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Abstract

The pure methods in a program are those that exhibit functional or side effect free

behaviour, a useful property of methods or code in the context of program optimization

as well as program understanding. However, gathering purity data is not a trivial task,

and existing purity investigations present primarily static results based on a compile-time

analysis of program code. We perform a detailed examination of dynamic method purity

in Java programs using a Java Virtual Machine (JVM) based analysis. We evaluate mul-

tiple purity definitions that range from strong to weak, consider purity forms specific to

dynamic execution, and accommodate constraints imposed by an example consumer appli-

cation of purity data, memoization. We show that while dynamic method purity is actually

fairly consistent between programs, examining pure invocation counts and the percentage

of the bytecode instruction stream contained within some pure method reveals great varia-

tion. We also show that while weakening purity definitions exposes considerable dynamic

purity, consumer requirements can limit the actual utility of this information. A good un-

derstanding of which methods are “pure” and in what sense is an important contribution to

understanding when, how, and what optimizations or properties a program may exhibit.
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Résumé

Les fonctions purs dans un programme sont ceux qui démontre un comportement sans

fonctionnalité ou effet secondaire. Ceci s’avère une propriété utile pour une fonction ou

du code dans le contexte d’optimisation et de compréhension du programme. Cependant,

récolter de l’information de pureté n’est pas une tâche facile, et les techniques existantes

pour les analyses de pureté ne fournissent que des résultats statiques basés sur une analyses

de la compilation du programme. Nous avons exécuter une analyse détaillée de la pureté

dynamique des fonctions dans des applications Java en utilisant une approche basés sur

un Java Virtual Machine (JVM). Nous avons évalué multiples définitions de pureté, forte

et faible, et considéré les formats de pureté spécifiques à l’exécution, tout en considérant

les contraintes qui nous sont imposées par un application consommateur d’information de

pureté et de mémorisation. Nous démontrons que malgré la consistance de la pureté dy-

namique des fonctions parmi certains applications, l’examen du nombre d’invocation pure

et le pourcentage de chaı̂ne d’instruction bytecode trouvé dans les fonctions purs nous

dévoile l’existante de grande variation. Nous montrons aussi que malgré l’affaiblissement

de la définition de la pureté expose considérablement la pureté dynamique, les pré-requis

des consommateurs peuvent actuellement limiter l’utilité de cet information. Une bonne

compréhension de ce qu’est une fonction “pure” et dans quel sens, est une important contri-

bution à comprendre quand, où, et quelles optimisations ou propriétés une application peut

dévoilée.
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Chapter 1

Introduction

In most programming languages, methods can both mutate externally visible state, and

access previously available state for input. A pure method, depending on the particular

definition, either has no externally visible side effects as a result of execution, or the extent

of these side effects is limited in some way. The extent to which a pure method depends on

previously available state may also be constrained.

1.1 Motivation

The concept of purity as a method property has been used in a variety of contexts. It can

be useful in program understanding and analysis [DR02], isolating and examining func-

tional or “side effect free” fragments [Rou04], and verification in model checking [CH03,

FLL+02]. If pure methods are functional, or static independent, invocation of a pure

method will not influence other computations. In model checking knowledge of purity

information can be used to reduce the search space by ignoring the interleavings between

pure methods, or pure and impure methods. This can help alleviate the problem of state ex-

plosion for program verification. When optimizing, improved method purity information

allows for less conservative assumptions, and has been used to drive compiler optimiza-

tion [Cla97, LLH05], novel hardware architectures [BS06], and caching or memoization of

function calls [HLY00].

1



Introduction

Many researchers have use purity information to improve runtime performance of Java

program by compiler optimizations [LLH05, Raz99]. Clausen [Cla97] shows the benefit

from using purity-based side-effects analysis in dead code elimination and loop-invariant

removal without points-to information. Whaley and Rinard [WR99] develop stack alloca-

tion optimizations and synchronization removal optimizations that require side-effect prop-

erties.

Although these applications demonstrate successful uses of various forms of purity and

side effect data, the extent to which programs demonstrate purity has not been fully in-

vestigated. Practical exploitation of purity is difficult; subtle language and implementation

details exist, and a given usage may impose further constraints. Static analysis have shown

the existence of large classes of pure methods [Rou04, SR05], but precise definitions for

purity vary. Moreover, static analysis can be quite conservative with respect to runtime

behaviour, and the extent to which different kinds of purity are observed dynamically is not

clear, nor is whether the different classes of pure methods identified have practical value

with respect to application of the information.

We present a detailed examination of method purity in Java programs. We consider

several purity definitions that range from strong to weak, and investigate both static and

dynamic properties of benchmarks. Our results extend previous work on static analysis,

and show that the different forms of purity occur with differing frequencies in a dynamic

environment; for statically detectable purity, our dynamic results are significantly less op-

timistic than previous static data suggest. The experiment data shows that there are few

practical opportunities for strong forms of purity. The weaker forms of purity do allow

considerably more methods and thus method calls to be dynamically identified, although

many methods are small or have other features which make efficient exploitation difficult.

However, by introducing a new form of dynamic purity that is not detectable by static

analysis, the results are improved, and we observe a significant increase in the amount of

available purity.

A purity-specific consumer optimization for purity information contributes constraints

on the kind of purity data that is practically useful. To this end, we implement a prototype

of a non-trivial method memoization optimization. Memoization maps method arguments

to return values, and allows for execution of functionally pure methods to be bypassed;

2



1.2. Contributions

we extend the traditional application of memoization by using dynamic purity data and

also considering heap dependences as inputs. This practical and direct application exposes

additional constraints that a more abstract model of purity may not consider, and we exam-

ine the impact of subtle language and technical concerns on the use of purity information

in a VM setting. Of course, our memoization implementation is mainly at verifying our

dynamic purity results and ensuring all technical consideration are addressed. As a prac-

tical optimization, memoizable methods have stronger further requirements than purity.

For improved runtime performance, the memoizable methods should also be repetitive and

consume significant amounts of CPU time.

1.2 Contributions

The work in this thesis consists of the design, implementation and deep analysis of dif-

ferent forms of dynamic purity. The results of our experiments are presented using three

reasonable, and novel metrics for evaluating behaviours. We also develop a consumer,

memoization, for our purity analysis. In summary, we make the following specific contri-

butions in this thesis:

• Several different purity definitions.

We develop and investigate several different purity definitions including ones roughly

similar to static approaches as well as a variety of new dynamic purity criteria.

We evaluate static purity dynamically, and propose new moderate, weak, and once-

impure dynamic purity definitions. Moderate purity criteria is actually still a conser-

vative purity, which does not allow pure methods to access any external heap objects.

Weak purity criteria is similar to Rountev’s purity definition [Rou04] for side-effect

free methods detecting statically. Our once-impure purity is a weak form of purity,

that allows a pure method to have an impure operation in its first invocation. This

purity criteria can identify some forms of purity that are not observable statically.

More general once-impure purity is also possible; reasons for impure designatory

are discussed in the experimental results.

• Dynamic purity analysis.

3



Introduction

We design and develop a dynamic purity analysis framework for Java bytecode in

SableVM, a state-of-the-art interpreter for Java bytecodes [Gag02]. To the best of

our knowledge, this is the first effort that performs purity analysis at runtime. We

also implement an online escape analysis for some forms of purity, whose purity

depends on the locality of objects. Our analysis is scalable and handles SPECjvm98

at size 100 with acceptable overhead. Our design allows for both online and offline

comparisons. An offline analysis can be used to explore upper bounds on the use

of purity without introducing any overhead from actual purity analysis. An online

analysis is more flexible and allows purity to be evaluated dynamically on per-input

basis. That is, a method can be pure with some particular inputs, but impure with

other inputs. Dynamic purity analysis is based on the really executed bytecodes,

instead of the whole method body as in static approaches. Given the observed dif-

ference between static and dynamic behaviour, it is important to understand dynamic

results.

• Three different dynamic metrics for evaluation.

Typically, purity is considered a static method property. A dynamic context requires

more detailed evaluation. We present three different metrics for evaluating the extent

of dynamic purity: method purity, invocation purity, and bytecode purity. Method

purity considers the number of pure methods dynamically encountered, invocation

purity describes the invocation frequency for pure methods, and bytecode purity ac-

tually demonstrates the product of invocation frequency and method size for pure

methods. These represent increasingly detailed data, at greater cost. Bytecode pu-

rity represents most closely the amount of program execution identified as pure. We

apply these metrics to the results of a simple static analysis and multiple dynamic

analysis corresponding to our purity definitions.

• A JVM implementation of the memoization.

We implement in SableVM an obvious consumer of purity information, memoiza-

tion. Our memoization is based on the purity information from our once-impure

analysis. Practical requirements for this as an optimization limit the pragmatic value

4



1.3. Organization

of purity information. Nevertheless, it serves as a useful functional test module and

a good basis for future investigations of the use and nature of purity data.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 discusses related work on purity

analysis and memoization. For purity analysis, we start by discussing side-effect analysis,

which is the base for purity analysis, because the pure method are actually a method without

any side-effect. Related work on purity analysis is then discussed in detail.

In Chapter 3, we present different forms of purity we investigate. These purity forms

include: strong purity, moderate purity, weak purity and once-impure purity. They are

discussed in order of conservativeness; each purity form is a weaker form of the purity

discussed before.

In Chapter 4, we describe our static analysis and dynamic evaluation environments for

strong purity. Our static analysis is implemented in Soot, a program analysis framework.

The static analysis result is evaluated at runtime in SableVM. Some properties only can be

explored at runtime, for example, the invocation frequency, and the method size of pure

methods.

In Chapter 5, we implement dynamic purity analyses for all forms of purity discussed

in Chapter 3. Dynamic purity analysis can find some forms of pure methods that cannot

be identified statically. The dynamic method purity is determined by the actually executed

instructions. For all but strong purity, runtime escape analysis is required to determine the

locality of objects, which is the basis for these dynamic analyses. Runtime escape analysis

is potentially expensive, because we need to check the locality for all objects created during

program execution, which itself requires maintaining a complex local object table. Gains

in memoizability are then partially affect by implementation costs.

In Chapter 6, we illustrate the basic design of our memoization system, the prototype

consumer application for purity data. This design has the added benefit of stress-testing our

purity system — improperly memoized methods tend to produce crashes. We developed

both online memoization and offline memoization forms. In online memoization, per-input

based memoization are possible, but the overall performance will be reduced by the over-

5
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head from purity analysis. Offline memoization can be used to explore the upper bounds on

the performance of memoization without introducing any overhead from purity analysis.

Chapter 7 provides experimental data for static analysis, dynamic analysis, and mem-

oization. The result of purity analysis is described in our three dynamic metrics: method

purity, invocation purity, and bytecode purity. Through the comparison between the exper-

imental results from static and dynamic analysis based on the same purity form. We know

that the dynamic version could identify more pure methods than its static version. And the

more flexible the purity form is, the more useful pure methods can be found; this is espe-

cially true for weak purity, for which we get a great improvement compared with moderate

purity. Although method purity is fairly similar between benchmarks, differences in invo-

cation purity and bytecode purity are greater. From experiments, we know that the purity

analysis overhead itself is significant, but compared with existing static analysis, it actually

is tolerable.

Finally, in Chapter 8, we conclude and discuss future work on this topic.

6



Chapter 2

Related Work

This chapter presents previous work done on purity analysis and memoization. Purity

analysis itself is a form of side-effect analysis, and so we first present related work in this

area. Purity analysis is covered in the second section, while the third section discusses prior

work on memoization.

2.1 Side Effect Analysis

Purity definitions are based on the kinds of operations performed in a method, and in partic-

ular which classes of data are read and written. Detecting writes in precise detail is typically

the task of a side effect analysis, a well-known analysis in compiler optimization [Ban79].

Early work on side effect analysis concentrates on determining read and write sets in the

context of functional or procedural languages [Bur90, CK88, JG91].

As one of the earliest work on side effects analysis, Banning’s algorithm [Ban79]

only considered imperative languages and aliasing through parameter passing. The analy-

sis is flow-insensitive and context-sensitive, including two separate flow-insensitive cal-

culations on the call multigraph, one for side effects, another for aliases. Cooper and

Kennedy [CK88] improve Banning’s approach by dividing the side effect problem into

two subproblems: side effects to reference parameters and side effects to global variables.

Analysis for reference parameters is based on a graph they call the binding multi-graph,

which shows the relations between the program’s parameters and the call sites. Through

7



Related Work

this graph, we can find out whether a parameter is modified during a procedure invocation.

If a global variable is modified by a procedure, this modification must happen in this proce-

dure or in the call chain after this procedure. Burke showed that these two subproblems for

side-effects can be solved by a similar problem decomposition [Bur90]. All these works

targeted FORTRAN77, a language without pointers.

Modern languages introduce additional concerns through the use of explicit pointers,

objects, virtual method dispatch, and intensive use of dynamic memory. Points to analysis

assumes a more important role and potentially limits results in such languages. Points-to

analysis itself has been studied for a long time [Ste96,WR99,HP00]; and many researchers

have considered using points-to analysis for side effect analysis [RLS+01,RR01,MRR02].

Steensgaard [Ste96] developed a flow and context insensitive inter-procedural points-to

analysis for C. His analysis is based on type inference, and the principles for this anal-

ysis are described through types and typing rules. The main advantage of Steensgaard’s

points-to analysis is the near linear running-time, which make analysis for large programs

possible. Ryder implemented and compared two different algorithms for interprocedural

modification side-effects analysis for C program [RLS+01]; one is flow and context sen-

sitive, and another is flow and context insensitive. After comparing these two analysis on

cost and precision, she shows that on average the flow- and context-sensitive form will

be about 20% more precise than the flow- and context-insensitive version. Unfortunately,

the performance for the flow- and context-sensitive approach is also at least in an order of

magnitude slower.

More recently side effect analysis has been investigated specifically in the context of

Java programs. Razafimahefa presents two different approaches for side-effect analysis

in Java program [Raz99]. One is called type-based analysis, and another is called refers-

to analysis. The former uses type information to describe the effect of instructions on

variables in the program, and is similar to work done by Clausen [Cla97]. In type-based

analysis, two variations are considered: class-based and field-based; both of them are based

on conservatively assumptions. Type-based analysis can be used as a cheap way of approx-

imating the alias relationships. Refers-to analysis is derived from Steensgaard’s points-to

analysis [Ste96] for C, and aims at refining expressions with the same object state. In or-

der to know the refers-to relationship in programs, a model of the program’s storage shape

8



2.2. Purity Analysis

graph is built. There are two kinds of nodes in this graph: reference nodes, and abstract

heap location nodes. The reference nodes in the graph represents a reference variable in

the program, and the abstract heap location nodes represent objects that are allocated on

the heap during program execution. The edges in the graph will show the relationship be-

tween the variable and the object in memory. Therefore, once we get the storage shape

graph by refers-to analysis, it is possible to find the side-effect of a statement. Milanova

et al. explore the use of context sensitive points-to information on side effect informa-

tion [MRR05]. They develop an object-sensitive points-to and side effect analysis, demon-

strating the significant impact precise program information can have on side effect data. On

the other hand, Le et al. show that even reasonably simple points-to information given to a

side effect analysis is sufficient to achieve a useful increase in performance, improving the

effect of optimizations that use side effect information [LLH05]. These works all focus on

precisely identifying read and write sets, and not of course on identifying different notions

of purity per se.

2.2 Purity Analysis

A study that bridges some of the gaps between purity and side effect analysis is one by

Clausen [Cla97]. His work is based on a conservative, static, side effect analysis of byte-

code, identifying four classes of instruction and therefore method, arranged in a partial

order: pure, neither reading nor writing data, read-only, only reading data, write-only, only

writing data, and read/write as the least pure. Purity classes are global, exploiting neither

type nor points-to information, although this is recognized as a limitation. Clausen demon-

strates the impact of this purity information on several standard compiler optimizations.

Importantly, Clausen also points out the impact of practical concerns in purity analysis, in-

cluding the over-identification of pure methods due to language mechanisms such as Java’s

<init>, an empty inherited method in most object instances. In Chapter 5, we further

discuss these concerns, particularly in the context of dynamic execution. We also pro-

vide a new analysis of impure instructions, informed by our previous work on speculative

multithreading for Java [PV05].

Method purity criteria have also been considered in the context of program specification
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and verification. The Java Modeling Language (JML) is a behavioral interface specifica-

tion language for Java [BCC+05, LBR06]. JML provides a definition of a pure method as

one which does not: 1) perform I/O; 2) write to any pre-existing objects; or 3) invoke any

impure methods. However, JML is annotation-based, requiring purity information be pro-

vided by users. Static verifiers do exist, although current designs check purity information

conservatively [CH03].

Side effect free methods are identified as a form of purity where externally visible writes

are not allowed, but reads are permitted. Rountev develops a static analysis to detect side

effect free methods, and evaluates the impact of different call graph construction algorithms

on detecting these methods [Rou04]. He finds that 22% of methods are side effect free. In

comparison with the purity definition given by JML, Rountev’s purity definition is conser-

vative. Side effect free methods must guarantee matching pre- and post-states, disallowing

them from creating and returning new objects, although they can allocate objects locally.

Rountev’s work can detect side-effect-free method in incomplete programs using rapid type

analysis, which is inexpensive and context insensitive. After comparison with some context

sensitive analysis, Rountev proved that this rapid type analysis has near perfect precision

in statically detecting side-effect-free methods.

Sălcianu and Rinard [SR05] present a purity analysis based on a previous points-to and

escape analysis [WR99]. Their purity definition is much the same as the purity definition

given by JML: a pure method can read from or write to local objects, and can also create,

modify and return new objects not present in the input state. This allows Sălcianu and

Rinard to identify more statically pure methods, 53–65% of methods in their benchmark

suite. Compared with Rountev’s work, many more pure methods can be found in Java pro-

gram by removing the restriction on precisely matching the program’s its post-state with

pre-state. Since there are fewer restrictions on the post-state, a pure method can mutate a

new allocated object, and return this new object to its caller. Their analysis also provides

some additional information, for example, detecting safe parameters, and regular expres-

sions describing the externally objects mutated by impure methods.

Our work here is partly motivated by an interest in finding the extent to which static

results for purity analysis are indicative of dynamic behaviour. A large number of stat-

ically identified pure methods suggests a significant optimization opportunity, but only
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if these methods are both reached and well-exercised at runtime; previous work on dy-

namic metrics has shown the importance of observing actual runtime behaviour in Java

programs [DDHV03], for example, size, data structure, memory use. concurrency, and

polymorphism.

Dallmeier et al. have examined dynamic purity analysis for Java programs concurrently

with this work [DLZ07]. Their jdynpur tool uses the ASM bytecode manipulation frame-

work [BLC02] to create program traces, and identifies impure methods based on writes to

non-local objects. They also provide a means to compare static and dynamic purity in-

formation. Interestingly, they can merge purity information from across different program

executions. As of this writing, this related work is in an early phase.

Artzi et al. have examined in greater depth a closely related topic that is also con-

current with this work, namely dynamic analysis of parameter mutability for Java pro-

grams [AKGE07]. Initially, reference parameters are classified as unknown with respect to

mutability. A static analysis in Soot [VR00] provides a conservative classification of pa-

rameters as mutable or immutable where possible, and then a dynamic analysis detects fur-

ther parameter mutability. Their work differs significantly from ours in that they combine

static analysis with dynamic analysis in various multi-stage pipelines, and then evaluate the

results using static accuracy metrics. Furthermore, although parameter immutability is one

aspect of method purity, there may be other factors involved, some of which depend on the

consumer.

2.3 Memoization

An important use of purity information is in its application. We demonstrate a practical

consumer for purity information through an implementation of method memoization. Our

design for this in Java, interfacing with purity data and runtime analysis is novel, but the

idea of memoizing or caching function results is of course quite old, and the basic memoiza-

tion optimization was first introduced by Michie [Mic68]. Similar ideas have been used for

developing dynamic algorithms [Fre97, Mul91, ST81], and, more within the programming

languages community, for incremental computation [PT89, ABH03]. Several works have

looked at improving function memoization efficiency [ALL96, HLY00, LT95] in the con-
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text of functional languages, with most designs based on the strong purity requirements that

functional languages provide. Our memoization design is inspired by some of our earlier

work on adapting memoization for use by Java-based return value prediction [PV04].

Acar, Blelloch and Harper [ABH03] presents a framework for selective memoization in

the context of a small functional language, MFL. Based on this framework, programmers

can control the equality, space usage, and identification of dependences to obtain the best

performance. Equality tests are critical to the overall performance, and if input arguments

are complicated this kind of test could be very expensive. In such situations, the scheme

can decide to perform a non exact test, only performing “location” equality tests, or directly

skipping this test depending on how expensive the test is. Acar et al. give further program-

mer control over equality testing in memoization tables, allowing for arbitrary replacement

policies [Pug88] in memoization caches.

Memoization for modern languages, such as C, C++, or Java is, for obvious reasons,

much more complicated than that in functional languages. Achieving good performance,

however, includes similar concerns as finding appropriate memoizable methods or code

segments. Ding [DL04] introduce a schema for detecting good candidates for computation

reuse in C program. This schema is based on a cost-benefit analysis to identify expensive

code segments, for example, nested code. Through profiling techniques, information about

execution frequencies and input value set repetition for these code segments are collected.

They examine the conditions: if the memo table look-up costs is less than repeating code

execution, the method is skipped; otherwise, repeating execution is performed. McNamee

and Hall [MH98] also developed a tool for memoization in C++. It is based on annotation,

which unfortunately requires program rewriting for those methods in which memoization

is desired. To the best of our knowledge, our memoization in Java program is the first effort

for memoization based on purity information or other high-level data.
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Chapter 3

Different Purity Definitions

There can be different levels of purity under different situations, and we consider four

levels of dynamic purity which we term strong, moderate, weak, and once-impure. These

represent a range of exploitable properties of use to program analysis and optimization. In

this chapter, we will introduce these different definitions in order of conservativeness; each

purity forms is a weaker form of the purity discussed before.

3.1 Strong Purity

Our strong purity is a very conservative purity form. Basically, a method that has no side-

effects whatsoever is considered pure; even temporary side-effects that not really visible to

the caller are not allowed. For example, a method may create an object with purely local

scope, never returning it to its caller. Although this operation has no observable side-effect,

it has a side-effect on the heap, and it is still considered strongly impure.

A method is strongly pure iff: it

• does not create any object,

• does not read from or write to any object or static variable,

• does not perform any synchronization,

• does not invoke any native methods,
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• does not invoke any strongly impure methods,

In summary a strongly pure method cannot touch the heap at all. Therefore, for non-

functional languages, a strongly pure method will look much more like a functional method:

all variables in the method should be primitive, either coming from parameters or the prim-

itive variables declared locally. For example, the program shown in Figure 3.1 is obviously

strongly pure. Methods in Figure 3.2, however, are all strongly impure: the constructor

Obj() is strongly impure because of writing to the field f, bar() is strongly impure

because of the new object allocation at line 8, foo() is strongly impure because of the

invocation of impure method bar() and reading from an object field, baz() is strongly

impure because of reading from heap, and baf() is strongly impure because of new object

allocation at line 20.

1 int foo(int a){ //strong pure

int b=10;

3 return a+b;

}

Figure 3.1: Examples for strong purity.

3.2 Moderate Purity

Java is an object-oriented language, and the restrictions in strong purity that any object

operation not be allowed are quite strong. In order to find more useful pure methods, we

must allow some kind of object operation. One approach that retains the side effect free

property of pure methods is to allow objects to be created and then altered in a pure method,

provided such objects do not escape the method execution context.

A moderately pure method may not:

• read from or write to static or previously existing heap objects,
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• perform monitor operations,

• invoke native methods,

• throw exceptions,

• call an impure method, unless the only source of impurity is that the callee method

accesses and mutates objects local to the caller,

• allow an object to escape to the caller.

A moderately pure method can allocate a new object, provided this new allocated object

does not escape. Consider again the program in Figure 3.2, Both bar() and baf()

are moderately impure because of objects escaping the local context. The local object in

bar() escapes by returning the new allocated object to its caller, and the new created

object in baf() escapes by being stored in a reference field.

A moderately pure method can only access local objects. An object is considered local

if this object is created after the method invocation, and does not escape during method ex-

ecution. The object o in method foo() of Figure 3.2 is a local object to method foo(),

and the object o for method baz() is non-local, because it comes from parameters. There-

fore, accesses to the object in foo() will not influence its purity, but accesses to the non-

local object in baz() will make method baz() moderately impure. The class constructor

Obj() is also moderately impure; it writes to a field of an external object (this).

A moderately pure method only can call an impure method provided the impurity is

contained within the calling context. For example, in Figure 3.2, foo() is still considered

moderately pure despite calling the moderately impure method bar(). The impurity for

bar() is due to an escaping object, but this object is still contained within the calling

context of foo() leaving foo() moderately pure.

In summary, our moderately pure methods provide a “contained side-effect” property.

With the additional constraint that a pure method does not change behaviour based on the

input heap or global state, the result is that the behaviour of a moderately pure method is

determined exclusively by its primitive input arguments.
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class Obj{
2 int f;

Obj x;

4 public Obj(){ //strongly impure

f = 10;

6 }
Obj bar(){ //strongly impure

8 Obj o = new Obj();

return o;

10 }
int foo() { //moderately pure

12 Obj o = bar();

return o.f;

14 }
int baz(Obj o) { //weakly pure

16 return o.f

}
18 int baf() { //once−impure pure

if (x == null) {
20 x = new Obj(); //escapes by reference field

}
22 return 42;

}
24 }

Figure 3.2: Examples for different purity forms.
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3.3 Weak Purity

A further potential definition of purity allows for arbitrary method behaviour provided that

the input state is not altered [Rou04]. This permits at least reading from the heap, as well

as making contained modifications. Our weak purity is a weaker form of moderate purity,

and the definition corresponds fairly closely with Rountev’s [Rou04].

A weakly pure method may not:

• write to static or previously existing heap objects,

• perform monitor operations,

• invoke native methods,

• throw exceptions,

• call an impure method, unless the only source of impurity is that the callee method

mutates objects local to the caller,

• allow an object to escape to the caller.

The main difference between moderate purity and weak purity is that weak purity can

read from external objects. Consider once again the code in Figure 3.2, but based weak

purity. Here baz() is considered moderately impure, but weakly pure, because the only

impurity for moderate purity comes from reading from the external object o at line 16. The

constructor Obj() remains impure, even weakly though because it writes to the field of an

external object, as shown at line 5. Similarly, the bar() and baf() are weakly impure

due to objects escaping; the object in bar() escapes by being returned, and the object in

baf() escapes by being written to an external reference field.

3.4 Once-impure Purity

It is possible that the behaviour of a method may be different on its first invocation for setup

or initialization reasons. Once-impure purity purity is equivalent to weak dynamic purity,
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except that the first invocation of the method during execution may be impure. All sub-

sequent invocations must, however, be weakly pure. Consider the program in Figure 3.3,

bar() actually is weakly impure because it writes to an external object obj. However,

in this context it only acts in an impure fashion on its first invocation, and thereafter acts

weakly pure. A similar situation can be seen in the baf() code of Figure 3.2; if x is null

only once in the program’s lifetime then baf() is once-impure.

static void main foo(String[] args)

2 {
int sum=0;

4 Object obj = new Object();

...

6 obj.f = 0;

while()

8 {
sum += bar(obj);

10 }
}

12 static int bar(Object obj) //once−impure pure, weakly impure.

{
14 if(obj.f == 0)

{
16 obj.f = 10;

}
18 return obj.f

}

Figure 3.3: Examples for once-impure purity.
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3.5 Summary for Purity Definitions

In Table 3.1, we summarize all purity forms we have discussed in this Chapter. Each purity

is a weaker form than its previous line. None of instructions related to static, monitor, ex-

ception and native are allowed, but allowed once for once-impure pure methods. The main

difference for different purity forms is in the access to heap and impure method invocation.

Heap reading is not allowed at all in strong purity, allowed partially in moderate purity,

and in an unlimited sense for weak purity and once-impure purity. Heap writing is much

more conservative, depending on the object’s locality for all other forms of purity except

strong purity. With the exception of strongly pure methods, all forms of pure methods

are allowed to invoke impure methods from the same or stronger purity forms, if the only

source of impurity is that the callee method accesses objects local to the caller. Thus, a

moderate pure method may invoke strongly or moderately impure methods, and a weakly

pure method may invoke strongly, moderately, or weakly impure methods.

heap heap invoke static monitor exception native

read write impure

strong no no no no no no no

moderate maybe maybe moderate no no no no

weak yes maybe weak no no no no

once-impure yes maybe once-impure only 1st only 1st only 1st only 1st

Table 3.1: Different levels of purity.
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Chapter 4

Static Purity Analysis for Strong Purity

Our static work looks for the existence of strong purity in Java programs; the definition

for the strong purity is given in Section 3.1 page 13. A strongly pure method may not read

or write the heap or static data, perform synchronization or allocate memory, or conserva-

tively invoke any native method or method not itself strongly pure. This corresponds with

forms of purity found in functional languages.

Our investigation into static purity is roughly divided into static analysis and dynamic

experimental designs. Our static implementation is based on the Soot program analysis

framework [VR00]. And the dynamic evaluation of that static analysis is developed in

SableVM, a Java bytecode interpreter [Gag02].

4.1 Overall Framework

Our strong static purity analysis is performed in Soot [VR00], a framework for analyzing,

optimizing, and annotating the Java bytecode. The left half of Figure 4.1 shows the overall

framework used to evaluate strong purity in a static setting. Java class files are used as

input, and we perform a flow-insensitive analysis in Soot. In order to evaluate our strong

purity property at runtime, a simple extension of this design is introduced. We use Soot to

write out purity information to Java class file as method attributes. This allows SableVM to

read this modified class file during class loading, as shown in the right half of Figure 4.1.
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Figure 4.1: Implementation framework for static analysis.

4.2 Static Analysis in Soot

Our analysis is flow-insensitive, and will scan all statements in all branches in the method.

The first four criteria for strong purity in Section 3.1 at Page 13 involve intra-procedural

analysis, and the last requires an inter-procedural analysis.

For intra-procedural analysis, the statements can be pure, impure or unknown. A sum-

mary of impure statements is given in Table 4.1. Any branch containing any impure in-

struction will make the method impure. The purity for those methods that do not contain

any impure statements but INVOKE*, which is treated as unknown statement, depends on

the inter-procedural analysis. Only when all its callees are known to be pure is the caller

considered pure. Except for impure and unknown statements, all other statements are pure.

Statically we assume that exceptions do not propagate unchecked.

A pure method cannot invoke any impure methods, and so we use an inter-procedural

analysis to guarantee this criteria. Our inter-procedural analysis is also flow-insensitive,

and depends on the call graph construction in Soot [VR00], which itself is based on Class

Hierarchy Analysis (CHA). This CHA-based call graph construction is inexpensive be-

cause its analysis does not require any flow-sensitive or context-sensitive analysis, and this

has the advantage of being safe: a CHA-based call graph will certainly contain all possible

methods reachable at runtime assuming the same CLASSPATH of course. Considering the

polymorphism inherent to Java language, we expect the methods in call-graph will contain
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Class Statement Semantic

New
ob j = new C create a new object of class C

v = new C[k] create a array of k reference

Store

ob j.f = v store a reference into an object field

C.f = v store a reference into an static field

v1[i] = v2 store a reference into an array cell

Load

v = ob j.f load a reference from an object field

v = C.f load a reference from a static field

v2 = v1[i] load a reference from an array cell

Monitor
MONITOR ENTER set the lock;

MONITOR EXIT unset the lock;

Native INVOKE NATIVE invoke a native method

Table 4.1: Impure statements for strong purity.

more nodes and edges than the call graph of a program obtained at runtime.

Figure 4.2 is the pseudo-code for our inter-procedural analysis. First, all nodes in the

call-graph are placed onto the worklist in pseudo-topological order. For each node in the

worklist, we remove it from the worklist, and perform intra-procedural analysis on it. If the

node is pure, we mark the node as pure; otherwise, we mark this node and all its callers as

impure. If, due to method calls, we still do not know whether this method is pure or not,

we put it back to the end of worklist. This procedure continues until a least fixed point is

reached; that is, each method is processed at least once and the methods in the worklist do

not change any more.

Our inter-procedural analysis is performed by propagating impurity up from the leaves

of the call graph, and computing a least fixed point for recursive invocations. An example

call graph is shown in Figure 4.4, which is constructed based on the program in Figure 4.3.

The left hand side of Figure 4.4 shows the purity distribution after intra-procedural and

before inter-procedural analysis. Propagating impurity of c() up from the leaves to the

root will make both a() and foo() impure, as show in the right hand side of Figure 4.4.

Figure 4.5 shows the worklist content as the algorithm proceeds, and the remaining strongly

connected component (b, d, e) is designated pure.
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put all nodes in the call graph into the worklist w

while(w is not empty)

{
w old = w;

for each method m in w

{
remove m from w;

perform intra−procedural analysis for m;

if(m is pure)

mark m as pure;

else if(m is impure)

{
mark m as impure;

remove all callers of m from w;

mark all callers of m as impure.

}else{
/∗ the information for the purity of m is not enough∗/
add m to the end of worklist w;

}
}
if(w old equals w) //only strong connected components left

break;

}
/∗all methods inside strong connected components are pure∗/
if(w is not empty)

for each method s left in w

mark s as pure;

Figure 4.2: Pseudo-code for inter-procedural analysis.
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void foo( )

{ ...

if(...)

{ a();}
else

{ b();}
}
void a( )

{ ...

if(...)

{ c();}
else

{ d();}

}

void b( )

{ e();}

void d()

{ b();}

void e( )

{ d();}

void c( )\\impure.

{ o = new Object();}

Figure 4.3: Example programs for inter-procedural analysis.

c( ) e( )d( )

foo( )

a( ) b( )

c( ) e( )d( )

foo( )

a( ) b( )

Figure 4.4: Call graph for inter-procedural analysis. Black nodes are impure methods, and grey

nodes are pure methods. Left and right hand graphs show the before and after result of propagating

the impurity of c() to its callers.
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1: foo, a, b, c, d, e

2: a, b, c, d, e, foo

3: b, c, d, e, foo, a

4: c, d, e, foo, a, b

5: d, e, b

6: e, b, d /∗fixed point for strong connected component∗/

Figure 4.5: An example for worklist iteration.

4.3 Encoding Class Attributes

Runtime Java behaviour may differ from static, conservative estimates. The call-graph

might contain more nodes and edges than what we may obtain at runtime, and the purity

properties at runtime may be very different from what we see in a static analysis. In order

to evaluate the purity properties more precisely, we thus need to evaluate it at runtime.

Through runtime evaluation we also can obtain some purity properties that we cannot get

statically. For example; How frequently are pure methods invoked? How much bytecode or

actual execution time is pure? What is the method size for those pure methods? Soot has a

tagging framework [PQVR+01], which can encode our static purity information into class

file as method attributes. Reading this attribute at class loading at time is easy. Figure 4.6

shows the data structure for our method attribute. The attribute name index is a 2 byte

unsigned integer value indexing the name of the attribute in the class file’s Constant Pool,

and info is the actual purity information. Figure 4.7 gives an example of the attributed

bytecode: attached to the end of the getSum() method is a purity attribute encoded as

.method attribute, and storing the binary data that getSum() is pure.
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method purity attribute

{
u2 attribute name index;

u4 info;

}

Figure 4.6: Data structure for the method purity attribute.

public int getSum(int x, int y)

{
return x + y;

}

public int getSum(int, int);

0: iload 1

1: iload 2

2: iadd

3: ireturn

.method attribute org.sablevm.purity=1

Figure 4.7: Source and attributed bytecode. “1”: method is strongly pure; “0”: method is impure.

4.4 Runtime Evaluation of Strong Purity Property

After writing out purity information from static analysis to Java class file attributes, it is

read into the SableVM Java virtual machine during class loading as shown in the right half

of Figure 4.1. First we modify the parser to parse the purity attribute in the Class file. And

the purity attribute will be stored into the attribute tables. Then for each method, some

counters are added, including the number of pure methods reached at runtime, the number

of pure method execution, and the bytecodes executed in pure methods. All those counters

will give a sense of how well static results correlate with dynamic behaviour. Experimental

results of our technique are shown in Chapter 7. In the next chapter we show extensions

to our dynamic system that allow dynamic forms of purity to be calculated and compared

with our static results, and each other.
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Chapter 5

Dynamic Purity Analysis

Previous work has established that statically a significant number of methods have mod-

erate [Rou04] or weaker [SR05] purity properties. Dynamic analysis is a way of comple-

menting existing static purity analysis work. By defining and observing purity as a dynamic

property we hope to gain more insight into useful forms of method purity. Below we first

give a detailed motivation for dynamic purity followed by descriptions of the various forms

we investigate in this thesis.

5.1 Motivation

Statically, a method is conservatively determined to be pure for all possible executions; if

not it is necessarily impure. However, for a given program run, a method declared impure

statically may actually exhibit only pure control flow. Consider the example code shown in

Figure 5.1. From a static perspective, the method foo() must conservatively be consid-

ered impure. If, however, t is always >= 0 at runtime, foo() will be dynamically pure.

Dynamic purity analysis helps identify methods as pure or not based on their actual runtime

behaviours, increasing the number of pure methods identified.
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int x;

2 public int foo(int t){
if(t<0)

4 return x; //strong impure path

else

6 return t; // pure path

}

Figure 5.1: An example of a method that is impure statically, but maybe strongly pure dynamically.

5.2 Overall Framework

Figure 5.2 shows our framework for performing, using, and evaluating dynamic purity

analysis. Initially, class files are read into SableVM, and method purity is determined by

examining the executing instruction stream. Whether a method is considered pure depends

on the allowed instructions and system states, and the purity analysis module may even em-

ploy an online escape analysis sub-module that tracks reads or writes to locally allocated

objects. The details of the purity definitions we investigate are detailed in the sections

below, from stronger to weaker forms. Purity information can be used to drive client ap-

plications, for example, memoization to reduce the overhead from dynamic purity analysis.

We will discuss this in Chapter 6. Experimental results from our analysis will be presented

in Chapter 7.

5.3 Strong Dynamic Purity.

Strong dynamic purity has the same criteria as strong static purity. The definition for strong

purity is given in Section 3.1 at Page 13. However, we now consider only those instructions

that are actually executed, as opposed to the entire static method body. A method may

remain pure as long as impure instructions or methods are not encountered.
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Class Files

SableVM

Class Files + Purity Data

Purity Analysis

Escape Analysis

Clients

Memoization

Input:Output Mapping

Argument Lookup

online

offline

Output

Dynamic Metrics

Argument  Tracking

Figure 5.2: Dynamic purity analysis and memoization.

Class Instructions

heap NEW, NEWARRAY,

ANEWARRAY,

MULTIANEWARRAY,

GETFIELD, PUTFIELD,

*ALOAD, *ASTORE

statics GETSTATIC, PUTSTATIC

synchronization synchronized INVOKE*,

MONITORENTER,

MONITOREXIT

exceptions ATHROW

native methods native INVOKE*

Table 5.1: Impure instructions for strong purity.
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The strong purity criteria, reduces to a specific set of impure instructions, as shown in

Table 5.1. These impure instructions are divided into five categories according to instruc-

tion’s function. Initially, all methods have an unknown purity status. As instructions are

executed, the status of the containing method is updated if an impure instruction is encoun-

tered. Note that the call graph here is dynamic as well. A method found to be impure

thus does not update a static set of caller methods, rather it propagate impurity up the call

stack to maintain the property that pure methods do not invoke impure methods. Figure 5.4

shows the call stack for program in Figure 5.3, when the program is running line 9. The

impure instruction GETFIELD in line 9 will make all methods in current call stack impure.

So after executing line 9 in Figure 5.3, baz(), bar(), and foo() will be impure. A

method is marked as pure if it returns without encountering any impure instruction. At

different points in time there will thus be different numbers of strongly pure methods iden-

tified. However, once identified as impure, a method conservatively stays impure for the

remainder of execution.

Examining the strong purity criteria, we can find that a strongly pure method cannot

have any operation related to object, array or field. Java as an object-oriented programming

language, has objects, and fields as fundamental concepts. Therefore, based on these strong

purity criteria, we do not expect find many pure methods dynamically.

5.4 Moderate Dynamic Purity.

Our moderate dynamic purity analysis is based on our moderate purity discussed in Sec-

tion 3.2 at Page 14. We make special exceptions for the native java.lang.VMSystem.-

arraycopy() method, which is the native code for SableVM specifically. Otherwise,

this method will induce large amounts of impurity. Instead of considering all native meth-

ods as unanalyzable methods, which will cause all methods in the call stack impure, we

treat this method as an analyzable method, with heap access and allocation instructions,

and the purity of these instructions will be decided by our online escape analysis.

Based on moderate purity criteria, the instructions from Table 5.1 can be divided into

two categories: impure and maybe impure instructions, as Table 5.2 shows. All other in-

structions that are not in Table 5.2 are pure. The analysis for those impure instructions
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1 public class Test

{
3 Object obj;

public void foo()

5 { bar();}
public void bar()

7 { baz();}
public int baz()

9 { if(obj == null) //contains impure instruction: GETFIELD

return 0;

11 else

return −1;

13 }
}

Figure 5.3: Examples for dynamic strong purity.

baz()

bar( )

foo( )

Figure 5.4: The call stack for example programs. The stack grows downward.
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Class Instructions

heap NEW, NEWARRAY,

(maybe impure) ANEWARRAY,

MULTIANEWARRAY,

GETFIELD, PUTFIELD,

*ALOAD, *ASTORE

statics (impure) GETSTATIC, PUTSTATIC

synchronization

(impure)

synchronized INVOKE*,

MONITORENTER,

MONITOREXIT

exceptions(impure) ATHROW

native methods

(impure)

native INVOKE*

Table 5.2: Maybe impure and impure instructions for moderate purity.

is the same as we did for strong dynamic purity analysis. And pure instructions will not

influence the purity of methods. However, for those maybe impure instructions, *NEW*,

GETFIELD, PUTFIELD, *ALOAD and *ASTORE, our analysis must now examine the ob-

ject more closely than was necessary for strong dynamic purity. We need to perform online

escape analysis.

5.4.1 Online Escape Analysis

The goal of online escape analysis is to determine the purity of those maybe impure instruc-

tions in Table 5.2. After online escape analysis, those maybe impure instructions must be

either pure or impure. The purity of maybe impure instructions is based on object locality.

Objects allocated in the current method are local if they do not escape the current method;

objects allocated by some callee also become local if they escape to the current method.

These maybe impure instructions will be treated as pure instructions only when the target

object for the instruction is local. Otherwise, the maybe impure instruction will become
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return from bar to foo

call stack object table

foo

bar o1

o2

call stack object table

foo

o1
o2

Figure 5.5: Dynamic escape analysis.

impure instruction.

Object locality is monitored by storing a local object table with each stack frame. The

object table is created when the method is invoked, and destroyed after the method returns.

The object table can grow under three situations: first of all, newly allocated objects are

stored in the table for the current frame. Secondly, any object allocated and returned by

a callee is merged into the object table of its caller. Finally, any callee PUTFIELD in-

struction with a reference argument, if this reference argument is non-local, can allow an

object local to the callee to escape to the caller, adding the object argument to the caller’s

object table. Figure 5.5 shows the states for call stacks and object tables for the Java

program in Figure 5.6. The left hand side of Figure 5.5 shows the call stacks and their cor-

responding object tables after Test.bar() invocation and before its return. At this time,

Test.foo() has a new allocated object, o1. And Test.bar() also has a locally object

o2. When Test.bar() returns, this new allocated locally object is merged into it caller

Test.foo(), as show in the right hand side of Figure 5.5. Test.<init>(), an exam-

ple for the object escaping through PUTFIELD with reference. Before Test.<init>()

is invoked, an Test object will be created in its caller, and inside Test.<init>(), a

Point object will be created, and merged into its caller due to the PUTFIELD instruction

that stores the point into pp as a field of Test object, which is created in the caller. There-

fore, pp, the local object of Test.<init>(), will escape and become a local object of

its caller.

The GETFIELD, PUTFIELD, *ALOAD, and *ASTORE instructions can now be easily

classified depending on the contents of the object table for the current frame. If a read or

write occurs to a non-local object, the stack is searched for that object, marking the current
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class Point{ public int x, y; }
class Test{

Point pp;

public void Test(){
pp = new Point(0,0);

}
int equals(Point p1, Point p2){

if(p1.x == p2.x && p1.y == p2.y)

return 1;

else

return 0;

}
int baz(Point p1, Point p2){

if(p1 == null || p2 == null)

return −1;

else

return equals(p1, p2);

}
Point bar(int x, int y){

Point o2 = new Point(x, y);

return o2; //note1

}
int foo(int x, int y){

Point o1 = new Point(x,y);

Point o2 = bar(x,y);

int sum = baz(o1, o2); //note2

return sum;

}
}

Figure 5.6: Example programs for different purity forms.
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method and all intermediate methods as impure; otherwise the instruction is considered

pure. The *NEW* will add the new object to the method’s object table. It is an impure

instruction only if the object created is returned to its caller. Otherwise, *NEW* is a pure

instruction.

5.4.2 Computing Moderate Dynamic Purity

Consider the example Java program in Figure 5.6. Both Test.equals() and Test.baz()

are impure because of the use of the instruction GETFIELD for statements p1.x, p1.y, p2.x,

and p2.y. Because objects p1 and p2 for instruction GETFIELD are not in the object table

of Test.equals, we mark this method as an impure method. After searching the call

stack, we know that this object is created at it’s caller’s caller Test.foo(). Therefore,

we also mark the intermediate methods of Test.equals(), Test.baz(), as impure.

Test.bar() is impure because of *NEW*. We know that *NEW* can only be treated as

pure in the situation that the new created object is not returned to its caller, but here the

new object p is returned to its caller Test.foo(). After Test.bar() returns, this new

object is added to object table of its caller, Test.foo(), as the right part of Figure 5.5

shows. Finally, Test.foo() is pure, because there are no impure bytecodes in it, and all

maybe impure instructions are on its local objects.

5.4.3 Limitation for Moderate Dynamic Purity

Given that external heap reads are disallowed, a moderately pure method often does not

have object parameters; or if it does, it is unable to make any use of them outside of object

reference comparisons. A moderately pure method also cannot make any use of implicit

parameters from method’s receiver. In a Java context, this can greatly reduce the observable

purity, even given the ability to access and mutate locally allocated objects, many methods

read input heap data, and object parameters are common. We thus developed a third and

weaker form of purity that permits heap reads.
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5.5 Weak Dynamic Purity.

In this section we will discuss how the dynamic purity analysis is performed based on the

weak purity discussed in Section 3.3 at Page 17. Reading from external objects will alter

the input state, but will give some kind of overhead for our purity consumer, memoization.

When reading external objects is allowed, that means the result of the method may depend

on the content of the input objects and when memoizing this method we need to save the

content of external objects. This will definitely introduce overhead for memoization, but

this may be necessary in an object-oriented language, like Java where useful pure methods

are likely to inspect object state to at least some degree. This motivates our weak dynamic

purity.

Weakening moderate purity by allowing heap reads enables a method to inspect its

object parameters and any data structures reachable from them. This maintains the property

that the method is functional on its input, even if the input is quite large and in the worst case

constitutes the entire heap. The weak purity criteria is showed at the third line of Table 3.1.

This purity definition corresponds fairly closely with Rountev’s [Rou04]. We make special

exceptions for the native java.lang.VMSystem.arraycopy() methods as we did

for moderate criteria, treating them as heap access and allocation instructions respectively,

as these methods otherwise induce large amounts of impurity.

For weak dynamic purity, the GETFIELD and *ALOAD operation are now always safe,

and safe, or pure, instructions will not influence the purity of methods. As with moderate

purity, impure instructions will cause all methods in the current call stack to be marked

impure. The instructions *NEW*, PUTFIELD, and *ASTORE must still be considered in

the context of our online escape analysis, as we did for moderate purity.

As we did for moderate purity, we perform online escape analysis to determine the

purity of maybe impure instructions in Table 5.3. *NEW* is only impure when the new

allocated object is escaped. PUTFIELD and *ASTORE are impure when the target ob-

ject is a non-local object. Now consider the code in Figure 5.6. We know that only

Test.foo() is pure based on moderate purity, and others impure. Under weak pu-

rity, however, Test.equals() is found to be pure, and thus so are Test.baz(),

Test.bar(), and Test.foo().
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Class Instructions

heap NEW, NEWARRAY,

(maybe impure) ANEWARRAY,

MULTIANEWARRAY,

PUTFIELD, *ASTORE

statics (impure) GETSTATIC, PUTSTATIC

synchronization

(impure)

synchronized INVOKE*,

MONITORENTER,

MONITOREXIT

exceptions(impure) ATHROW

native methods

(impure)

native INVOKE*

Table 5.3: Maybe impure and impure instructions for weak purity.

5.6 Once-Impure Dynamic Purity.

The preceding definitions require purity over the entire course of execution. After exam-

ination of the impure methods identified using the weak criteria, we found that some of

them are weakly pure, but only after the first invocation.

For example, In Figure 5.7, both Test.bar() and Test.foo() are weakly impure.

When Test.bar() is invoked for the first time, obj is null, and the method executes the

impure PUTFIELD instruction on an external object. However, different behaviour after

initialization is common. In our example, after the first execution, obj will not be null any-

more, and Test.bar() will remain pure. Hence both Test.foo() and Test.bar()

are once-impure pure methods.

Once-impure dynamic purity is equivalent to weak dynamic purity, except that the first

invocation of the method during execution may be impure.
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public class Test

{
Object obj;

public void bar()

{
if(obj==null)

obj = new Object(); //impure because of PUTFIELD

}
public void foo()

{
for(int i=0; i<5; i++)

bar();

}
}

Figure 5.7: Example programs for once-impure purity.
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Chapter 6

Memoization

Memoization is an optimization that caches argument to return value mappings, jump-

ing past actual method execution for repeated invocations with the same arguments. A

method is memoizable only when it has a functional property: there is a unique result

for any given input. The forms of purity we define all ensure that pure methods have

this functional property. Even methods identified as weakly pure are thus candidates for

memoization. In fact, as far as memoization is concerned, our once-impure definition fits

perfectly: a method is always invoked at least once before being memoized. This has the

further benefit that mandatory class loading and initialization during a first invocation does

not spuriously cause methods to be rejected as impure. In our case, memoization is also

treated as a practical, if heuristic, validation for our purity analysis. If memoization is ap-

plied to methods that are not really pure, the program tends to fail as memoized results skip

side-effects or incorrect return values are used.

In the sections below, we describe our memoization design. We begin with a discus-

sion of basic design concerns and practical goals of the system. Section 6.2 presents the

main framework for our investigation of memoization, and Section 6.3 describes the actual

implementation.
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6.1 Developing Memoization in a JVM

At its core our basic approach to memoization follows the traditional idea of substituting

method invocation by table-lookup. A typical memoization scheme maintains a memo

table used for mapping input arguments to previously computed results. A new method

invocation will lookup this table to find whether this method has been invoked before with

the same arguments. If it has, the previous stored result from the table is returned and

execution of the method skipped. Otherwise, this method must be invoked as normal;

when it returns, the new mapping of invocation arguments and return value are added to

the memo table. From an algorithm perspective, the structure of the memo table and the

scheme for the table lookup are critical to the overall performance. Efficient memoization

in a Java context implies further concerns and constraints. This needs a more obvious

structure.

6.1.1 Argument Caching

Argument caching is simple in principle, but the presence of not only objects but garbage

collection as well method memoization in Java particularly challenging. Saving the object

arguments directly to the memo table is not practical. In Java object or reference variables

could be destroyed or moved by automatic garbage collection, invalidating object argu-

ments in memo table. Finding and purging the table appropriately is expensive, and may re-

duce memoization opportunities depending on the frequency of GCs. For example, in Fig-

ure 6.1, if garbage collection happens between the first invocation of Test.foo(p1)(line

9) and the second invocation of Test.foo(p1)(line 12), all objects in the memo table

maybe invalid, and Test.foo(p1)(line 12) cannot be skipped anymore. Of course we

can maintain a valid memo table even after garbage collection by modifying GC to update

all objects in the memo table after garbage collection. But this is an invasive procedure

given the weak guarantees on GC behaviour provided by Java. Our actual scheme for han-

dling objects and arbitrary GC is to recursively flatten input objects, maintaining only type

structure and primitive values. The detail of this flatten algorithm will be discussed in Sec-

tion 6.3.1. Here, we will give an brief example to show how this algorithm works. For
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example, consider the method invocation in line 11 at Figure 6.1, p2 is used as the argu-

ment for the first time, but actually memoization can be applied, because p2 has exactly

the same content and structure as p1, in the previous invocation at line 9. Our memoization

for Java programs uses the content of object arguments as the mapping input and does not

include deep addresses. This scheme will not be influenced by garbage collection and can

even allow memoization for different, but equivalent in content, objects. Naturally, this

scheme can consume significant time and space. The process for big objects maybe quite

expensive, and we will need to balance the benefit and cost in practice.

class Point

2 { public int x,y; }
public class Test{

4 public int foo(Point p) //pure method with object argument

{ return p.x+p.y; }
6 public void bar()

{
8 Point p1 = new Point(1,2);

int sum = foo(p1); //invoked the first time.

10 Point p2 = new Point(1,2);

sum = foo(p2); //invoked by the different object.

12 sum = foo(p1); //invoked by the same object.

}
14 }

Figure 6.1: A pure method with object arguments.

6.1.2 Memoizable Methods

As suggested above, not all methods are worth memoizing even if they are sufficiently pure.

The benefit obtained from jumping past method execution must exceed the cost of looking
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up the return value for memoization to have any positive effect. In our case we use a few

heuristic rules. The memoizable methods are those methods that are pure and satisfy the

following rules:

1) the method must execute for long enough to be worth skipping.

2) There must be a good hit rate. If a method is rarely invoked with the same arguments,

the cost of input caching and mapping may exceed any benefit.

3) The amount of input data to be processed cannot be too large. Otherwise the cost of

argument tracking, flattening input reference arguments could be too expensive.

4) No cyclic references in the arguments. A looping reference inside arguments could

make our argument tracking fall into an infinite process. The detail for why it will fail are

explained in Section 6.3.1.

5) The return value is primitive type only. This restriction is aim at simplifying the

implementation for our memoization.

6.2 Overall Framework

Our overall framework including memoization has illustrated in Figure 5.2 (page 31).

Memoization can be driven by either online or offline dynamic purity analysis, as shown on

the right hand side of Figure 5.2. In online analysis, memoization uses the purity informa-

tion from purity analysis immediately. For offline analysis purity information comes from

a previous program run; that is, offline analysis requires at least two rounds of program run-

ning, one for purity analysis only, and another for memoization only. Purity information

gathered in the first run is written out as a file. In subsequent runs this file will be loaded

and used at the memoization stage.

Figure 6.2 shows the control flow for both online and offline memoization upon method

execution. They have the same main components and similar control flow, but online anal-

ysis need of course the online component for supplying purity information. As showed in

the left hand side of Figure 6.2, the method will be executed if the current arguments are

not found or the method is impure. When a memoizable method is returned, the mapping

between input argument and return value will be added to the memo table for possible reuse

later. The right hand side of Figure 6.2 shows the control flow for online analysis. When
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arguments tracking
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memo lookup

method execution
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method invocation

no
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no
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pure?

yes 

no

(b) online analysis

Figure 6.2: Control flows for memoization.

the method is invoked, we may have no information about the method’s purity, because this

property depends on the result of a successful memo lookup or previous purity analysis on

this method’s current argument. If we find the method is impure after purity analysis, the

argument tracking process could be a waste, and becomes part of the general overhead of

the online system. Note, however, that online analysis has an advantage over offline in that

purity can be considered on a per-input basis. Memoization can then be performed on all

possible pure invocations, even in those methods which keep changing their purity states,

and so will be treated as impure even based on once impure purity. For example, consid-

ered the code in Figure 6.3. Test.foo(int) is an impure method based on the once
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impure purity. Since it does not remain pure after the first invocation. But memoization can

in fact happen on the second invocation of Test.foo(2), since with an argument of 2

Test.foo() is pure.

public class Test{
public int x;

public int foo(int x)

{
if(this.x <= x)

{ this.x = x; }
}
public int bar()

{
this.x = 5;

foo(10); //impure invocation;

foo(2); //pure invocation; input state added to memo table.

foo(10); //impure invocation;

foo(2); //pure invocation; can be skipped.

}
}

Figure 6.3: Sample programs for per-input memoization.

Argument tracking for all methods at all times is expensive, and for the online algorithm

in practice, we need to keep a balance between this cost and its benefit. The offline analysis

eliminates all the overhead of the purity analysis and allows for better evaluation of the

memoization client in isolation.
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6.3. Memoization Implementation

6.3 Memoization Implementation

As described earlier, the memoization client consists of three main components: 1) argu-

ment tracking; 2) mapping between input and output; 3) argument lookup. Below we will

describe these three processes and how they are implemented.

6.3.1 Arguments Tracking

Object header

Primitive

Primitive

Primitive fields of class C

fields of class A 

ref fields of class A

obj

fields of class B

ref fields of class B

ref fields of class C

Reference

Reference

Reference

Reference

Reference

Reference

Figure 6.4: Bidirectional object layout in SableVM.

For the once-impure purity, the parameters of a pure method can be references or prim-

itive variables. Generally, primitive arguments will be saved directly, and reference ar-

guments will be “flattened” recursively until no references are left. Each reference vari-

able is saved in the format of < TY PE,(CONTENT ) >, where TY PE is a Java class and

CONT ENT is its recursively flattened data. No type information is stored for primitive

variables because their type are guaranteed by parameter types at compile time already.

Internally, SableVM [Gag02] uses a bidirectional object layout as show in Figure 6.4. Obj
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is an object instance of class C, which extends from B, and B extends from A. As shown

in Figure 6.4, the fields in this layout are grouped as reference fields and non-reference

fields. All primitive fields, whether from the class itself or its super class, are put con-

secutively after the object header. These primitive fields can be copied as a contiguous

chunk of memory. Reference fields are put consecutively before the the object header, and

so can be tracked recursively until no reference left in a manner similar to GC tracing.

Consider the code in Figure 6.5. If we have an object obj with type A, it will be saved

as: ob j =< A,(x,y,b =< B,(a,b) >) >. Unfortunately, flattening in this manner means,

circular data structures cannot presently be memoized. This kind of structure shown in

Figure 6.6 would force our object tracking process into an infinite loop.

class A {
int x, y;

B b;

}
class B {

int a, b;

}

Figure 6.5: Sample code for object structure.

In order to avoid infinite looping during arguments tracking, we develop an algorithm

for circular reference detection. The basic idea of this algorithm is to check for the du-

plication of reference types during content “flattening”. Each memoizable method has a

list called its parameter reference type list, which is used to store the reference types of a

method’s parameters during flattening. Once any duplicated reference type is found, this

method will be marked as a circular reference, cannot therefore be stored, and memoiza-

tion from these arguments is abandoned. Otherwise, this set of parameters is memoizable

without circular references. For example, suppose we have a method foo(A a, B b) and its

structure of reference parameters A and B as shown in Figure 6.6. When flattened the first
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class A {
int x, y;

B b;

}
class B {

int a, b;

A a;

}

Figure 6.6: Sample code for circular reference.

public class A {
Object o1, o2;

boolean foo() {
return this.o1==null; //IFNULL

}
boolean bar() {

return this.o1==this.o2; //ACMP

}
}

Figure 6.7: Sample code for ACMP.
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args_n

......
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Figure 6.8: Memory structure for arguments and hash table.

parameter a, will get a parameter reference type list as A B A. That is, there exists duplicate

reference types, and hence circularity.

Despite the inability to handle circular references, there are some advantages for storing

only the object type and content. Mainly of course, garbage collection does not invalidate

memoization tables. Secondly, however, a deep copy of an object will suffice when a

different object actually has the same content. The output can be reused even the input

object is stored in a different memory location, but the content of the input objects is the

same. This will increase the possible re-usage, but does raise the issue of when can we

safely consider objects identical. Certainly if addresses are not explicitly compared, then

deep copies are equivalent for memoization. Code such as in Figure 6.7, however, compares

object addresses using the ACMP bytecode. This is not safe to memoize. Note that we

can still represent null object references, leaving the IF(NON)NULL bytecode safe for

memoization. In Figure 6.7, A.bar() cannot be memoized, but A.foo() is safe for

memoization.
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6.3.2 Mapping Construction

A typical memoization scheme maintains a memo table mapping argument input to output.

Our memoization design a hash structure for the memo table, shown on the left hand side

of Figure 6.8 as hash table. Instead of saving all inputs directly into the table, we save

the hash code as the key. The input data, due to its size is stored in a separate structure,

the mem args data structure shown on the right hand side of Figure 6.8. The offset of the

content for each argument in mem args is put in the hash table as the value. The detailed

structure of each actual mapping in mem args is shown at the bottom of the Figure 6.8.

The first field is the size of this entry and the second field is a unique id for the method.

This ensures different methods with identical inputs are not confused. The third field is

the flattened content of the argument inputs. This content is followed by the output of the

method, the return value to which the arguments map. Flag will be set when the return

value is filled. The counter, is used to count the times this method is invoked with these

particular arguments. Note that both the hash table and the mem args can be expanded if

necessary. By using offsets rather than addresses the hash table can easily accommodate a

reallocated memory table.

6.3.3 Argument Lookup

Since our memo table is based on a hashing approach, the first step for argument lookup

will be getting the hash code for the current method invocation. The hash code is computed

from the content of argument tracking, content size, and method id, as shown at the bottom

of Figure 6.8. If a method has been invoked previously with the same parameters we can

find its offset in mem args, where we save the content and return value for all previous invo-

cations; this lookup itself is fast due to hashing, and has complexity O(1). After locating a

matching previous invocation content and return value by hashcode, however, we still need

to make sure that the actual content before and now encountered are the same. Therefore,

we make a simple comparison between the current and previous invocation content; that

is, two invocations are considered invoked by the same parameter if the flattened content

of these two invocations are the same. If they are exactly the same, we skip the current

invocation by returning the stored value from previous invocation. Otherwise memoization
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fails, and this method will be executed as usual.

In the next chapter we give experimental results from our memoization system and

purity analyses. This includes offline and online data, as well as a detailed investigation of

the source of purity/impurity and how and when it is useful.
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Experiments

Experimental evaluation was conducted using the standard SPEC JVM98 benchmark

suite at input size 100 [Sta98] on a 2 GHz Athlon x86 64 machine running Linux. Our

memoization system does not yet support multi-threading, and so we substitute the single-

threaded raytrace benchmark for mtrt. We evaluate each form of purity described in the

previous section using offline analysis, save for performance evaluation of the online anal-

ysis module. All averages are computed as geometric means.

The following section describes constraints for our experimental results. In Section 7.2,

we introduce the metrics used to evaluate our purity evaluation. The experimental results

for static analysis are given in Section 7.3, and in Section 7.4, we evaluate our different

dynamic purity forms. Reasons why methods are considered Impure are examined in Sec-

tion 7.5. Finally, based on our analysis results, we show the memoization experiments in

Section 7.6.

7.1 Constraints

A few constraints are further imposed by our basic memoization implementations; several

additional constraints that are unsafe for memoization are imposed in our dynamic purity

analysis experiments. First of all, ACMP * instructions are treated as unsafe. Our mem-

oization is based on once-impure dynamic purity, in which pure methods are allowed to

have object parameters. The content of all arguments is cached without considering the
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address of objects. The result of ACMP * depends on a comparison of actual object ad-

dresses, and thus is not possible in our memoization. Figure 7.1 provides an example of the

potential problem. If ACMP * are considered safe, Test.bar() would be pure. There-

fore, this method is memoizable. When Test.bar() is invoked for the first time at line

13, the mapping between arguments and result will be stored. The input content will be

< D,(5);D,(5) >, and the return value in memo table will be false. Then, when it is in-

voked for the second time at line 15, however, after flattening the content of arguments, we

get < D,(5);D,(5) >, a match for our entry in the memo table. Therefore, the method is

skipped by replacing the return value with false. But this is wrong, because these two ob-

jects now actually point to the same object, and the return value should be true. In practice,

we find that the constraint on ACMP * has little bearing on overall results, with a notable

exception being jess as we discuss in Section 7.5.

Another important consideration is that our memoization system does not yet support

multi-threading; we assume a single thread execution. In this situation, MONITOR opera-

tions can actually be treated as safe instructions. In order to examine the upper bound of

pure methods, we ignore synchronization operations that may cause method to be impure

based on our purity criteria.

7.2 Metrics

In order to evaluate and compare the result from different levels of purity analysis. We

introduce some purity metrics. Static method purity is calculated as the percentage of all

methods in the call graph that are pure, as reported by prior work on purity and side effect

analysis [Rou04, SR05]. Dynamic purity is evaluated by three dynamic purity metrics.

• Method purity

This is calculated as the percentage of all reached methods at runtime that are pure.

The formula can be described as:

pure methods/total methods∗100%.

• Invocation purity
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1 class D {
int x;

3 D(int x) { this.x=x; }
}

5 public class Test {
boolean bar(D o1, D o2){

7 return o1 == o2; // ACMPEQ

}
9 void foo() {

boolean flag;

11 D o1 = new D(5);

D o2 = new D(5);

13 flag = bar(o1, o2); //false

o2 = o1;

15 flag = bar(o1, o2); //true

}
17 }

Figure 7.1: An example for ACMP *.

This is the percentage of all runtime method invocations that are pure. The formula

can be described as:

pure method invocations/total method invocations∗100%.

• Bytecode purity

This is the percentage of the executed bytecode instruction stream that is contained

within pure methods. It can be described in the formula:

pure method bytecodes/total bytecodes∗100%.

For bytecode purity, there are two complications involved in calculating dynamic byte-

code purity. First, only those instructions executed locally in a given method are counted
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towards the total number of impure or pure bytecodes. Second, for an impure method

executed within a pure context such that under moderate or weak purity the execution is

actually pure, the instructions are counted towards the total number of pure bytecodes. This

requires propagating purity information on method invocation.

1 foo(){ //impure

...... //4 bytecodes

3 putstatic; //impure bytecode.

bar();

5 ...... //4 bytecodes;

}
7

bar(){ //pure

9 ...... //10 bytecodes.

}

foo(){ //pure

2 ...... //4 bytecodes

o = new Object(); //new

4 bar(o);

...... //4 bytecodes

6 }
bar(Object o){ //impure

8 o.f = <value>; //putstatic

...... //9 bytecodes

10 }

Figure 7.2: Examples for bytecode counting.

Two examples for bytecode counting are given in Figure 7.2. In the example on the

left hand side the pure method, bar() is called inside an impure method foo(). The

bytecode size of foo() is 20, including all bytecodes in bar(). The size for bar() is 10.

The method size of a method is calculated by counting the really executed bytecodes after

the method is invoked and before the method returns, and this will include all bytecodes in

its callees. To avoid multiple counting (e.g., in this example, the total bytecodes of foo()

and bar() are 30, but the total bytecodes really executed are 20), the bytecode purity is

calculated through local bytecodes. In this example, the local bytecodes for foo() is 10,

and bar() is 10 too. Therefore, the percentage of bytecodes in pure methods is 10/(10+

10)∗100% = 50%. The right hand side of Figure 7.2 is an example of an impure method

bar() invoked in the pure context of foo(). The local bytecodes for both foo() and

bar() are 10. And bar() is identified as impure. In a moderately or weakly pure context

56



7.3. Static Purity Analysis

foo() is pure. In this case, the bytecode purity for the program is 100% — the total

bytecodes executed are 20, and all of them are in the pure context, even the impure method.

It is important to determine whether dynamic purity is present in a non-trivial way,

and in this respect we consider bytecode purity a better indicator than invocation purity,

and invocation purity a better indicator than method purity. A large percentage of pure

bytecodes, most directly shows the possible benefit from the pure methods. The invoca-

tion purity shows the invocation frequency from pure methods, a more easily gathered but

less accurate measure, and the method purity gives the information of the number of pure

methods, a measure suitable for static comparisons.

7.3 Static Purity Analysis

Our static analysis includes all methods in both class library and application code that are

found in the call graph created by our conservatively-correct CHA-based whole program

analysis. A more precise analysis would analyze fewer methods in exchange for computa-

tion time [LH06], but we did not investigate this in this thesis.

Table 7.1 shows the percentage of all methods in the call graph identified as statically

pure at compile time. About 13% of methods are found to be strongly pure under all

possible execution scenarios, with most pure methods coming from the standard Java li-

braries. On average, more that 40% of pure methods are <init> methods. The data from

Table 7.2 is collected at runtime based on the purity information identified through static

analysis. The first row shows the percentage of all methods reached at runtime that are

statically pure; the invocations row shows the percentage of all dynamic method invoca-

tions that execute some statically pure method; the bytecode row shows the percentage of

the bytecode instruction stream that is executed by some statically pure methods. Clearly

not all methods from static analysis will be invoked at runtime. All possible target methods

will be included in the call graph at the static time, but the methods invoked at runtime

are determined by the actual received object type at runtime. This greatly reduce the total

number; at runtime, we only find 5–6% of reached methods are statically identified as pure,

with even less invocations and bytecodes.

Tables 7.3, 7.4, 7.5 list the distributions for strongly pure methods on method type

57



Experiments

comp db jack javac jess mpeg rt

pure methods 14% 13% 13% 12% 13% 13% 13%

<init> 41% 41% 42% 38% 45% 41% 41%

app 2% 2% 5% 2% 11% 5% 2%

Table 7.1: Strong static method purity.

metric comp db jack javac jess mpeg rt

methods 6% 6% 6% 5% 5% 6% 5%

invocation ≈0% 12% 10% 10% 6% 16% 3%

bytecode ≈0% 2% 1% ≈0% ≈0% 2% .5%

Table 7.2: Strong dynamic purity identified at static.

and method size in method purity, invocation purity, and bytecode purity. All data in these

three tables are collected at runtime in the modified SableVM, and all pure methods are

identified as pure during static analysis in Soot. Table 7.3 shows the distribution of method

purity; more than 60% pure method invoked are from <init>. The invoked non-library

pure methods are varied for different benchmarks. It could be as much as 50%, such as

javac, and jess, or only a small percentage for comp, db, and raytrace. Most pure methods

are also small, as the second section in Table 7.3 shows. The invocation purity distribu-

tion is showed in Table 7.4. The <init> or non-library pure method invocations, the

percentage could be extremely different for different benchmarks. More than 50% method

invocation are to <init> in comp, jack, jess, and raytrace, but only a small percent-

age of invocations are to <init> in mpegaudio. In this case it is because the method

spec/benchmarks/ 222 mpegaudio/q.j(F)S is invoked particularly frequently

in mpegaudio. The second section of Table 7.4 shows that most invoked pure methods are

those methods of small size, less than 15 bytecodes. Finally, Table 7.5 shows the distribu-

tion of bytecodes executed by pure methods. The bytecode percentage for calls to <init>

is not dominant, as they were with method purity and invocation purity, and again vary for

different benchmarks. The executed bytecodes that come from pure application methods
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could be extremely different for different benchmarks; nearly 0% in comp and up to 99%

in mpegaudio.

Static strong purity is a strong and conservative purity criteria. Only a small percentage

of methods are strongly pure, and most these methods are <init>. Almost all strongly

pure methods are small size method with less than 10 instructions executed in the method.

This is not difficult to understand. Java is an object-oriented language; most methods will

read from or write to heap. The strong purity criteria that no heap related operation occur

at all will limit pure methods to only very simple operations.

comp db jack javac jess mpeg rt

<init> 61% 60% 63% 35% 76% 61% 58%

app 2.4% 0% 29% 45% 56% 22% 2.3%

[ 1, 4) 56% 53% 45% 68% 74% 57% 53%

[ 4, 8) 37% 38% 50% 27% 19% 35% 35%

[ 8,16) 7% 10% 5.4% 5% 6% 8% 9%

[16,32) 0% 0% 0% 0% 0% 0% 2%

[32, ) 0% 0% 0% 0% 1% 2% 0%

Table 7.3: Method purity distribution for strongly pure method identified at static. The top row

shows the proportion of <init> methods included in the results. The next row is the amount of

application code. The bottom 5 rows divide pure methods according to size in bytecodes.

7.4 Dynamic Purity Analysis

In this section, we evaluate the different levels of dynamic purity using our dynamic met-

rics, method purity, invocation purity and bytecode purity. In order to allow a good compar-

ison between different levels of purity, the experimental results for different purity forms

are aggregated in the result tables, Table 7.6, Table 7.7, and Table 7.8. We start by show-

ing the results for strong purity, followed by moderate purity, which removes the read and

write limitation on local objects, we then consider our weaker forms still, and once-impure

purity, which removes the purity requirement for the first invocation.
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comp db jack javac jess mpeg rt

<init> 59% 12% 53% 44% 88% ≈0% 71%

app ≈0% 0% 3% 26% ≈0% 99.5% 29%

[ 1, 4) 61% 12% 66% 64% 69% .15% 99%

[ 4, 8) 39 % 88% 34% 36% 31% .44% .2%

[ 8,16) .1% ≈0% ≈0% ≈0% ≈0% 99.4% ≈0%

[16,32) 0% 0 % 0% 0% 0% 0% .6%

[32, ) 0% ≈0% 0% 0% ≈0% ≈0% 0%

Table 7.4: Invocation purity distribution for strongly pure methods identified at static.

comp db jack javac jess mpeg rt

<init> 19.5% 1.9% 19.8% 15.4% 59% ≈0% 50%

app ≈0% 0% 2.2% 14.8% .1% 99.8% 40.6%

[1,4) 19% 1.8% 24% 24.5% 33% ≈0% 90.3%

[4,8) 81% 98% 76% 75.5% 67% .2% ≈0%

[8,16) .2% ≈0% ≈0% ≈0% ≈0% 99.8% ≈0%

[16,32) 0% 0% 0% 0% 0% 0% 9%

[32, ) 0% 0% 0% 0% 0% 0% 0%

Table 7.5: Bytecode purity distribution for strongly pure methods identified at static.

purity comp db jack javac jess mpep rt

strong 7% 7% 6% 6% 9% 8% 6%

moderate 10% 9% 8% 8% 9% 8% 6%

weak 18% 18% 15% 19% 23% 18% 22%

once-impure 19% 19% 16% 21% 24% 19% 23%

Table 7.6: Dynamic method purity. Percentage of all reached methods reached that are pure for

different dynamic purity definitions.
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purity comp db jack javac jess mpeg rt

strong ≈ 0% 15% 13% 11% 10% 16% 8%

moderate ≈ 0% 15% 19% 17% 17% 16% 8%

weak 33% 87% 35% 27% 43% 31% 90%

once-impure 33% 87% 39% 29% 46% 31% 91%

Table 7.7: Dynamic invocation purity. Percentage of all method invocations that are pure for dif-

ferent dynamic purity definitions.

purity comp db jack javac jess mpeg rt

strong ≈0% 3% 1% 1% 1% 2% 1%

moderate ≈0% 3% 1% 1% 1% 2% 1%

weak 5% 62% 17% 24% 13% 3% 53%

once-impure 6% 62% 20% 26% 16% 3% 56%

Table 7.8: Dynamic bytecode purity. Percentage of total bytecode instruction stream that is con-

tained in a pure method for different dynamic purity definitions.

7.4.1 Strong Dynamic Purity

Strong dynamic purity is a weaker form of purity than its static equivalent, and the results

in the first row of Tables 7.6, 7.7, and 7.8 improve on the runtime use of strong static purity

in Table 7.2. In Table 7.6, up to 4% more pure methods are reached using strong dynamic

purity. Around 1-4% more invocations are also dynamically strongly pure. Nevertheless,

the overall impact remains small, with Table 7.8 showing no more than 3% of all bytecode

instructions being executed in a pure context, and a maximum gain over strong static purity

of just 1%.

During dynamic analysis, we only examine the executed bytecodes, rather than ex-

amining the whole method body as in static analysis. Thus there should be some meth-

ods strongly pure at runtime identified as impure statically. For example, the method

java.lang.String.valueOf(Object obj) from db is identified as a dynamic

strongly pure, but static strongly impure method. The program for this method is shown
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in Figure 7.3. There are two control paths in method java.lang.String.valueOf-

(Object obj): one path returns a constant string, another path will call an impure

method java.lang.Object.toString(), which is impure because of its impure

callee java.lang.String.hashCode(). However, this impure path never be in-

voked at runtime, when consider benchmark db. Therefore, java.lang.String.-

valueOf(Object obj) is identified as a strongly pure method with dynamic analysis.

public static String valueOf(Object obj){
2 return obj == null ? "null" : obj.toString();

}
4 public String toString(){

//hashCode is an impure method, which includes write to the heap.

6 return getClass().getName + ’@’ + Integer.toHexString(hashCode());

}

Figure 7.3: Dynamic strongly pure method identified as strongly impure at static.

Only a small improvement is gained through dynamic analysis compared with static

analysis based on the strong purity form. Dynamic purity analysis will improve those

methods with both impure and pure control flows, but which have only pure control flows

reachable at runtime. From the experimental results, we know that this case does not hap-

pens very frequently in practice. However, in dynamic analysis, the method purity can also

be described based on per-input. The method purity can keep changing as the program is

run under different inputs. But if it is pure with some particular arguments, it will always

be pure with these arguments.

7.4.2 Moderate Dynamic Purity

It is not difficult to understand that we not get many strongly pure methods, because the

strong purity form is too conservative. Java is an object-oriented language, disallowing all

operations related to the heap represents a very big limitation. We consider relaxing the
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purity definition by allowing some forms of heap operation. In moderate dynamic purity

heap read and write are allowed at least on local objects. This allows some heap interac-

tion, while ensuring heap access is easily bounded. Before collecting our experiments, we

expected a big gain to be achieved compared with strong purity: heap reading and writing

are the main reason for strong impurity. Allowing access to local heap accesses may relax

many strongly impure methods, and allow then to become moderately pure. This concept

of locality in heap interaction can be extended through methods calls, and thus potentially

scope methods. For example, in Figure 7.4, although both bar() and baz() are mod-

erately impure, caller foo() actually is pure, because obj is created locally and does not

escape from foo() despite its callees. Therefore, we expect to find more pure methods

with moderate purity.

1 void foo() { //pure

Object obj = bar();

3 baz(obj);

}
5 Object bar() { //impure

Object obj = new Object();

7 return obj; //escaped to caller

}
9 void baz(Object obj) { //impure

x = obj.f; //read from external object.

11 }

Figure 7.4: Examples for moderate purity.

Unfortunately, we observe marginal improvements to all runtime measurements, but

overall do not find any large gains compared with dynamic strong purity. Recall that under

moderate dynamic purity, methods are not allowed to read or write heap data from objects

pre-existing the method call, preventing actual use of object parameters; this constraint

ensures a simple bounding of the input state. Table 7.9 presents dynamic metrics for all
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methods that accept or return references. All benchmarks have at least 53% of reached

methods executed in this context that is likely to be impure, and with the exception of com-

press, at least 57% of bytecode execution as well. However, even though compress exhibits

a maximum of 4% of bytecode execution being impure due to reference parameters and

return values, in fact compress is highly impure for other reasons, namely large amounts of

execution within large and hot methods that contain PUTFIELD bytecodes.

metric comp db jack javac jess mpeg rt

methods 62% 62% 53% 68% 54% 60% 62%

invocations 1% 51% 49% 46% 76% 33% 37%

bytecode 4% 60% 63% 57% 93% 92% 71%

Table 7.9: All methods with reference parameters or return reference.

7.4.3 Weak Dynamic Purity

Weak dynamic purity eliminates the restriction on moderate dynamic purity that a method

not inspect the reachable heap. This allows significantly more purity to be identified,

roughly doubling the number of pure methods, and resulting in even larger gains with

respect to dynamic invocation purity and dynamic bytecode purity, as shown in Tables 7.7

and 7.8. In particular, db and raytrace execute a high percentage of the bytecode instruction

stream within a pure context.

Data similar to that shown in Tables 7.3, 7.4, 7.5 is presented for weak dynamic purity

in Table 7.10, 7.11, 7.12. Tables 7.10 shows the percentage of pure methods that are from

application and <init>, and the distribution on method size. From Tables 7.10, we can

find that only about 20% pure methods are <init>. This is much less than the method

purity for moderate purity, which is more than 60%. Relative amount of pure methods

from pure applications still can be very different for different benchmarks; this property is

the same as moderate purity. However, in weak purity, we do find some pure methods with

large method sizes. On average, about 5% of pure methods have more than 256 bytecodes.

Disappointingly, however, these big pure methods are not invoked frequently, as can be seen
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in Table 7.11. More than 90% of invocation purity is from quite small pure methods, less

than 16 bytecodes. The library and application split and use of <init> continues to vary.

Almost all pure invocations come from the library for db, but for comp, mpeg, and raytrace

almost all pure invocations come from the application. The invocation of pure <init>

can be close to 0%, such as comp and mpeg, and ranges up to 17%. When considering

bytecode purity, the percentage of bytecodes from <init> is small, which is shown in

Table 7.12. For all benchmarks in spec, no more than 6% of bytecodes executed are from

pure <init> methods. As we mentioned before, we do find some pure methods with big

method size. Therefore, in bytecode purity, we are glad to find that in some benchmarks,

we have more than 50% of bytecodes come from pure methods with big size, for example,

about 65% of bytecode in db has more than 65 bytecode. And about 44% of bytecodes in

javac have more than 256 bytecodes.

pure comp db jack javac jess mpeg rt

<init> 20% 19% 25% 10% 28% 21% 13%

app 5% 3% 17% 50% 50% 23% 33%

[ 1, 16) 78% 78% 80% 81% 89% 82% 82%

[ 16, 32) 5% 5% 6% 6% 2% 5% 4%

[ 32, 64) 7% 7% 6% 6% 3% 6% 7%

[ 64,128) 1% 2% .7% 1% 2% .7% 3%

[128,256) 3% 4% 2% 1% .4% 0% 2%

[256, -) 6% 5% 6% 4% 3% 6% 3%

Table 7.10: Distribution on method purity for weak purity.

Although we can find some big pure methods through weak purity. as we will show

in our memoization experiments, many of these methods are not necessarily suitable for

profitable exploitation, and for our benchmarks weak purity does not result in such large

practical increases. We hypothesized that this might be due to initialization requirements,

leading to aggressive rejection of methods as impure based on special operations performed

only on the first invocation. We now consider the impact of initialization through once-

impure data.
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pure comp db jack javac jess mpeg rt

<init> ≈0% 2% 16% 17% 12% ≈0% 2%

app ≈100% ≈0% 4% 52% 77% ≈100% 98%

[ 1, 16) ≈100% 85% 98% 87% ≈100% ≈100% 96%

[ 16, 32) ≈0% ≈0% 1% 2% ≈0% .1% ≈0%

[ 32, 64) ≈0% ≈0% ≈0% 10% ≈0% ≈0% 2%

[ 64,128) ≈0% 15% ≈0% ≈0% ≈0% ≈0% ≈0%

[128,256) ≈0% ≈0% .1% ≈0% ≈0% 0% 2%

[256, -) ≈0% ≈0% ≈0% .5% ≈0% ≈0% ≈0%

Table 7.11: Distribution on invocation purity for weak purity.

pure comp db jack javac jess mpeg rt

<init> ≈0% .1% 3% 6% 4% ≈0% .5%

app ≈100% ≈0% 6% 23% 78% 99% 99%

[ 1, 16) ≈100% 35% 77% 23% 98% 99% 70%

[ 16, 32) ≈0% ≈0% 4% 6% ≈0% .1% .1%

[ 32, 64) ≈0% ≈0% .1% 16% .4% .1% 8%

[ 64,128) ≈0% 65% ≈0% 10% ≈0% ≈0% .2%

[128,256) ≈0% ≈0% 18% 2% ≈0% ≈0% 21%

[256, -) .1% ≈0% .5% 44% 1% .4% 1%

Table 7.12: Distribution on bytecode purity for weak purity.

7.4.4 Once-impure Dynamic Purity

Once-impure results are shown in the last row of Tables 7.6, 7.7, and 7.8. We observe

small gains in dynamic method purity for all benchmarks, only about 1-2% improvement

compared with weak purity, and slightly larger gains for some benchmarks in the context

of dynamic invocation and bytecode purity, about 3–4% more invocation purity for jack

and jess, and around 3% more bytecode purity for jack, jess, and raytrace. This means

for some benchmarks, the new pure methods found by once-impure purity could be some
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methods with big size.

Of course, once-impure dynamic purity can be generalized: it is possible that the purity

of a given method is dynamically manifest only after n > 1 impure executions, that a pure

method actually becomes impure after some number of executions, or that more complex

pure←→impure transitions occur. Detailed information on more general forms of once-

impure will be described in next section.

7.4.5 Remaining Dynamic Purity

Table 7.13 provides a detailed breakdown according to the number and kinds of methods

captured and ignored by our purity analysis discussed from Section 7.4.1 to Section 7.4.4.

The first section in Table 7.13 shows reached method counts accounted for by our analysis:

those that are either always pure, always impure, or once-impure. The second section

shows reached methods that are not accounted for: those that are impure twice or more

before becoming always pure, those that are pure once or more before becoming always

impure, and those that change state more than once in remainder. The final section provides

dynamic purity metrics, method, invocation, bytecode for the methods identified in the data

above.

For all benchmarks, less than 10% of methods change their purity status over the course

of execution, with the vast majority being always pure or always impure. Once-impure does

indeed capture the bulk of methods that change state from impure to pure, with no more

than ≈2% of ultimately pure methods remaining impure for more than one execution. In-

terestingly, there are no methods that are initially always pure that later permanently change

to being always impure, as seen in the P+I+ row. There are however fairly large numbers

of methods that change state more than once, as seen in the remainder row. We analyzed

the extent of missed opportunities in the second section using our dynamic metrics, and

found a surprising amount unaccounted for execution, particularly for jack, javac, and jess.

7.4.6 Summary for Dynamic Purity

In Section 7.4, we report the experimental results for four different levels of purity by our

dynamic metrics. The changes between strong purity and moderate purity are small, the
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state regexp comp db jack javac jess mpeg rt

P+ 130 135 152 299 281 158 198

I+ 559 602 795 1120 873 706 680

IP+ 10 10 11 33 11 12 12

II+P+ 0 0 0 3 6 1 1

P+I+ 0 0 0 0 0 0 0

remainder 22 23 36 109 42 24 22

method 3% 3% 4% 7% 4% 3% 3%

invocation 21% 3% 16% 17% 13% 6% 1%

bytecode 12% 3% 25% 26% 30% 5% 6%

Table 7.13: Analyzed and unanalyzed methods.

difference between weak purity and once-impure is also small. However, compared with

moderate purity, we achieve big gains from weak purity, which only allows local heap

reads.

We also observe a general trend in our dynamic metrics. First of all, dynamic method

purity is fairly similar between benchmarks. There is no large difference between static

strong purity, dynamic strong purity, and dynamic moderate purity for method purity. Dy-

namic weak purity, however, doubles the method purity compared with dynamic moderate

purity. Unfortunately, this pattern does not continue: only small gains are achieved from

once-impure purity. Secondly, differences in dynamic invocation purity are greater, sepa-

rating programs into two groups. For some benchmarks, such as db and rt, the invocation

purity can go up to 90%; for other benchmarks, however, there are only about 30–40%

invocations that come from pure methods. The big gain between different purity forms still

happens between moderate purity and weak purity. Thirdly, differences in dynamic byte-

code purity are greater still, separating programs into three distinct groups. The highest

percentage groups still come from db and rt, which have around 50–60% executed byte-

codes based in pure methods, Another group is around 20%, and includes jack, javac, and

jess. The group with the smallest improvement includes comp and mpeg, which have only

about 5% of executed bytecodes in pure methods. Once again the difference between mod-
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erate purity and weak purity tends to represent the largest gain: for all benchmarks, the

percentage of bytecode for moderate purity is less than 5%. Generally, both invocation

and bytecode purity is unpredictable from method purity, and may vary greatly between

benchmarks. This tendency of our metrics to polarize benchmarks is a useful property. We

consider bytecode purity a better indicator for purity evaluation than invocation purity, and

invocation purity a better indicator than method purity, and intend to explore the relation

between purity styles/results and benchmark behaviour as future work.

7.5 Impure Reasons Analysis

Methods themselves may be impure for multiple reasons or only for a single reason. Ta-

bles 7.14, 7.15, and 7.16 give details as to which bytecodes actually cause impurity under

once-impure dynamic purity.

Table 7.14 shows the reasons for dynamic method impurity. In the top section each row

shows methods rejected solely for encountering that bytecode in our once-impure analysis,

or a native INVOKE* in the case of native. Methods rejected for encountering PUTFIELD

that also encountered another impure bytecode are shown in PUTFIELD+. Individually

negligible sources of impurity not accounted for by the other rows are summed in oth-

ers. In this table, between 20% and 30% of reached methods are impure entirely due to

the use of PUTFIELD on escaping objects, and well over 50% of methods are marked

impure after encountering other disallowed bytecodes in addition to PUTFIELD. In the

case of dynamic invocation impurity, shown in Table 7.15, this balance tips more in the

other direction: compress, db, and raytrace find PUTFIELD alone a much more significant

contributor than multiple impurity reasons. jess is marked by the dominance of ACMP *

bytecodes in impurity decisions; these bytecodes are used extensively for the implementa-

tion of equals() methods in the different application classes of jess.

Bytecode execution data in Table 7.16 show the importance of considering other method

execution properties in evaluating purity. Although ACMP * is a dominant factor for jess,

in practice these bytecodes are contained in small methods, and the executed bytecode

contribution to impurity is somewhat reduced when compared with dynamic invocation

impurity. PUTFIELD as a lone contributor is also less important in terms of bytecode
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execution; only db continues to show PUTFIELD as a significant single source of impu-

rity, although PUTFIELD does maintain a large presence when there are multiple impurity

reasons. Clearly, further weakening of purity to allow more pure PUTFIELD operations

will be of value, however measured. Nevertheless, the largest potential source of further,

weaker purity apparently lies in analyzing and handling methods marked impure due to

execution of multiple kinds of impure bytecodes.

impurity comp db jack javac jess mpeg rt

ATHROW 0% 0% 0% 0% 0% 0% 0%

ACMP * 1% 1% 1% 1% 1% 1% 1%

PUTFIELD 27% 29% 21% 21% 23% 24% 28%

*STATIC 6% 6% 4% 3% 4% 5% 5%

ARETURN 1% 1% 1% 1% 1% 1% 1%

ASTORE 0% 0% 0% 0% 0% 0% 0%

native 8% 8% 6% 5% 6% 7% 9%

PUTFIELD+ 52% 52% 58% 66% 61% 60% 53%

others 5% 3% 9% 3% 4% 2% 3%

Table 7.14: Reasons for dynamic method impurity

7.6 Memoization

Our evaluation of memoization depends on a once-impure dynamic purity analysis. For

efficiency, memoization is only applied to methods for which it cost effective to do so. We

investigated different limits on method size, and for each method used an input size limit of

100 KB, a warm up period of 1000 cold start misses, after that a minimum hit ratio of 10%,

and a global size limit on memoization data of 1 GB. As discussed in Section 6, we cannot

compare object addresses directly using ACMP *, and so the usable purity information is a

strict subset of the once-impure purity we can actually identify.

The impact of these constraints on memoization is significant. Table 7.17 shows low

absolute numbers of methods memoized under our present cost constraints, and Table 7.18
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impurity comp db jack javac jess mpeg rt

ATHROW 0% 0% 0% 0% 0% 0% 0%

ACMP * ≈0% ≈0% 12% 6% 54% ≈0% ≈0%

PUTFIELD 81% 82% 45% 25% 24% 40% 71%

*STATIC ≈0% ≈0% 2% ≈0% 3% ≈0% ≈0%

ARETURN 0% 0% 0% 0% 0% 0% 0%

ASTORE 0% 0% 0% 0% 0% 0% 0%

native ≈0% 1% 3% 10% ≈0% ≈0% 1%

PUTFIELD+ 19% 17% 37% 58% 19% 60% 28%

others 0% ≈0% 1% 1% 0% ≈0% ≈0%

Table 7.15: Reasons for dynamic invocation impurity.

impurity comp db jack javac jess mpeg rt

ACMP * ≈0% 2% 11% 7% 46% ≈0% ≈0%

PUTFIELD 21% 85% 38% 25% 8% 11% 33%

*STATIC 0% 0% 0% 0% 1% 0% 0%

native 0% 0% 0% 1% 0% 0% 0%

ARETURN 0% 0% 1% 0% 0% 0% 0%

PUTFIELD+ 79% 13% 48% 66% 45% 89% 66%

others ≈0% ≈0% 3% 2% 1% ≈0% 1%

Table 7.16: Reasons for dynamic bytecode impurity.

shows the percentage of normal execution that is successfully skipped. Even with db and

raytrace containing a large amount of pure execution, memoization cannot be effectively

applied. In the case of db, this is due to the fact that pure methods are simply not executed

frequently enough with the same arguments. In fact, only jack and javac exhibit non-

negligible memoizability, despite that they also exhibit fairly low amounts of pure bytecode

execution in Table 7.8. For all benchmarks, the success of memoization is inversely related

to minimum method size: although large memoizable methods provide significant benefits,
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they are much less common than smaller methods. Ensuring that a memoization system has

low overhead is thus critical if numerous smaller methods are to be efficiently memoized.

size comp db jack javac jess mpeg rt

10+ 21/42 21/45 20/50 50/107 25/54 35/61 19/62

20+ 15/42 15/45 18/49 33/106 18/54 27/60 24/62

30+ 14/42 14/45 17/49 32/108 17/54 25/59 23/62

40+ 14/42 13/45 17/49 30/107 17/54 25/59 23/62

50+ 13/42 12/45 16/49 30/106 16/54 24/59 22/62

100+ 12/42 12/45 15/49 26/106 16/54 23/58 21/62

200+ 11/42 12/45 14/49 22/106 14/54 22/58 18/61

400+ 8/41 9/41 11/48 19/104 11/53 19/57 15/60

Table 7.17: Memoized and memoizable methods. Minimum method size is given in the size col-

umn, and each benchmark column shows successfully memoized methods over total memoizable

methods.

size comp db jack javac jess mpeg rt

10+ ≈0% ≈0% 11% 5% 1% ≈0% ≈0%

20+ ≈0% ≈0% 9% 5% ≈0% ≈0% ≈0%

30+ ≈0% ≈0% 5.56% 4.73% .14% .01% .22%

40+ ≈0% ≈0% 5.56% 4.25% .14% .01% .21%

50+ ≈0% ≈0% 6% 4% ≈0% ≈0% ≈0%

100+ ≈0% ≈0% 6% 4% ≈0% ≈0% ≈0%

200+ ≈0% ≈0% 6% 4% ≈0% ≈0% ≈0%

400+ ≈0% ≈0% ≈0% 4% ≈0% ≈0% ≈0%

Table 7.18: Memoized bytecode execution. Minimum method size is given in the size column, and

each benchmark column shows the percentage of normal execution that was successfully memoized.

We examine the costs of both purity analysis and our memoization optimization in Fig-

ure 7.5. We show the execution time for our benchmarks under four scenarios: a base run
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with both purity and memoization disabled, an online purity analysis run, an online pu-

rity analysis with memoization run, and an offline purity analysis with memoization run.

Memoization overhead is low, but this is indeed affected by our choice of minimum method

size. For example, when executed with a minimum size of 5 bytecodes, some benchmarks

required on the order of hours to complete. Purity analysis overhead itself is significant,

but we actually consider it fairly tolerable for non-optimization purposes, especially when

compared with heavyweight static analysis [SR05] that do not scale well [AKGE07]. Iden-

tifying weaker forms of purity involves an online escape analysis as well as inspection of

potentially impure instructions; these are expensive operations, and they further add to the

burden of providing cost-effective memoization. However, our implementation is not fully

optimized, especially given that our prototype memoization consumer tracks entire data

structures and not just the individual fields used by the memoized code. Accordingly, part

of our future work involves improving the efficiency of our purity analysis and the accuracy

and breadth of our memoization design.
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Figure 7.5: Execution times. Shown are execution times for vanilla SableVM, online purity anal-

ysis, online purity analysis with memoization, and offline purity analysis with memoization. The

minimum method size for memoization is 50 bytecode instructions, and all other parameters remain

unchanged.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

We present several different purity definitions, which we term strong, moderate, weak, and

once-impure in the order of conservativeness. Strong purity is the most conservative forms

of purity in which no heap access is allowed, and this must trivially provide functional

properties. Weak purity is a common used purity form, and once-impure purity can identify

some forms of purity that cannot be observed statically.

Our dynamic purity analyses identify considerable amounts of purity for weak purity

and once-impure purity, but relatively little purity for strong purity and moderate purity.

Although moderate purity looks much more flexible than strong purity, not much gain can

be achieved from moderately pure methods, because a moderately pure method is deter-

mined exclusively by its primitive input arguments. In a Java context, this can greatly

reduce the possible purity, even given the ability to access and mutate locally allocated ob-

jects; reading input heap data, and object parameters is common in Java programs. More

useful pure methods can be found through weak purity, which allows arbitrary heap reading

at a cost of more complex input tracking. A further useful observation from our experiments

shows that actual program behaviour is not predictable based on purely static observations.

Statically pure methods are not always well-exercised dynamically, and opportunities for

the execution of pure code are correspondingly diminished.

We proposed three different metrics for evaluating dynamic purity, and showed that
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while there was little variation in dynamic method purity over our benchmark suite, ex-

amination of dynamic invocation purity and dynamic bytecode purity revealed significant

differences. The difference in dynamic invocation purity is divided into two groups, that is,

over 80% invocations in db and raytrace are pure, with only about 30% pure invocation for

other benchmarks. The difference in dynamic bytecode purity can be separated into three

groups: again db and raytrace show high purity values, more than 50% bytecodes executed

are from pure context, but then around 15–20% of bytecode are pure for jack, javac, and

jess, but only about 3–5% for comp and mpegaudio. The distribution of these three metrics

is despite the presence of many impure constructs: impurity in general is often bounded

in dynamic scope, and potentially open to exploitation through appropriate dynamic purity

tests. In all benchmarks, the main reason for impurity is the PUTFIELD instruction, either

alone or combined with other reasons.

We show the cost of both purity analysis and our memoization optimization. Purity

analysis overhead itself is significant, because online escape analysis will inspect all in-

struction executed; this is an expensive operation. However, we consider it fairly toler-

able for non-optimization purposes, especially compared with heavyweight static analy-

sis. Memoization overhead is low, but it is strongly affected by our choice of minimum

memoizable method size. We also showed that consumer applications can impose strong

constraints on usable purity information. In our memoization experiments, only a minimal

amount of purity was exploited, and it may be the case that memoization is of limited use

for non-functional languages. Nevertheless, our memoization client is a prototype design

that can be optimized in several ways, most importantly by tracking individual fields in-

stead of entire objects; we still hope to demonstrate that automatic memoization can be an

effective optimization for Java programs.

8.2 Future Work

Our dynamic purity metrics are not exhaustive. Java bytecodes do not correlate perfectly

with machine instructions or CPU cycles, and measuring these as well may provide more

insight as to the true extent of dynamic purity. It might also be interesting to consider purity

at finer granularities, such as loops, basic blocks, and individual instructions. If a method
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spends most of its time executing pure bytecodes inside a loop, and then executes an impure

bytecode after completion of the loop, our analysis presently counts the entire execution as

impure. As far as static metrics are concerned, it may be useful to examine static invocation

purity, the percentage of call graph edges that have a pure method as a target, and static

bytecode purity, the percentage of all bytecode instructions in the call graph contained in

some pure method.

Our experimental framework is suitable for examining various forms of purity, and we

aim to continue exploring purity notions. A fully parameterized analysis framework would

facilitate detailed comparative evaluations of different purity definitions, and could be ex-

tended to analyse or even visualize the evolution of purity within a program. Additional

manual analysis of native code beyond clone() and arraycopy()might identify more

strongly pure methods; however, our analysis of impurity reasons showed that only a small

percentage of execution is impure due to native methods alone. Our analyses were designed

for memoization, and thus do not allow pure methods to return new objects, in contrast with

Sălcianu’s static analysis [SR05]. However, in our experiments, ARETURN is responsible

for only 1% of dynamic method impurity, and it would be interesting to fully evaluate

whether allowing new objects to escape from a pure method provides any real benefit.

Other escape analyses that handle local impurities due to synchronization and exceptions

might also be useful in certain contexts.

It will be interesting to consider purity on a per-input basis, as our analysis identified

a fairly significant amount of unaccounted for execution in methods that change purity

state more than once. Even weaker purity forms could be applied to speculative optimiza-

tion [BS06, PV05] as a means to identify semi-pure code that has reduced potential to

violate dependences and result in the roll-back of speculative computations. In general, we

are optimistic about future opportunities for identifying and exploiting dynamic purity.
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