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Abstract 

 

Researchers increasingly use meta-analysis to synthesize the results of several studies in order to 

estimate a common effect. When the outcome variable is continuous, standard meta-analytic 

approaches assume that the primary studies report the sample mean and standard deviation of the 

outcome. However, when the outcome is skewed, authors sometimes summarize the data by 

reporting the sample median and one or both of (i) the minimum and maximum values and (ii) 

the first and third quartiles, but do not report the mean or standard deviation. To include these 

studies in meta-analysis, several methods have been developed to estimate the sample mean and 

standard deviation from the reported summary data. A major limitation of these widely used 

methods is that they assume that the outcome distribution is normal, which is unlikely to be 

tenable for studies reporting medians. We propose two novel approaches to estimate the sample 

mean and standard deviation when data are suspected to be non-normal. Our simulation results 

and empirical assessments show that the proposed methods often perform better than the existing 

methods when applied to non-normal data. 

 

Keywords: meta-analysis, median, first quartile, third quartile, minimum value, maximum value  
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Introduction  

 

Meta-analysis is a statistical approach for pooling data from related studies that is widely used to 

provide evidence for medical research. To pool studies in an aggregate data meta-analysis, each 

study must contribute an effect measure (e.g., the sample mean for one-group studies, the sample 

means for two-group studies) of the outcome and its variance. However, primary studies may 

differ in the effect measures reported. Although the sample mean is the usual effect measure 

reported for continuous outcomes, authors often report the sample median when data are skewed 

and may not report the mean.1 This occurs commonly for time-based outcomes, such as time 

delays in the diagnosis and treatment of tuberculosis2, 3 or colorectal cancer4 or length of hospital 

stay5-7. Other examples in medical research include muscle strength and mass8, molecular 

concentration levels9, tumor sizes10, motor impairment scores11, and intraoperative blood loss12. 

When primary studies report the sample median of an outcome, they typically report the sample 

size and one or both of (i) the sample minimum and maximum values and (ii) the first and third 

quartiles.  

 

The same effect measure must be obtained from all primary studies in an aggregate data meta-

analysis. In order to meta-analyze a collection of studies in which some report the sample mean 

and others report the sample median, Hozo et al.13, Bland14, Wan et al.15, Kwon and Reis16, and 

Luo et al.17 have recently published methods to estimate the sample mean and standard deviation 

from studies that report medians. These methods have been widely used to meta-analyze the 

means for one-group studies and the raw or standardized difference of means for two-group 
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studies. Reflecting how commonly these methods are used, Google Scholar listed 2,871 articles 

citing Hozo et al.13 and 601 articles citing Wan et al.15 as of March 12, 2019. 

 

Commonly used methods that have been proposed to estimate the sample mean and standard 

deviation in this context can be divided into formula-based methods and simulation-based 

methods. The methods developed by Luo et al.17 and Wan et al.15 are the best-performing 

formula-based methods for estimating the sample mean and standard deviation, respectively. A 

major limitation of these methods is that they assume the outcome variable is normally 

distributed, which may be unlikely because otherwise the authors would have reported the mean. 

Consequently, Kwon and Reis16 recently proposed a simulation-based method which is based on 

different parametric assumptions of the outcome variable. Although the Kwon and Reis16 sample 

mean estimator has not been compared to the formula-based method of Luo et al.17, their 

proposed standard deviation estimator performed better than the formula-based method of Wan 

et al.15 for skewed data when the assumed parametric family is correct. Two limitations of this 

simulation-based method are that it is computationally expensive and requires users to write their 

own distribution-specific code.  

 

We propose two novel methods to estimate the sample mean and standard deviation for skewed 

data when the underlying distribution is unknown. The proposed methods overcome several 

limitations of the existing methods, and we demonstrate that the proposed approaches often 

perform better than the existing methods when applied to skewed data. 
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The objectives of this paper are to describe the existing and proposed methods for estimating the 

sample mean and standard deviation, systematically evaluate their performance in a simulation 

study, and empirically evaluate their performance on real-life data sets. 

 

In the following section, we describe the existing and proposed methods. In ‘Results’, we report 

the results of a simulation investigating the performance of the methods. We illustrate these 

methods on an example data set and evaluate their accuracy in ‘Example’. In ‘Discussion’, we 

summarize our findings and provide recommendations for data analysts. 

 

Methods 

 

Throughout this paper, we use the following notation for sample summary statistics: minimum 

value (𝑄min), first quartile (𝑄!), median (𝑄"), third quartile (𝑄#), maximum value (𝑄$%&), mean 

(𝑥̅), standard deviation (𝑠'), and sample size (𝑛). As investigated in previous studies13-17, we 

consider the following sets of summary statistics that may be reported by a study, denoted by 

Scenario 1 (𝑆!), Scenario 2 (𝑆"), and Scenario 3 (𝑆#):  

 

𝑆! = {𝑄$(), 𝑄", 𝑄$%&, 𝑛}	
𝑆" = {𝑄!, 𝑄", 𝑄#, 𝑛}	
𝑆# = {𝑄$(), 𝑄!, 𝑄", 𝑄#, 𝑄$%&, 𝑛}. 

 

Existing Methods 
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Formula-based Methods: Luo et al.17 and Wan et al.15 

 

The sample mean estimator of Luo et al.17 and the sample standard deviation estimator of Wan et 

al.15 are formula-based methods that are derived from the assumption that the outcome variable 

is normally distributed. 

 

Luo et al. developed the following sample mean estimators in scenarios 𝑆!, 𝑆", and 𝑆#: 

 

	𝑥̅ = 	 - 44 + 𝑛*.,-0𝑄min +	𝑄max2 + 2 𝑛*.,-4 + 𝑛*.,-3𝑄"																																						in 𝑆!	
	
𝑥̅ = 	 -0.7 +	0.39𝑛 0𝑄! + 𝑄#2 + -0.3 −	0.39𝑛 0𝑄"																																							in 𝑆" 

	
𝑥̅ = 	 - 2.22.2 + 𝑛*.,-0𝑄min +	𝑄max2 + -0.7 −	 0.72𝑛*.--0𝑄! +	𝑄#2 	
																																																													+ -0.3 + 0.72𝑛*.-- − 2.22.2 + 𝑛*.,-0𝑄"						in 𝑆#	

 

Building on the sample mean estimators of Hozo et al.13, Wan et al.15, and Bland14 in 𝑆!, 𝑆", and 

𝑆#, respectively, this method optimally weights the median (in 𝑆!, 𝑆", and 𝑆#), the average of the 

minimum and maximum values (in 𝑆! and 𝑆#), and the average of the first and third quartiles (in 

𝑆" and 𝑆#). The weights are set to minimize the mean squared error of the estimator. Numerical 

simulations have demonstrated that the method of Luo et al. has considerably lower relative 
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mean squared error (RMSE) compared to the method of Bland in 𝑆# and has comparable RMSE 

to the method Wan et al. in 𝑆" under normal and skewed distributions. 

 

Wan et al. proposed the following sample standard deviation estimators in scenarios 𝑆!, 𝑆", and 

𝑆#: 

 

	𝑠' =	 𝑄max −	𝑄min2Φ/! :𝑛 − 0.375𝑛 + 0.25 <                                       								in 𝑆!	
	
𝑠' =	 𝑄# −	𝑄!2Φ/! :0.75𝑛 − 0.125𝑛 + 0.25 < 																																											in 𝑆"	
	
𝑠' =	 𝑄max −	𝑄min4Φ/! :𝑛 − 0.375𝑛 + 0.25 < +

𝑄# −	𝑄!4Φ/! :0.75𝑛 − 0.125𝑛 + 0.25 < 				in 𝑆# 

 

The standard deviation estimators of Wan et al. are derived using relationships between the 

distribution standard deviation and the expected values of order statistics for normally distributed 

data. The expected values of the minimum and maximum values and first and third quartiles are 

estimated by the respective sample values. The expected value of other order statistics are 

estimated using Blom’s method18. 

 

Wan et al. were the first to propose a standard deviation estimator in 𝑆". Wan et al. showed that 

their estimator in 𝑆! and 𝑆# outperformed the previously developed sample standard deviation 

estimators of Hozo et al.13 and Bland14, respectively, in regards to average relative error.  
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For the purpose of the analyses presented herein, we refer to the approach which uses the method 

of Luo et al. to estimate the sample mean and the method of Wan et al. to estimate the sample 

standard deviation as the Luo/Wan method.  

 

Simulation-based Method: Kwon and Reis16 

 

Kwon and Reis16 proposed a method based on applying approximate Bayesian computation 

(ABC) to estimate the sample mean and standard deviation in scenarios 𝑆!, 𝑆", and 𝑆#. Unlike 

the methods of Luo et al. and Wan et al. which assume that the outcome variable is normally 

distributed, this method can be applied under different parametric assumptions of the underlying 

distribution (i.e., normal and skewed distributions). Throughout this paper, we will refer to the 

approach of Kwon and Reis16 as the ABC method.  

 

The ABC method can be briefly described as follows. In the context where the underlying 

distribution is unknown a priori, the several candidate parametric families of distributions are 

specified, namely the normal, log-normal, exponential, beta, and Weibull distributions. The 

parameters of each distribution are estimated by applying the ABC rejection sampling algorithm 

(described below) proposed by Kwon and Reis19. This version of the algorithm, given in Kwon 

and Reis19, builds on that of Kwon and Reis16 to incorporate several candidate parametric 

families of distributions in a more computationally efficient manner.  
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In brief, the ABC rejection sampling algorithm samples parameter values of the candidate 

distributions and simulates pseudo data (i.e., sample median and one or both of (i) the minimum 

and maximum values and (ii) the first and third quartiles). If the pseudo data are sufficiently 

close to the summary data reported by a study, the parameter values are accepted. For each 

candidate distribution, the distributions of the accepted parameters approximate their respective 

posterior distributions after a large number of iterations of the algorithm. The candidate 

distribution with the highest marginal posterior probability is selected. The means of the 

respective posterior distributions are used to estimate the parameters of the selected distribution.  

 

Kwon and Reis16 demonstrated that, provided the candidate distribution is correctly specified and 

the sample size is sufficiently large (e.g., 𝑛 ≥ 100), their proposed ABC method outperformed 

the sample mean estimators of Hozo et al.13 (for 𝑆!), Wan et al.15 (for 𝑆"), and Bland14 (for 𝑆#) 

and outperformed the standard deviation estimators of Wan et al. for skewed distributions.  

 

Proposed Methods 

 

The following two subsections describe the proposed methods for estimating the sample mean 

and standard deviation from 𝑆!, 𝑆", and 𝑆# summary measures. The R package ‘estmeansd’ 

available on CRAN implements both of the proposed methods.20 Additionally, the webpage 

https://smcgrath.shinyapps.io/estmeansd/ provides a graphical user interface for using these 

methods. 

 

Quantile Estimation (QE) Method 



 12 

 

The QE method was originally introduced in McGrath et al.21 for estimating the variance of the 

median when summary measures of 𝑆!, 𝑆", or 𝑆# are provided. Here, we describe how the QE 

method can be applied to estimate the sample mean and standard deviation in these contexts. 

 

We pre-specify several candidate parametric families of distributions for the outcome variable, 

namely the normal, log-normal, gamma, beta, and Weibull. The parameters of each candidate 

distribution are estimated by minimizing the distance between the observed and distribution 

quantiles. Let 𝐹0/! denote the quantile function of a given candidate distribution parameterized 

by 𝜃. Then, the objective function corresponding to the distribution, denoted by 𝑆(𝜃), is given by 

 

𝑆(𝜃) = C𝐹0/!(1 𝑛⁄ ) − 𝑄minE" + C𝐹0/!(0.5) − 𝑄"E" + C𝐹0/!(1 − 1 𝑛⁄ ) − 𝑄maxE"						in 𝑆! 

	
𝑆(𝜃) = C𝐹0/!(0.25) − 𝑄!E"+C𝐹0/!(0.5) − 𝑄"E" + C𝐹0/!(0.75) − 𝑄#E"																						in 𝑆" 

 

𝑆(𝜃) = C𝐹0/!(1 𝑛⁄ ) − 𝑄minE" + C𝐹0/!(0.25) − 𝑄!E" + C𝐹0/!(0.5) − 𝑄"E"
+ C𝐹0/!(0.75) − 𝑄#E" + C𝐹0/!(1 − 1 𝑛⁄ ) − 𝑄maxE"				in	𝑆#	

 

Details concerning the implementation of the optimization algorithm for minimizing 𝑆(𝜃) are 

provided in Appendix A.  

 

The distribution with the best fit (i.e., yielding the smallest value of 𝑆(𝜃H) where 𝜃H denotes the 

estimated parameters of the given distribution) is assumed to be the underlying distribution of the 
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sample. The sample mean and standard deviation are estimated by the mean and standard 

deviation of the selected distribution. 

 

Box-Cox (BC) Method 

 

Luo et al.17 and Wan et al.15 assumed that a sample 𝑥 of interest follows a normal distribution. To 

make this assumption more tenable for skewed data, we incorporate Box-Cox transformations 

into the methods of Luo et al. and Wan et al. The proposed method, which we denote by BC, 

applies Box-Cox transformations to the quantiles of 𝑥 and assumes that the underlying 

distribution of the transformed data is normal.  

 

In brief, the BC method consists of the following four steps. First, an optimization algorithm, 

such as the algorithm of Brent22, optimizes the power parameter 𝜆 such that distribution of the 

transformed data is most likely to be normal. Letting 𝑓1 denote the Box-Cox transformation, the 

quantiles of 𝑥 are transformed into the quantiles of 𝑓1(𝑥). Afterwards, the methods of Luo et al. 

and Wan et al. are applied to estimate the mean and standard deviation of 𝑓1(𝑥), respectively. 

Finally, the mean and standard deviation of 𝑓1(𝑥) are inverse-transformed into the mean and 

standard deviation of 𝑥. 

 

Box-Cox transformations 𝑓1 are defined as follows: 

 

𝑓1(𝑥2) = 𝑦2 =	L𝑥21 − 1𝜆 		if	𝜆 ≠ 0ln(𝑥2) 			if	𝜆 = 0 
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Equivalently, inverse Box-Cox transformations 𝑓1/! are defined as follows:  

 

𝑓1/!(𝑦2) = 𝑥2 =	 O(𝜆 ∙ 𝑦2 + 1)!/1		if	𝜆 ≠ 0exp(𝑦2) 													if	𝜆 = 0 

 

Box and Cox23 argued that Box-Cox transformations can transform a dataset into a more 

normally-distributed dataset. Moreover, for every value of 𝜆, 𝑓1 is monotonically increasing. 

Therefore, any ith order statistic of an untransformed dataset, after transformation, is still the ith 

order statistic of the corresponding transformed dataset, and vice versa. 

 

The optimization step for finding 𝜆 can be described as follows. In 𝑆! and 𝑆", 𝜆 is chosen so that 

the transformed minimum and maximum values (in 𝑆!) or first and third quartiles (in 𝑆") are 

equidistant from the median, making the transformed data to be most likely symmetric and 

therefore most normally distributed. Specifically, the BC method finds a finite value of 𝜆 such 

that  

 

𝑓1(𝑄max) −	𝑓1(𝑄") = 	𝑓1(𝑄") −	𝑓1(𝑄min) 
 

in 𝑆! and  

𝑓1(𝑄#) −	𝑓1(𝑄") = 	𝑓1(𝑄") −	𝑓1(𝑄!) 
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in 𝑆". In 𝑆#, a value of 𝜆 cannot necessarily be found such that both the first and third quartiles as 

well as the minimum and maximum values are equidistant from the median. Therefore, 𝜆 is 

found by  

argmin
1

X:𝑓1(𝑄#) −	𝑓1(𝑄") − C𝑓1(𝑄") −	𝑓1(𝑄!)E<"
+ :𝑓1(𝑄max) −	𝑓1(𝑄") − C𝑓1(𝑄") −	𝑓1(𝑄min)E<"Y 

  

Appendix B describes the implementation of the optimization algorithm used to find 𝜆.  

 

Then, the BC method applies the Box-Cox transformations with this value of 𝜆 on the quantiles 

of 𝑥. That is, the BC method transforms {𝑄min, 𝑄", 𝑄max} into {𝑓1(𝑄min), 𝑓1(𝑄"), 𝑓1(𝑄max)} in 𝑆!, 

{𝑄!, 𝑄", 𝑄#} into {𝑓1(𝑄!), 𝑓1(𝑄"), 𝑓1(𝑄#)} in 𝑆", and {𝑄min, 𝑄!, 𝑄", 𝑄#, 𝑄max} into 

{𝑓1(𝑄min), 𝑓1(𝑄!), 𝑓1(𝑄"), 𝑓1(𝑄#), 𝑓1(𝑄max)} in 𝑆#. 

 

Let 𝑁4(𝜇, 𝜎") ∼ 𝑁(𝜇, 𝜎") conditional on 𝑁4(𝜇, 𝜎") ∈ [𝑓(0), 2𝜇 − 𝑓(0)]. Equivalently, 

𝑁4(𝜇, 𝜎") is the symmetrically truncated 𝑁(𝜇, 𝜎") bounded within the support [𝑓(0), 2𝜇 −
𝑓(0)]. Then, the BC method assumes that 𝑓1(𝑥) ∼ 𝑁4(𝜇, 𝜎") for some 𝜇 and 𝜎 and uses the 

methods of Luo et al. and Wan et al. to calculate 𝜇 and 𝜎, respectively. Finally, the assumption 

made by the BC method implies that 𝑥 ∼ 𝑓1/!C𝑁4(𝜇, 𝜎")E. Therefore, the mean and standard 

deviation of 𝑓1/!C𝑁4(𝜇, 𝜎")E are approximately 𝑥̅ and 𝑠'. 

 

The mean and standard deviation of 𝑓1/!C𝑁4(𝜇, 𝜎")E are found as follows. Let 𝜙 and Φ be the 

probability density function and cumulative distribution function of the standard normal 
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distribution, respectively. The following two equations describe the mean and variance of 

𝑓1/!C𝑁4(𝜇, 𝜎")E, respectively:  

 

Εc𝑓1/!C𝑁4(𝜇, 𝜎")Ed = 	 e 𝜙 :𝑥 − 𝜇𝜎 <'5	"7/89(*)

'589(*)

𝑓1/!(𝑥)𝜎CΦ(𝜇) − Φ(−𝜇)E 𝜕𝑥	
	

Varc𝑓1/!C𝑁4(𝜇, 𝜎")Ed = 	 e 𝜙 :𝑥 − 𝜇𝜎 <'5	"7/89(*)

'589(*)

C𝑓1/!(𝑥) − Εc𝑓1/!C𝑁4(𝜇, 𝜎")EdE"𝜎CΦ(𝜇) − Φ(−𝜇)E 𝜕𝑥	 
 

Numerical integration can solve the two above equations. Moreover, the following Monte-Carlo 

simulation can compute the mean and standard deviation of 𝑓1/!C𝑁4(𝜇, 𝜎")E: first, generate an 

independent and identically distributed random sample 𝑅 from 𝑁(𝜇, 𝜎"); next, let the new 𝑅 be 

{𝑟 ∈ 𝑅: 𝑟 ∈ [𝑓(0), 2𝜇 − 𝑓(0)]}, or equivalently, remove any value in 𝑅 that is not within the 

range [𝑓(0), 2𝜇 − 𝑓(0)]; then, calculate the sample mean and sample standard deviation of 𝑅; 

finally, the sample mean and sample standard deviation are estimated as the mean and standard 

deviation of 𝑓1/!C𝑁4(𝜇, 𝜎")E. The application of the BC method in this work uses Monte-Carlo 

simulation to compute the mean and standard deviation of 𝑓1/!C𝑁4(𝜇, 𝜎")E. 
 

Recall that 𝑁4(𝜇, 𝜎") is the symmetrically truncated 𝑁(𝜇, 𝜎") with support [𝑓(0), 2𝜇 − 𝑓(0)].  
In fact, 𝑁4(𝜇, 𝜎") ∼ 𝑓15!/! C𝑁4(𝜇, 𝜎")E, and 𝐿𝑁(𝜇, 𝜎") ∼ 𝑓15*/! C𝑁4(𝜇, 𝜎")E. Therefore, both the 

normal distribution truncated within the support [𝑓(0), 2𝜇 − 𝑓(0)] and log-normal distribution 

are special cases of 𝑓1/!C𝑁4(𝜇, 𝜎")E. 
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Design of Simulation Study 

 

We conducted a simulation study to systematically compare the performance of the existing and 

proposed approaches when the truth is known.  

 

To be consistent with the work already conducted in this area, we generated data from the same 

distributions considered in previous studies13-17. As used by Bland14, we used the normal 

distribution with 𝜇 = 5 and 𝜎 = 1, the log-normal distribution with 𝜇 = 5 and 𝜎 = 0.25, the 

log-normal distribution with 𝜇 = 5 and 𝜎 = 0.5, and the log-normal distribution 𝜇 = 5 and 𝜎 =
1 in our primary analyses to investigate the effect of skewness on the performance of the sample 

mean and standard deviation estimators. In sensitivity analyses, we considered the following 

distributions used in several other studies13, 15-17: the normal distribution with 𝜇 = 50 and 𝜎 =
17, the log-normal distribution with 𝜇 = 4 and 𝜎 = 0.3, the exponential distribution with 𝜆 =
10, the beta distribution with 𝛼 = 9 and 𝛽 = 4, and the Weibull distribution with 𝜆 = 2 and 𝑘 =
35.  

 

For each distribution, a sample of size 𝑛 was drawn to simulate data from a primary study. Then, 

the appropriate summary statistics (i.e., 𝑆!, 𝑆", or 𝑆#) were calculated from this sample. The 

Luo/Wan, ABC, QE, and BC methods were each applied to the summary data in order to 

estimate the sample mean and standard deviation. We will refer to these estimates as the “derived 

estimated sample means and standard deviations”. The true sample mean and standard deviation 

were then compared to the derived estimated sample means and standard deviations. As used in 
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previous studies13, 15, 16, the relative error was used as the performance measure. The relative 

error is defined by 

 

relative	error	of	𝑥 = 	 estimated	𝑥 − true	𝑥true	𝑥 . 
 

 

We used the following sample sizes in our simulations: 25, 50, 75, 100, 150, 200, 250, 300, 350, 

400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1 000. A total of 1 000 repetitions 

were performed for each combination of data generation parameters under scenarios 𝑆!, 𝑆", and 

𝑆#. The average relative error (ARE) was calculated over the 1 000 repetitions for each 

combination of data generation parameters.  

 

Results of Simulation Study 

 

In the following subsections, we present the results of the simulation study using the set of 

outcome distributions considered by Bland14, as these distributions were selected to investigate 

the effect of skewness on the estimators. The results of the sensitivity analyses where we used 

the set of outcome distribution used by other authors13, 15-17 is given in Section 1 of 

Supplementary Material. 

 

Because the simulation results in scenarios 𝑆! and 𝑆# were similar, the 𝑆# simulation results are 

presented in Section 2 of Supplementary Material for parsimony. Additionally, as the focus of 
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this paper is on the analysis of non-normal data, all simulation results where data were generated 

from a normal distribution are presented in Section 3 of Supplementary Material.  

 

Comparison of Methods Under Scenario 𝑺𝟏 

 

Figure 1 displays the ARE of all sample mean and standard deviation estimators under scenario 

𝑆!. As the skewness (i.e., the 𝜎 parameter) of the log-normal distribution increased, the 

magnitude of the AREs generally increased for the sample mean and standard deviation 

estimators, but was inconsequential for the BC method. Moreover, all methods had considerably 

larger AREs for estimating the sample standard deviation compared to estimating the sample 

mean. 

 

For estimating the sample mean, the BC method performed best under each distribution and 

nearly all sample sizes (𝑛) considered in Figure 1; the BC method was nearly unbiased, yielding 

AREs of magnitude less than 0.004, 0.008, and 0.020 in the Log-Normal(5,0.25), Log-

Normal(5,0.5), and Log-Normal(5,1), cases, respectively. Contrary to the Luo et al. and ABC 

sample mean estimators which became more biased as 𝑛 increased (e.g., ARE = −0.22 for Luo 

et al. and ARE = −0.40 for ABC when 𝑛 = 1	000 in Log-Normal(5,1)), the performance of the 

QE sample mean estimator improved as 𝑛 increased. The QE sample mean estimator became 

preferred over the Luo et al. and ABC sample mean estimators when 𝑛 ≥ 300. However, the QE 

method always performed worse than the BC method in regards to ARE in Figure 1.  
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The BC method performed best for estimating the sample standard deviation, achieving AREs of 

magnitude less than 0.03 in nearly all scenarios investigated in Figure 1. Although the QE 

standard deviation estimator performed better as 𝑛 increased, this method typically resulted in 

larger AREs compared to the ABC and BC methods. Additionally, the QE and ABC standard 

deviation estimators often yielded large ARE values when sample sizes were small (i.e., 𝑛 ≤
75), especially for skewed outcomes. 

 

Model selection highly differed between the QE and ABC methods when the outcome 

distribution was Log-Normal(5,0.25). For this outcome distribution, the percentage of repetitions 

where the ABC method selected the log-normal distribution ranged between 0.6% (when 𝑛 =
75) and 5.3% (when 𝑛 = 900). In all repetitions where the log-normal distribution was not 

selected, the ABC method selected the normal distribution. The QE method, on the other hand, 

selected the log-normal distribution between 58.1% (when 𝑛 = 25) to 82.3% (when 𝑛 = 1	000) 

of repetitions. Moreover, the QE method had comparable performance in the repetitions where it 

did not select the log-normal distribution (e.g., AREs ranging between -0.01 and 0.01 for 

estimating the sample mean and between 0.07 and 0.11 for estimating the standard deviation in 

these repetitions). Model selection improved for the QE and ABC methods as 𝑛 and the 

skewness of the log-normal distribution increased. For example, in the Log-Normal(5,1) case, 

the ABC selected the log-normal distribution in at least 99.9% of the repetitions for all 𝑛 and the 

QE method selected the log-normal distribution in at least 99% of the repetitions for all 𝑛 ≥ 50.  

 

Comparison of Methods Under Scenario 𝑺𝟐 
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Figure 2 gives the ARE of all methods under scenario 𝑆". As in scenario 𝑆!, we found that (i) the 

skewness of the underlying distribution strongly affected the performance of the sample mean 

and standard deviation estimators, and (ii) the sample mean estimators typically had AREs with 

smaller magnitude.  

 

The BC and QE sample mean estimators performed comparably to each other in most scenarios 

investigated in Figure 2. In the Log-Normal(5,0.25) case, these two methods performed best. In 

the Log-Normal(5,0.5) and Log-Normal(5,1) cases, the BC, QE, and ABC methods all 

performed comparably to each other and the Wan et al. method performed considerably worse. 

Additionally, for small 𝑛 and skewed data, the ABC sample mean estimator gave highly biased 

estimates (e.g., ARE	 = 0.59 when 𝑛 = 25 in Log-Normal(5,1)).  

 

Similar trends held for the corresponding sample standard deviation estimators. The QE and BC 

methods performed best in the Log-Normal(5,0.25) case, and the ABC, QE, and BC methods 

performed best and comparably in the Log-Normal(5,0.5) and Log-Normal(5,1) cases. 

Moreover, for small sample sizes in the Log-Normal(5,1) case, the ABC method yielded very 

large ARE values (e.g., ARE = 3.48 when 𝑛 = 25 in Log-Normal(5,1)).  

 

Lastly, model selection performance was similar to that observed in 𝑆!. ABC model selection 

performed poorly in the Log-Normal(5,0.25) case, as it selected the normal distribution for all 

1	000 repetitions under all values of 𝑛. The QE method, on the other hand, selected the log-

normal distribution in the majority of repetitions under all values of 𝑛. The performance of the 

QE method slightly worsened in repetitions where the log-normal solution was not selected (e.g., 
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AREs ranging between -0.02 to -0.01 for estimating the sample mean and between -0.08 and -

0.03 for estimating the sample standard deviation in these repetitions) As 𝑛 and the skewness of 

the underlying log-normal distribution increased, the log-normal distribution was increasingly 

selected by the ABC and QE methods. For instance, in the Log-Normal(5,1) case, the ABC 

method selected the log-normal distribution in at least 96% of the repetitions under all 𝑛 and the 

QE method selected the log-normal distribution in at least 90% of the repetitions for all 𝑛 ≥ 250. 

 

Example 

 

In this section, we illustrate the use of the existing and proposed methods when applied to a real-

life meta-analysis of a continuous, skewed outcome. Specifically, we used data collected for an 

individual participant data (IPD) meta-analysis of the diagnostic accuracy of the Patient Health 

Questionnaire-9 (PHQ-9) depression screening tool.24, 25 We chose to use data from an IPD meta-

analysis because 1) 𝑆!, 𝑆", and 𝑆# summary data can be obtained from each study and 2) the true 

study-specific sample means and standard deviations are available.  

 

Our analysis focused on the patient scores of the PHQ-9, which is a self-administered screening 

tool for depression. PHQ-9 scores are measured on a scale from 0 to 27, where higher scores are 

indicative of higher depressive symptoms. Previous studies have found that the distribution of 

PHQ-9 scores in the general population is right-skewed26-28. 

 

For each of the 58 primary studies, we calculated the sample median, minimum and maximum 

values, and first and third quartiles of the PHQ-9 scores of all patients in order to mimic the 
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scenarios where an aggregate data meta-analysis extracts 𝑆!, 𝑆", or 𝑆# summary data. Then, we 

applied the existing and proposed methods to this summary data to estimate study-specific 

sample means and standard deviations – we refer to these as the “derived estimated sample 

means and standard deviations”. Section 4 of Supplementary Material presents the study-specific 

𝑆# summary data. 

 

Some primary studies used weighted sampling. When extracting 𝑆!, 𝑆", and 𝑆# summary data 

from these studies, weighted sample quantiles were used.29 Additionally, weighted sample means 

and standard deviations were used as the true values for the sample mean and standard deviation, 

respectively, for studies with weighted sampling.  

 

As PHQ-9 scores are integer-valued, PHQ-9 scores of 0 were observed in most of the primary 

studies. However, a minimum value and/or first quartile value of 0 result in complications for the 

QE and ABC methods when estimating the parameters of the log-normal distribution, as the 

prior bounds for the ABC method and the parameter constraints for the QE method implicitly 

assume that the extracted summary data are strictly positive. Therefore, when applying all 

methods, a value of 0.5 was added to the extracted summary data. After estimating the sample 

mean and standard deviation from the shifted summary data, 0.5 was subtracted from the 

estimated sample mean.  

 

We compared the derived estimated sample means and standard deviations to the true sample 

means and standard deviations (Table 1). The QE and BC methods were considerably less biased 

than the existing methods for estimating the sample mean under 𝑆!, 𝑆", and 𝑆#. The QE sample 
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mean estimator performed best under 𝑆! and the BC sample mean estimator performed best 

under 𝑆" and 𝑆#. Trends were less conclusive for estimating the standard deviation. The QE 

method standard deviation estimator was the least biased under 𝑆! and 𝑆# and the standard 

deviation estimator of Wan et al. was the least biased under 𝑆". The high ARE value of the ABC 

method for estimating the standard deviation under 𝑆" was due to very large relative error values 

(relative	error > 10) when applied to the Osorio et al. 2009, Ayalon et al. 2010, and Twist et al. 

2013 studies.  

 

We meta-analyzed the PHQ-9 scores using the true study-specific sample means and standard 

deviations (Figure 3) and compared this to a meta-analysis using the derived estimated study-

specific sample means and standard deviations (Table 2). The restricted maximum likelihood 

method was used to estimate heterogeneity in all meta-analyses.30 The QE and BC methods were 

less biased for estimating the pooled mean compared to the existing methods in 𝑆!, 𝑆", and 𝑆#. 

The QE method had relative error closest to zero for estimating the pooled mean in 𝑆! and 𝑆# and 

the BC method had relative error closest to zero in 𝑆". As one may expect, QE and BC methods 

performed best in 𝑆# for estimating the pooled mean, yielding relative errors of -0.0054 and 

0.0074, respectively.  

 

The primary studies were highly heterogeneous. When using the true study-specific sample 

means and standard deviations, the 𝐼" = 98.15%.31 The Luo/Wan, ABC, QE, and BC methods 

yielded similar estimates of 𝐼"; using 98.15% as the true value of 𝐼", all four methods had 

relative errors between −0.02 and 0.02 for estimating 𝐼" in 𝑆!, 𝑆", and 𝑆#. 
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Lastly, we investigated the skewness of the PHQ-9 scores. To mimic how data analysts may 

evaluate skewness based on available summary data, we used Bowley’s coefficient to quantify 

skewness, as it only depends on 𝑆" summary data.32 Bowley’s coefficient values range from -1 to 

1, where positive values indicate right skew and negative values indicate left skew. The average 

value of Bowley’s coefficient taken over all 58 primary studies was 0.18, indicating moderate 

right skewness. Moreover, the ABC and QE methods suggested non-normality in many of the 

primary studies. When given 𝑆" data, the ABC method selected the normal distribution for 50% 

of studies and the log-normal for the other 50% of studies. The QE method selected the normal 

distribution for 21% of studies, the log-normal for 22% of studies, the gamma for 26% of 

studies, and the Weibull for 31% of studies.  

 

We performed additional analyses to explore the sensitivity of the addition of 0.5 to all summary 

data. When adding 0.1 or 0.01 to all summary data, similar results for the Luo/Wan, QE, and BC 

methods were obtained. However, the performance of the ABC method considerably worsened 

for smaller values added to the summary data, especially in 𝑆". For instance, the ABC method 

had ARE of 0.60 for estimating the sample mean and 11.15 for estimating the sample standard 

deviation in 𝑆" when 0.01 was added to all summary data.   

 

Discussion 

 

We proposed two methods to estimate the sample mean and standard deviation from commonly 

reported quantiles in meta-analysis. Because studies typically report the sample median and other 

sample quantiles when data are skewed, our analyses focused on the application of the proposed 
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QE and BC methods to skewed data. We compared the QE and BC methods to the widely used 

methods of Wan et al.15, Luo et al.17, and Kwon and Reis16 in a simulation study and in a real-life 

meta-analysis.  

 

We found that the QE and BC sample mean estimators performed well, typically yielding 

average relative error values approaching zero as the sample size increased. In the simulation 

study, the QE and BC sample mean estimators performed better than the methods of Luo et al. in 

nearly all scenarios and often performed better than the ABC method of Kwon and Reis16. In our 

empirical evaluation of the methods, we found that the QE and BC sample mean estimators 

considerably outperformed the existing methods.  

 

Although the BC sample standard deviation estimator performed best or comparably to the best 

performing method in the primary analyses of the simulation study, the sensitivity analyses and 

empirical evaluations did not clearly indicate a best performing approach for estimating the 

sample standard deviation. For all methods, the magnitude of the relative errors for estimating 

the sample standard deviation was typically higher than for estimating the sample mean.  

 

In practice, the existing and proposed methods enable data analysts to incorporate studies that 

report medians in meta-analysis. Therefore, we compared the performance of the methods at the 

meta-analysis level using data from a real-life individual patient data meta-analysis. In this 

analysis, the methods that performed best for estimating the sample mean often resulted in the 

most accurate pooled mean estimates as well. As the QE and BC methods performed best for 

estimating the sample mean, these methods also performed best at the meta-analysis level. 
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In our empirical assessments, we assumed that all primary studies reported 𝑆!, 𝑆", or 𝑆# 

summary data. Often in aggregate data meta-analyses, however, only a fraction of primary 

studies report 𝑆!, 𝑆", or 𝑆# summary data and the other primary studies report sample means and 

standard deviations. Therefore, the results of our analyses at the meta-analysis level reflect the 

extremes in performance between the existing and proposed sample mean and standard deviation 

estimators. In practice, in meta-analyses where all or nearly all primary studies report medians, 

directly meta-analyzing medians may be better suited.21, 33  

 

Notionally, the ABC and QE methods share numerous similarities and one may expect these 

methods to perform similarly to each other. In our analyses, three factors strongly differentiated 

the performance of these methods. First, the performance of ABC model selection was more 

highly variable and often favored the normal distribution (e.g., see simulation results for the Log-

Normal(5, 0.25) distribution). Second, QE method gave more accurate estimates of the sample 

mean and standard deviation compared to the ABC method when data were not generated from 

one of the candidate parametric distributions. Finally, the ABC method was more sensitive to 

outliers. For example, the maximum values were highly variable when using the Log-

Normal(5,1) distribution, and the method was highly biased in 𝑆! and 𝑆# even though the method 

correctly selected the log-normal distribution in nearly every repetition (e.g., see bottom row of 

Figure 1). 

 

Our analyses focused on skewed data. As expected, when data were generated from a normal 

distribution, the Luo et al. sample mean estimators and the Wan et al. sample standard deviation 
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estimators performed best (see Section 3 of Supplementary Material). However, most methods 

performed reasonably well in the normal case and the differences in performance amongst the 

methods were often inconsequential (e.g., AREs of magnitude less than 0.01 for the Luo et al., 

QE, and BC sample mean estimators in the Normal(5,1) case). When making the same 

assumption of normality when applying the QE or ABC methods (i.e., by only fitting the normal 

distribution), the performance of the methods improved but were still not superior to the Luo et 

al. and Wan et al. methods (data not shown).  

 

This work has several limitations. Although the settings in our simulation study were based on 

those used in previous studies13-17 to make a fair comparison between methods, these settings are 

not exhaustive and results may vary in other settings. Additionally, our simulation study focused 

solely on the performance of the methods for estimating the sample mean and standard deviation. 

In future work, we intend to conduct a simulation study investigating the performance of the 

methods at the meta-analysis level (e.g., for estimating the pooled effect measure and 

heterogeneity). 

 

Strengths of this work include (i) comparing the recently developed Luo et al. method to the 

ABC method, (ii) including a greater number of outcome distributions compared to the 

simulation studies conducted by previous authors13-15, 17, and (iii) empirically evaluating the 

accuracy of the methods using real-life data.  

 

In summary, we recommend the QE and BC methods for estimating the sample mean and 

standard deviation when data are suspected to be non-normal, as they often outperformed the 
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existing methods in the analyses presented herein. To make these methods widely accessible, we 

developed the R package ‘estmeansd’ (available on CRAN)20 which implements these methods 

and launched a webpage (available at https://smcgrath.shinyapps.io/estmeansd/) that provides a 

graphical user interface for using these methods. We also encourage researchers performing 

meta-analysis to explore the sensitivity of their conclusions to the choice of method for 

estimating sample means and standard deviations.  
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Table 1: ARE of the methods when applied to estimate the sample means and standard 

deviations of the 58 primary studies. In each column, the ARE value closest to zero is in bold. 

The presented ARE values were rounded to two decimal places. 

 

 ARE for 𝑥̅ ARE for 𝑠'  

 𝑆!  𝑆"  𝑆#  𝑆!  𝑆"  𝑆#  

Luo/Wan -0.14 -0.15 -0.10 -0.15 -0.01 -0.08 

ABC -0.13 0.21 -0.05 -0.22 1.38 -0.16 

QE -0.05 0.06 0.00 -0.15 0.34 -0.08 

BC -0.08 0.00 0.00 -0.25 0.06 0.11 
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Table 2: Estimates of the pooled mean PHQ-9 score and their 95% CIs when using the study-

specific derived estimated sample means and standard deviations. For the pooled estimates under 

the “𝑆!”, “𝑆"”, and “𝑆#” columns, all methods were applied assuming 𝑆!, 𝑆", and 𝑆# summary 

data, respectively, were extracted from all 58 primary studies, and the derived estimated study-

specific sample means were meta-analyzed. When using the true study-specific sample means 

and standard deviations, the pooled estimate was 6.53 [95% CI: 5.97, 7.09]. In each column, the 

pooled estimate closest to the true value (i.e., 6.53) is in bold. 

 

 𝑆!  𝑆"  𝑆#  

Luo/Wan 5.76 [5.15, 6.37] 5.68 [5.06, 6.29] 5.97 [5.36, 6.58] 

ABC 5.77 [5.13, 6.40] 7.12 [6.48, 7.77] 6.29 [5.69, 6.90] 

QE 6.26 [5.67, 6.85] 6.88 [6.22, 7.53] 6.49 [5.92, 7.07] 

BC 6.09 [5.48, 6.69] 6.59 [5.91, 7.28] 6.58 [6.01, 7.14] 
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Figure 1: ARE of the Luo/Wan (red line, hollow circle), ABC (orange line, hollow triangle), QE 

(blue line, solid triangle), and BC (green line, solid circle) methods in scenario 𝑆!. The panels in 

the left and right columns present the ARE of the sample mean estimators and sample standard 

deviation estimators, respectively.  

 

 
 

Note that for the Log-Normal(5,1) distribution, the ABC standard deviation estimator had ARE = 2.05 when 𝑛 = 25.  
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Figure 2: ARE of the Luo/Wan (red line, hollow circle), ABC (orange line, hollow triangle), QE 

(blue line, solid triangle), and BC (green line, solid circle) methods in scenario 𝑆". The panels in 

the left and right columns present the ARE of the sample mean estimators and sample standard 

deviation estimators, respectively.  

 

 
 

Note that for the Log-Normal(5,1) distribution, the ABC sample mean estimator had ARE =0.59 when 𝑛 = 25 and the ABC standard deviation estimator had ARE = 3.48 when 𝑛 = 25 and ARE = 0.67 when 𝑛 = 50. 
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Figure 3: Forest plot from the meta-analysis of mean PHQ-9 scores. The study-specific 

estimates represent the true sample means and their 95% CIs. The pooled estimate shown was 

obtained using the true-study-specific sample means and standard deviations. In the “Mean 

PHQ-9” column, the true study-specific sample means and their 95% CIs as well as the pooled 

mean and its 95% CI are given.  
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Appendix A 

 

In the QE method, the parameters of a candidate distribution are estimated by minimizing the 

objective function, 𝑆(𝜃). This section describes the implementation of minimization algorithm. 

 

We set the initial values for the parameters in the optimization algorithm as follows. First, we 

apply the methods of Luo et al.17 and Wan et al.15 to estimate the sample mean and standard 

deviation, respectively, from 𝑆!, 𝑆", or 𝑆#. Then, we apply the method of moments estimator of 

the candidate distribution using the estimated sample mean and standard deviation. The method 

of moments estimates of the parameters are used as the initial values of the parameters. 

 

To minimize 𝑆(𝜃), we apply the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm 

with box constraints (L-BFGS-B), which is implemented in the built-in ‘optim’ function in the 

statistical programming language R. Reasonable constraints for the parameters are imposed to 

improve the convergence of the algorithm (e.g., enforcing 𝜇 ∈ [𝑄$(), 𝑄$%&] for the Normal(µ,	
𝜎") distribution in 𝑆!). The particular constraints are given in Table A1. These parameter 

constraints are based on the uniform prior bounds in the ABC method of Kwon and Reis16. In the 

simulation study, we found that the solution to the minimization problem was insensitive to 

perturbations of the parameter constraint values, provided the algorithm converged.  

 

The algorithm is considered to converge when the objective function is reduced by a factor of 

less than 10, of machine tolerance. In each application of the QE method in the simulation 

study, the algorithm converged for at least three distributions. If the algorithm failed to converge 
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for a given candidate distribution, that candidate distribution was excluded from the model 

selection procedure.  
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Table A1: Parameter constraints for the L-BFGS-B algorithm. 

 

Scenario Candidate Distribution 𝜃! 𝜃" 𝑆! Normal 𝜇 ∈ (𝑄min, 𝑄max)  𝜎 ∈ (10/#, 50)  
 Log-Normal 𝜇 ∈ (log(𝑄min) , log(𝑄max))  𝜎 ∈ (10/#, 50)  
 Gamma 𝛼 ∈ (10/#, 100)  𝛽 ∈ (10/#, 100)  
 Beta 𝛼 ∈ (10/#, 40)  𝛽 ∈ (10/#, 40)  
 Weibull 𝜆 ∈ (10/#, 100)  𝑘 ∈ (10/#, 100)  𝑆" & 𝑆# Normal 𝜇 ∈ (𝑄1, 𝑄3)  𝜎 ∈ (10/#, 50)  
 Log-Normal 𝜇 ∈ (log(𝑄1) , log(𝑄#))  𝜎 ∈ (10/#, 50)  
 Gamma 𝛼 ∈ (10/#, 100)  𝛽 ∈ (10/#, 100)  
 Beta 𝛼 ∈ (10/#, 40)  𝛽 ∈ (10/#, 40)  
 Weibull 𝜆 ∈ (10/#, 100)  𝑘 ∈ (10/#, 100)  
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Appendix B 

 

To estimate sample mean and standard deviation using the BC method, the use of Box-Cox 

transformations requires the solutions to the following problems. 

 

The first problem is defined as follows. In 𝑆!, given 𝑄min, 𝑄", and 𝑄max such that 𝑄min < 𝑄" <
𝑄max, find the finite power 𝜆 of transformation such that 	
 

𝑓1(𝑄max) −	𝑓1(𝑄") = 	𝑓1(𝑄") −	𝑓1(𝑄min) 
 

Equivalently, this problem can be restated as finding 𝜆 such that 

 

2𝑓1(𝑄max) −	𝑓1(𝑄")𝑓1(𝑄") −	𝑓1(𝑄min) − 13
"

 

 

is minimized to zero. Similarly, given 𝑄!, 𝑄", and 𝑄# such that 𝑄! < 𝑄" < 𝑄#, the corresponding 

minimization problem in 𝑆" is finding 𝜆 such that 

 

2𝑓1(𝑄#) −	𝑓1(𝑄")𝑓1(𝑄") −	𝑓1(𝑄!) − 13
"

 

 

is minimized to zero. Given 𝑄min, 𝑄!, 𝑄", 𝑄#, and 𝑄max such that 𝑄min < 𝑄" < 𝑄max and 𝑄! <
𝑄" < 𝑄#, the corresponding minimization problem in 𝑆# is finding 𝜆 such that the following 

expression is minimized, 
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2𝑓1(𝑄#) −	𝑓1(𝑄")𝑓1(𝑄") −	𝑓1(𝑄!) − 13
" + 2𝑓1(𝑄max) −	𝑓1(𝑄")𝑓1(𝑄") −	𝑓1(𝑄min) − 13

". 
 

To find 𝜆, we use the built-in function ‘optimize’ in R. This function uses a combination of 

golden section search and successive parabolic interpolation for one-dimensional optimization. 

 

The second problem arises when 𝜆 < 0 because in this case the mean and/or standard deviation 

are likely to be infinite. For example, 𝜆 = −1 results in a Cauchy distribution which has 

undefined mean and standard deviation. Therefore, we let 𝜆 = 0 in this case so that 𝜆 is non-

negative. By doing so, we implicitly assumed that the underlying distribution cannot be more 

heavy-tailed than a log-normal distribution. If this assumption does not hold, then estimating the 

mean and standard deviation of the underlying distribution may not be appropriate.  
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Supplementary Material for: Estimating the sample mean and standard deviation from commonly 

reported quantiles in meta-analysis 

 

Sean McGrath, XiaoFei Zhao, Russell Steele, Brett D. Thombs, Andrea Benedetti and the 

DEPRESsion Screening Data (DEPRESSD) Collaboration 
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Section 1 

 

In this section, we present the results of the sensitivity analyses of the simulation study for 

scenarios 𝑆! and 𝑆". Figures S1 and S2 give the 𝑆! and 𝑆" simulation results, respectively, for 

non-normal distributions. 
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Figure S1: ARE of the Luo/Wan (red line, hollow circle), ABC (orange line, hollow triangle), 

QE (blue line, solid triangle), and BC (green line, solid circle) methods in scenario 𝑆! in the 

sensitivity analyses. The panels in the left and right columns present the ARE of the sample 

mean estimators and sample standard deviation estimators, respectively.  
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Figure S2: ARE of the Luo/Wan (red line, hollow circle), ABC (orange line, hollow triangle), 

QE (blue line, solid triangle), and BC (green line, solid circle) methods in scenario 𝑆" in the 

sensitivity analyses. The panels in the left and right columns present the ARE of the sample 

mean estimators and sample standard deviation estimators, respectively.  

 
Note that for the Exponential(10) distribution, the ABC standard deviation estimator had ARE =8.25 when 𝑛 = 25. 
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Section 2 

 

In this section, we present the 𝑆# simulation results. Figures S3 and S4 give the simulation results 

for the primary and sensitivity analyses, respectively.  
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Figure S3: ARE of the Luo/Wan (red line, hollow circle), ABC (orange line, hollow triangle), 

QE (blue line, solid triangle), and BC (green line, solid circle) methods in scenario 𝑆# in the 

primary analyses. The panels in the left and right columns present the ARE of the sample mean 

estimators and sample standard deviation estimators, respectively.  

 

 
 

Note that for the Log-Normal(5,1) distribution, the QE and ABC standard deviation estimators 

had ARE = 1.70 and ARE = 1.57, respectively, when 𝑛 = 25. 
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Figure S4: ARE of the Luo/Wan (red line, hollow circle), ABC (orange line, hollow triangle), 

QE (blue line, solid triangle), and BC (green line, solid circle) methods in scenario 𝑆# in the 

sensitivity analyses. The panels in the left and right columns present the ARE of the sample 

mean estimators and sample standard deviation estimators, respectively.  

 
Note that for the Log-Normal(5,1) distribution, the QE standard deviation estimator had ARE =0.51 when 𝑛 = 25.  



 52 

Section 3 

 

In this section, we present the results of the simulation study when normal distributions were 

used to generate data. For these simulations, recall that the QE and ABC methods have candidate 

distributions including the normal distribution as well as several distributions with a strictly 

positive support. Therefore, a negative minimum value (in 𝑆! or 𝑆#) or a negative first quartile 

value (in 𝑆") would bias QE and ABC model selection towards the normal distribution. 

Additionally, as described in the Example, the QE and ABC methods implicitly assume that the 

extracted summary data are strictly positive when fitting the log-normal distribution. Therefore, 

when applying all methods to data sampled from the normal distribution, if the extracted 

summary data included a negative value, the data were shifted so that the minimum value (in 𝑆! 

or 𝑆#) or the first quartile value (in 𝑆") equaled 0.5. Let 𝑐 denote the value of such a shift. After 

estimating the sample mean, a value of 𝑐 was subtract from the sample mean.  

 

Figures S5 and S6 give the simulation results for the primary and sensitivity analyses, 

respectively. 
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Figure S5: ARE of the Luo/Wan (red line, hollow circle), ABC (orange line, hollow triangle), 

QE (blue line, solid triangle), and BC (green line, solid circle) methods in scenario 𝑆! (top row), 𝑆" (middle row), and 𝑆# (bottom row) when applied to normally distributed data in the primary 

analyses. The panels in the left and right columns present the ARE of the sample mean 

estimators and sample standard deviation estimators, respectively. 

 

 
Note that in 𝑆", the ABC sample mean estimator had ARE = 0.03 when 𝑛 = 25. Moreover, in 𝑆", the ABC standard deviation estimator had ARE = 0.18 when 𝑛 = 25 and ARE = 0.06 when 𝑛 = 50.  
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Figure S6: ARE of the Luo/Wan (red line, hollow circle), ABC (orange line, hollow triangle), 

QE (blue line, solid triangle), and BC (green line, solid circle) methods in scenario 𝑆! (top row), 𝑆" (middle row), and 𝑆# (bottom row) when applied to normally distributed data in the sensitivity 

analyses. The panels in the left and right columns present the ARE of the sample mean 

estimators and sample standard deviation estimators, respectively. 

 

 
Note that in 𝑆", the ABC sample mean and standard deviation estimators had ARE = 0.03 and ARE = 0.13, respectively, when 𝑛 = 25.  
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Section 4 

 

Table S1: The sample minimum value (𝑄min), first quartile (𝑄!), median (𝑄"), third quartile (𝑄#), 

maximum value (𝑄max), and sample size (𝑛) of the 58 primary studies in the individual patient 

data meta-analysis of mean PHQ-9 scores. 

 

Study 𝑄min  𝑄!  𝑄"  𝑄#  𝑄max  𝑛  

Persoons et al. 2001 0.00 2.00 5.00 9.00 27.00 173 

Henkel et al. 2004 0.00 3.00 5.00 10.00 25.00 430 

Grafe et al. 2004 0.00 3.00 7.00 12.00 27.00 494 

Fann et al. 2005 0.00 0.00 4.00 8.50 24.00 135 

Picardi et al. 2005 0.00 2.00 5.00 10.00 25.00 138 

Azah et al. 2005 0.00 3.00 5.00 8.00 21.00 180 

Hahn et al. 2006 0.00 5.50 9.00 14.00 26.00 211 

Eack et al. 2006 1.00 4.00 9.00 16.25 24.00  48 

Muramatsu et al. 2007 0.00 3.00 7.00 13.00 27.00 116 

Stafford et al. 2007 0.00 1.00 3.00 7.00 27.00 193 

Hides et al. 2007 0.00 6.00 13.00 18.50 27.00 103 

Patel et al. 2008 0.00 1.00 4.00 7.00 27.00 299 

Thombs et al. 2008 0.00 1.00 3.00 8.00 25.00 1006 

Lotrakul et al. 2008 0.00 3.00 6.00 9.00 24.00 278 

Lamers et al. 2008 0.00 3.00 5.00 12.00 27.00 104 

Wittkampf et al. 2009 0.00 1.00 4.00 9.00 27.00 260 

Osorio et al. 2009 0.00 1.00 5.00 14.00 24.00 177 

Gjerdingen et al. 2009 0.00 1.00 3.00 6.00 27.00 419 

Richardson et al. 2010 0.00 3.00 7.00 11.00 27.00 377 

van Steenbergen-Weijenburg et al. 2010 0.00 2.00 7.50 12.00 27.00 196 

Arroll et al. 2010 0.00 1.00 3.00 6.00 27.00 2528 

Ayalon et al. 2010 0.00 0.00 2.00 5.00 24.00 151 

Delgadillo et al. 2011 0.00 10.00 13.00 17.50 27.00 103 

Hyphantis et al. 2011 0.00 2.00 5.00 9.50 23.00 213 

Hobfoll et al. 2011 0.00 1.00 4.00 10.00 26.00 144 

Khamseh et al. 2011 0.00 6.00 11.00 19.00 27.00 184 

Liu et al. 2011 0.00 0.00 2.00 5.00 25.00 1532 

Pence et al. 2012 0.00 0.00 1.00 4.00 19.00 398 

Osorio et al. 2012 0.00 4.25 9.00 15.75 27.00  86 

Mohd Sidik et al. 2012 0.00 2.00 3.00 7.00 21.00 146 

Bombardier et al. 2012 0.00 2.00 5.00 10.00 27.00 160 

Sidebottom et al. 2012 0.00 2.00 5.00 9.00 26.00 246 

Turner et al. 2012 0.00 2.75 6.00 10.00 26.00  72 

Williams et al. 2012 0.00 2.00 5.00 8.00 21.00 235 

de Man-van Ginkel et al. 2012 0.00 3.00 6.00 10.00 23.00 164 

Simning et al. 2012 0.00 2.00 4.00 7.75 21.00 190 

Kwan et al. 2012 0.00 2.00 4.00 8.00 27.00 113 

Sung et al. 2013 0.00 1.00 3.00 6.00 27.00 399 

Inagaki et al. 2013 0.00 0.00 2.00 3.19 22.00 104 
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Razykov et al. 2013 0.00 3.00 6.00 10.00 26.00 345 

Rooney et al. 2013 0.00 3.00 5.00 9.00 25.00 126 

Vohringer et al. 2013 0.00 5.00 8.00 14.00 27.00 190 

Zhang et al. 2013 0.00 2.00 5.00 10.00 26.00  68 

Twist et al. 2013 0.00 0.00 2.00 7.00 27.00 360 

Chagas et al. 2013 0.00 4.00 7.50 12.00 23.00  84 

Akena et al. 2013 0.00 2.00 6.00 9.00 23.00  91 

Santos et al. 2013 0.00 1.00 4.00 8.00 21.00 196 

McGuire et al. 2013 0.00 1.00 4.00 8.50 23.00 100 

Fischer et al. 2014 0.00 1.00 4.00 8.00 27.00 194 

Gelaye et al. 2014 0.00 2.00 5.00 10.00 27.00 923 

Beraldi et al. 2014 0.00 3.00 6.00 8.00 16.00 116 

Cholera et al. 2014 0.00 2.00 5.00 9.00 22.00 397 

Fiest et al. 2014 0.00 1.00 4.00 9.00 26.00 169 

Hyphantis et al. 2014 0.00 2.00 5.00 10.00 27.00 349 

Kiely et al. 2014 0.00 1.00 3.00 6.00 27.00 822 

Lambert et al. 2015 0.00 2.00 6.00 10.00 24.00 147 

Amoozegar et al. 2017 0.00 3.00 7.00 12.00 27.00 203 

Turner et al. Unpublished 0.00 0.50 3.00 5.00 24.00  51 

 

 

 




