constant operating conditions 

such as flow rate and pressure distribution; 

• Usually, an enhancement in thermal efficiency is desired but not at the expense of 

modifying the equipment that provides the fluid flow, such as fans and pumps. In 

other words, it is important to note that the overall efficiency of a process must 

also account for the total energy input. 

Thus, in this work, the objective was chosen to be the following: identify a duct shape 

that represents the optimal thermal design for a given constant pumping power per unit 

length of duct. By doing so, nothing other than the thermal performance of the heat 

exchanger is affected in the optimizing procedure. The pumping power per unit length 

for the laminar fully-developed flows of interest can be expressed as follows: 

where Ac_s is the total cross-sectional area of the duct(s) for the fluid flow. The 

constraint is that the pumping power per unit length, as given in equation (4.30), must 

remain constant and fixed at a constant value called PPtarget for the solution to be 

acceptable. Knowing the desired pumping power per unit length provides an advantage 
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when choosing the appropriate constraint function. Figure 4.4 shows a function f(x) that 

is an inverse exponential function. In order to find the value of the x that produces a 

certain value of f(x) - in this case f(0.05) - three approach are possible: subtract the 

desired value from f(x) and use the Newton-Rhapson method to find the zero of the 

function; or do the same with the absolute value of this difference; or square the 

difference and use a gradient based method to find the zero. The last method of these 

three approaches is equivalent to the [east-square approximation method. One desirable 

characteristic of this method is that the gradient of this function decreases continuously as 

the algorithm gets doser to the desired value of x; this, in turn, allows the use of a 

gradient-search method with a step size proportional to the gradient. Since the gradient 

keeps decreasing until it becomes null at the desired location, the step size also decreases 

continuously as the desired location is approached, akin to an adaptive step size. 
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Figure 4.4 Choosing the appropriate objective function 

Using the aforementioned least-square approximation, the constraint function can be 

expressed as follows: 

g(X) = (pp - PPtargel t (4.31) 

where pp is given by equation (4.30), and PPlorgel is the known, or desired, value of the 

pumping power per unit length of the duct. Thus, 



76 

(4.32) 

g(X) is a (n -1) -dimensional hyper-plane in the n-dimensional hyperspace spanned by 

the design variables. For a problem with two design variables (two-dimensional space), 

the constraint is a line. For a problem with three design variables, the constraint is a 

surface--curved or planar-Iocated somewhere in that space, and so on. Regardless of 

the number of design variables, the optimum must lie on that hyper-plane in order to 

satisfy the constraint function. 

The cross sectional area Ac_s in equation (4.32) depends on the problem being optimized. 

For the rectangular and the triangular ducts, the size of the duct is a design variable and 

the total number of ducts in a unit height of heat exchanger varies. As a result, specific 

constraints functions must be derived for each duct considered. They are presented in the 

following sub sections. 

4.3.3.2 Constraint function for the rectangular duct 

For the rectangular duct, a given height of plate-fin heat exchanger is composed of a 

stacked arrangement of consecutive ducts separated by fins. By varying the fin thickness 

and/or the height of each of the ducts, the total cross-sectional area for the flow in a unit 

height of the heat exchanger will vary also. Therefore, in order to force a given quantity 

of fluid through it, the pumping power must vary as weIl. Thus, the constraint of 

constant pumping power per unit Iength must take into account the presence of multiple 

consecutive plate-fin ducts per unit height of the heat exchanger. The number of such 

ducts present in a unit height is given by equation (4.21). The total cross-sectional area 

for fluid flow in a unit height of the heat exchanger, again considering that only one 

quarter of the cross section is taken as the computational domain, is given by the 

following expression: 

(4.33) 

Thus, the following constraint function is used for rectangular plate-fin ducts: 
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( 
dp )2 

grec,(X)= - dz wav4(Wrecl·Hrec/)nrecl-PPlargel =0 (4.34) 

4.3.3.3 Constraint function for the triangular du ct 

For the triangular duct, the same reasoning applies as for the rectangular duct, since 

the ducts are in essence the result of a zigzag-shaped fin placed between two plates. The 

total pumping power in a unit height of heat exchanger depends on the angle of the 

zigzag and the thickness of the fins. The number of plate-fin ducts present in a unit 

height is given by equation (4.25). The total cross-sectional area for flow in a unit height 

of the heat exchanger is given by the following expression: 

(4.35) 

Thus, the following constraint function is used for the triangular plate-fin ducts: 

X = --w W·H n - = ( 
dp )2 

glri () dz av (ITI Iri) Iri PPlargel 0 (4.36) 

4.3.3.4 Constraint function for the circular duct 

F or the circular duct, the number of ducts in a unit height of heat exchanger is fixed: 

therefore, the total pumping power is only a fixed multiple of the pumping power for a 

single duct. Thus, the total number of ducts only has a scaling effect on the constrain 

function and does not change the location of the optimum. Thus, the constraint function 

for the circular plate-fin ducts is the following: 

( 
dp )2 

g circ (X) = - dz Wav Ac_s - PPlargel = 0 (4.37) 

where Ac_s is the cross sectional area for fluid flow in a single circular plate-fin duct. 

4.4 QpTIMIZA TION ALGORITHM 

The proposed optimization algorithm is a variation of a simplified version of the Rosen's 

gradient projection method [Rao (1996)], which, in tum, is based on the more general 

class of gradient, or steepest descent, methods [Converse (1970), Dixon (1972), 

Pironneau (1994), Rao (1996), Bryson (1999), Mohammadi & Pironneau (2001)]. The 
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method is divided into two main parts: first, the satisfaction of the constraint function; 

and second, the optimization of the objective function. A distinction is made between 

these two parts because the corresponding search direction and step size are different. 

These two parts of the optimization algorithm are presented in sections 4.4.1 and 4.4.2. 

Then the domain boundary treatment used in cases where the next step is outside the 

design space is presented in section 4.4.3. Finally, the complete optimization algorithm 

is summarized section 4.4.4. 

4.4.1 Searching for the Constraint 

The initial point can be anywhere in the design space and, other than in rare cases, will 

not be located on the constraint hyper-plane (or constraint iso-plane). This me ans that 

before searching for the optimal design point, the constraint must be first satisfied by 

reaching the constraint hyper-plane. Only then is it possible to search for the optimum 

while staying on this hyper-plane. In that sense, the allowed design space becomes 

restricted to a (n -1) -dimensional hyper-plane located inside the n-dimensional design 

space, and can be visualized in Figure 4.5, where n = 2. 

, , 
, , 

---

, 

X2 

---

---Constraint function 
hyper-planes 

- Desired constraint 
hyper-plane 

- - - - - - Objective function 
hyper-planes 

• Otimization path 

Figure 4.5 Path toward the desired constraint hyper-plane 

As was stated in section 4.3.3, because of the fact that the constraint function is quadratic, 

the gradient decreases continuously toward the desired location, and the step size can be 
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set proportional to the gradient. The next step, or the design point following the CUITent 

one, is defined as follows: 

(4.38) 

where X; is the CUITent design point, X;+l is the next design point, S; is the normalized 

search direction vector for the next design point, and À; it the associated step size. The 

gradient vector of a function, here the constraint function, is defined as: 

(4.39) 

The norm of this vector is: 

1 

IIVg(X,lll = [ ~( ~ JJ (4.40) 

Since the gradient is the direction of steepest ascent, its negative value must be used in 

order to get the direction of the steepest des cent, since the constraint function is 

V g(X;) = o. The normalized gradient-based search direction is obtained with equations 

(4.39) and (4.40): 

S =_ Vg(X;) 

; IIV g(X; )11 
(4.41) 

The step size is set proportional to the norm (length of a vector) of the gradient 

normalized with the norrn of the initial gradient, and scaled with a desired initial step size 

(4.42) 

This approach makes it possible to start with a desired initial step size, then, for each 

step, the step size decreases proportionally to the gradient, which decrease as the 

constraint hyper-plane is approached. The resulting behaviour for this part of the 
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algorithm can be se en again in Figure 4.5: the search path gets c10ser and c10ser to the 

constant constraint hyper-plane until the following proximity criterion is satisfied: 

(4.43) 

Once this criterion is satisfied, the design point is considered to have satisfied the 

constraint function, and the search direction can be set toward the optimum. This second 

part of the optimization algorithm is presented in the following section. 

4.4.2 Searching for the Optimum 

Once the constraint function is satisfied, efforts are directed towards finding the 

optimum. In order to obtain a search direction that allows an increase in the value of the 

objective function while at the same time satisfying constraint function, a projection of 

Vj(Xi ) onto the constraint hyper-plane, which is normal to Vg(X;} , is applied. This 

projected vector is called Vjproi (Xi)' and is defined as: 

(4.44) 

where P is the projection matrix, defined as: 

(4.45) 

A in equation (4.45) is the basis that defines the constraint hyper-plane. This basis is a 

( n -1) x n matrix composed of the (n -1) vectors which lie on the surface of the 

constraint hyper-plane. This projection matrix does not require the basis vectors to be 

orthogonal. Therefore, they are obtained from the vector normal to the hyper-plane, 

V g (Xi) , which equally defines the hyper-plane in question. If the components of this 

normal vector are taken to be individual vectors - each being in the direction of their 

corresponding design space axis - then the vector resulting from the subtraction of any 

of these component vectors will lie on the surface of the constraint hyper-plane, and, 

therefore, is a candidate for a basis vector. These (n -1) basis vectors are given by the 

following equation: 
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l~j~n-l (4.46) 

The basis matrix that is composed of the se vectors is then defined as follows: 

(4.47) 

This projection scheme is graphically presented in a convenient three-dimensional view 

(n = 3) in Figure 4.6. 

Hyper-plane normal 

to Vg(X;) 

, L_------__ ,' 

Constant g (X; ) 
hyper-plane 

Vg(XJ 

Vlpro} (X;) 
!!V Ipro} (X; )!! 

Figure 4.6 Projection of Vj(X;) on the hyper-plane normal to Vg(X;) 

for n = 3 

Once the gradient vector has been projected on the constraint hyper-plane, its length is 

normalized and scaled to Àob}' Therefore, the search direction is: 

s = Vlpro}(X;) 

1 !!Vlpro/X;)!! 
(4.48) 

and the step size is: 
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(4.49) 

The resulting search direction satisfies the constraint function (that is, the design point is 

located within the specified tolerance, Gconsl' of the constraint hyper-plane), and it also 

guarantees an increase in the objective function at the next step or design point. Figure 

4.7 shows the behaviour of a sample optimization path in a two-dimensional view, where 

the two main parts of the algorithm can be seen: first, the path is set toward the constraint 

hyper-plane; and once it is close enough to this constraint hyper-plane, it switches toward 

the optimum by performing the projection of the objective function gradient onto the 

hyper-plane. 

Figure 4.7 Path toward the optimum 

4.4.3 Design-Space Boundary Treatment 

---Constraint function 
hyper-planes 

- Desired constraint 
hyper-plane 

- - - - - - Objective function 
hyper-planes 

- - "Maximum reachable 
objective function 
hyper-plane 

• Otimization path 

The optimization path, as seen Figure 4.7, can sometimes lead outside the design space. 

This would be the case if the desired constraint hyper-plane were to be close to a limit, 

that is, Xi = 0 or 1, or if the initial point is close to such a limit. There is always a 

possibility of this situation occurring. Thus, it is important that the proposed 

optimization algorithm be able handle this situation adequately. If the next design point 
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falls outside the design space, it direction of the optimization path must be corrected so 

that this next design point lies within the design space. Moreover, the corrected direction 

must take into account the current state of the optimization procedure: that is, whether it 

is moving towards the constraint hyper-plane or towards the optimum. 

If the current state of the optimization procedure is moving towards the constraint hyper­

plane, the algorithm is navigating freely in the design space: that is, it is not following a 

constraint hyper-plane. Thus, if a design-space boundary is encountered, the step size, 

Aconsl' is conserved, but the search direction, Si' is projected onto the limiting hyper-

plane being crossed xj = (0 or 1) using equation (4.45), as follows: 

p·S 
Si corrected = IIp . S: Il (4.50) 

In this case, the vector needed to get the basis vectors in A has all of its components set to 

o except the component of the limiting hyper-plane being crossed. 

If the CUITent state of the optimizing procedure is moving toward the optimum, not only 

must the corrected vector be tangent to the limiting hyper-plane being crossed, but also it 

must lie on the constraint hyper-plane. This is achieved by tirst setting the components 

of Si and V'g(Xi ) normal to the limiting hyper-plane being crossed to O. This has the 

effect of making these two vectors tangent to the limiting hyper-plane being crossed. 

Then, the tangent version of Si is projected onto the hyper-plane normal to the tangent 

version of V'g(Xi ), again using equation (4.45). This proposed design-space boundary 

treatment ensures that no matter what the current and the next design points are, the 

algorithm searches only inside the design space - thus, constraining the design variables 

within their individual allowable limits. 

4.4.4 Proposed Optimization Aigorithm 

The proposed optimization algorithm tirst aims at satisfying equation (4.43) using the 

method outlined in section 4.4.1. Once this condition is satistied, the algorithm moves 
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the design point in order to maximize the objective function, using the method outlined in 

section 4.4.2. The initial values for the step sizes and the tolerances are the following: 

ÀeonSI = 0.1 

À = Àeonsl 
ob} 2 

Beonsl = 0.02 

B final = 10-
5 

(4.51) 

Up to this point, the tolerance, Beonsl' and the reference step sizes, Àeonsl and ÀOb} , remain 

constant. If the condition f (X;) < f (X;_l) has been satisfied four times in a row (that is, 

in four consecutive iterations), it is assumed that the optimum is somewhere in the 

vicinity of these last four design points. As a consequence, the step sizes À consl and ÀOb} 

are reduced by a factor of three, and the tolerance Bconsl is reduced by a factor of five. 

This has the effect of searching more accurately in the region of the design space 

suspected to contain the optimum, and doser to the constraint hyper-plane. These 

reduction factors were chosen because in numerous preliminary computations they 

allowed the optimum to be reached in a relatively small number of iterations. This step­

size and tolerance reduction process is repeated until the overall tolerance is satisfied, that 

is Bconsl :S; B final: in this case, the algorithm has reached an acceptable solution. Every time 

the design point of the next iteration is determined to be outside the design space, that is, 

0< x} > 1 where 1 :S; j :S; n, the design-space boundary treatment outlined in section 4.4.3 

is used. 

The overall optimization algorithm can be summarized by the following steps: 

1. Start with an initial point Xl' set the initial step sizes Àeonsl and À ob}' and set the 

iteration number as 1; 

2. Calculate the constraint function gradient V g(X;) ; 

3. Test whether or not g(X;):S; Bconsl. If yes, the constraint function is satisfied and 

the search direction can be set toward the projected objective function gradient: 
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move to step 4. If no, the constraint is not satisfied and the search direction must 

be set toward the satisfaction of the constraint: go to step 6; 

4. Calculate the objective function gradient Vf(X
i
); 

5. Calculate the basis A of the constraint hyper-plane defined by its normal vector, 

Vg(XJ, the projection matrix, P = A( AT A t AT, and the normalized projected 

h d· . VI" (X) PVf(Xi ) S '1" ( ) d 1 searc lrectton, J pro} i = Il II· et Si = VJ pro} Xi an Ai = Àob}· Go 
PVf(Xi ) 

to step 7; 

6 S h 1· d h d· . S Vg(XJ d h . et t e norma Ize searc uectton, i = -II Il' an t e step Slze 
Vg(Xi ) 

proportional to the gradient and normalized with the initial step Slze 

7. Test whether or not 0 < Xi + ÀiSi > 1. If yes, the new location is outside the 

design hyperspace, and the direction must be adjusted so that the next step will be 

inside the domain, go to 8. If no, the next step is within the allowed region, go to 

9; 

8. The next step direction vector Si must be projected back into the domain. If the 

current state is towards the constraint hyper-plane, the component of Si that 

crosses the boundary is set to 0, the base matrix A of the hyper-plane defined by 

the vector normal to x} = (0 or 1) is calculated, and the new Si is projected onto 

it. If the current state is toward the optimum, the base matrix A of the constant 

constraint hyper-plane is calculated, and the new Si is projected onto it. In both 

cases, the projection is computed using the matrix P = A( ATA t AT and the new 

normalized projected se arch direction Si = Il! : ~: Il is obtained. Then, go to step 9; 

9. Find the new design variables location as X i+1 = Xi + ÀiSi ; 
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10. Test if f(XJ < f(X;_I)' Ifthis condition has been satisfied four times in a row, 

the search region is refined, by decreasing the step sizes ÂObj and Âconsl ,and also 

the tolerance sconsl' aH by a factor of three. If sconsl ~ S final the optimum has been 

reached: stop. Else, increment the iteration number and go to step 2. 

It is worth mentioning that the condition f (X; ) < f (X;_l) in step 10 ensures that the 

search order can only be decreased once a maximum for the objective function has been 

found. 

The optimization algorithm described above is presented as a flow chart in Figure 4.8. 
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Figure 4.8 Flow chart representation of the proposed optimization algorithm 
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Chapter 5. Results and Discussions 

In this chapter, notes on the computational grids used and the validation of the control­

volume finite difference and the control-volume finite element methods (CVFDM and 

CVFEM, respective1y) described in Chapter 3 are presented first. Following that, the 

proposed optimization methodology is demonstrated in the context of four practical 

cases: a heat exchanger with rectangular plate-fin ducts; a heat exchanger with triangular 

plate-fin ducts; and two different internally finned circular ducts. The results for each of 

these four demonstration problems are presented and discussed concisely in this chapter. 

5.1 VALIDATION OF THE CVFDM AND CVFEM 

Numerous preliminary investigations were done with the CVFDM and CVFEM 

described in Chapter 3 in order to establish suitable computational grids and also validate 

the formulations and computer implementations of these numerical methods. Overview 

of these preliminary investigations and their results are presented in this section. 

5.1.1 Selection of Computational Grids 

The proposed CVFDM and CVFEM were first used to solve steady, laminar, fully­

developed flow and heat transfer problems in a variety of plate-fin ducts: aIl cases 

considered in these investigations were governed by the mathematical models discussed 

in Chapter 2. The duct shapes and problem parameters investigated were similar to those 

used for the practical cases (demonstration problems) discussed later in this chapter. 

Based on these preliminary investigations, computational grids that pro vide a good 

balance between accuracy of the results and the associated computational costs were 

established. In particular, successively finer uniform grids were used with the CVFDM 

and the CVFEM: both these methods are second-order accurate with uniform grids 

[Baliga and Atabaki (2006)]. The results ofthese grid-refinement exercises were used in 

the well-know Richardson extrapolation scheme to obtain essentially grid-independent 

solutions to the problems investigated. Following that, it was established that the 

following relatively modest computational grids (see Figures 3.11 - 3.14 for the 

corresponding patterns) give results that are within 0.05% of the aforementioned 

extrapolated grid-independent solutions: 
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• For the rectangular plate-fin ducts (see Figure 3.11), 20 uniformly spaced nodes 

along the x axis and 20 uniformly spaced nodes along the y axis; 

• For the triangular plate-fin ducts (see Figure 3.12), 40 uniformly spaced nodes 

along the bottom symmetry plane, and also 40 uniformly spaced nodes along the 

plate; 

• For the circular plate-fin ducts with triangular fins (see Figure 3.13),50 uniformly 

spaced nodes the along the bottom symmetry plane, and the corresponding 

number of nodes in the other directions, calculated in accordance with the 

discussion presented in Section 3.6.4. 

5.1.2 Applications to Test Problems and Results 

In order to establish the validity of the formulations and computer implementations of the 

proposed CVFDM and CVFEM, they were used to solve several test problems and the 

computed results were checked against those available in the published literature. In aIl 

cases the above-mentioned computational grids were used. 

The CVFDM was applied to laminar fully-developed flow and heat transfer in straight 

rectangular plate-fin ducts, with aspect ratios of Ar = 0.5, 0.75, and 1.0, and a constant­

property Newtonian fluid. The fins were assigned infinite conductance in these tests, so 

they had the same temperature as the duct walls. The following results were computed: 

ID . Re, Nu~ and Nu~v. These results were then checked against the corresponding 

results available in the work of Shah and London (1978). The results and the 

comparisons are in Tables A.1 and A.2 of Appendix A. They show that the 

aforementioned overall fluid flow and heat transfer results provided by the CVFDM 

agree very weIl with the benchmark values available in Shah and London (1978): the 

absolute percentages differences between the corresponding results are aIl weIl below 

0.5%. 

The CVFEM was applied to laminar fully-developed flow and heat transfer in straight 

triangular plate-fin ducts with the following angles between the fins (see Figure 3.12): 

10°, 30°, 60°, 90°, and 120°. A constant-property Newtonian fluid was considered in 

these tests. In aIl cases, the fins were assigned an infinite conductance. The results 
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obtained for ID . Re and Nu! were compared to those of Shah (1975) and Baliga & 

Arzak (1986). The results for Nu: were compared to those of Schmidt and Newell, as 

found in Shah & London (1978), and Baliga & Arzak (1986). These results and 

comparisons are presented in Tables A.3 and A.4 of Appendix A. Here again, the results 

agree very well with the aforementioned benchmark solutions: in aIl cases, the absolute 

percentage differences between the corresponding results were alliess than 2.5%. 

Laminar fully-developed flow and heat transfer in triangular plate-fin ducts with finite 

values of the fin conductance parameter (n) were investigated using the CVFEM. The 

fluid was Newtonian and was assumed to have constant properties. The results were 

compared to corresponding results of Baliga and Azrak (1986) for n = 1, 2, 5, 10, 25, 

and 00. The results and comparisons are presented in Table A.5 of Appendix A. Again, 

the results agree very well with the benchmark values: in all cases, the absolute 

differences between corresponding results were aIl less than 2%. 

The CVFEM was also applied to laminar fully-developed fluid flow and heat transfer in 

straight intemally finned ducts of circular cross-section; the longitudinal fins were of 

triangular cross-section. Again, a constant-property Newtonian fluid was considered in 

the se tests. The CVFEM results for (Nu! t, (Nu~v t ' and (ID· Re t were compared to 

those of Masliyah, as found in Shah and London (1978). The results and comparisons are 

given in Tables A-6, A-7, A-8, and A-9, and also Figures A-l, A-2, A-3, and A-4 in 

Appendix A. Again, the results yielded by the CVFEM agree very weIl with the 

aforementioned benchmark results: in most cases, the absolute differences between 

corresponding results were alliess than 10%. 

5.2 PRACTICAL CASE 1: QPTIMIZATION OF A HEAT EXCHANGER WITH 

RECTANGULAR PLATE-FIN DUCTS 

This first practical case is used to demonstrate the following capabilities of the proposed 

optimization methodology: 

• Optimization of a heat exchanger with rectangular plate-fin ducts, for three 

different fin materials; 
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• Ability to handle a problem with two design variables. 

First, the solution for the selected baseline problem is presented in section 5.2.1. Then, 

the optimization ofthis baseline problem is presented in section 5.2.2. 

5.2.1 Baseline Problem 

The characteristics of the baseline problem in this case are presented in Table 5.1 (see 

Figure 3.10 for related geometric details and notation). The fin thickness in the baseline 

problem was deliberately chosen to be large with respect to the height of the duct in order 

to allow the optimization procedure to achieve appreciable relative increases of the 

objective function. 

Table 5.1 Geometric dimensions of the baseline problem for Case 1 

2WreCI 1 in (25.4 mm) 

2 Hrecl 0.5 in (12.7 mm) 

trecl 0.25 in (6.35 mm) 

nreCI 52.5 ducts / m 

The three fin materials considered were stainless steel (AISI 302), pure aluminium, and 

pure copper. The corresponding values of the fin conductance, n, for the baseline 

problem, are presented in Table 5.2. 

Table 5.2 Fin conductances for the baseline problem in Case 1 

Material 

Stainless steel 101.08 

Aluminium 1586.49 

Copper 2684.31 

In aIl cases, the Reynolds number was fixed at 100. The corresponding pumping power 

per unit length of duct and a unit height of heat exchanger for the baseline problem was 

computed to be 4.07 x 10-4 W/m. This value was maintained constant (as the constraint) 

during the optimization procedure. 
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5.2.2 Optimization 

Two design variables were considered in this optimization exercise: the height of the 

plate-fin ducts, H rect ; and the thickness of the fins, trect • The width of the ducts was 

considered fixed at the baseline value. The statements of the optimization problems for 

this case are the following: 

Pind X = { trect 
} 

H rect 

h· h .. j,H (X) Nu; w IC maxlffilzes rect = nrect • DH / 

1 Periwelled 

(5.1) 

and 

P· d X {trect } h· h .. j,T (X) Nu~ (5 2) ln = w IC maxlffilzes rect = nrect • D» • 
H rect H 

Periwelled 

Both the optimizations were subjected to the following constraint: 

( 
dp )2 

g rect (X) = - dz Wav 4 (Wrect • H rect ) nrect - PPtarget = 0 (5.3) 

The limits for each of the two aforementioned design variables and also their initial 

values are presented in Table 5.3: 

Table 5.3 Limits and initial values of the design variables in Case 1 

Dimensions [mm] 

Design 
Min Max lnit. value 

variable 

H rect 0.0 127.0 63.5 

t rect 0.0254 2.54 1.283 

The proposed optimization methodology was applied to this case for the two thermal 

boundary conditions (H and T) discussed in Chapter 2. The relative improvements in the 

thermal performance are represented by the ratio of the value of the objective function 

ca1culated for the baseline problem to that achieved in the optimized plate-fin duct: 
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H [/,:Ct (X) lase li ne case 

1]rect = [j,H (X)] 
recl Optimized 

(5.4) 

T [!"~CI (X) JBase line case 

1]rect = [ T X J 
!,.ecl ( ) Optimized 

(5.5) 

The results are presented in Table 5.4. 

Table 5.4 Optimization results for Case 1 

Thermal boundary condition H 

Q Hrecl trecl nrecl 
H 

Material 
pp 1] recl 

[W/m] [-] [mm] [mm] [ducts/m] [-] 

Stainless steel 4.08x 10-4 4.534 14.551 0.3112 67.29 1.1736 

Aluminium 4.08 x 10-4 31.14 14.612 0.1366 67.80 1.1829 

Copper 4.08x 10-4 58.04 14.602 0.1503 67.79 1.1834 

Thermal boundary condition T 

Q Hrecl trecl nrecl 
H 

Material 
pp 1] recl 

[W/m] [-] [mm] [mm] [ducts/m] [-] 

Stainless steel 4.08x 10-4 3.920 14.570 0.2693 67.39 1.1759 

Aluminium 4.08x 10-4 26.35 14.626 0.1156 67.84 1.1839 

Copper 4.08 x 10-4 47.24 14.610 0.1224 67.88 1.1855 

In aH cases, the pumping power is the same as that in the baseline case (constraint), 

which ensures that only the thermal performance of the heat exchanger is affected. 

The best improvement in the thermal performance was obtained with the copper fins for 

both of the thermal boundary conditions, H and T: with relative increases of 18.34% and 

18.55%, respectively. These results can be explained by noting that copper has the 

highest thermal conductivity of the three fin material considered; for copper, the fin 

thickness could be significantly lowered before there were noticeable decreases in the 

temperature along its length. Not surprisingly, the optimized ducts with fins made of 

stainless steel, which has the lowest thermal conductivity of the three materials 
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considered, yielded the lowest relative increases in thermal performance: 17.36% and 

17.59% for the H and T boundary conditions, respectively. These improvements show 

that the design of the baseline problem was not optimal. In aH cases, the optimal duct 

height H rect turned out to be approximately 14.6 mm. The relative invariance of this 

height with respect to the fin material used and also to the thermal boundary conditions is 

because H rect is much greater than t rect ' and, therefore, it has a significantly greater 

impact on the variation of the pumping power in the optimization process: thus, the 

optimal value of Hrect is mostly govemed by the constant-pumping-power constraint and 

has relatively little effect on the thermal performance, as opposed to t rect which has only 

very limited effect on the pumping power but greatly affects the thermal performance. 

The optimized dimensionless fin temperature distributions for each optimized solutions 

are presented in Figure 5.2: the fin temperature varies the most along its length for 

stainless steel (the material with the lowest thermal conductivity) and the least for copper 

(the material with the highest thermal conductivity). 
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Figure 5.1 Optimized dimensionless fin temperature distributions for Case 1 
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5.3 PRACTICAL CASE 2: QPTIMIZATION OF A HEAT EXCHANGER WITH 

TRIANGULAR PLATE-FIN DUCTS 

This second practical case is used to demonstrate the following capabilities of the 

proposed optimization methodology: 

• Optimization ofheat exchangers with triangular plate-fin ducts, for three different 

fin materials; 

• Achieve the same optimal solution using different, but essentially equivalent, 

design variables. 

First, the baseline problem for this case is presented in section 5.3.1. Then, the 

optimization of this baseline problem is presented in section 5.3.2. 

5.3.1 Baseline Problem 

The characteristics of the baseline problem in this case are presented in Table 5.5 (see 

Figure 3.10 for related geometric details and notation). For the preceding case, the 

baseline fin thickness was deliberately chosen to be quite large so that an appreciable 

improvement of the thermal performance could be observed in the optimized solutions. 

For the current practical case, the fin thickness was chosen to be much smaller, such that 

for a given pumping power, the baseline problem was already quite weIl designed. 

Therefore, the improvements in the relative thermal performance of the optimized 

solutions for this case were expected to be smaller than those achieved in the previous 

case. 

Table 5.5 Geometrie dimensions ofthe baseline problem for Case 2 

WreC1 1 in (25.4 mm) 

t recl 0.0787 in (2.0 mm) 

nreCI 31. 61 ducts / m 
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The three fin materials considered are again stainless steel (AISI 302), pure aluminium, 

and pure copper. The corresponding values of n for the baseline problem are presented 

in Table 5.6. 

Table 5.6 Fin conductances for the baseline problem in Case 2 

Material 

Stainless steel 42.45 

Aluminium 666.24 

Copper 1127.27 

In aIl cases, the Reynolds number was fixed at 100 and the corresponding pumping 

power per unit length of the duct and for a unit height of heat exchanger for the baseline 

problem was computed to be 2.433 x 10-4 W/m. This was kept the same during the 

optimization procedure (constraint). 

5.3.2 Optimization 

The design variables chosen for the optimization of the baseline problem in this case 

were the aperture angle between the fins of the triangular plate-fin ducts, 2r, and the fin 

thickness, t lri . Again, the distance between the plates, W,ri' was kept constant at its value 

in the baseline problem. The statements of the optimization problems in this case are the 

following: 

F· d X {tlri } h' h " l'H (X) Nu~ (5 6) ln = 2r w IC maXlmlzes Jtri = nlri ' DH / . ' 

jPenwe/led 

and 

F' d X {tlri } h' h " l'T (X) Nu~ (5 7) 
ln = 2r w IC maXlmlzes llri = nlri ' DH / . ' 

jPenwe/led 

Both these optimizations are subjected to the following constraint: 
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(5.8) 

The limits for each design variable and also their initial values are presented in Table 5.7. 

Table 5.7 Limits and initial values of the design variables in Case 2 

Dimensions (2r [0], trecl [mm]) 

Design 
Min Max lnit. value 

variables 

2r 20.0 120.0 70.0 

t lri 0.1 5.08 3.04 

The proposed optimization method was applied to the two thermal boundary conditions 

(H and T) discussed in Chapter 2. The relative improvements in the thermal performance 

of the optimized solutions are again represented by the ratios of the value of objective 

function ca1culated for the baseline problem to that achieved in the optimized plate-fin 

ducts: 

7]H = [1,: (X) ]Base !ine case 

/ri [j,H (X)] 
/ri Optimized 

(5.9) 

7]T = [I,~ (X) ] Base !ine case 

Iri [j,T (X)] 
/ri Optimized 

(5.10) 

The results ofthis optimization exercise are presented in Table 5.8. 

As was expected, the relative improvements in the thermal performance of the optimized 

plate-fin ducts are much smaller than those achieved in Case 1: the best improvement is 

3.23% for this case. In the optimized solutions, the number of ducts per unit height of the 

heat exchanger was increased by an average of 3.22%. Other characteristics of the 

optimized solutions for this case can be explained in a similar manner to that for Case 1. 
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Table 5.8 Optimization results for Case 2 

Thermal boundary condition H 

n 2r ttri nm 
H 

Material 
pp 7]tri 

[W/m] [-] [0] [mm] [ducts/m] [-] 

Stainless steel 2.434 x 10-4 7.7276 61.556 O. 7282 32.60 1.0282 

Aluminium 2.434 x 10-4 100.63 61.615 0.6042 32.63 1.0324 

Copper 2.434x 10-4 170.26 61.615 0.6042 32.63 1.0325 

Thermal boundary condition T 

n 2r ttr; nlr; 
H 

Materia1 
pp 7]lr; 

[W/m] [-] [0] [mm] [ducts/m] [-] 

Stainless steel 2.434x 10-4 6.1646 61.628 0.5809 32.64 1.0298 

Aluminium 2.434x 10-4 100.63 61.615 0.6042 32.63 1.0322 

Copper 2.434 x 10-4 170.26 61.615 0.6042 32.63 1.0322 

1 

0.9 
---H 

-------- T 
"§: 0.8 
CD~ 

'-" 
Q) 0.7 
1-< 
~ 
~ 0.6 1-< 
Q) 

0.. 
S 0.5 Q) --t':l 0.4 s:: 
0 .-U'l s:: 0.3 Q) 

Pure aluminium 

S .-'"0 0.2 1 s:: 
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0 
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..... - ........ .. 
...... .. .. - .. -: : :: : :: : :: .. -- .... - ...... -- .. -.... -- .. -- .... 

0 
0 0.1 0.2 0.3 0.4 0.5 

Non-dimensional fin length ~ / L 

Figure 5.2 Optimized dimensionless fin temperature profiles for Case 2 
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The optimal duct aperture, 2r, is almost identical in aH cases with an average value of 

61.61°: again, this is because the impact of 2r on the pumping power per unit length of 

the duct (the constraint) is much greater than that of ftr;' 

The optimized dimensionless fin temperature profiles for this case are presented in Figure 

5.3. Again, as expected, the temperature variation along the fin length is the most for 

stainless steel and the least for copper. 

The optimization in this case was also performed with a different, but equivalent, set of 

design variables, for stainless steel and the thermal boundary condition H, in order to 

establish the consistency of the proposed optimization methodology and its 

implementation in this work. In this exercise, the fin thickness was kept the same, but the 

aperture of the duct, 2r, was replaced by the half-height of the triangular duct, Htr;. The 

same optimal solution should be obtained with this alternative, but equivalent, set of 

design variables, since it is possible to attain same the plate-fin duct shape by adjusting 

Htr; rather than 2r. The results ofthese optimization runs are presented in Table 5.9. 

Table 5.9 Optimization results for Case 2 achieved with equivalent design variables 

n 2r Htri f tr; ntri 
H 

Design var. 
pp 1'/tri 

[W/m] [-] [0] [mm] [mm] [ducts/m] [-] 

(ttri' 2r) 2.434 x 10-4 7.728 61.556 0.0151 0.7282 32.60 1.0282 

(ftri' H tr;) 2.434 x 10-4 7.719 61.557 0.0151 0.7274 32.59 1.0282 

The results presented in Table 5.9 show that with ftri and Htr; as the design variables, the 

optimized shape is almost identical to the shape obtained when with the original design 

variables, ftri and 2r. In fact, the largest difference is between the values of fin 

conductances obtained with these two sets of design variables, and even this difference is 

only 0.116%, which is negligible for aH practical purposes. 
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5.4 PRACTICAL CASE 3: QPTIMIZATION OF A HEAT EXCHANGERWITH 

INTERNALL y FINNED CIRCULAR DUCTS 

This third practical case is used to demonstrate and explore the following aspects of the 

proposed optimization methodology: 

• !ts use with non-uniform rational B-splines (NURBS) and its control points to 

approximate the fin shape; 

• !ts use with a large number of design variables; 

• Determination of the minimum number of control points of the NURBS that 

ensure the resulting optimized fin shape is essentially independent of this 

parameter; 

• Determination of the effect of the control point weights on the fin shape; 

• Determination of the effect of the initial values of the design variables (initial 

design point) on the optimal solution; 

• Determination of the effect of the number of fins on the optimal fin profile; 

• Optimization of a plate-fin heat exchanger with internally finned circular ducts, 

for three different plate-fin materials, and for a baseline duct having eight internaI 

fins of triangular cross-section; 

• Establishing that the optimal shape of the fin, in the context of the dimensionless 

formulation of the problem, is independent of the Reynolds number and the duct 

size. 

The selected baseline problem for this case is presented in section 5.4.1. Then, the 

optimization of the baseline problem and the other aforementioned aspects of this case 

are presented in section 5.4.2. 

5.4.1 Baseline Problem 

For this case, the base1ine problem is a circular duct with eight internaI fins of triangular 

cross-section. The cross-section of the duct for this base line case is presented in figure 

5.3. The dimensionless length of the fin, 1* = If / r, is 0.6; the number of fins, njin' is 8; 
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and the angle of the fins at the base, 2a, is 6° (see Figure 3.10 for details). The materials 

considered for the fins are again stainless steel (AISI 302), pure aluminium, and pure 

copper. Since the fin shapes can take various forms in this case, the fin thickness is not 

constant, but varies along its length. As a result, the fin conductance n also varies along 

its length: thus, is not being presented in tabular form in the results. 

Figure 5.3 Duct cross-section for the baseline problem in Case 3, with 
equally-spaced axial velocity contours 

Various runs were undertaken in order to obtain the objective functions values and 

pumping power for the Reynolds numbers la, 100, 200, 500, and 1000 (the laminar flow 

regime), for two commonly used duct sizes: diameters of one-half Ch) inch (r = 6.35mm), 

and one-and-a-half (1 Yz) inches (r = 19.05mm). The fluid flow results for this baseline 

problem are presented in Table 5.10; the overall thermal results are presented in the next 

subsection. For each combination or Reynolds number and duct size, the dimensionless 

friction-Reynolds number product (ID' Re)d remains constant. The corresponding 

values of the pumping power per unit length of the duct are given in Table 5.10, and used 

as the constraints for the optimization of the corresponding versions of the baseline 

problem for this case. 
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Table 5.10 Overall fluid flow results for the baseline problem in Case 3 

Re 0 pp (ID . Ret 

[-] [mm] [W/m] [-] 

10 6.35 1.1414x 10-5 218.35 

100 6.35 1.1414x 10-3 218.35 

200 6.35 4.5657 x 10-3 218.35 

500 6.35 2.8535 x 10-2 218.35 

1000 6.35 1.1414x 10-1 218.35 

10 19.05 1.2682 x 10-6 218.35 

1000 19.05 1.2682 x 10-2 218.35 

5.4.2 Optimization 

The statements of the optimization problems for this case are the following: 

Find X= h· h .. rH (X) Nu! w IC maxlmlzes JCirc = DH / 

1 Periwelled 

(5.11) 

and 

Find X = h· h .. rT (X) Nu: w IC maxlmlzes J circ = DH / 

/ Periwetted 

(5.12) 

both subject to the following constraint: 

(5.13) 

where n in the design vector is the number of control points, or design variables, that 

defines the fin shape. The relative improvements in the thermal performance of the 
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optimized solutions are again represented by the ratios of the value of objective function 

calculated for the baseline problem to that achieved in the optimized plate-fin ducts: 

H [fc7rc (X) ]Base line case 

17circ = [fH (X)] 
CirC Optimized 

(5.14) 

T [fc;,c (X) ]Base line case 

17circ = [fT (X)] 
CirC Optimized 

(5.15) 

The limits for each design variable and their initial values are presented in Table 5.11. 

The minimum values of hi are the minimum thickness of the fins relative to the radius, 

and the maximum values are set as bounding triangular fins with coinciding bases and 

same length as the actual fin. 

Table 5.11 Limits and initial values of the design variables in Case 3 

Dimension 

Design 
Min Max 

variables 

hi r r ( n-i) 7r- 1---
1::;i::;(n-1) 100 njin n-1 

1* 0.2 0.9 

The initial design point varies depending on the number of fins present in the duct: in 

order to decrease the number of iterations needed to reach an optimum, the fin is assigned 

an initial length and initial thickness similar to the expected optimized shape. Before 

optimizing the baseline problem, the determination of effect of the number of control 

points and the effect of the initial design point are presented in the subsections 5.4.2.1 

and 5.4.2.2. 

5.4.2.1 Effect of the number of control points and their weights on the 

optimal shape of the fin 

The effect of the number of control points on the fin shape must be determined first in 

order to use the appropriate number of control points, or design variables, which ensure 
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that the final optimal shape IS essentially independent of this parameter ln the 

optimization process. 

Table 5.12 Optimized results obtained with different number of control points in Case 3 

Numberof 
control (JD . Re)d H 

1Jcirc 

points 

4 213.635 1.0517 

6 215.640 1.0626 

9 227.343 1.0660 

12 232.621 1.0510 

15 240.548 1.0252 

(a) 4 control points (b) 6 control points 

(c) 9 control points (d) 12 control points 

(e) 15 control points 

Figure 5.4 Effect of the number of control points on the optimized fin shape in Case 3 

Runs of the optimization procedure were performed, with n = 4, 6, 9, 12, and 15. The 

results are presented in Table 5.12, and the corresponding optimized fin shapes are 
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presented in Figure 5.4. In aIl optimization runs, the pumping power per unit length of 

the duct was maintained at the value calculated for the baseline problem (constraint). 

The following conclusions can be arrived at by examining Figures 5.4 (a) to (e): first, it 

appears as if the optimal fin shape has a bulge (a larger thickness) in the middle - as the 

number of control points increases, those located in the middle region of the fin along its 

length tend to pull the fin surface outward from its central axis. This bulge, or outgrowth, 

starts to be captured with nine control points. However, with 12 and 15 control points, 

the fin shapes obtained are very similar and capture the bulge entirely, and the only 

difference between these two solutions is that the width of the optimized fin at its base is 

slightly larger for the 15 than the 12 control-points solutions. Therefore, it is assumed 

from this point on that the 12 control points provide results that are adequate for the 

demonstration of the capabilities of the proposed optimization methodology, and it 

provides a good compromise between the cost of the computations and the accuracy the 

optimal fin shape. 

The effect of the weights of the control points must also be determined. In order to do 

this, the proposed optimization method was used for the optimization of the baseline 

problem with 12 control points, and their weights were included as design variables. The 

total number of design variables was then 22, since the NURBS curve falls on the two 

end points, and the weight of each of these end points was fixed at unit y (1). The 

resulting shape of the fin is presented in Figure 5.5. 

Figure S.S Optimal fin shape obtained with the weights of 12 control points as design 
variables 

The differences between the values of (ID· Re)d and 1]~rc results for the optimal shapes 

with and without the weights of the 12 control points as design variables are 0.51% and 

0.95%, respectively. Moreover, with 12 control points, the local variation of the fin 
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shape generated by the variation of the weights is negligible, as the obtained shapes 

(Figure 5.4 (d) and Figure 5.5) are almost identical. The effect of the weights on the local 

shape would be greater with a small number of control points due to the larger distances 

between adjacent control points. For an equal number of design variables, using a large 

number of control points without their weights as design variables allows more localized 

flexibility in the calculation of the fin shape than using a small number of control points 

with their weights as the design variables. With 12 control points, the increase in the cost 

of the computations created by the addition of their weights as design variables is much 

greater than the difference generated in the optimal fin shape: thus, it was decided to use 

12 control points but not to include their weights as design variables from this point on. 

5.4.2.2 Effect of the initial design point on the optimal design 

The n-dimensional design space spanned by the design variables can present multiple 

local maximums and minimums. These local optima can sometimes prevent the 

algorithm from reaching the absolute maximum in the design space if they are located 

between the current design point and this absolute maximum. In these cases, one must 

either take the obtained solution as a satisfying optimal solution, or repeat the 

optimization process with a different initial design point, so that there is a path for which 

the objective function keeps increasing until the true summit is reached. Since the 

proposed method is gradient-based, the effect of the initial design point on the optimal 

design must be determined. Table 5.13 presents the results of the optimization of the 

baseline problem in this case for the thermal boundary condition H, with 10 different 

initial design points, which were chosen arbitrarily, while not making them too far apart 

from each other (because of grid generation limits). The design vector in each case is 

presented in Table B.l of Appendix B. The fin material used in these tests was stainless 

steel. 
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Table 5.13 Optimization results obtained with different initial design points in Case 3 

RunNo. 1 2 3 4 5 6 7 8 9 10 

H 
TJcirc 1.0593 1.0148 0.9826 1.0772 0.9961 1.0080 1.0791 1.0361 1.0340 0.9943 

(ID . Re)d 226.9 244.3 262.8 214.0 259.8 215.9 212.8 228.8 227.6 241.8 

The corresponding optimized fin shapes for each of these runs are presented in Appendix 

B. The standard deviation of the results presented in Table 5.11 is 7.76% for (iD .ReL, 

and is 3.38% forTJ:rc. Even if the pumping power is maintained the same (constant) in aIl 

these runs, the resulting shapes show a variation with differences in the initial design 

point. AIso, they aIl show the same bulge on the side of the fin, as seen in Figures 5.4 

and 5.5. Thus, the space spanned by the design variables must present many local 

minima and maxima. At this point, it is worth mentioning that since the average increase 

in thermal performance is quite small in these runs, as the baseline problem for this case 

was already well designed, and the bulk of the increase is obtained with the growth of the 

bulge on the side of the fin, once this bulge is captured by the optimization procedure, 

details such as the fin widths closer to its base and its tip affect the thermal performance 

on a sm aller scale. 

For the remainder of the computations, the initial design point was chosen so that the 

initial fin shape was as close as possible to that of the baseline problem being optimized, 

and with a smooth surface (that is, with the control points aligned). This way, the 

constraint of constant pumping power per unit length of the duct could be satisfied in a 

limited number of iterations, and the likelihood of obtaining a smooth optimal fin shape 

was increased. In this context, it should also be noted that a smoothly varying fin surface 

has the advantage of being easier to manufacture than one with sudden changes in shape. 

5.4.2.3 Optimization 

In order to optimize the baseline problem, it is necessary to determine the effect of the 

Reynolds number and duct size on the optimal solution. To do so, the proposed 

optimization method was applied to every version of the baseline problem presented in 

Table 5.10, with the corresponding values of Re and duct diameter, and with stainless 
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steel as the fin material. The results are presented in Table 5.14, and the corresponding 

fin shapes are presented in Figure 5.6. 

Table 5.14 Effects of Reynolds number and duct diameter on the optimal solutions in 
Case 3 

Re H T r pp 1]circ 1]circ 

[-] [mm] [W/m] [-] [-] 

10 6.35 1.1414x 10.5 1.0509 1.1041 

100 6.35 1.1414x 10.3 1.0593 1.1082 

200 6.35 4.5657 x 10.3 1.0438 1.1059 

500 6.35 2.8535x 10.2 1.0402 1.0217 

1000 6.35 1.1414x 10.1 1.0504 1.0942 

10 19.05 1.2682 x 10.6 1.0590 1.1059 

1000 19.05 1.2682 x 10.2 1.0580 1.1104 

The optimal fin shapes obtained are almost identical in aIl these tests, except for a slight 

variation of the thickness of the fin at the base: however, these variations have only very 

limited impact on the improvements in the thermal performance. 

Figure 5.6 Optimized shapes for various Reynolds numbers and duct sizes 

This independence of the optimal shape with regard to the Reynolds number and the duct 

diameter is keeping with the fact that the objective function is based on the Nusselt 

number, which is independent of the Reynolds number and the duct diameter. Moreover, 

the ratio of the hydraulic diameter to the wetted perimeter - which is present in the 

objective functions - is also independent of the duct diameter. The constant pumping 
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power constraint is different for different values of Reynolds number and duct diameter. 

However, in the design space unique to each optimization problem, these different 

pumping power hyper-planes are aH equivalent, in terms of the ensemble of design points 

that defines each of them. It is, therefore, assumed from this point forward that the 

optimal solution is independent of the Reynolds number and the duct diameter, and the 

foHowing results are presented for Re = 100 and r = 6.35 mm. 

Table 5.15 Optimization results for the boundary condition H in Case 3 

Stainless steel Aluminium Copper 

njin 

(ID . Re)d H (ID . Re)d H (ID . ReL H 
7Jcirc 7Jcirc 7Jcirc 

5 393.34 1.1850 404.95 1.1711 669.11 0.8374 

6 250.13 1.2547 247.15 1.3206 258.53 1.2221 

7 243.26 1.1578 244.59 1.1652 242.41 1.1560 

8 226.93 1.0593 233.24 1.0459 232.73 1.0452 

9 235.48 0.9132 236.39 0.9121 218.97 0.9622 

10 233.11 0.6253 235.02 0.6206 234.01 0.6255 

11 217.57 0.3676 219.95 0.3948 221.59 0.3823 

Table 5.16 Optimization results for the boundary condition T in Case 3 

Stainless steel Aluminium Copper 

njin 

(ID . Re)d T (ID .Ret T (ID . Re)d T 
1]circ 1]circ 1]circ 

5 683.76 0.9284 

6 396.21 1.0921 393.01 1.0879 395.00 1.0822 

7 248.38 1.2192 277.22 1.1532 261.07 1.1784 

8 228.74 1.1082 233.56 1.1017 227.49 1.1092 

9 240.73 0.7661 241.80 0.7477 241.24 0.7602 

10 228.67 0.3336 227.86 0.3278 225.23 0.3407 

11 203.51 0.2234 205.67 0.2147 205.10 0.2158 
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The proposed optimization method was applied to the baseline problem, with stainless 

steel, aluminium, and copper as the fin materials, and with number of fins between 5 and 

Il (inclusive). The purpose of optimizing with different number of fins is to determine 

the optimal value ofthis variable too. The results are presented in Tables 5.15 and 5.16, 

for the two thermal boundary conditions considered, H and T, respectively. In all runs, 

the pumping power was kept constant at 1.1414x 10-3 W/m. In all figures showing the 

optimal ducts, the contour Hnes represent constant values of the axial velocity. 

The relative increases in thermal performance presented in Tables 5.15 and 5.16 are 

presented graphically in Figure 5.7. For a fixed number of fins, the increase in thermal 

performance relative to that of the objective functions for the baseline problem, for the 

thermal boundary condition H, are 5.9% for stainless steel, 4.6% for aluminium, and 

4.5% for copper. The corresponding fin shapes, as presented in Figure 5.8, are very 

similar, except for a slightly smaller fin base width for stainless steel. If the number of 

fins in the duct is left unspecified, the thermal performance improves even more than 

when the number of fins is fixed; and the optimal number of fins (six), again for the H 

boundary condition, is the same for all fin materials considered. The increases in relative 

thermal performance are 25.47% for stainless steel, 32.06% for aluminium, and 22.21 % 

for copper. The corresponding fin shapes are presented in Figure 5.9. 
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Figure 5.7 Effect of the number of fins on 1]:;'c and 1]:;'c in Case 3 
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(a) Cb) Cc) 

Figure 5.8 Optimal designs with nfin = 8, thermal boundary condition H, and the 

following fin materials for Case 3: (a) stainless steel, (b) aluminium, and (c) 
copper 

(a) (b) (c) 

Figure 5.9 Optimal designs with nfin variable, thermal boundary condition H, and three 

fin materials for Case 3: (a) stainless steel, (b) aluminium, and (c) copper 

Qualitatively, the optimal fin shapes presented in Figures 5.8 and 5.9 have in common the 

presence of a bulge on the side of the fins, located approximately at 43% of the length of 

the fin, when measured from the base to the top. The axial velocity profiles achieved 

with the optimized fin shapes exhibit (nfin + 1) local maxima, one of them being located 

at the centre of the duct and the others in the spaces in between adjacent fins. For the 

baseline problem, the flow also shows such local maxima, but the difference is that the 

optimized shapes distribute this flow more evenly in the spaces in between adjacent fins. 

When the number of fins decreases, the space between adjacent fins increases, and the 

size of the bulge on the side of the fin also increases in order achieve the aforementioned 

even distribution of the flow in the duct cross-section. 
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When the number of fins in the duct is five or six, the bulges on the sides of the fin 

dominate the overall shape of flow passage. However, when the number of fins 

increases, the space in between adjacent fins decreases and the bulges on the sides of the 

fins also decrease. This pattern continues until the point where there is not enough space 

between the fins for the bulge to exist, and the distribution of the flow is controlled by 

adjustments of the length of the fin and increasing the base of the fins. 

The choice of material for the fins does not have much of an influence on their optimal 

shape in this case: this is because the conductance of an the fins is quite high, so the 

temperature does not vary much along the length of the fin. The choice of the fin 

material may have had more of an effect on the optimal fin shapes if a fluid with a higher 

thermal conductivity than air (for example, water) were used in these tests. 

(a) (b) (c) 

Figure 5.10 Optimal designs with nfin = 8, thermal boundary condition T, and three fin 

materials for Case 3: (a) stainless steel, (b) aluminium, and (c) copper 

For the thermal boundary condition T, the increases in relative thermal performance after 

optimization are 10.8% for stainless steel, 10.2% for aluminium, and 10.9% for copper, 

when the number of fins is fixed at eight. The corresponding optimized fin shapes are 

presented in Figure 5.10. If the number of fins is undetermined, the optimal solution is 

achieved with seven fins for each material, and the increases in relative thermal 

performance are 21.9% for stainless steel, 15.3% for aluminium, and 17.9% for copper: 

the corresponding optimal fin shapes are illustrated in Figure 5.11. 
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(a) (b) (c) 

Figure 5.11 Optimal designs with nfin variable, thermal boundary condition T, and the 

following fin materials for Case 3: (a) stainless steel, (b) aluminium, and (c) 
copper 

The explanations of the results shown in Figures 5.10 and 5.11, which pertain to the T 

thermal boundary condition, are similar to those presented earlier for the results 

pertaining to the Hboundary condition (Figures 5.8 and 5.9). 

5.5 PRACTICAL CASE 4: QPTIMIZATION OF A HEAT EXCHANGER WITH 

INTERNALL y FINNED CIRCULAR DUCTS 

The purpose of this fourth practical case is to demonstrate that the proposed optimization 

methodology can produce dramatic increases in relative thermal performance if the 

chosen baseline problem is poorly designed. The chosen baseline problem for this case is 

presented in section 5.5.1. The optimization results are presented in section 5.5.2. 

5.5.1 Baseline Problem 

In order to provide a contrast with the previous case, the baseline problem chosen here 

has twice the number of fins, and thus is a rather poor initial design. The dimensionless 

length of the fin, 1* = If / r , is 0.6; the number of fins, nfin' is 16; and the angle of the 

fins at the base, 20-, is 3° (see Figure 3.10 for details). The materials considered for the 

fins are again stainless steel (AISI 302), pure aluminium, and pure copper. The cross­

section ofthe duct for this case is presented in Figure 5.12. 
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Since it has been determined in the previous case that the Reynolds number and duct size 

have no effect on the final optimal design, the results for the baseline problem for this 

case were obtained only for Re = 100 and a duct diameter of 0.5 inches (r = 6.35 mm): 

the corresponding fluid flow results are presented in Table 5.17. The heat transfer results 

for this baseline problem are inc1uded along with the optimization results in the next 

subsection. 

Table 5.17 Overall fluid flow results for the baseline problem in Case 4 

Re 

[-] 

100 

o 
[mm] 

6.35 

pp 

[W/m] 

2.4616 x 10-3 

(iD . ReL 

[-] 

258.08 

Figure 5.12 Duct cross-section for the baseline problem in Case 4 

5.5.2 Optimization 

The statements of the optimization problem for this case are identical to those presented 

for Case 3, so they are not repeated here. The results of this optimization exercise are 

presented in Tables 5.18 and 5.19, and also graphically in Figure 5.13. In all these runs, 

the pumping power per unit length of the duct (the constraint) was kept constant at the 

value calculated for the baseline problem, 2.4616x 10-3 W/m. 
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Table 5.18 Optimization results for the boundary condition H in Case 4 

Stainless steel Aluminium Copper 

nfin 
(ID .Ret H (ID .Ret H (ID .Ret H 

l]circ 1]circ 1]circ 

7 596.97 7.0655 543.57 7.4590 538.00 7.4877 

8 420.77 7.6800 426.59 7.5813 424.97 7.6325 

9 379.36 7.1425 379.60 7.1011 383.32 7.0760 

10 368.46 6.2510 349.62 6.4299 352.53 6.4631 

12 338.36 4.3496 337.65 4.3766 338.11 4.3676 

14 288.25 1.8662 288.12 1.8572 288.23 1.8563 

16 256.90 1.0284 256.92 1.0237 256.92 1.0235 

Table 5.19 Optimization results for the boundary condition T in Case 4 

Stainless steel Aluminium Copper 

nfin 
(ID . Re)d T (ID ·Ret 

T (ID . Re)d T 
17circ 1Jcirc 17circ 

7 742.71 8.9105 873.00 6.7556 676.85 8.2802 

8 569.31 8.7990 568.03 8.7996 584.40 8.1858 

9 383.70 10.681 399.72 10.496 395.77 10.614 

10 361.77 9.5603 350.58 9.5827 359.58 9.5480 

12 339.57 2.9840 337.02 3.0626 338.05 3.0671 

14 284.44 1.4303 285.32 1.4369 283.60 1.4217 

16 253.57 1.0135 252.22 1.0104 252.93 1.0168 
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Figure 5.13 Effect of the number of fins on 7J:rc and 7J~rc in Case 4 
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16 

For a fixed number of fins, the increase in relative thermal performance with respect to 

the objective functions for the baseline problem for H thermal boundary condition are 

2.8% for stainless steel, 2.4% for aluminium, and 2.4% for copper. The corresponding 

fin shapes are presented in Figure 5.14. Again, the optimized shapes are virtually 

identical for the three fins material considered here. With the number of fins kept the 

same as in the baseline problem, only these small improvements in thermal performance 

are possible. 

(a) (b) (c) 

Figure 5.14 Optimal designs with njin = 16, thermal boundary condition H, and three fin 

materials for Case 4: (a) stainless steel, (b) aluminium, and (c) copper 
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When the number of fins is allowed to vary, the optimal shapes generated by proposed 

method pro duce dramatic increases in relative thermal performance: 7.58 for stainless 

steel, 7.68 for aluminium, and 7.63 for copper. The corresponding optimal shapes are 

illustrated in Figure 5.15. 

(a) (b) (c) 

Figure 5.15 Optimal designs with n fin variable, thermal boundary condition H, and three 

fin material for Case 4: (a) stainless steel, (b) aluminium, and (c) copper 

For the thermal boundary condition T, the increases in relative thermal performance with 

the number of fins fixed at 16 are 1.35% for stainless steel, 1.04% for aluminium, and 

1.68% for copper. The corresponding optimal shapes are presented in Figure 5.16. 

However, if the number of fins is allowed to vary, again dramatic increases in relative 

thermal performance are achieved by the proposed optimization method: 10.68 for 

stainless steel, 10.50 for aluminium, and 10.61 for copper. The corresponding optimal 

shapes are illustrated in Figure 5.17. 

(a) (b) (c) 

Figure 5.16 Optimal designs with nfin = 16, thermal boundary condition T, and three fin 

materials for Case 4: (a) stainless steel, (b) aluminium, and (c) copper 
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(a) (b) (c) 

Figure 5.17 Optimal designs with nfin variable, thermal boundary condition T, and three 

fin materials for Case 4: (a) stainless steel, (b) aluminium, and (c) copper 
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Chapter 6. Conclusion 

This final chapter presents a review of the contents of the thesis and its contributions, and 

concludes with a list of recommendations for extensions of this work. The contributions 

ofthe thesis are highlighted in the text by presenting them in italics. 

6.1 REVIEW OF THE THESIS AND ITS CONTRIBUTIONS 

In Chapter 1, the motivation, context, overall goals, and specific objectives of the thesis 

were discussed. A review of the pertinent published literature was also presented. An 

overview of the organization ofthis thesis was presented at the end of the chapter. 

Chapter 2 was devoted to the presentation of the theoretical considerations related to the 

problems studied in this work. These problems involve fully-developed laminar fluid 

flow and heat transfer in straight ducts, with the conjugate problem of quasi one­

dimensional heat conduction in the fins. The assumptions employed were presented and 

justified. The equations that govem the fluid flow and heat transfer phenomena were 

then presented, along with the quasi one-dimensional mathematical model of heat 

conduction in the fins. Following that, the two thermal boundary conditions used in this 

work were put forward and discussed. Dimensionless formulations of these mathematical 

models of the problems of interest were also presented in this chapter. 

In Chapter 3, the numerical techniques that were formulated, implemented, tested, and 

used to solve the mathematical models presented in Chapter 2 were presented. For the 

plate-fin heat exchangers with rectangular flow passages, a control-volume finite 

difference method (CVFDM) was used. For the plate-fin heat exchangers with triangular 

flow passages and for the intemally finned circular tubes, a control-volume finite element 

method (CVFEM) was used. For the fin, the quasi one-dimensional model was solved 

using a CVFDM. The validity of the formulations and implementations of the 

aforementioned CVFDMs and CVFEM was established by applying them to well­

established test problems and comparing the solutions with those in the published 

literature [Shah and London (1971, 1978), Shah (1975), Baliga and Azrak (1986)]. 
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The bulk of this research was devoted to the formulation, implementation, and 

application of a methodology for optimizing the thermal performance of plate fin ducts. 

The proposed optimization techniques were presented in Chapter 4. First, an overview of 

the available optimization techniques was presented. Then, the technique used to 

approximate and control the fin shape, using non-uniform rational B-spline (NURBS) 

curves, was described in detail. This was followed by the formulation of the optimization 

problem, in which the design variables, the objective functions, and the constraint 

function were formulated and discussed. While many others have used the Nusselt 

number as the objective function to be maximized, in this work a rational derivation of 

the objective functions has been provided: for the H thermal boundary condition (uniform 

heat input per unit length and uniform duct wall temperature in the cross-section), the 

objective function is related to the minimization of (Tw - ~); for the T thermal 

boundary condition (specified constant duct wall temperature), the objective function is 

based on a maximization of the rate ofheat transfer per unit length of the duct, q~. For 

these two cases, it was shown that the dimensionless forms of the objective function is 

the Nusselt number divided by the ratio of the hydraulic diameter to the wetted perimeter; 

these objective functions take into account the effect of the variation of the available 

surface area for heat transfer on the optimized thermal performance of the ducts. In both 

cases, the constraint function was the pumping power per unit axial length of the duct. 

The formulations of the objective and constraint functions are considered to be one of the 

important contributions of this thesis. 

Following this, the proposed optimization algorithm was introduced. In this algorithm, 

the first goal is to satisfy the constraint function by moving the being-optimized-design, 

or current design point, on to the constraint hyper-plane. Then it seeks the maximization 

of the objective function by projecting the gradient of the objective function onto the 

constraint hyper-plane, and then setting the search direction toward the optimum. 

Techniques to correct inadvertent excursions outside the permitted design space were 

also proposed. This proposed optimization algorithm is considered to be the main 

contribution of this thesis. 
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The applications of the proposed optimization method to four practical cases were 

presented in Chapter 5. In aIl cases, three different fin materials (commonly used in the 

construction of compact heat exchangers) were considered: stainless steel (AISI 302), 

pure aluminum, and pure copper. Air was the working fluid in aIl these cases. Case 1 

involved a plate-fin heat exchanger with rectangular flow passages. Here, the method 

was demonstrated in the context of two design variables, and an average increase of 

18.1 % in the relative thermal effectiveness with respect to the chosen the baseline 

problem was observed. In Case 2, the proposed method was applied to a plate-fin heat 

exchanger with triangular flow passages. This case was used to demonstrate that the 

proposed method reaches the same optimal design using different, but essentially 

equivalent sets of design variables. In this case, the optimization yielded an average 

increase of 3.1 % in the relative thermal performance with respect to the chosen baseline 

problem; this number is lower than that for the first case because the design for the 

baseline problem was already close to the optimum. 

The third and the fourth cases involved intemally finned circular tubes. Case 3 was used 

to: 1) demonstrate the effect of the number of control points in the NURBS curves on the 

final optimal design, 2) demonstrate the effect of the initial design point on the final 

optimized design, and 3) verify that the effects of the duct diameter and the Reynolds 

number on the optimal design were negligible. The number of control points that 

provided a good balance between the increase in cost of computing the gradient of the 

objective function and accuracy in the approximation of the fin shape was found to be 12 

for this case. It was also observed that the optimal design is sensitive to the initial design 

point, although the final shapes were qualitatively similar, for most cases. The best 

results were obtained when the initial fin shape was smooth, that is, without sudden 

changes or big differences in initial values of adjacent control points. For this Case 3, the 

baseline problem had eight fins, and the average increases in the relative thermal 

performance of the optimized design with respect to the base line case were 26.6% for the 

thermal boundary condition H and 18.4% for the thermal boundary condition T, with six 

and seven fins, respectively. 
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The baseline problem for Case 4 was deliberately chosen to be far from the optimum 

design, so that a large increase in the relative thermal performance could be observed. 

The baseline problem had 16 fins, and the average increase in relative thermal 

performance of the optimized designs with respect to the baseline problem reached rather 

the dramatic figures: 763% and 1060% for the thermal boundary conditions H and T, 

respectively. 

The optimized shapes for Cases 3 and 4 aIl presented very similar bulges on the side of 

the fins, the size of which depends on the pumping power of the baseline problem and 

also the number of fins. Since the fin thickness and thermal conductivity was, in these 

cases, always much higher than that required to observe any appreciable variations of the 

fin temperature along its length, the optimal designs were essentially independent of the 

fin material used. Moreover, the qualitative differences between the optimal designs for 

the two thermal boundary conditions considered were small enough that it would be 

acceptable to propose a single optimized shape for both these conditions. These 

demonstrations of the proposed optimization methodology, the use of the relative thermal 

performance with respect to a chosen baseline problem to quantify the benefits provided 

by the optimal designs, and al! of the related discussions are together considered as 

another major contribution of this work. 

6.2 RECOMMENDATIONS FOR EXTENSIONS OF THIS WORK 

It would be natural to conduct an experimental validation of the shapes obtained in the 

optimization of the baseline problems for the four cases presented in Chapter 5. Such an 

experimental exercise would not only provide a validation of the proposed optimization 

method and approaches, but give valuable insights into the manufacturing implications of 

the optimized fin shapes. 

In the industry, heat exchanger design is often govemed by other constraints than the one 

applied in this work (fixed pumping power per unit length). For example, other 

constraints could incIude fixed fin volume, for weight and cost reasons, and minimum fin 
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base width, for structural integrity and maintenance reasons. Thus, it would be desirable 

to test the effects ofthese other constraints on the optimal design of plate-fin ducts, either 

independently or conjointly with the one used in this work. 

It would also be desirable to test the effect of using different fluids, such as water, on the 

optimal designs. With water, since it has a thermal conductivity that is about 20 times 

larger than that of air, the fin material would be expected to have a significant effect on 

the optimal designs of the plate-fin ducts. 

It would be desirable to extend the applications studied in this thesis to turbulent flow and 

heat transfer. Since turbulence tends to flatten the axial velo city profile in the duct cross­

section, the optimal shape, which depends partially on the velocity profile, would surely 

be affected. 

It would be interesting and useful to consider other practical fin patterns in the 

optimization exercise: examples include helical twisted fins and interrupted-surface fins. 

It would also be highly desirable to implement the adjoint formulation for the ca1culation 

of the gradient of the objective function in the proposed optimization algorithm. In the 

adjoint formulation, the direct problem is not solved for the dependent variables, but 

rather their sensitivities to slight perturbation of the design variables are directly solved. 

As a result, the solutions of the adjoint problem provide the gradients of the dependent 

variables. The implication of this approach is that the costs of computing the gradients 

are greatly decreased, and thus much more complex applications could be optimized 

using the method proposed in this work. Such applications could potentially inc1ude 

three-dimensional problems involving phenomenon such as turbulent flow, combustion, 

and phase change. 

Finally, the author hopes that the work presented in this thesis will help in the global 

efforts directed towards the improvement of heat transfer enhancement devices. He also 

hopes that this work will encourage others to pur sue sorne of the aforementioned 

extensions. 
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Appendix A. Validation of the CVFDM and CVFEM 

Table A.1 Overall fluid flow results for the rectangular ducts 

Ar ID ·Re ID ·Re 
[CVFDM] [* ] 

1.0 56.8717 56.9083 

0.75 57.8636 57.9028 

0.50 62.1402 62.1922 

* Shah & London (1971) 

Table A.2 Average Nusselt numbers with n = 00 for the rectangular ducts 

Ar NuH 
av NuH 

av Nu~v Nu~v 
[CVFDM] [* ] [CVFDM] [* ] 

1.0 3.61713 3.60795 2.97846 2.976 

0.75 3.71017 3.70052 3.05233 

0.5 4.13542 4.12330 3.39165 3.391 

* Shah & London (1971) 

Table A.3 Overall fluid flow results for the triangular ducts 

21: 
ID ·Re ID ·Re ID ·Re 
[Present] [* ] [* *] 

10° 50.1083 49.896 50.188 

30° 52.3495 52.260 52.520 

60° 53.3889 53.332 53.744 

90° 52.6543 52.612 52.936 

1200 50.9914 50.976 51.224 

* Shah (1975) 

* * Baliga & Azrak (1986) 
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Table A.4 Average Nusselt numbers with n = 00 for the triangular ducts 

Nu~ Nu~ Nu~ Nu T Nu: Nu T 

2. 
av av 

[Present] [* ] [* *] [Present] [* * *] [* *] 

10° 2.43236 2.446 2.467 1.69224 1.61 1.726 

30° 2.88957 2.910 2.921 2.24768 2.26 2.284 

60° 3.08565 3.111 3.111 2.46106 2.47 2.500 

90° 2.95508 2.982 2.979 2.31750 2.34 2.359 

120° 2.65588 2.680 2.681 1.98548 2.00 2.031 

* Shah (1975) 

* * Baliga & Azrak (1986) 

* * * from graphical results of Schmidt & Newell, from Shah & London (1978) 

Table A.5 Overall heat transfer results for the triangular plate-fin ducts 

2. 10° 30° 

Nu~ Nu H Nu~ Nu H Nu~ Nu H Nu~ Nu~ n av av av 

[Present] [* ] [Present] [* ] [Present] [* ] [Present] [* ] 

00 2.4325 2.467 1.6922 1.726 2.8897 2.921 2.2477 2.284 

25 2.2265 2.254 1.6444 1.676 2.7326 2.761 2.1763 2.210 

10 1.9775 1.997 1.5673 1.594 2.5314 2.555 2.0738 2.105 

5 1.6704 1.682 1.4296 1.450 2.2646 2.283 1.9175 1.944 

2 1.1516 1.154 1.0574 1.065 1.7593 1.770 1.5573 1.575 

1 0.7757 0.774 0.7077 0.710 1.3424 1.348 1.2073 1.218 

2. 60° 90° 

Nu~ Nu H Nu~ Nu~ Nu~ Nu~ Nu~ Nu H 

n av av 

[present] [*] [present] [* ] [present] [* ] [Present] [* ] 

00 3.0857 3.110 2.4611 2.500 2.9551 2.979 2.3175 2.359 

25 2.9504 2.972 2.3878 2.424 2.8367 2.859 2.2595 2.299 

10 2.7770 2.797 2.2879 2.322 2.6896 2.711 2.1824 2.220 

5 2.5474 2.564 2.1444 2.174 2.5017 2.521 2.0758 2.110 

2 2.1127 2.124 1.8392 1.862 2.1671 2.184 1.8620 1.890 

1 1.7543 1.762 1.5568 1.574 - 1.924 - 1.701 

* Baliga & Azrak (1986) 
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Table A.6 Overall fluid flow results for the circular duct 

with triangular fins (2r = 3°) 

1* 0.2 0.4 0.6 0.7 0.8 

Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo·Re Jo ·Re 
number 

4 4 4 4 4 4 4 4 4 4 
of fins [Present] [*] [Present] [*] [Present] [*] [Present] [*] [Present] [*] 

4 1.1694 1.2000 1.7588 1.8344 3.0813 3.2331 3.9756 4.3475 4.7169 4.8275 

8 1.3544 1.4100 2.8225 3.0100 6.9413 7.4000 9.8131 10.8875 11.8288 12.1375 

12 1.5331 1.6113 3.8448 4.1331 11.5019 12.3938 17.8500 20.3938 22.7869 23.5438 

16 1.6869 1.7813 4.6544 5.0225 15.9538 17.3375 27.5256 32.7188 38.2731 39.8813 

20 1.8113 1.9131 5.2563 5.6663 19.9169 21.7500 38.1519 47.4625 58.8300 61.8875 

24 1.9088 2.0163 5.6988 6.1344 23.2625 25.4563 48.9450 63.8625 84.7875 90.0313 

* Masliyah from Shah & London (1978) 

Table A.7 Overall fluid flow results for the circular duct 
with triangular fins (2r = 6°) 

1* 0.2 0.4 0.6 0.7 0.8 

Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo ·Re Jo·Re Jo ·Re 
number 

4 4 4 4 4 4 4 4 4 4 
of fins [Present] [*] [Present] [*] [Present] [* ] [Present] [*] [Present] [*] 

4 1.1756 1.2056 1.7825 1.8588 3.1738 3.3281 4.1419 4.4944 4.9731 5.0881 

8 1.3706 1.4231 2.9025 3.0863 7.4375 7.9313 10.8956 12.0625 13.5900 13.9625 

12 1.5581 1.6306 3.9769 4.2656 12.6894 13.7000 21.0994 24.2813 28.8844 29.9625 

16 1.7169 1.8038 4.8125 5.1744 17.8625 19.4875 34.2069 41.5938 53.7731 56.4875 

20 1.8431 1.9388 5.4188 5.8281 22.3594 24.5438 48.9300 63.3313 91.3925 97.5563 

24 1.9394 2.0406 5.8544 6.2875 25.9725 28.5500 63.5888 87.6375 144.088 156.388 

* Masliyah from Shah & London (1978) 
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Table A.8 Average Nusselt numbers with n = 00 for the circular duct 

with triangular fins (2r = 3°) 

1* 0.2 0.4 0.6 0.7 0.8 

Nu:: Nu:: Nu:: Nu:: Nu:: Nu:: Nu! Nu H 
Nu H Nu H 

number 
~ ~ ~ 

4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 
of fins [Present] [* ] [Present] [*] [Present] [*] [Present] [*] [Present] [* ] 

4 1.0499 1.0481 1.3533 1.3799 2.5529 2.6819 3.7217 4.1236 4.3487 4.4142 

8 1.0854 1.0824 1.5410 1.5675 4.2545 4.5789 8.7208 9.8993 9.9911 9.9771 

12 1.0945 1.0870 1.4645 1.4691 3.8325 4.0778 10.7217 14.7780 17.4224 17.4302 

16 1.0881 1.0778 1.3426 1.3318 2.9055 3.0092 8.6117 14.4645 25.2265 25.6545 

20 1.0762 1.0618 1.2487 1.2288 2.2588 2.2769 5.9908 10.5652 28.9499 30.1831 

24 1.0641 1.0481 1.1844 1.1602 1.8584 1.8352 4.2124 7.0618 25.5277 26.8879 

* Masliyah from Shah & London (1978) 

Table A.9 Average Nusselt numbers with n = 00 for the circular duct 
with triangular fins (2r = 6°) 

1* 0.2 0.4 0.6 0.7 0.8 

Nu! Nu! Nu! Nu H 
Nu! Nu H 

Nu! Nu! Nu H Nu! 
~ ~ ~ 

number 
4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 

of fins 
[Present] [*] [Present] [*] [Present] [*] [Present] [* ] [Present] [*] 

4 1.0492 1.0481 1.3483 1.3730 2.5341 2.6613 3.7092 4.0778 4.3471 4.4142 

8 1.0833 1.0778 1.5140 1.5355 4.0227 4.3181 8.5586 9.9108 10.1906 10.2700 

12 1.0892 1.0824 1.4142 1.4165 3.3174 3.5011 9.2265 13.4737 18.3867 18.4920 

16 1.0801 1.0686 1.2860 1.2746 2.3817 2.4348 6.1746 10.3616 24.6725 25.7323 

20 1.0664 1.0526 1.1954 1.1762 1.8199 1.8101 3.8190 6.1213 20.8840 22.4714 

24 1.0538 1.0389 1.1373 1.1144 1.5053 1.4691 2.5581 3.6636 12.2373 12.8238 

* Masliyah from Shah & London (1978) 
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Appendix B. Optimization Results with Different Initial 

Design Points for Case 3 

Table B.l Optimization results for different initial design points for Case 3 

Run Dimensionless design variables 

No. 
XI x2 x3 x4 Xs x6 X7 Xg X9 xIO x\I x\2 (Jo ·Ret fc:(X) 

1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.8 226.9 86.83 

2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 244.3 83.18 

3 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.6 262.8 80.54 

4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 214.0 88.30 

5 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 259.8 81.65 

6 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.8 215.9 82.63 

7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 212.8 88.45 

8 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.3 0.5 228.8 84.93 

9 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.5 227.6 84.75 

10 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.6 241.8 81.50 

Run 1 Run2 

Run3 Run4 
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Run5 Run6 

Run7 Run8 

Run9 Run 10 


