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We study growing interfaces in two- and three-dimensional systems by the numerical integra-
tion of the Kardar-Parisi-Zhang equation and the Monte Carlo simulation of a solid-on-solid
model with asymmetric rates of evaporation and condensation. A crossover scaling ansatz is pro-
posed, which we find accounts for the dependence of growth on the driving force, as we crossover
from the dynamic roughening regime, where that force is identically zero, to driven growth, where
a nonzero driving force is present. We thus estimate the crossover scaling exponents, as well as

the scaling functions.

Dynamics of driven interfaces separating two phases is
an important subject of fundamental as well as practical
interest, which is currently receiving much attention. Ex-
amples include layered growth using molecular-beam epi-
taxy or chemical vapor deposition,' crystal growth into a
supercooled melt,? and propagation of flame fronts.?
Since driven interfaces are far from equilibrium, they
often involve strong nonlinearities, which thus pose a seri-
ous challenge to theoretical understanding. An important
model for driven interface growth was recently proposed
by Kardar, Parisi, and Zhang® (KPZ). It is a nonlinear
differential equation for the time ¢ dependence of the in-
terface height variable h(x,z) in a d-dimensional system,
above a (d — 1)-dimensional plane,
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where v, A, and D are constants, 7 is a random noise satis-
fying Gaussian statistics, ) represents ensemble averages,
and h(x,?) is single valued. The nonlinear term breaks
the symmetry of positive and negative k and provides the
driving force for the growth. This term cannot be derived
from a Hamiltonian and has a kinetic origin.> The long-
time, long-wavelength behavior of the model can be
probed by measuring the width, W=[((h —(h)) ]2, of
the interface as a function of time and system size. W is
often found to obey a scaling relation: W(L,t)~L*
xF(tL %) or W(L,t)~t?G(tL ~%), where t is the time, L
is the linear size of the system, and F and G are scaling
functions. The exponent z characterizes the approach to a
steady state, y is the roughening exponent describing the
roughness of the interface at late stages of the growth, and
B=x/z is the growth exponent.

Without the nonlinear term (A =0), Eq. (1) describes
the dynamics of roughening and one can easily find
20=(3—d)/2 and zo=2. We have used the subscript 0 to
denote zero driving force. For A > 0, the asymptotic be-
havior of Eq. (1) is not known and Kardar, Parisi, and
Zhang (KPZ) carried out a dynamical renormalization-
group analysis.> They found that the critical dimension of
the nonlinear term is d. =3, with a hyperscaling relation
x+z=2. While no stable strong-coupling fixed point was

41

found at d =d,, a fluctuation-dissipation theorem exists at
d =2 which allowed them to obtain the exact results
2=1 and z = 3. These are consistent with many numeri-
cal simulations of lattice models,*> and are different from
the roughening results quoted above. At the critical di-
mension, the perturbative solution of the KPZ equation
fails. Numerical solutions of the equation®’ give the
growth exponent 8=0.13 which is also consistent with
that of an asymmetric solid-on-solid (SOS) model. ®

Since the presence or absence of the nonlinear driving
force determines the dynamic universality class (driven or
roughening), a natural analogy arises with the critical
phenomena. In the latter case, competing interactions
lead to crossover behavior between different universality
classes. For example, adding a cubic anisotropic interac-
tion to the N-vector model can give crossover from Ising
to Heisenberg fixed points.® For the driven growth prob-
lem described above, a crossover regime is thus expected
when the driving force is small, and ¢ or L is not asymptot-
ically large.

In this paper we show that there indeed exists a cross-
over behavior between the dynamic roughening and the
driven growth, which is a consequence of the competing
relaxation and driving forces for large, but not infinite,
time regimes. We propose a scaling ansatz, which is
found to account for the dependence of growth on driving
force, as we crossover from the dynamic roughening re-
gime, where that force is identically zero, to driven
growth, where a nonzero driving force is present.” We
compute the crossover scaling functions and associated ex-
ponents in two and three dimensions for the KPZ equa-
tion, and confirm the results by simulating a SOS model
at d =2, which we expect has the same universality class
as the KPZ equation.® While the usual crossover phe-
nomena are between two or more stable fixed points, we
are now dealing with a situation where the crossover is to
a strong-coupling fixed point where dimensional analysis
is of little utility (since the e =d. —d expansion involves
an unstable fixed point). As a consequence, the usual di-
mensional and scaling analysis cannot predict- the cross-
over exponents. Thus a numerical study, as we present
below, is required.

To motivate our crossover scaling ansatz, note that for
any driving force A > 0, the dynamics in the hydrodynam-
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ic limit is controlled by the driven growth exponents.’
Thus it is natural to make the following ansatz to account
for the crossover from the dynamic roughening regime in-
volving exponents yo and zo, to the driven growth regime

W(L,t,0)~t%f, (Lt ~"70 109) (3)

where f, is the crossover scaling function. Setting A =0,
we simply recover the roughening results. When t <L
(or for L =), the growth is not limited by the system
size L and one can drop the first argument of f,

W~tPf,(0%) . 4)

If A >0, the growth will eventually be controlled by the
unknown strong-coupling fixed point with exggnent x and

z, and we must have W~¢?. Thus f,(u) ~u Po for large
u. This gives, for d =2,
W PO BB 13y 012 )

We expect (4) and (5) to hold in the large-L limit.

While the above is sufficient for d =2, for d =3 the
crossover behavior is more complicated because the
roughening dynamics is marginal, i.e., W2~ Aqlnt where
Ao is a constant. Therefore, we propose the following
crossover scaling ansatz

W2(L,t,0) = Aolf3(1A*) —¢lnAl, 6)

where the scaling function satisfies f3(u)~Inu, for
u—0, and f3(u)~u?$, for u— oo. Again we require
times ¢ < L*° so that any size dependence can be neglect-
ed. Our goals in this paper are to compute the crossover
exponents ¢, the scaling functions, and to test the scaling
ansatz equations (4) and (6).

Although no perturbable strong-coupling fixed point
has been found for the KPZ equation in d < 3, it is still
worthwhile to show how ¢ would be determined by simple
scaling arguments, if such a fixed point existed. First, one
makes a scale transformation in space and time of the

KPZ equation, using the exponents for A =0: x'=e ~lx,
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RAPID COMMUNICATIONS

7083

t'=e 2 h'=e ™ Second, the transformed equation
is restored t? tl“; ?riginal form by rfde_ﬁzn)ilng the constants:
v—vi=ve 10 L A—A/=ae T and D— D'
e ° “” Finally, the transformation h'(x’,t,
A') =e “*n(x,t,1) implies
W(L,t, ) ~1RF(Ly ~ /70 7/ 020~ D)y )
1/z¢

where a choice of / has been taken such that e/=t¢
This implies that the crossover exponent ¢=z¢/(xo
+z0—2). For example, for d=2, this implies ¢=4.
However, as we shall show below, a numerical solution of
the KPZ equation gives ¢ = 3.0, and thus does not agree
with the scaling argument. As mentioned above, this is
because no stable fixed point exists in the strong-coupling
regime for the KPZ equation. Indeed, the dimensional
analysis above is intimately related to the existence of a
stable ¢ =d. —d expansion, since power counting by the
Ginzburg criterion, yo+z¢—2 =0, determines the critical
dimension. For cases where a stable fixed point exists, '°
we expect this analysis to give the right crossover ex-
ponent.

To test the crossover scaling ansatz, we first solved the
KPZ ecéuation numerically, using a finite difference
scheme.® In d =2, the constants v and D were taken to be
1.0 and 0.01, respectively. A space mesh 1.0 and time
mesh 0.01 were used; reducing the time mesh gives essen-
tially the same results. A system size of L =4096 was
used throughout, which was sufficiently large for our pur-
poses. For large values of A(A=40), we recovered the
KPZ result 8= 1. However, for 0 <A <40, a crossover
regime exists where B has effective values between i and
1, over the time regime studied. The inset to Fig. 1 shows
f2=W/t"* as a function of ¢ for several values of A. The
curves, each of which corresponds to an average of 100 in-
dependent runs, are well separated and considerable cur-
vature exists indicating that the growth is faster than ¢ /4.
Indeed, those curves include large-A data which can be
well fit by B= +. Figure 1 gives the test of the crossover
scaling ansatz equation (4), where f is plotted as a func-
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FIG. 1. Plot of the crossover scaling function f2 =W/t '/ vs tA* of the KPZ model in d =2. Good data collapsing is achieved for
¢=3.0. System size L =4096. Data for A =8-22 in steps of two were used to get the scaling curve. Inset shows curves before data

collapsing.
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tion tA%. Using ¢=3.0, reasonable data collapsing is
indeed observed, so that Fig. 1 gives our estimate of the
crossover scaling function f>.

An independent check on the value of ¢ was carried out
by studying the amplitude of the growth of the interface
width, Eq. (5), for large A’s, where the ¢'/*> growth was
unambiguously observed. In Fig. 2, we plot InW as a
function of InA. The data fall on a straight line of slope
0.23 £0.02 implying a power-law dependence. From Eq.
(5), that slope is consistent with our estimate of above
¢=3.0, which would imply a slope ¢/12=0.25. These re-
sults show that the crossover scaling ansatz Eq. (4) does
hold for the two-dimensional driven growth described by
the KPZ equation. Combining the two independent cal-
culations of ¢, our best estimate is ¢ =3.0 £0.2.

Another d =2 model we have studied is the asymmetric
SOS model.*!! We use the SOS Hamiltonian H
=Yij» | hi = h;| for Monte Carlo attempts, but bias those
attempts by an amount A,, which is the fractional amount
of extra attempts made on one side. This implies that
A, =0 gives equilibrium, while A, > 0 cause the interface
to drift. We expect that the asymmetry allow terms even
in Vh to appear in the equation of motion in the hydro-
dynamic limit, so that this model is in the same universali-
ty class as the KPZ equation. In a previous paper,’ we
have found that this model has the same growth exponents
x and z as the KPZ equation in d =2 and 3.

We used systems with size L =2000 and times up to
4000 Monte Carlo steps per site. Here a Monte Carlo
step corresponds to an attempt of growing the height by
one unit. 250 independent runs were averaged for each A,
to get reasonable statistics. The system temperature was
kept'? at 0.5. For any nonzero A, we expect f= 1, but
crossover phenomena are important for smaller values of
Aq. Figure 3 shows the crossover scaling function after
data collapsing for several A,’s. The exponent ¢ is again
found to be approximately 3.0 & 0.4. Thus not only do the
growth exponents y and z agree between the KPZ equa-
tion and the asymmetric SOS model, the crossover scaling
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FIG. 2. Typical In-In plot of W(t) vs A at a given time ¢ for
the d =2 KPZ model. Linear fit to data for all times gives slope
of 0.23 +0.02, consistent with ¢ = 3.0.
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FIG. 3. Crossover scaling function for the d =2 asymmetric
SOS model. System size L =2000. Data from five different A,’s

(values as indicated) were collapsed onto a single curve using
¢9=3.0.
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exponent ¢ also agrees.

In d =3, we performed numerical solutions of the KPZ
equation with v=1.0, D=5x10"* and the time mesh
was® 10 73, We studied A ranging from 120 to 240 in in-
crements of 20 (smaller A <120 required much longer
simulations to observe crossover behavior). This range in-
cludes large-A data which can be well fit by® g=~0.13.
Systems of size 1282 were studied and integrated over
40000 time steps, with 50 independent runs averaged.
We also studied systems of size 2562 to ensure no finite-
size effects were present. Equation (6) was tested by plot-
ting f3=W?* Ao+ ¢lnk vs 1A%, where A is obtained from
W*=A,lnt for runs with A =0. Our best data collapse is
shown in Fig. 4 for ¢ =4.5+0.5. Nevertheless, we cau-
tion that systematic errors could be present in our estima-
tion of exponents in d =3, because it is a marginal dimen-
sion.
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FIG. 4. Plot of the crossover scaling function f3

=W2/Ao+¢lnA vs tA* of the KPZ model in d =3. Very good
data collapsing is achieved with ¢ =4.5. The system size is 1282
Data for A =120-240 in steps of 20 were used to get the scaling
curve.
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In summary, we have studied crossover phenomena, de-
scribed by simple scaling forms, between roughening dy-
namics and driven growth of interfaces. Extensive numer-
ical simulations of the KPZ equation and an asymmetric
SOS model gave the crossover scaling exponents ¢ = 3.0
for d=2, and ¢=4.5 for d=3. Simple dimensional
analysis does not give consistent results, indicating the

subtlety of driven growth dynamics in the absence of a
stable fixed point at the critical dimension.
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