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• Abstract 

Hypercomplex or endstopped visual cortical neurons are usually supposed to 

be concerned with length or end point analysis. However. recent evidence demonstrates 

that endstopped neurons are curvature-selective. a connection that we explore here in sorne 

detail. A model of endstopped simple cells is developed and a variety of computational 

simulations examine the connection of the model to the reported length and orientation 

responses of endstopped neurons. Even and odd versions of the model are described. 

bath of which are shown to be curvature-selective. Even-symmetric instances of the model 

respond weil to thm curves over a range of curve orientation and curvature. independent 

of sign of curvature. In contrast. odd-symmetric instances respond to both thin and thlck 

curves whlle exhlblting a more complex curvature-sign dependence - respondmg m a slgn­

selective fashion to curved Ilnes but not to curved edges Finally. the response of the 

endstopped model to curve singularlties is explored. and the possible role of nonendstopped 

and endstopped cells in building curve descriptions is discussed. 
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RésumÉ 

les neurones hypercomplexes ou inhibé en bout (endstopped) du cortex VI­

suel sont ordinairement reliées à l'analyse des longeurs ou des extrémités. Pourtant. des 

résultats récents démontrent que les neurones inhibé en bout sont sélectifs à la courbures. 

ce qui est exploré ici. Un modèle de cellules simples inhibé en bout est developpé et une 

ensemble de simulations par ordmateur sont utilisées pour examiner le lien entre le modèle 

et les réponses observées des neurones inhibé en bout aux longeurs et aux orientations. Des 

versions paires et impaires du modt.les sont décrites. chacune étant démontrée selective 

à la courbure. les versions palre-symmetriques du modèle répondent bien à des courbes 

fines dans une gamme d'orientations et de courbures, et ce, indépendanment du signe de 

la courbure Au contraire. les versions impalres-symmetriques répondent à des courbes 

autant fines que grasses, tout en présentant une dépendance plus complexe envers le signe 

de la courbure - elles répondent d'une manière sélective au signe pour des lignes courbes. 

mais d'une manière non sélective pour des bordures courbes Finalement. la réponse des 

modèles inhibé en bout aux singularités de courbes est explorée. et le rôle possible des 

cellules inhibé en bout et non inhibé en bout dans la description de courbes est discuté 
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Chapter 1 Introduction 

The visible world conslsts of surfaces and objects on surfaces (Gibson. 1951) 

Closed bodies also present surfaces but they are generally bounded by visible contours 

or curves Surfaces may glve nse to contours alor.g ndges. cracks and folds. or where 

an outcropplng occludes the matter behlnd It. Ali of these contours may be important ln 

providing information about the shape of objects and surfaces 

To descnbe the shape of a contour one mlght catalog the values of sorne property 

of the curve The natural cholce IS curvature and both extrema of curvature and the locus 

of mflectlons (zeros) have been used Attneave (1954) demonstrated the slgnificance of the 

high curvature informatIon m pictures by modlfymg a li ne drawing of a cat by connectmg the 

curvature maxima by straight lirles Remarkably. the picture is still immedlately recogn:zable 

as a cat and looks vlrtually as good as the original. Ley ton (1988) proposed a shape 

grammar based on the sequence of curvature extrema encountered ln traversmg a smooth. 

closed curve. Based on the concept of transversahty from differentlal topology. Hoffman 

and Richards (1985) have proposed that shapes be decomposed into parts at the minima 

of negative curvature. Asada and Brady (1986) attempt to Infer the shape of an object 

from the sequence of curvature extrema and Inflectlons on its boundmg contour. It has 

also been argued that curv~ture is essentlal to reliably find the contours in images (Parent 

& Zucker. 1985). It is in the latter context that the present work has developed. 

Curve inference in visual images differs from curve-fitting (approximating or 

interpolating a curve to given points) in important respects. First. image contours differ 
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from thelr Ideal mathematical counterparts ln havlng variable width. Intensity. and ln bemg 

dlscrete Second. multiple curves may be present in a variety of mtersectmg. occludmg 

and apposing relations wlth one another Third. there are pomts that belong to no curve 

(noise). Therefore the problem of curve mference can be descnbed as determmmg the 

~'.u~ltlon of pOints among the curves ln an Image and thelr ordenng wlthln each curve The 

Inference process must locally estima te the geometnc structure of the scene determtnmg 

where change IS smooth and where It 15 abrupt. and hence over what spatial range a 

particular approximant is vahd An abstract formulation of the problem IS as follows. 

A curve through pOints A and B exists if and only if: 

1. The geometnc estlmates at A and B are mutually consistent. and 

2. The geometric estimates at ail points that are tnterpolants from A and B are mutually 

consistent 

If A and B are far apart. it is necessary that the geometnc estima tes be of hlgh order 

(many terms in the Taylor series. see Appendix 1). otherwise there are many possible 

curves that satisfy the boundary conditions. The approach of Parent and Zucker (1985) 

involved making dense estlmates of the local geometnc structure (tangent and curvature) 

and enforcmg a simple consistency relation (co-clrcularity) over them (Figure 1.1) The two 

estlmates are consistent only if each falls within the other's bounds. Hence. the recurslve 

decomposition IS collapsed mto a local. parallel procedure. 

The tangent points ln the direction ln whlch the curve IS movmg and curvature 

IS the rale of change of the tangent dIrection. Visual cortical neurons exhibit marked 

orientation preference and can be vlewed as tangent estimators. Conslder the expecled 

response of a cortical simple cell to a curved arc centered on the RF and with its tangent 

parallel to the ce II' s preferred orientation The response IS weak to a highly curved arc but 

increases with the radius of curvature. Changing the sile of the RF changes the rate at 
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1 Introduction 

Figure 1.1 The arcs that contalO the tangent estimates at A. B. and C represent 
bounds on the curvature estimates at those positions Two tangents are cO-Clrcular 
if they are tangent to a common circle The tangent at A IS co-circular with those at 
Band C wlthin the quantizatlon of position. orientation and curvature Estimates 
of magnitude and direction of curvature supply additional constraints The tangent 
at A is consistent with the curvature estimate at C since it is contained withln 
its bounds and is co-circular Notice that the sign of curvature information 15 not 
compatible w'th a common wcle Joining A and C However the estimates at A and 
B are curvature-consistent Two nearby estimates are curvature-consistt::nt If each 
includes the ('Ither within Its curvature bounds - graphlcal/y. if the IIltersectlon of 
the two sets of arcs (shaded region) contains both points 

which the response grows with radius. Therefore RFs of different size provide information 

about the way ln which a curve departs from ItS tangent line (curvature). 

Endstopped or hypercomplex neurons were tirst identified by Hubei and Wiesel 

(1965). and exhibit r.onmonotonic length-response. The simplest model that accounts for 

this observation has inhibitory endzones synthesized from a large RF neuron Such a cell 

should re~.,ond in a curvature-selective fashion. The endstopped (ES) neuron model is 

constructed by taking the "difference" of aligned RFs of different size: 

RES = cI>(cs . cI>(Rs) - cL' cI>(RL)), (1) 

small (5) and large (L) RFs may be simple or complex. and. if simple. may be even or odd. 

We model the response of such cells as spatial convolutions against the image (Rs. RL: 
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~ = k:+- 1). Each convolution result is passed through a function (4)(.)) which models 

the inability of neurons to represent negative values on a low spontaneous firing baseline. 

Scalar constants Cs and cLare introduced to balance the responses between ::, and L. The 

circuitry underlying the model is depicted in Figure 1.2. 

Receptive 
Fields 

Cs 4>(R ... ) - CL 4>(Rr.) 

NEURAL CIRCUIT 

Figure 1.2 A schematic model of the endstopped circuit ln the example shown 
both sm ail (5) and large (L) RF components are simple cells and provide excitation 
and inhibition. respectively. to the endstopped (ES) simple cel! upon which they 
converge 

Provided with the local tangent and curvature estimates. it should be possible to 

locate gaps and singularities. and to synthesize smooth approximants that satisfy the local 

geometric constraints while avoiding inappropriate smoothing across distinct structures. 

Networks to perform these computations are developed elsewhere (Parent & Zucker. 1985: 

Iverson. 1988). The pur pose of the present work is to undertake an examination of the 

relation between endstopping and curvature to examine how much of curve inference can 

be attributed to the receptive fields of single neurons and how mueh must be assigned to 

network interactions between those cells - the projective fields of neurons. 

1.1 Contributions of the Thesis 

My specifie contributions are: 

4 
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• The idea that endstopped neurons are estimators of curvature . 

• Developing a model of endstopped simple cells that accounts for their common 

properties and which also exhibits curvature-selectivity. 

• Explicating how receptive field symmetry determines curvature sign selectivlty. 

• Exploration of the response of the model to curve singularites and discontinuities 

has suggested a framework for understanding the role of visual cortical neurons 

in representing the local structure of curves. 

1.2 Organization of the Thesis 

Chapter 2 contains a review of the background to the present work and Chap­

ter 3 conta.ns the core of the thesis. developing the model and describing the results of 

computation al experiments. Chapter 4 discusses and summarizes the ideas comprising this 

work. 

Parts of this thesis and extensions of it are currently in the process of being 

published as research articles with the coauthorship of my advisors Prof. Steven Zucker 

and Prof. Max Cynader. 
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Chapter 2 Historical Background 

2.1 Visual Cortical Physiology 

Visual cortical neurons are considerably more specifie in their responses than 

their antecedents in the pathway from retina to primary visual cortex. Cells are described 

as simple or complex accordlng to a number of criteria. the most sigificant of which is 

whether the ON and OFF regions parallel to the cell's preferred orientation are separated 

or not. respectively (Hubei & Wiesel. 1962). Along the long axis of the receptive field 

(RF hereafter) ce Ils also differ in their length summation characteristics. Nonendstopped 

cells exhibit monotonie response with increasing length. In contrast. endstopped cells are 

nonmonotonic. wlth response increasing up to sorne length and then decreasing. often to 

an asymptote (Hubei & Wiesel. 1965). An issue of contention has been whether there 15 a 

continuum between these two types. 

Although Hubei and Wiesel (1965) recognized that endstopped cells could be 

expected to respond to corners and curves and show the response of a number of cells to 

corners. this insight has been largely ignored by subsequent researchers. Hubei and Wiesel 

described lower order hypercomplex cells in Areas 18 and 19 of the cat as belng either 

singly or doubly-stopped depending on whether inhibition was present at one or both ends. 

Subsequent investigations also find endstopping in cat striate cortex (Dreher. 1972: Kose. 

1977: Kato et al. 1978). and report the striate cells to have approximately balanced double 

stoppirlg (Orban et al. 1979a). In this study. we model only double stopped cells. 



o 
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Careful examination of the inhibitory "endzones" of endstopped RFs has re­

vealed that they are orientation selective and tuned to the same orientation as the RF 

center (Hubei & Wiesel. 1965: Orban. et al. 1979b): that the most sensitive region of the 

endzone is approxlmately collinear with the most sensitive region of the RF center (Orban 

et al. 1979b): and that the end zones parti y or completely overlap with the RF center (Or­

ban et al. 1979b) ln the Jast few years. evidence both anatomlcal and physiologicaJ has 

suggested that endstopped ce Ils may be bUilt from combinations of nonendstopped cells 

(McGuire et al. 1984: Bolz and Gilbert. 1986). It is known that layer VI contams long RF 

neurons (Gilbert. 1977). and more recently it has been shown that reversibly inactivating 

Layer VI reduces or abolishes endstopping ln the superficlal layers (Bolz and Gilbert. 1986) 

suggesting an important role for the layer VI cells in generating end Inhibition These data 

are trom the cat: the situation ln the primate has been studied less. Recently we have 

reported that endstopped neurons e,llhibit curvature-seJective responses that contrast with 

the response to curves exhibited by nonendstopped cells (Dobbms et al. 1987). Previously. 

only two groups had examined the response of cortical cells to curves The first of these 

investigations examined only nonendstopped cells (Heggelund " Hohmann. 1975). and 

Hammond and Andrews (1978) restricted their stimuli to avoid RF endzones so virtually 

ail striate cortical cells preferred straight lines to chevrons. 

Our model is based on two observations. 1. curvature can be viewed as deviatior. 

form stralghtness. and 2. a measure of this devlation can be obtained from multiple 

orientation-selective cells. In particular. since simple f<Fs have an oriented structure that 

respond best to straight contours. RFs of the same central position (center of mass) 

and orientation but of ditTerent size together provide information about the deviation from 

straightness around that position. This provides a formai interpretation to one ot the 

candidate models for synthesizing endstopped neurons (Hubei & Wiesel. 1965: Orban et 

al. 1979b). The same argument holds for the subset of complex cells that exhibit linear 

length summation. In this thesis attention is focused on neurons synthesized from simple 

components. but elsewhere we examine endstopped models with one or more complex 

components (Dobbins et al. 1988). 
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2 Historical Background 

2.2 Psychophysics and Curvature 

Since the demonstration by Attneave (1954) of the significance of curvature in­

formation. a large number of psychophysical studies have examined curvature. The first one 

of import to the present study is the attempt of Blakemore and Over (1974) to determine 

if the human visual system contains curvature detectors. They found that it was possible 

to elicit curvature-selective threshold elevation. but concluded that the results could nol be 

accounted for by local curvature detectors. and favoured the interpretation of adaptation of 

local orientatIon detectors. 

Timney and Mc Donald (1978) employed curved gratings and also found adapta­

tion selective for both the magnitude and sign of curvature. In addition. control experiments 

revealed that. although the adaptation efJect depended critically upon the orientation of the 

test stimulus. the effect was not an orientation adaptation effect. Because the curvature 

adaptation was orientation-dependent. these investigators also favoured an explanation in 

terms of orientation detectors. In both the experiments of Blakemore and Over (1974) and 

Timney and Mc Donald (1978) curvature was conceived as independent of orientatIon. If. 

on the other hand. curvature is estimated independently at each orientation (by neurons 

with RFs at the same position and orientation) as we propose endstopped neurons do. then 

one would expect the results obtained by Timney and McDonald (1978). 

ln the next chapter the model is elaborated and simulations based on it are 

described. 
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Chapter 3 The Endstopped Simple Cell Model 

3.1 Formulation of the Model 

To model endstopping we focus on the spatial properties of simple type RFs. 

Binocularity is not incorporated and temporal properties are collapsed. allowing the re­

sponse of a simple cell to be treated as a spatial convolution. From time to time we shall 

comment on the plausibility of these simplifications in connectlon with specifie results. 

The endstopped simple model is obtained by taking the difference of the re­

sponse of two simple RFs at the same position and orientation. but of difFerent size. Put 

differently. excita tory influence from the small RF cell and inhibltory influence from the 

large RF cell converge on the endstopped cell. Let Rs denote the response of the small 

simple cell and RL the response from the large one. It is generally observed that Area 17 

has low spontaneous activity. More specifically. data in Gilbert (1977) show that Layer 

VI cells exhibit very low spontaneous firing. and Kato et al (1978) report that endstopped 

simple cells in particular have virtually none. This corresponds to an inability to encode 

responses lower than the base frequency. and so. in the model. each response is half-wave 

rectified. Therefore. if 4>(') is a rectifying or clipping function. which equals its argument 

when positive and is zero otherwise. 

q,(x) = {

X, 

0, 
if x> 0 
otherwise. 

(1) 
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3 The Endstopped Simple CeU Model 

the end-inhibited simple cell (ES) response is given by: 

(2) 

where Cs and cLare positive constants that control the gain of the two components. 

Appendix 1 describes how varying the relative gam affects the behaviour of the mode!. 

ln response to sinusoidal stimuli of varying phase O(Rs) and d>(RL) exhibit the half-wave 

rectified sinusoidal responses characteristic of simple cells (Movshon et al. 1978). Half-wave 

rectification increases the stimulus-specificity of the model by preventing a negative value 

for RL (caused by a net inhibitory stimulus) from being Înverted into a positive contribution 

to RE s. the response of the ES cell. Physiologically this means that hyperpolarization of 

the large inhibitory cell does not contribute to excitation of the endstopped cell. 

Bven Odd 

Figure 3.1 A graphical depiction of even and odd simple cell RFs (a) An even RF 
modeled by an elongated DOG. (b). An odd RF modeled by a Gabor function 

The spatial RFs of simple cells come in even. odd and intermediate varieties 

(Heggelund. 1986: Jones cft Palmer. 1987a). and can be l'llathematically described in sev­

eral different ways - as Differences of Gaussians (DOGs). differences of OOGs (Hawken 

Il Parker. 1987). Gabor functions (Marcelja. 1980). and as derivatives of Gaussians (Koen­

derink dt van Ooorn. 1987) to name but a few. Each formulation has its advantages in 

simplicity or ability to account for the data (see Hawken " Parker. 1987: Jones & Palmer. 

10 
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1987b: Parker'" Hawken. 1988). In our simulations we have used both DOG and Gabor 

RF descriptions. Treating cell response as a spatial convolution againsl an image J. the 

kernel k is the RF profile of the cell. Hence. the response R is given by: 

R(ro· Yo) = 1 2l k = J j' 1(0, ù) . k(x" -- Q, YI, - ,J)dadd, (3) 
D:)R2 

where (xo. Yo) fixes the RF position. Integration is limited to the region D which represents 

the spatial extent of the RF 

The elongated OOG description of even-symmetric simple RFs IS obtained by 

taking the difference of two 2-D Gausslans of the same length but different width. Each 

Gaussian is normahzed. A 2-D separable Gaussian with principal axes x and y is charac­

terized by the quadruple (Jl:r,Jly.Ox.l1y). Ignonng the position coordinates (J.Lx = xo.Jly = 

Yo). the Gaussian is described as: 

(4) 

To describe the RF parameters consider a local coordinate system (x, y) in which the 

preferred orientation aligns with y. For a DOG the RF shape may be usefully characterized 

by the following parameters. The length or size S is approximately 4oy• the width ratio 

(WR) is Ox2/oxl and the single lobe or subunit aspect ratio (AR) is Oy/(Jxl' Hence the 

convolution kernel k can be characterized as: 

Intuitiv~ly. the spatial frequency response (in the usual sense) is determined by 0xl,(1x2 and 

their ratio. and the orientation tuning is determined by AR. Figure 3.1a depicts a cortical 

11 
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3 The Endstopped Simple CeU Model 

RF modeled as an elongated DOG. Note that the envelope of the RF has an aspect ratio 

given by' AR,/H' R = (1y, (1x2 and hence the values AR = 5. W R = 2.5 used for the large 

cornponent correspond to an RF aspect ratio of 2. 

When the simple RF 15 modeled as a Gabor functlon (a 2-D Gaussian modulated 

by a sinusOId). the followmg paramelers are used. The size (5) is glven by 404" the aspect 

ratio i5 0 lJ " (J x. the reference penod (P) of the sinusoid is given by 4u]'. and the penod ratio 

(P R) is a multiplier of the reference period that glves the actual perlod Hence. in terms 

of these parameters. the radian frequency of the sinusold is glven by '.N' = 2iT' 1 P . P R. For 

convenience the convolution kernel k can be described as' 

(6) 

Naturally. sines and cosines produce odd and even symmetry. respectively. Although inter­

mediate phases are observed in cortical simple cells we model only those tl'-3t are odd or 

even. An odd-symmetric RF represented by a Gabor function IS shown in Figure 3.ib. 

Several issues arise ln specifying the exact form of the RFs These include the 

relationship between the spatial frequency and orientation responses of the small and large 

components. and the implications for the curvature-response of ES cells. Since these issues 

are significant in their own right. we summarize them in Appendix t and treat them fully 

in another paper (Dobbins et al. t 988). For the remainder of this paper we use parameter 

values based on considerations discussed there. and that represent compromises between 

matched orientation tuning and spatial frequency response. 

3.2 Methods 

A simulation system was developed in LISP on a Symbolics 3670 computer. 

The model was evaluated using experiments analogous to those used in single cell neuro­

physiology: that is. an instance of the model was convolved against images of lines and 

12 
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edges of various lengths and widths at various positions and orientations with respect to 

the RF. In addition. curved lines and edges were tested over a range of radii. positions and 

orientatIons. The stimuli were elther binary-valued curves with a jagged appearance. or 

gray-Ievel curves (8 bit) with a smooth appearance created usmg a supersampling tech­

nique. In thls technique the mtenslty value of a pixel IS determined by considermg the 

fraction of coverage of the pixel (treated as an 8 by 8 gnd) by a contmuous curve 

The prevlous section describes integration of continuous variables over a cI'>nti­

nous domain. The simulatIons. in contrast. involve summation of finite precision variables 

over a discrete domain. Simple cell RFs were represented as 2-D arrays of double precision 

floating point numbers. The array elements were the samples of the continuous RF Iying 

on a rectangular gnd. Note that retmal sampling resembles perturbed hexagonal sampling 

and not the rectangd:::-r scheme used here The differences between the two are greatest 

for very coarse sampling Under the assumption that the continuous models are reasonable 

approximate descriptions of RFs. fine sampling was employed to minlmize the difference 

in numerical results between rectangular-sampled and continuous RFs. That 15. RFs were 
-

represented by large arrays e.g. 60 by 60 elements. Representations of Gaussians were 

truncated at =20' 

ln electrophysiological expenments stimuli either move. or are stationary (flashed 

on and off). or are reversed in phase. The simulation experiments correspond m\)st closely 

to the response of a cortical neuron to a stationary presentation of the stimulus. In thls 

paper. li ne stimuli are chosen to be less than or equal to the excitatory width of the RF 

and. except where stated otherwise. are centered upon Il. Edge stimuh are positioned at 

the boundary between antagonistic RF regions except where a contrary statement is made. 

We concentrated on three different classes of experiment· 

(t) Length Tunin,_ ln these experiments. response to an optimally-oriented and posi­

tione~ light bar is computed. iiS length is added symmetrically to each end of the bar. For 

the oàd-symmetric model. the stimulus was centered on the peak of the positive lobe of 

the RF. 

13 
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(2) Orientation Tuning. To evaluate the orientation response of the model. a simulated 

light bar is positloned over the central RF and rotated in equal steps about its center. 

(3) Curvature Tuning. Curvature response is evaluated by computing the response to 

seml-clrcular arcs of varying radius arranged 50 that the mid-pomt of the arc falls on the 

central RF and orlented in such a way that the tangent at mid-arc corresponds to the long 

axis of the RF of the cell The curves were elther thin Imes or curved edges ln sorne 

experiments the curves are discontinuous in the tangent (chevrons) and in others inflected 

(curvature passes through zero). 

3.3 Simulation Results 

ln the rest of the paper the response of instances of the model is evaluated 

with various contrast patterns. For those experiments that correspond to common visual 

cortical methodology results are compared to the characteristics of endstopped cells. while 

for novel stimuli the results predict particular responses from endstopped neurons. The 

choice of parameter values used is described in Appendix 1. 

3.3.1 Length-Tuning 

The endstopped property is defined in terms of the response of cortical cells 

to properly oriented line or edge stimuli of yarious lengths. The length-tuni,,~ curves that 

result are obtained either with stimuli moying in the preferred direction or with flashed 

stimuli positioned over the most sensitive portion of the RF. The spatial model of the RF 

used here can be thought of as collapsing the temporal dimension and hence the convolution 

yalue is assumed to correspond to something like total spikes in response to the stimulus. 

However. since most length-tuning data in the literature are obtained with moying stimuli it 

is important to know that the length-tuning curve is similar whether obtained with moying 

or stationary stimuli (Orban et a/1979a). implying that essential temporal interactions do 

14 
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Figure 3.2 Length-tuning curves for even and odd RF ES cells and thelr compo­
nents ln each case the solid curve represent!! the ES cell. and the dotted and da shed 
curves th" small and large components. respectively The even ES model (a) has 
components with lengths 35 and 61 pixels. weights of 1 8 and 1 ARs of 4 and 5 
and each has a WR of 25 The components of the odd-symmetric instance have 
lengths of 34 and 60 pixels. weights of 1 7 and 1. ARs of 2 5 and 3. and PRs of 1 5 

not distlOgUish the two cases. and therefore that the use of spatial convolutions IS not a 

priori unreasonable. 

Figure 3.2 shows the length-tuning for even and odd instances of the endstopped 

simple model. The responses of the even-symmetrlc version and Its simple components 

are shown in Figure 3.2a. while the corresponding odd-symmetric data are shown 10 Figure 

3.2b. In both cases. the difference in growth rate of the response of the small and large 

components produces the characteristic endstopped length-tuning curve. By chang mg the 

relative size or weight of the simple components one obtains curves with different peaks, 

excitatory widths, and asymptotlc values. Note that in both cases the peak of the length­

tuning curve is significantly shorter than the length of the short excltatory RF. a ~oint 

which is returned to in the next section 

3.3.2 Orientation-Tuning 

The response of even- and odd-symmetric versions of the model to lines of var­

ious orientations is shown in Figure 3,3. Figures 3.3a,b depict the orientation-tuning curve 
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Figure 3.3 Orientation-tunmg curves for the even (a) and odd (b) RF ES instances 
mtroduced in Figure 32 A bar equal in length to the short component RF and 3 
pixels wlde IS convolved with the RF at 90 equally spaced orientations The graphs 
show the short component (dotted). long component (dashed). and endstopped 
Instance (solid) ln b the line rotates about the peak of the positive lobe of the 
RF (c) Orientation response of the short even Simple component to bars of length 
23 (solid) and 35 pixels (dotted) (d) Response of the large even component to 
the same stimuli (same convention as (c)). In both cases the tuning is wider for 
the shorter bar. but the change is greater for the short RF 

for the even instance and components. and the odd instance and components. respectively. 

ln both cases. the measurements were made with stimuli equal in length to the small sim­

ple RF. The half-width at half-height of the even orientation-tuning curve is approximately 

10 degrees. while it is approximately 15 degrees for the odd ES curve. The small and 

large components of the even-symmetric instance in Figure 3.2a yield figures of 17 and 20 
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degrees, respectively, These numbers correspond to narrowly-tuned cortical umts ln the 

sample of endstopped simple cells obtained by Kato et al (1978), the mean and standard 

devlatlon of response half width at half height were 22,5 = 12.9 degrees, while the values 

for simple cells were 17.1 = 51. a value largely in accord wlth other studies (for a summary 

of onentatlon-tunmg studles consult Orban (1984)) The onentatlon-tunmg width depends 

on both the length and wldth of the test stimulus. tunmg becoming narrower when either 

parameter increases Because of the greater aspect ratio of the large components m both 

the even and odd instances, one would expect them to exhlbit narrower orientatlon-tunmg 

than the small components However the stimulus used is chosen for Its correspondence 

to the dimensions of the small simple RFs m both cases. Therefore, the large simple cells 

respond over a broader range than they would to a larger stimulus 

The implications for the onentatlon-tunmg of endstopped cells are twofold. and 

they push in opposite directions. First. smce the cell responds over a broader range of 

orientations to the short stimulus, it produces inhibition over a broader range of orientations 

and hence narrows the range of orientations over whlch the endstopped cell responds This 

can be observed in Figure J.Ja and b. The second factor however is that the peak of the 

length-tunmg curve for the ES cell model. and almost certamly for endstopped neurons 

as weil. IS less than the length of the short excitatory RF This follows from the overlap 

of the end zones with the excita tory region The peak occurs at that length at which an 

incremental increase causes more inhibition than excitation to be added to the response 

of the endstopped cell. For some of the RF formulations it is possible to explicitly solve 

this. Depending. roughly speaking. on the size and weights of the simple components, 

the peak of the length-response may be as little as 60 percent of the length of the small 

excitatory RF length. If the onentation-tunmg curve were measured with a stimulus of this 

length. the small excitatory cell would respond over a broader range than to a full length 

stimulus. Hence. the two effects work against each other, the tirst tending to narrow the 

measured orientation response of the endstopped cell. the sf'cond tending to broaden it. 

Figures J.Jc and 3.3d display the response of the small and large components of the even 

instance to stimuli of length 23 and 35 units (the peak of the length-tuning curve. and 
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th:! length of the short RF. respectively). The change in response amplitude and width is 

greater for the small component than for the large one. causing the half width at half height 

of the endstopped cell to increase when the shorter stimulus is used. In general. one would 

expect the wldth of ortentation-tuning of endstopped simple cells to be overestimated since 

the interrogattng stimuli are shorter ln relation to the eXCIta tory RF than those used with 

simple cells 

R 
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s " 
e 

5· 

. ..... . 
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Figure 3.4 Response of the even ES instance to an optimally-oriented central bar 35 
pixels long and a variable orientation bar 13 pixels long in one end zone Both bars 
are 3 pixels wide The solid curve repeats the orientation curve from Figure 3 3a 
and the dotted curve shows the effect of the bar in the endzone on the response of 
the central bar Inhibition IS most effective at the optimal orIentation of the center. 

Just as orientation-tuning depends on stim'Jlus length. length-tuning measured 

at the wrong orientation causes misclassiflcation and mismeasurement (Orban et al .. 

1979a). The model captures both these: nonendstopped simple ce Ils can appear end­

stopped. and the ES model will respond best to shorter lengths than those at the optimal 

orientation. These results should be evident. so we will not consider them further here. 

The final series of orientation experiments deals with orientation alignment in 

the endzone. Figure 3.4 shows the response of the even instance to an optimally-oriented 

bar in the RF center along with a bar of various orientations centered in one of the end 
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zones. Peak inhibition occurs for the preferred orientation of the central RF. It should 

also be clear that moving the center of the inhibitory bar from a position collinear with 

the central RF would diminish the inhibition. A similar result holds for the odd-symmetric 

model. Orientation-tuning of the end zones is consistent with the findings of Hubei and 

Wiesel (1965) and Orban et al (1979b). and collinearity of maximal end inhibition with 

maximal central excitation. whlch follows from the way the simple components are aligned. 

is also consistent with what is known of the physiology (Orban. et al. 1979b). 

One point remains. and that is the relation of the simulations to the reported 

population statistics of cortical orientation-tuning Note that although orientation-tunmg 

is broadened witt. the shorter stimulus. the endstopped cell still has narrower tuning than 

its simple components. This is inconsistent with the reported population averages (Kato 

et al. 1978). but there are several possible reasons for this discrepancy. One IS that the 

average broader tuning of endstopped than nonendstopped simple neurons is attributable 

to the endstopped cells being synthesized from a simple sub-population with broader ori­

entation characteristics than the population as a whole. A second factor concerns how 

weil the convolution model of the simple RF captures the interactions between RF subre­

gions. In length-tuning measurements. moving and flashed measurements may correspond 

because the stimulus at any time is largely within one subregion. Such is not the case 

with orientation-tuning. and it is less clear that interactions that determine velocity and 

directional response can be ignored. Thirdly. suppose that end inhibition does not originate 

from a single large RF but from independent. spatially-displaeed RFs. The observed length­

tuning eurves can also be replicated with sueh a model. but the orientation-tuning charae­

teristics eould be different. The reason is that each end zone sees a displaced stimulus and 

hence responds over a narrower range - hence failing to narrow the orientation-tuning of 

the ES reU. In any case. either more specifie cortical knowledge. or a physiological model 

more deta:led than one with static. spatial RFs. is required to resolve these issues. 
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3.4 Curvature 

Having examined the relationship between the length and orientation tuning 

properties of endstopped neurons and the endstopped simple mode!. we now consider cur­

vature. This section differs from the prevlous ones in treating aspects of the response 

properties of visual neurons that are only beginning to be investigated. Therefore. rather 

than representing model verifications. the results and observations take the form of predic­

tions. 

3.4.1 Differentiai Geometry and Endstopping 

Curvature. conventionally described as the rate of change of the curve's tangent 

direction. can also be thought of as the rate at which a curve moves away from its tangent 

line. It is this perspective that furnishes inslght into the curvature-response of the ES 

mode!. First consider the expected response of a simple cell operator ta a semi-clrcle 

aligned so that its tangent at mid-arc is both centered on the RF and parallel to its long 

axis. The response is weak to a highly-curved arc but increases with the radius of curvature. 

This is because more of the curve passes through the excita tory center and less through 

the antagonistic sidebands as curvature decreases. Changing the size of the RF changes 

the rate at which response grows with the radius. Therefore RFs of different size provide 

information about the way in which a curve departs from straightness. Since the ES model 

is constructed with aligned RFs of different size. it is natural to consider its response to 

curves. 

3.4.2 Response of the ES Model to Curved Lines and Edges 

A distinction between even and odd-symmetric cells is commonly made based 

on their responses to lines and edges. The distinction is re-evaluated here in examining 

the response of combinations of such cells to curved lines (thin curves) and edges (wide 

curves). 
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3.4.2.1 Curved Llne. 

Filure 3.5 shows the response to semi-circular arcs as a function of radius 

of curvature. The response of the even-symmetric instance of the model and that of its 

component cells is shown in Filure 3.5a. The result is a kind of bandpass curvature­

response. Because of the even-symmetry of the model components. the response is the 

same for both signs of curvature. As was the case with lenlth-tuning. the non-monotonie 

response results from the difference in growth rate of the small and large cell responses 

- for some ranle of values the small cell responds weil but stimuli in this range are too 

curved to stronlly activate the large cell. Different sizes and weights of the small and large 

cells will produce curvature-response curves with different peaks. breadths and asymptotes. 

Comparing Filures 3.2a and 3.5a. note that the peak curvature response is about 70 percent 

of the peak response to a short isolated line. Figure 3.5b iIIustrates the response to curves 

laterally shifted a variable number of pixels on the RF. The zero shift position is when the 

curve is centered on the RF as in Figure 3.5a. Ali the responses have approximately the 

sa me form: they differ principally in magnitude. 

Filure 3.6 shows the response of the odd-symmetric instance of the model 

to arcs of the two signs of curvature. In Figure 3.6a. the response to arcs that curve 

toward the antagonistic RF region is shown. The curvature-response is much like that seen 

in Figure 3.5a - a broadly curvature-selective response. In this case. for some range of 

curvatures. the arc largely avoids the antagonistic RF region of the small cell but curves into 

the antagonistic RF region of the large cell. reducing its response and hence its inhibition. 

Figure 3.6c shows the response to arcs of both signs of curvature. expressed in terms of 

curvature rather than radius of curvature. The left half of the graph corresponds to 3.6a. 

The right half shows that there is virtually no response for the other sign of curvature. The 

reason is that a curve which avoids the antagonistic RF relion as it leaves the RF produces 

a strong response in the large cell and hence strong inhibition. Figures 3.6b.d depict the 

respor.se to curves at different positions on the RF. It is evident that the curvature sign 

selectivity is preserved. 
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Figure 3.5 Curvature-tuning curves for an even RF ES cell. The parameters have 
the same values as in Figure 3.2a. The arcs are curved lines of width 3 pixels and 
vary in radius from 0 to 140 pixels in steps of 7. (a). Response of the model cell 
and its components to one sign of curvature. The dotted and dashed lines are the 
small and large component responses. (b). Curvature response 35 a function of 
position across the RF. Negative and positive values represent left and right shifts, 
respectively. in the RF icon. There is no response at the +2 position. 

For one sign of contra st the odd-symmetric cell model is selective for sign of 

curvature as weil as magnitude. Reversing the curve contrast. however. reverses the curve 

sign preference. Therefore. taken in isolation. the response of this type of cell does not 

unambiguously signal curvature magnitude and signe However. in combination with even· 

symmetric endstopped RFs or an odd-symmetric endstopped RF with positive and negative 

lobes reversed with respect to the first cell. both curve sign and contrast can be inferred. 

A comparison of Figures 3.2b and 3.6a shows that. unlike its even-symmetric 

counterpart. the odd-symmetric cell responds about 50 percent better to an optimally­

curved stimulus than to a short optimal line. Instances of the model that respond more 

strongly to curves than short lines do 50 because a stimulus curving into the antagonistic 

RF region of the inhibitory cell elicits less inhibition than a short. isolated line. 

3.4.2.2 Curved Edge. 

Filure 3.7 examines the response to curved edles. Parts a.b.c of the figure 
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Filure 3.6 eurvature·tuning curves for an odd RF ES cell (same parameters as 
Figure 2b). The arcs are curved lines of width 3 pixels and vary in radius from 0 to 
140 pixels in steps of 1. (a). Response of the odd ES instance and its components to 
one sign of curvature (toward the antagonistic subregion). (b). Curvature response 
at 7 positions across the RF. The zero position represents the peak of the positive 
lobe of the small RF. (c). eurvature response for both signs of curvature expressed 
in units of curvalure (pizel,-I). The left half of the graph corresponds to a. and 
the right half demonstrates the absence of response to the rightward curving arcs. 
(d). The response to rightward curvinc arcs as a function position on RF. Compare 
to b. 

are obt~ined with an odd.symmetric instance havinl the same components as previously 

but with different relative weilhtinls (c, increased from 1.7 to 2.8 for balanced edle re· 

sponse). The response to an appropriately-oriented curved edle is shown in Filure 3.7a. 
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The response is similar in form to those observed previously. The curved edge response 

at different positions is shown ln 7b. Figure J.7c shows the curvature response for both 

signs of curvature. maintaining the same edge contrast across the edge as the curvature 

goes through zero. The symmetry of the response to opposite contrasts 10 the two halves 

of the RF leads to the symmetnc response There IS no response to a curved edge of the 

opposite contrast 

Figure 3.7d shows the combination of a small odd-symmetric RF wlth a large 

even-symmetrlc one. The cell that results from their convergence is selective for sign of 

curvature and contrast. independent of the magnitude of curvature. Hence this type would 

be useful in abstracting the curvature sign. 

A summary of the response of the different model Instances to curved edges and 

lines is given in Table 1 Ali the model instances examined are broadly-tuned for curvature 

magnitude. 8y employing a smaller excitatory cell or decreasing its weight. a shlft in 

the peak of the curvature-tunmg curve towê:lrd higher curvatures 15 effected. Alternatively. 

increasing the size of the Inhibltory cell broadens curvature-tuning by shifting effective 

inhibition toward lower curvatures. ES instances composed of odd-symmetric components 

are selective for curvature sign for curved lines but not for curved edges while an ES cell 

with odd small component and even large component is selective for the sign of curvature 

of a curved edge. Since no single cel! unambiguously signais both the magnitude and slgn 

of curvature information independently of sign of contrast and whether the the stimulus IS 

a line or edge. it follows that local network interactions between cells are necessary. 

ln our electrophysiological investigations of curvature-selectivity (Dobbins et al .. 

1987) we found that different endstopped cells have different peaks and widths in curvature­

tuning. and that some endstopped cells are selective for sign of curvature. However the 

mechanism of the sign-selectivity has not yet been investigated. In a related paper we ex­

amine how the choice of model parameter values affects curvature-response. its robustness 

under pertIJ.rbations of the stimulus. and how the breadth of tuning determines the choice 

of a family of cells selective for different ranges of curvature (Dobbins et al. 1988). 
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Figure 307 Curvature-tuning curves for curved edges ln a.b.c the odd model in­
stance is used with Cs increast;d to 28 (from 17 in Figure 32b and 36) (a) 
Response as a function of radius of curvature for one sign of curvature lb) Curva­
ture response at 7 positions across the RF The zero position represents the vertical 
tangent to the edge aligning with the central d.vision of the RF le) Response as 
a function of curvature for both curve directions There is no response if the edge 
contra st is inverted. (f) Response of an ES instance with 5mall odd and large even 
components and ail parameters but the weights the sa me (cS = 0.4 and cL = 1.0) 
The response depends on the sign of curvature but little on its magnitude. 

3.5 . Response to Discontinuities and Singularities 

Cl. We now broaden the set of stimuli from idealized arcs and edges of constant 
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Table 3.2 ES Curvature Response Summary 

curvature to a more general class of curves. Specifically. we consider the response to 

curves with (i) discontinuous first de""atives (chevrons) and (ii) sign changes in the second 

derivative (inflections). 

3.5.1 Response to Chevrons 

ln Figure 3.8 is shown the response of the even-symmetric instance (of Figures 

3.2a and 3.5) as a function of position along the stimulus shown. The model cell is 

horizontally-oriented and aligned with the horizontal line. The response never achieves one 

half the value obtained with an appropria te smooth curve or short. isolated line. The same 

is true if the short arm of the stimulus is rotated by 45 degrees to form a right angle. or by 

90 degrees. or is removed. For such patterns the component responses remain balanced. 

and this prevents significant ES model response. 

A second experiment involves varying the angle. and the response to such a 

stimulus is shown in Figure 3.9a. The 180 degree position represents a straight line along 

the RF center. Near 180 degrees. as support for a central tangent increases. the components 
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Figure 3,8 Response of even ES model as it moves along the stimulus shown Iwidth 
3 pixels) The response is not substantial at any position Simllar results are found 
when the short arm of the stimulus has ditrerent orientations or 15 absent 

respond strongly. but the balance between them prevents a substantial response from the 

ES cel!. Figure 3.9b shows the response as a functlon of orientation to a ,ight angle with 

corner centered on the RF. The smalt and large components respond strongly when one 

arm of the stimulus aligns with the preferred orientation. but balance precludes a strong 

response 

If. instead of an angled stimulus, a curved stimulus with a tangent discontinu­

Ity is employed. the response depends on the size of the discontinuity and its disposition 

with respect to the small excitatory RF as weil as how the curve moves through the large 

component RF. If the line width is increased the stimulus floods the central excitatory RF 

and the response to chevrons and smooth curves are Jess distinct. However. larger end­

stopped cells tuned to lower spatial frequencles will now distinguish the stimuli. Together. 

the results shown in Figures 3.8 and 3.9 indicate that if the ES model has parameters 

chosen to elicit curvature-selective responses to smooth curves. angled and endline stim­

uli will be significantly less effective. and we would expect that doubly stopped neurons 
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Figure 3.9 Response of the even ES Instance to angled line stimuli (width 3 pixels) 
for difTerent angles and orientations The solid lines deDict the ES response. and 
the dotted and dashed IlOes the response of the small and large simple components. 
respectively (a) A variable angle stimulus of total length 60 pixels centered on the 
RF At 180 degrees the bars align along the RF long axis (b) A right angled stim­
ulus centered on the RF IS rotated ln both expenments balance of the component 
responses lead to weak response from the ES cell 

would not be strongly exeited elther The one qualification that should be made is that 

weakly endstopped cells (in the model obtained by decreaslng the large cell gain. cd will 

be less stimulus-specifie in general and curvature-selective in partieular. That being said. 

we predict that endstopped neurons will respond differently to corners and smooth curves 

3.5.2 Responte to Inflections 

There are two kinds of curvature changes: (i) changes in the magnitude and (ii) 

changes in the direction or sign. We now focus on the latter kind and Figure 3.10 shows 

the response to a curved stimulus with an infleetion centered on the RF. The stimulus 

is discontinuous in curvature: there being an abrupt jump from constant curvature of one 

sign to the same magnitude and opposite sign at the center of the stimulus. However the 

tangent is well-defined at that point and aligns with the RF preferred orientation. The 
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3. The Endstopped Simple Cell Model 

response of the even and odd versions of the model to inflections at different curvature 

magnitudes is shown in Figure 3.10a.b. Predictably. based on considerations of symmetry. 

the response of the even-symmetric cell is the same as for a stimulus that doesn't change 

sign of curvature (compare with Figure 3.Sa) On the other hand. the response of the 

odd-symmetnc operator to curved !lne inflectlons (Figure 3 lOb) IS approximately half way 

between the responses obtained to the two signs of curvature independently (Figure 36a.c) 

as would also be expected This points to a means of locahzmg Inflections. 
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Figure 3.10 Response of even and odd ES models to inflections of a curved 31ine 
as a function of radius of curvature Parameter values as in Figure 2 The inflected 
stimulus Iwidth 3 pixels) is obtained by reflecting half of a semi-circular arc about 
the tangent line at midarc The even ES instance (solid line) has the same tesponse 
to the inflected stimuli as to a same-sign curve of the sa me radius The response 
of. the odd instance (dotted line) is half way between the responses obtained to the 
two signs of curvature - in most cases about hait the response of the preferred 
sign stimulus 

The responses of the model instances to edge inflections are not shown but can 

be understood based on symmetry. Since the odd-symmetric ES instance responds equally 

to both signs of curvaturc (provided the edge is of the right contrast sign) it will respond 

weil to a stimulus which curves one way in one half of the RF and the other way in the 

other half. The mixed component model (of Figure 3.6c). the response of which depends 

critically on si," of curvature. gives a half response to the inflected edge stimulus. 
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3 The EndstoppeJ Simple Cel! Model 
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Figure 3.11 The response of the even ES instance and its components to a centrally­
inflected cublc curve of width 3 pixels (and k = 0.(03) as a function of RF orten­
tatlon AI! three responses have peaks shifted from the central tangent orientatIon 
(90 degrees) but the shift is least for the ES Instance 

ln a third experlment we examined the response of the even ES Instance and 

its components to an inflected curve as a function of curve orientation. The curve IS cf the 

form y = kx3, where k tS chosen so that the the ES Instance responds weil. Figure 3 11 

shows the response of the ES instance and its components to the curve as a functton of 

orientation. Note that the peaks of ail thr~e responses are shifted from the orientation of the 

curve's central tangent. The shift IS greater for the large simple cell than the small one and 

least for the ES instance. For yet larger simple RFs the peak would be even more shifted as 

the orientation that best matches a larger piece of the curve moves away from the tangent 

orientation The response of the ES cell is shifted least, precisely because of the difference 

in response shift for the small and large cells. From the point of view of the endstopped cell 

the inhibition is asymmetric with respect to the peak orientation of the small cell, therefore 

its peak response is closer to the tangent orie'ltation than either component. This example 

iIIustrates how the tangent-curvature pair signaled by the ES model represents the local 

behaviour of the curve with greater fidelity than its linear components, 
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Chapter 4 Discussion 

We have shown that one way of thinking about the difference between nonend­

stopped and endstopped cells ;s ln the way they respond to curves. Our model of end­

stopped simple neurons ;s length-select;ve in precisely the way that endstopped neurons 

are. It is also curvature-selective for arcs of the appropriate position and orientation. There 

are two crucial points to be emphasized: (i) the bandpass curvature response results trom 

the difference of two low pass responses of different bandwldth. and (il) the curvature 

sign-selectivity is determined simply trom the RF symmetry. 

Combining linear operators nonlinearly has led to a neuron model with speciflc 

response charactenstics. However. a number of simplifying assumptions have been made. 

especlally regarding the spatial linearity implied by usmg convolution. In particular. Schumer 

and Movshon. (1984) have shown that striate simple cells behave hnearly when the length 

and contrast of a smewave grating are modulated However. Hammond and MacKay (1983. 

1985). using blobs of reversed contrast ln the mterrogating stimuli. demonstrate strong. 

non-linear. suppressive interactions. While more investigation of these issues is required. it 

IS theoretically attractive to consider the linear result as being expressed provided conditions 

do not occur that veto it. Such models are currently under investigation (Iverson. 1988; 

Zucker et al. in press). 

Spatial nonlinearity is found in complex ce Ils as weil. and in neurophysiological 

experiments we have found that both simple and complex endstopped cells are curvature 
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4. Discussion 

selective (Oobbins et al. 1987). Since the principal requirement for this class of model is 

orientation-selective end-inhibition. there is no reason to suppose that curvature selectivity 

in endstopped complex cells has a fundamentally different basis. and our initial explorations 

support this conjecture (Dobbins et al. 1988). 

Another simplification is the use of half-wave rectification. but in other simula­

tions we have found that substituting a smooth. saturating nonlinearity does not affect the 

results described here. 

Receptive field. Bounds 

o 8 0 • 
o l 

Filure 4.1 Illustration of how difFerent classes of cells represent bounds on the 
derivatives of the contrast information The schematically represented retinal gan­
glion. nonendstopped and endstopped cortical neurons represent bounds on position 
(BO): position and tangent (Bl)' and position. tangent and curvature (B2) 

Figure 4.1 illustrates a way of viewing the abstraction of spatial information as 

one proceeds from retinal ganglion and lGN neurons to nonencJstopped and endstopped 

cortical neurons. Retinal ganglion RFs entail positional bounds (Bo) on the contrast in­

formation they transmit. nonendstopped neurons an additional bound (Bd on tangent or 

orientation information. and endstopped neurons a further bound (B2) on curvature. Hence. 

endstopped neurons can be viewed as estimators of the k-jets of curves. k :5 4 (Poston 

" Stewart. 1978; Bruce & Giblin. 1984) with the derivatives only known within inequality 
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bounds. Koenderink and van Doorn have advanced the k-jet point of view (Koenderink. 

1984: Koenderink Il van Doorn. 1986: Koenderink & van Doorn. 1987). and given an ex­

ample of a curvature operator that is similar to the endstopped simple neuron model we 

have developed but without the nonlinearity. 

Note that endstopped cells do not estimate curvature in the sense of continuous 

mathematics. that is. as a limit tending to zero one example of this was provided by Figure 

3.11: the central curvature of the cubic curve being zero. Rather. endstopped cells provide 

estimates of how a curve varies in a neighbourhood determined by the RF size. Consider a 

set of simple cells of various sizes and orientations centered at a point. Suppose that. for a 

particular orientation and in going from smaller to larger RFs. the responses are strong and 

then diminish. Most of the information resides in the RF size range over which the response 

transition occurs. and that information can be compactly represented in the responses of 

endstopped cells. Hence. from the k-jet perspective. endstopped cells can be viewed in two 

ways: the first as providing information about the spatial range over which a linear (simple 

cell-based) estimate is viable. and second as carrying the (tangent. curvature) estimate. 

While endstopped neurons can provide orientation and curvature information. 

it must be stressed that the tumng curves are relatively broad. Some other processing is 

required to refine the estimates. to reduce unstructured noise responses. and to prevent 

inappropriate smoothing or interpolation between distinct image structures. We suspect 

network interactions play this role. and a variety of evidence supports lateral interactions 

that extend beyond the RF (for a review see: Allman et al.. 1985). One would then expect 

that. in addition to the facilitatory interactions between collinear. co-oriented simple RFs 

reported by Nelson and Frost (1985). there should be interactions between endstopped cells 

which are tangent to a common drcle (co-circular). Sorne of these constraints are being 

explored in computational models of network interactions underlying orientation selection 

(Parent'" Zucker. in press: Iverson. 1988: Zucker et al. in press). One conclusion seems 

clear. h.lwever: curvature is a key component in these models. and endstopped neurons are 

a sufficent substrate for encoding it. 
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Appendix A. Appendix 1 

ln Chapter 3 it was shown that for particular choices of the parameter values. 

the ES model responds in a curvature-selectlve manner. In this section the factors affecting 

parameter chOice are bnefly exammed. 

The gain of the components (cs, cd determmes the strength of the end inhibi­

tion. For Cs ' CL large. the model becomes less endstopped. Correspondingly. the rolloff rate 

of curvature response on the low curvature side decreases. Hence. the range of curvatures 

to which the cell responds increases Conversely. decreasing Cs 1 CL increases endstoppmg 

and curvature specificity. and decreases response gain 

Since curvature IS the rate of change of orientation with respect to arc length. 

orientation tuning has a significant effect on curvature response. Orientation bandwidth is 

principally determined by two parameters: RF length (4oy) and the peak spatial frequency 

((.0;0) or equivalently. spatial wavelength {.\o = 21r/:...·o} across the RF ln the spatial domam 

(Ju 

BW~ = k~, 
"'0 

(At) 

where k is a proportionality constant. Ideally. the small and large ES components would 

be matched in both orientation bandwidth and spatial frequency (peak and bandwidth) 

ln that way the components would exhiblt matched response variation to perturbations 

of curve orientation or spatial frequency content. However since the RFs are of different 

length. Equation Al implies that the two conditions cannot be simultaneously satisfied. In 

Dobbins et al (1988) this problem is treated at length. The parameter values in the two 

components represent a compromise between matching spatial frequency and orientation 

tuning. 
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