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Abstract-The potential advantages and related 
costs of using second-order functional mesh discretiza- 
tion derivatives for error estimation in adaptive finite 
element analysis (FEA) for electromagnetics are in- 
vestigated. Second-order indicators are proposed t o  
identify and stabilize erroneous first-order error dis- 
tributions that  arise in unbalanced discretization re- 
gions. Effective combined derivative estimators are 
introduced and evaluated in practical applications. 

I n d e x  Terms- Electromagnetic analysis, finite el- 
ement methods, adaptive systems, error analysis. 

I.  INTRODUCTION 

The study of error estimation for finite element adap- 
tion in electromagnetics has been the focus of a great 
amount of work over the past ten years, and now rep- 
resents a well-established research area [l], [2]. Today, 
a variety of error indicators are used, and many of the 
most effective ones are based on local derivatives of the 
approximated fields [ 3 ] ,  [4]. Common examples include 
field discontinuity, PDE residual, local energy and func- 
tional gradient measures. As with all local error estima- 
tion methods, derivative-based approaches can yield mis- 
leading results when used with insufficient or unbalanced 
discretizations [5], [B]. It  is not uncommon for evolving, 
unconverged finite element models to give rise to locally 
smooth regions of high relative error, which yield well- 
behaved first-order derivatives. The difficulty with error 
estimation is that well-behaved first-order derivatives are 
primarily correlated with indicators of stability and low 
error. The purpose of this contribution is to introduce 
and investigate the use of second-order functional deriva- 
tive indicators, which are largely unaffected by such prob- 
lematic error distributions. 

11. SECOND-ORDER FUNCTIONAL DERIVATIVE 
INDICATORS 

Functional gradient error indicators associated with op- 
timal discretization based refinement criteria have been 
employed successfully in adaptive finite element methods 
for electromagnetics [4]. Despite their demonstrated effec- 
tiveness, these first-order functional derivative based in- 
dicators are not immune to the problems associated with 
guiding adaptive methods reliably and efficiently when 
used with insufficient or unbalanced discretizations. Un- 
der such conditions, ineffective discretizations may evolve 
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during the course of the adaption. Consequently, poor 
adaption performance results may be observed over part, 
or throughout the entire adaptive process, if problematic 
error distributions due to unstable first-order functional 
derivative error indicators are not detected and corrected. 

Second-order functional derivatives can be used to ana- 
lyze the stability and estimate the reliability of first-order 
derivative-based local error assessments. In practice, lo- 
cally smooth regions of high relative error in finite el- 
ement models are usually unstable, and easy to detect 
with second-order derivative tests. Electromagnetic sys- 
tems that possess translational or rotational symmetries 
may be analyzed using 2-D finite element formulations, 
and second-order functional derivative based error indica- 
tors are defined in terms of derivatives with respect to ele- 
ment vertex positions for such 2-D systems. For example, 
in Cartesian problems where the field solution variation is 
independent of the coordinate variable z ,  i.e., U = u(z, y) ,  
the second-order functional derivatives may be computed 
directly. Consider a scalar triangular element with ver- 
tex positions (21, yl), 1 = 1 , 2 , 3 .  FOT Helmholtz systems, 
the x- and y-components of the second-order functional 
derivatives may be readily determined from the matrix 
forms: 

:uTPu, 2 and LuTQu, 2 (1) 

respectively, evaluated over the elements that share the 
vertex in question. Here, U is the field solution vec- 
tor. The square matrices P and Q contain the x and 
y second-order derivative information, respectively, that 
corresponds to the Laplacian part of the functional for 
vertex l ( l  = 1 , 2 , 3 )  of the triangular element. The entries 
of the matrices P and Q are defined by: 

Pij = 

and 

Q . .  = '3 

where A is 1 e element area; and bi and ci are geomet- 
ric parameters related to the element's vertex positions, 
which can be defined as follows with the subscripts pro- 
gressing modulo 3: 

bi = y' $+I - ~ i - 1 ,  and (4) 
ci = xi-1 - Q+l.  (5) 
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Ijjmn is the elemental integral (in homogeneous coordi- 
nates) of the product of the derivatives of the ith and 
i th basis functions. with respect to the mth and nth sim- 

TABLE I 
EXPLICIT FORMS OF a(b ,b , ) /ay ,  IN TERMS OF b, 

. 'It should be noted that the 
ctional derivative terms with re 

element vertex positions are 
finitions of matrices P and Q ' 

element vertex PO 

1 k2 - u ~ V U  - br-uTBu + b~ UTBf, 
2 2 

and 

(7) 
1 I C 2  -uTWu - Q - U ~ B U  + CI uTBf. 
2 2 

Here, U and f are the field solution and the source term 
vectors, respectively, and k is the free-space wave number 
of the system. The square matrices V and W contain the 
2 and y first-order derivative information, respectively, 
that corresponds to the Laplacian part of the functional 
for vertex Z(l = 1,2 ,3)  of a triangular element. The entries 
of the matrices V and W are defined by: 

and 

(9) 
The x and y first-derivatives of the wave and source func- 
tional terms are given by the second and third terms in 
each of (8) and (9), respectively, where Bij is the elemen- 
tal integral (in homogeneous coordinates) of the product 
of the ith and j t h  basis functions. It may be noted that 
the partial derivatives of (bmb,)  and (cmcn) with respect 
to the element vertex positions, which appear in (8) and 
(9), can be determined directly from (4) and (5) and are 
given for reference in Table I. Subsequently, the corre- 
sponding second-order partial derivatives of these product 
terms, which appear in (2) and (3), may be readily deter- 
mined from (4), (5), and Table I. It has been previously 
shown that first-order functional derivative quantities are 
closely related to the variational principle used to deter- 
mine the solution to the finite element problem [4], and 
they are efficient to compute. Similarly, the new second- 
order quantities are inexpensive to compute since the only 
extra terms required are numerical constants which can be 
tabulated once and for all. 

As in the first-derivative case [4], the second-order func- 
tional derivative formulas derived above are valid for any 
choice of legitimate finite element basis functions. Fur- 
thermore, the functional derivatives may be computed for 
uniform- or mixed-order meshes as may be required by 
specific refinement models such as h-, p - ,  or hp-adaptive 
methods. Although the above formulation has been de- 
rived for scalar Helmholtz systems, it is interesting to note 
that the second-order derivatives of the wave and source 
terms of the functional, with respect to the vertex posi- 
tions, are zero. This suggests that 2-D Laplace systems 
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Fig. 1. First-order, three element, discretizationfor 1-D electrostatic 
potential analysis of point charge benchmark: (a) globally optimal 
mesh; (b) unbalanced mesh; (c) mesh (b) after local optimization of 
position of node B; (d) mesh (b) after local optimization of position 
of node C. Note: the meshes are radial; the point charge is located 
at the origin; node A is fixed at r = 0.1; node D is fixed at r = 10; 
and the various positions of nodes B and C are specified in Table 11. 

may benefit most from error estimation based on using 
both first- and second-order functional derivatives. 

111. RESULTS 

Three benchmark systems are presented to illustrate 
the error estimation pitfalls that can occur with insuf- 
ficient or unbalanced discretizations, and the potential 
value of using second-order derivative methods to avoid 
them. Specifically, a simple 1-D free-space example, a 
2-D Laplace system, and a 2-D Helmholtz system were 
examined in order to investigate the practical significance 
of the new approach. 

A .  Free-space point charge test system 

The analysis details and results for the 1-D example, 
based on resolving the classical point charge benchmark, 
are given in Fig.1 and Table 11. To focus ideas, a functional 
gradient indicator was used to estimate nodal errors, and 
locally optimal r-refinements were used to update the dis- 
cretization. Under these conditions, small first-derivatives 
indicate high accuracy; and high second-derivatives indi- 
cate instability and unreliable first-derivatives. Finally, 
the standard Taylor's expansion provides a simple way 
of combining the two derivatives into a single indicator. 
Note: the first-derivative erroneously indicates that refin- 
ing B would be best; the second-derivative suggests that 
the first-derivative result is unreliable; the combined in- 
dicator correctly selects C as best for refinement. 
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TABLE I1 
NUMERICAL RESULTS FOR P O I N T  CHARGE BENCHMARK 

B Pos. 0.2028 0.3757 0.2723 0.3757 
d F J d B  0 17.51 0 20.84 

d2F/dB2  235.2 0.1425 0.1143 101.52 
B Corn. 117.6 17.58 0.0572 71.6 
c Pos. 0.5485 9.0 9.0 0.9946 

d2FJdC2 0.043 67.46 63.38 0.0581 
C Corn. 0.0215 33.92 31.87 0.0291 
F Error 44 % 111% 99% 69% 
These tabulated results correspond to the I-D meshes described 

in Fig.1. B Pos. and C Pos. indicate the positions of nodes B 
and C ,  respectively. dFJdB and d2FJdB2 indicate the first- and 
second-derivatives of the functional with respect to a positional dis- 
placement of node B in the positive radial direction. dF/dC and 
dZF/dCZ indicate similar derivatives w.r.t. node C. B Corn. and 
C Corn. refer to the combined first- and second-order positional 
derivative results corresponding to nodes B and C, respectively. F 
Error indicates the error in the functional value. 

dFldC 0 0.192 0.1784 0 

B. 2-0 Laplace test system 

The Laplace benchmark system is described by Fig.2. 
It is one-quarter of a square coaxial line in cross-section 
- the standard “L” problem. The conductor boundary 
conditions are 1 V  and OV as indicated; and the symmetry 
planes are labeled N. 

Performance results for second-order h-adaption stud- 
ies on functional convergence are presented in Fig.3. The 
uniform h-refinement baseline (A) is included for compar- 
ison with h-refinement based on a first-order derivative 
error estimator (B) and a combined first- and second- 
order error estimator (C). A 50% increment in the number 
of degrees of freedom (DOF) per adaptive step was used 
to update the discretizations for these studies, excluding 
the uniform refinement procedures. For the specific type 
of error estimator examined here (Type-A [4]), and for 
the given amount of DOF update used per adaptive step, 
these results demonstrate a marginal improvement in per- 
formance for functional accuracy levels between 1% and 
0.1% when the combined error estimator is used (C) ver- 
sus the first-derivative estimator (B), and a more signif- 
icant improvement for functional accuracy levels beyond 
0.1%. 

The performance results for second-order h-adaption 
studies based on a second type of error estimator (Type-B 
[4]) are presented in Fig.4. In this case, a 20% increment 
in the number of DOF per adaptive step was used. These 
results clearly demonstrate the practical value of the new 
approach and support the hypothesis that second-order 
functional derivatives can be used to analyze the stability 
and estimate the reliability of first-order derivative based 
local error assessments:. curve (A) shows the uniform h- 
refinement baseline for comparison; curves (B) and (C) 
show the relative h-adaption performance for the first- 
order and the combined first- and second-order based er- 
ror estimation methods, respectively. Two example h- 
refined meshes corresponding to curve (B) and curve (C) 
are presented in Fig.5 to further illustrate the potential 
benefits of using the combined-derivative approach. 

N 
I 
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Fig. 2. Laplace benchmark system; initial h-mesh (8 triangles). 
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Cumulative Computational Cost 
Fig. 3. Cumulative cost of adaption versus percent error in func- 
tional. 

C. 2-D Helmholtz test system 

The Helmholtz benchmark system is described by Fig.6. 
It is an octagonal microstrip patch of size d (34mm), 
where X = O.616d (A  is the wavelength in the dielectric 
substrate below the patch). The device has only one port, 
at  the end of the microstrip transmission line connected to 
the left hand side of the patch. In this study, the bound- 
aries have been modeled as perfect magnetic walls to yield 
a two-dimensional electric field system. The objective for 
this benchmark is to  find the phase angle of the reflection 
coefficient at  the input port P .  

Performance results for padaption studies on phase an- 
gle convergence are reported in Table 111. The uniform 
prefinement baseline result is presented for comparison. 
The pdiscretizations ranged from orders 1 through 10, 
and a 20% increment in the number of DOF per adaptive 
step was used to improve the discretizations for the meth- 
ods considered, excluding the uniform refinement proce- 



1333 

Cumulative Computational Cost 
Fig. 4. Cumulative cost of adaption versus percent error 
tional. 
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Fig. 5. Example of an ineffective h-refinement discretization due to 
unstable first-order derivative-based error estimator (left); Example 
of an effective h-refinement discretization due to combined first- and 
second-order derivative-base error estimator (right): 84 elements in 
each mesh. 

dures. For the type of error estimator investigated (Type- 
B [4]), an average savings of approximately 20% in the 
number of DOF required to achieve phase error levels 
between 5.0’ and 0.5’ was observed for the combined- 
derivative approach, relative to the first-order derivative 
method. 

It should be noted that the selected results presented 
in this section comprise a representative sampling of the 
full findings obtained over the course of the complete in- 
vestigation. 

1V. CONCLUSIONS 

New error estimators, based on combined first- and 
second-order functional derivatives for scalar 2-D Pois- 
son and Helmholtz FEA, have been introduced and evalu- 
ated for adaption. The performance results for the bench- 
mark systems investigated demonstrate that second-order 
derivative indicators can identify and stabilize erroneous 
first-order error distributions, and that combined deriva- 
tive error estimation methods can be successfully used in 
adaptive finite element solvers to more reliably and eco- 
nomically distribute DOF over a problem domain. 

Fig. 6. Helmholtz benchmark system; initial p-mesh (44 triangles). 

TABLE I11 
DISCRETIZATION LEVEL VERSUS PHASE ERROR IN DEGREES 

Method / #DOF 5.0° 2.5O 1.25O l.Oo 0.75O 0.5’ 

Uniform 360 385 440 490 530 580 
First-order 320 390 450 490 540 600 
Combined 265 322 400 420 435 450 

This data corresponds to the p-adaption results for the 2-D 
mesh described in Fig.6. Uniform indicates uniform p-adaption. 
First-order indicates first-order functional derivative based error in- 
dicators were used to guide the p-adaption. Combined indicates 
both first- and second-order functional derivative based error indi- 
cators were used. 
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