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ABSTRAcr 

The f,?rmalism of effective potential m~thod is first studied for usual field theory and 

extended to supc!rsymmetric field theory. The specifie case of super,ymmetric quantum 

electrodynamics is then introduced. The superfields are shifted as required by Wein

berg's method for the evaluation ~f effective potentials and sùp~rpropagators are 

derived ~ith the method developed by Helayël-Neto for cases wher~ sup'ersymmetry is 

explicitly brÇ>ken. 11ten, the one and two loop' corrections to the effective potential 
, \-' 

m-ay be calculated. These corrections ,are se en to be complex everywhere but at the 

minimum of th~ potential. The theory is th en renormaliz.eJin a modified minimal s~b-
straction scheme and a finite expression is finally obtained for the:-effective potential. 

Thereon, the renormalized coupling c6nstant and the ,8-fuhction are calculated. 
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RESUME 
,J 

La méthode du potentiel effectif est d'abord étudiée dans le cadre de la th60rie du 

champi usuelle et ensuite appliquée à la théorie du charpp supersymétrique. Le cns plus 

spécifique de l'électrodynamique quantique est présenté. On fait subir une translation 

aux sup~rchamps tel que l'exige la méthode" de Weinberg pour évaluer un potentiel 

effectif et les superpropagateurs sont obtenus à l'aide de la méthode qu'Helllyël-Neto Il 

développée pour les cas où la supersymétrie est e~plicitement 'brisée. Les corrections 

du premier et second ûrdre de l'expansion en boucles au potentiel effectif sont alors 

•• ( > 

calculées. Ces corrections s'avèrent être complexes partout sauf nu minimum du poten-

tiei. La théorie est ensuite renormalisée dans le cadre modifié de soustractions mini

males et une exprJ~~1l finie est finalement obtenue pour le potentiel efrecti~. De 'plus, . 
la constante de couplage renormalisée ainsi que la fonction fJ sont calculées. 
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Chapter 1 

INTRODUCTJON 
, , 

1.1 Introductory Remarks 

The method of effective potential has an important role in today's quantum field . . 
theory. The symmetry properti~ of the vacua may be determined with the help of t~is 

method [1][2][3], whieh makes it a powerful instmment for the study of spontaneously 

broken theories. 

Three m~~hods for evaluating the ëffective potential were put forward in the early 

seventies. First, there was the method of Coleman and Weinberg [1]. It bas the 
r' ( 

drawback of having to sum, an infinite number of graphs for eaeh loop arder (exeept 
"\ . . 

tree-Ievel). Obviotisly, ealculations at two-loop order or higher become very difficult 

with such an approach. The second method is the One devised by Jackiw [2] where 

the effective potential is evaluated funetionally. The potential is given by a-perturba-
I 

. tion series of vacuum bubble graphs. With the third method, due to Weinberg [3], the 
, 

effective potential is calculated by summing the scalar tadpole. graphs of the translated 

theoryl. This method bas the advantage of being easy to use and 'to understand as the. 
" ~,. \ 

underlying tbeôry is sj~ple [4]. This last metbod is qui te powerful tor supe~s,mriletrie 
"'" . ' 

theorics bccause of the redueed number of graphs to be evaluated as" first remarked by 

Miller [~l who gave to this extension: of Weinberg's method the name of, ft Auxiliary 

Dy OOSt it is meilllt thst the scalar fields of the theory have bèen shifted' by a con-
~~ . ~ 

- 1--
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Field Tadpole Method" (AFfM). Moreover, Weinberg's method may be simplified so 
# • . . 

tpat it corresponds to the Vacuum Bubble Method (VBM) of Jackiw for ail orders but 

the first. For aU above methods but AFTM, one can work with copstrained or uncon

strained theories, whichever is simpler. With AFf M, the auxiliary fields, as the narad" 

of the method implies,~are explicitly needed. The potential can therefore be put on-

shell only at the very end of the calculations. 

Ali three methods have been used in the evaluation of supersymmetric (SUSY) 

effective potentials both with component field and superfield formalisms. The - . 
• 

Coleman-Weinberg method has been applied by O'Raifeartaigh and Parravicini [6] 

with a component approach and by Grisaru et al. [7J with supergraphs. Jackiw's mcth

od \vas used by Huq [8J for the evaluation with component fields of the one-loop effee-
olt 

tive potential of the Wess-Zumino model and extended later on to superspace by the 
.-~ 

same 8uthor [9]. 'Weinberg's method has been applied by Many people t~ the case of 

the Wess-Zumino model; at one-loop order by Miller [5] with components and by Sri

vastava [10] and Miller [11] with superfields. The two-Ioop contribution of the Wess

Zumino model was also calculated with this same method by Miller [12J and Fogleman 

and Viswanathan [13], both with component field,. Coleman-Weinberg's method has 

also been used for the s~erspace evaluation of the effective potential of' supersymme-
~ 

tric gauge theories [7] as well as Weinberg's [4J and Jackiw's [14] with a component 

approach. 

The main reason of working with superfields is the reduced number of graphs to 

evaluate. As higher loop contributions are eonsidered, the benefit of using superfields 

becomes overwhelming. However, as the superfields have to be shifted to evaluate the 

effective potential with VBM or AFfM, supersymmetry is explicitly broken and that 

brings about a lot of problems [11]. Fortunately, a method has recently becn devel

oped' by Helayël-Neto et al. [15] for calculating superprop,ators in BUeh case&.. With 



( 

, 3 
( 

this method, the superpropagators are expressed in terms of a series of projection 

operators which form a pasis. Thus, the advantage of having fewer graphs to evaluate 

is somewhat counterbalanced by the increased complexity of the superpropagalors. , 

Although this method is a major improvement for the evaluation of superpropaga-

tors for explicitly broken supersymmetric theories, il is still not as good as one could . 

wish. Indeed, even for supersymmetric quantum electrodynamics (SQED), one of the 

simplest SUSY gauge theories, Helayël-Neto's method yields unmanageable results 

wh en work~f1g with a SUSY gauge fixing condition. Hence, much progress will have to 

be made before it is possible to calculate effective potentials in superspace of more , 

interesting (or realistic) models. 
-' 

A cambination of two of the methods presented for calculating effective pQtentials, 

VBM and Aff M, will be used herein for the case of the supersymmetric extension of 

quantum electrodynarnics in superspace. As mentioned before, superpropagators can-

not be calculated with a SUSY gauge fixing condition. Thus, they will be evaluated 

within a Wess-Zumino gauge scheme supplemented by Lorent~ condition ( or equiva-
, 

lenlly with a Landau gauge). Witpip this framework, the one-Ioop results s~in-;~ 

cide with the ones Miller [4] obtaineq, with a component field formalism. The two-
... 1 

loop effective potentinl has never been çalculated before and therefore is an original 
"-

result of this thesis as weil as the quantities derived from it, the reno~alized coupling 

constant and the ,B-function. 
l ' 

1.2 Work Outline 

This work is divided jn five main parts. The second chapter is devoted to the study 

of the method of effective potential in usual2 field theory; the ~. model is used as an 

2 As opposed to supersymmetric 
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exarnple. The basics of supersymmetry are given in the first part of Chapter 111. At the 
1 

same time, sorne of the notatign is set. In the second part of this chapter, the effective 

potential formalism is extended to supersymmetry and the case of the Wess-Zumino 
1 

model is worked out in detail. Supersymmetric quantum electrodynamics is introduced 

in Chapter IV. The tree-level potential is given and the superpropagators are derivcd 

to be used in the next chapter to calculate the .OQe and two loop contributions to the 

effective potential. The fact that these contributions develop an imaginary part is ana

lyzed in the fifth chapter. In the sixth one, the theory is renormalized and the 

,B-function as well as the running coupling constant are derived. Finally, in Chepter 
"'-

VII, sorne la st comments are made and conclusions are drawn. 
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Cbapter Il --
EFFECTIVE POTENTIAL IN FIELD THEORY 

In order to study the behaviour of vacuum states of field theories at higher order in 

the perturbation expansion, one should resort to the method of effective potentinl 

which aHows the survey of nU the minima of the theory. This method is weil suited for 

studying the phenomenon of spontaneous symmetry breakdown und Cor obtnining the 
~ 

renormalized parameters ( masses, coupling constants) of the theory cOllsidcrcd. 

2.1 Method of Effective Potential 
'.. 

i i 

We shaH devèlop the technique by looking at the case of a self-coupled sealor ~-

field, as done in most references. The method is ceally relev)mt when the scnlor field . 
is coupled to other fields, snch as a gauge field. However, the point hcre being to study 

how the ~~thod works, the simpler the model the better. 

\ with 

Consider the Lagrangian 

a • m2 .. 
,V=-~ .. - -~ .. 

4! 4 

The vacuum expectation value for the field IP is deftned as 

(1) 

. (2) 
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(3) 

with the notation 

, . 

1'-> : vacuum state at a lime t- - 00 

1'+> : vacuum slale at a lime t- + 00 

f op : H~/sellberg operalor 

.. 
J : cu,,-ellt 

fc(x) : vacuum expectation valué (VEV) of the field rp 

III presellce of ail extemal source J(x) 

and is not necessarÏly the same as the clnssical minimum of the potential. The field fP 

may be expressed in terms of the generating funetional W()) , that is 

~ = 6 W(J) 
, 61(x) 

with th. usual dt;fi~lon for W(J): 

~p[ (!) W(~] = N J [)tp CXp-[(t } J lx L(x) + (J,~)] 
f • 

wherc 1 

(J,I) = J ctx J{x) I(x) 

. ,,' 
1 

I~, 
./ , -

/ 

(4) 

(5) 

(6) 

•• 
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8 -, 

and N is the normalization constant. Now let's define an effective, action by doing a 

Legendre transformation of the generating functional 

(7) 

The eurrent J in equation (7) can be elirninated by solving equation (4). This per

mits the use of ~c as an independent variable. Differentiating equation (7) with 

respect to ~c yields after a straightforwlfrd cnlculatioll 

(8) 

Then, putting J equal to 0, the VEY <Pc> becomes the root of 

(9) 

It can be shown ln ~hat r(~c) is the gellerating functional of the one-particle irreduci

ble (l-PI) Green's functions. 

The effective action can be expanded. in terms of ~ 1: and Us derivatives as follo~8 

(10) 

. "Y.here U is what is called the effective potential. Equating ~c(x) ~ const~nt g , one . , 

gets 

r(g) = - J tlx U(g) = - n.u(g) (11) 

') 
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1 

whcrc n'is the total volumè of spacetime. The effective action could also he expand-
r Y 

ed in the tollowin!_way. 

, 
f-· , 

DO 1· , . 
r(/' =" -1 ftlx1 .... ftlx r (x1,· .. ,x) tP (x1)· .. tP (x ) el ~n 1111 ,II.C cn 

,,-0 

(12) 

. ' 
which gives, once the-right-hand side has oeen Fourier-transformed 

~oo 1 f "kt f tk Â 1 n _... -'-
r(/) = -, ---:-.... ---4-[ () (k , ... ,k ) r (kl, .• ·,k ) tP (kt)'" 1 (k )] 

C IJ. (2)· (2 ). n Il ,f C " ,,-0 , 1[. 'Ir • 

(13) 

"-
'-

.where 

Putting orice again ~ c(x) equ'al to g , one obtains for thc;J0urier transform of 4> c , 

j (k).= (l g 
c • (15) 

and for the effective action, 

DO " ' 

~) = n -lJ (~) r,,(O) 
,,-0 -

(16) 

.. • '. 

c 
wi!h the notation 

o 1',,(0) = r,.(O,O,.~.)O) 
--""'.- 1'----

, 
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10 

Comparing (11) to (12.) , one finds that the effective potential may he written as 
/ 

/ 

/ 0' 
~~-

,L,' ~~ Il 

rJ = -" (L)F (0) L...J n! ,. 
- ft-O 

"7 , 

(18) 

Thus, the effective potential is given b~ the infinite sum of the one-particle irreducible 

graphs with n externallegs. In such 8 form, there is little hope of being able to calcu

late the effe9tive I?otential of any but the simplest field theories. However. diffcrcoti

ating U n times near zero yields Cth~ following expression. 

trU(g) 1 = - Ï' (0) 
dg" 8-0 

ft 

(19) 

( 

From tnere, one may develop a suitable method to evaluate the effective poteo-

tial [21. We must first translate th~ the ory 

~ =IP' +c c c 

, 
and exp and it around ~'c = O. This gives 

-

where Fn' is the I-PI amplitude fof. ~he translated theory. 

written as 
-:;J 

_d"_ClI_C4' .... J 1 = -- r '(0) 
diJ" *tJ-e Il 

c • 

fi • 

(20) 
-. 

(21) 

The last equa"tion can be 

(22) 



11 

As U(~e) is the potential expressed in ,terms of the untranslated t~eory, it has no c 

dependence and therefore, equatioD (22) can be written under the form 

tfU(e) = _ r '(0) 
de" " 

(23) 

As said previously, n refers to the nomber of externallegs. Thus, if one uses n = 0, 

V(e) = - Ï'o'(O) (24) 

i.e. that U is given by the sommation of the vacuum bubbles in the theory as shown in 
-~ 

Figure 1. As mentioned in the introduction, this corresp<>nds to lackiw's method [3) .. 
for evaluating effective potentials. 

u • 
[ . \ 

+ 0 + CD 

-Figure 1: Vacuum Bubble graphs for translated Sclf-Coupled Scalar Field 
J 

The point in -Figure 1 represents the constant tems in the translated, Lagrangian. 

However, there is a problem at one-loop order in the perturbation expansion. ilndeed, 

there is DO propagator Dor vertex for this graph. For this reason, one has to, resort t~ 

the tadPol~ method [4] at this order. This meth~esults ~om taking n eq~ to 1 in 
- 1 

equatioD, (23). 1 
, ::-.::! 
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(25) 

The contributing graphs are drawn in Figure 2. 

Uoc 

Figure 2:- Tadpole graphs for translated Self-Coupled Scalar ~ield 

The major drawback of the tadpolè method is the extra integration that' has to be 

performed once the 'graph~ have been evaluated. Hence, the easiest way to calculate 

'" the effective potential, order by order in the 100p expansion, is to use the vacuum bul>-
l • 

bie method except for the one-loop case. At this order, the extra integration should not . -

uspally be a major problem. 

.. 
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2.2 AppUeation to the case of 8 SeJf-Couplecl Scalar Field 

.-/' 

We will now work out the simple ex ample of the self-coupled scalar field whose 

Lagrangian is given in equation (1). Shifting the field by a constant -c yields 

(26) 

At zero-Ioop order, the effective potential is simply given by the constant terms in the 

translated Lagrangian. 

() 
122 a oC 

U c = - -m c +-c o 4 4! (27) 

At one-Ioop order, the ~3 tadpole has to be evaluated. Simple calculations lead to the 

following finite part for UI : 

Ul(C)=-(~) JdC[C{-K+Kln(~)}] 
3211' 

• 2 2 
K= (m - ac) 

2 

2 -.., 
M = 4,..1' e • 

(28)' 

(29) 

(30) 

The cvaluation of", div~rgcnt integrals is carried out in Appç!ldix A. One can then per

, form the c-integration ~~tget 

-
1 

, -
; 

.. 
-1 
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\ 
1 Jè K If U1(e) = (-) {-10(-) --} 

32l 2 M 4 
(31) . 

which is the standard result [5]. l. 

Having catculated the effective poteotial, one can de rive Crom il sorne physieally 

useful quantities sueh as the renormalized masses and eoupling constants. For the spc .. 
./ 

cial case of ~"-theory, we have 

(renormalized mass) (32) 

ttu 
(renQrmalized coupling constant) (33) -1 -a de4 c-cm1n -

<l. 

dU, -0 
de C-Cm1n -

(condition Oll cm1n ) (34) 

With m2~O , equation (32) and equation (34) just state the fact that cm1n m~5t be: 

the minimum of the potential. This last set of equations shows how useful is the 

effective potential rnethod for deriving the reno~malized qùantities appearing in the 

Lagrangian. 

Before closing this chapter, it would 'be good to reeaU lhat the effective potential , '/ 

is not itself a physieaJ quantity. Indeed, it has been corn mon kôowl~dge that il is a 
'-

gauge-dependent quantity since the very beginning of ils development [3]. Noncthe-

less., ,very interesting phySical results were obtained such as the scalar to vcetor ma.s 

ratio for spontaneously broken electrodynamics of massless scalar me sons [6}. Since 

then, it has been shown [7] that the rttinimum and the ~uantiiies derived at, thi. ~int 
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are gauge-independent as it has to he for physicaI quantities if the_ theory is to m~ke 

any, sense. 
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Chapter III 

'EFFECTIVE POTENTIAL IN SUPERSYMMETRIC FIELD 

THEORIES-

In this chapter, the method of effective potentinl dcveloped in the last chapter for 

usual field theories will be extended to the supersymmetric ones. First, a quick review 

. of supersymmetry will be done, allowing us ta set the notation and conventions to be 

used thereafter. In the second section, working out the effective potential of the Wess

Zumino model will show how to use the method for supersymmetric theories as well ns 

how to derive sUJ?erpropagators when supersymmetry Îs explicitly broken. 

y, Supersymmetry, A Quick Review 

ft, Symmetries have played an important role in the development and the understand- _ 

ing of particle phys!cs. They lead ta the unification of theories describing the interac

tions of particles. One of these symmetries, supersymmetry, was put forward in the 

early sevènties [1]. It unifies bosons with fermions as well as spacetime symmetries 

with internai ones. Moreover, the local version of supersymmetry '(supergravity) uni': 

fies gravity with matter. 

In addition ta being aesthetically appealing, this symmetry has also lcd ta techni

cal improvement~ such as the cancellaJion of the qu.adratic divergences which plague 

'usual' field theories. Sorne mad,els have ~ven becn shawn to be finite at ail order. in 

-16 -
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perturbation expansion. Even though there is no e~perimental eviderke yet that this 

symmetry exists in nature, there is hope it will. If not, it is believed that, at least, it 

will be a step in the good direction, towards the "right theorY'. 

The goal of this section is to give to the reader a quick overview of supersymmetry 

and, at the same time, to set the notation and conventions.3 What follows is based 

mainly on the book written by Wess and Bagger [2). 

Superfields are a function of superspace variâbles: F(x, fJ, 0). The () and 0 are 

Grassmann variables which obey the mies given below and x represents the position in 

spacetime. 

IdO= 0 

I 0 dO = 1 

(35) 

(36) , 

(37) 

The Latin indicçs refer to spacetime and run from ° to 3. The Greek indices run !rom 

1 to 2. They denote the two-component Weyl spin~rs, the undotted indices being the 

representation (112,0) of SL(2,C) and the dotted ones their complex conjugat~ repre-

"-v 

3 For more details, the reader should consult the booKs 9f Wess and Bagger or the 
one by Gates et al. listed in the bibliography. ( 

" 
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sentation (0,112)4. These indices cao he moved up and down with the -help of 

fa fJ ( /.~ ) and fa" ( foÏl ) wher~ 

12 
(21 = ( = 1 (38) 

21 
f 12 = ( =-1 

With this, the most general form of F(x, 8, '8) can be written down 

(39) 

where f, </>, m, n, v"" X, À, 1/J and d are ail functionsof x, and (l" is the Pauli mnlrix 

with one dotted and one undotted index: 0':12' Ils complex conjugale takes the form 

(/"QQ . Both are related by 

(40) 

To go any further, differential operators must be defined in superspace. They Drc 

8 m -à D =-+;(1 0 IJ 
Cl {)(Jo QQ m 

~ -8 . a m II 
v. = - - ,0 (1 u 

Cl 1i00 Qa m 

To define DO and Da , one uses fa" and fa~ along with 

.1 

4 ln Minkowski space 

(41) 
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afJ 0 0 ( -=--lJ(/ 80a 

(42) 

To be really useful, the superfield F has to he restrained in sorne way with appro

priate conditions. The first class of superfields that can he defined is the scalar super

field 4' whose definition is 

(43) 

In terrns of usual fields, IP may he decomposed as 

~ = A(y) + 120 t/I(y) t i F(y) (44) 

where 

(45) 

or 

~ = A(x)+i 9 (Tm '0 8mA(x) + 1/4 ''''0 A(x) + ..fi 0 t/I(x) - i rlom t/I(x)um "9 + ff-F(x) (46) 

with 

~ (47) 

A(x) is 8 scalar field and giv~s its Dame to the wltole multiplet, t/J(x) is a spinor and 

F(x) the auxiliary field. The most general renormalizable Lagrangian in terms of sea

lar superfields ooly is 
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The second type of superfield most oo,onlY ~ncountered is the vector superfield. 

It must obey the relation 
l 

(49) 
,r 

Its expansion reads 

_ y"(x,O,{j) = C(x) + i 6 x(x) - i 7i x(x) + t 02 
[ M(x) + iN(x)] - ~ 02 [M(x) - IN(x)] -

i 

Ou'" "9 v m(x) + ,i io( X(x) + i û 0m x(x)] - i Tl O[ >.(x) + 

(50) 

wher~ C, M, N, D and vm must aU be real in arder ta sntisCy cquntion (49). C, M, N 

are scalar fields, X and ,\ are spinors and Dis the auxilinry field. Wilh Q vector field, 
, 

one may define a fielct strength.· 

1 "1'1'2 W=--LlD V 
a 4 a 

w. = - 1. D27J. V 
- a 4 a 

(51) 

It is possible to obtain a supersymmetric extension of quantum elcctrodynamics, usuaUr 
, 

called SUSY QED, using both vector and scalar supcrfields • 

• 

c 
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(52) 

Even though this Lagrangian may look nonrenonnalizablc because of the infinite series 

of terms coming from e-v , it may still be evaluated in the Wess·Zumino gauge wher.e 

-- the third power of "V vanishes. In this gauge, the vector field has the following 

8~xpansion 

(53) 

Such a gauge choice explicitly breaks supersymmetry. This means that the superfields 

are no longer a valid representation of the supersymmetric a1gebra. However, as will 

be seen 1ater 1 the potential of SQED is still supersymmetric. Usual gauge transforma~ 

tions for v", are still possible. 

To calculate superpropagators, one must introduce a set of projection operators. 

D2 

P+ = ,1 

(16 0)2 

1J2Ù 
P2 = (160) 

--& 
p = 1 

(16 0)2 

D152D_ 
PT =- (80) (54) . 
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They have the folloWing multiplication table. 

Table 1: Multiplication table of the projection opcrators .. 

Pl p'}, P+ P PT 

PI PI 0 P+ 0 0 

P2 0 P2 0 P 0 

"1 P+ 0 P+ 0 'p 
1 0 

P' P 0 Pz 0 0 

p' T 0 0 0 0 PT 

When applied on scalar fields, one gets the following results. 

(55) 

•• 1 

, . - With trus) set of projection operators, it is pOssible to calculate superpropagators 
, 

for _~brokeD supersymmetric theories ( in SUSY gauges). Il will he sun later on that 

a larger. basis of projecti~n opera lors can he defincd with the above opcrator._and the 

8'5. They!fÜl he used for deriving superpropagators for theories with expliçitly br~ken 
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supersym~etry. 
'. 

, 

This will close this short review of supersym~etry. It should b~ notieed that we 

work in an Euclidian space with a metne 6'''' '" (1,1,1,1) . 

3.2 Wess-Zumlno Model 

This section will be divided in two parts. First, the effective potential for the 

Wess-Zumino model will be derived with the component field formalis~ which will 

prove very similar to the case studied for lIsual field theories. In the next part, 
t ~ --

superpropagators will be calc!Jlated in arder to work out the effective pot~ntial with- a 

superfield approach. 

3.2.1 Component Field Fonnalism 
\, 

" 
The Wess-Zumino model is one of the simplest example of a supersymmetric field 

thedry~ Its Lagrangian reads 

__ l. = l 8", ~ t" '" + A 0 A +Y'F - [m (AF - ~ '" '" ) + 

1 2' À (MF - t/J t/J A) + h.c. ] (56) 

~ 

The auxiliary fields, F and "F , are kept in order to be able to US~ AFfM. 
-. Jo.. 

FollowiDg the last chapter recipe, the B<?~Jiclds are translated by a cQnstant val-

uc. 

Â=J'\'+a (57) 

-. 
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F= F' +1 ~ (58) 

The Fermi fields are not translated because a vacuum expe~tlltion value <.p> diffêr~ 
• p 

ent from zero would violate Lorentz invariance. ' 

with 

This leads to Il new, shifted Lagra~gian 

l' = i 0", 'fi qm.p + ïrDA' + F'F' - CV (A'F' - 1/2 t/J '" ) 

+ 1/2 À (A ~'F' - .,p 1/J A') + 1/2>1 A'A' + F' (mœ+ 1/2 ..\aa -/) 

+ vIA' + h.c.) + li + [Ill af + 1/2 À 001 + h.c.) 

v=I1t+Àa 

(59) 

(60) 

The tree-level effective potentinl is simply given by the constant terms in the 

Lagrangian times minus one (-1). 

(61) 

Using equatfons of motion to go on~shell, t~e effective potentinl may be written under 

ils usUal forro [3]. 

Uô=ll (62) 

__ :rus res~lt will be rederived ~wi~e ~lp of the tadpole mctbod ip 'orJ~r to show 

one pecuUarjty which simplifies calêulations in the case of supersymmctric thcorie. 

- wh~n_ usirig thi~ method., On~e ag~In , at zcro-loop ~rder, ono c~~ read direttly trom 

~-----
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the Lagrangian the linear terms:, 

, 1 
r"o(O) = - ( ma + 2' >.aaf) 

which 11d" 'aiter an integration over f. ) 

uJ = -11 + ("0+ t ~.a ) 1 + H(f,a,7iJ 
1. 
1 
l ' 

o ~ 

-r--,.,-.I' •..... 

25 , 

(63) 

(64) 

where H is the integration constant. Now, by simple symmetry between 1 and l , it is 

easy to see that 

H(j',a,'li) =,( m'li + ~ >.aa) l+/(a,a) 
\ ... 

(65) , 

J 
Hence, the effective potential is 

-
~....,...r ...... 

Uo = -11 + [ ( ma + ~ ..\aa ) J + h.c.] + l(a,a ) (66) , 

At this point, one would normally have to evaluate the ~~ntribution coming from 

r .... ,o(O) ~o obtain I(a,a). However, it is weIl known that the potential for a supersym-
, 

motric theory must vanish at i~s minimum. This meB;ns that 

(67) 

Uaing tbis condition, il becomès obvious thall(a,a) must be zero and (61) is retrieved. 

This is one gre~l simplification thàt occurs in SUSy theories. Only the auxiliary field 
, 

tadpoles have to he evaluat~d, th~ contribution from other fields belng autom'atically ~ 

- ~-
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1, 

generated -by the imposition of SUSY l?o\\pdary conditio,n [4]._ An additi9Ôal,Jdvan-

tage to this method is that the auxiliary fields couple to fewer fields due tb their higher 

dimensionality and so there are less gtaphs to con si der . Bqua\ions of motion can he 

used at the very end of the calculation 9f thè effective potential. 

To calculate the one-loop correction, only the 1 bosonic operators are requited. 

Writing the BOSé -action under thë compact form: 

(68) , 

t 
where 

.pT = (A;A,F,"P) (69) 

B
T = (JA ,]1.,JyJ'F') (70) 

""\ 

the source term, and .. 1 
->.f 0 -v 

-e"_ 
0 «> 

A= 0 -x] 0 :v (71) 
-v ,0 Q 1 
0 -v 1 0 ,. -

.~ Then, the generating functional can be written as 

(72) 

'r 

,J..- -

" 

" : 
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62 In(Z }- - - . 
and the propaptors can be found by looking at 6J 6J. 0 ," The results are condensed 

1 2 • 

in Fi8\!re 3. 

Fig~re 3: Bosonic propagators for the Wess-Zumino model. 

A A 

A __ A 

-

<e'~, 
v(l +/ii) 

"Q 

_il!. 
Q 

).2lt _ p2 Vi + w) 
Q 

• 

Applyins the Auxiliary Field Tadpolé Method. [5] , it is realized tbat the only tad

pole to \le èvaluated is the FAA one. The Feynnlan rules for the effective action 

yiclds: 

" 

·····1 
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(73) 

where 

. (74) 

-One can read off from the previous equation 

2 
r (0) = .1 fd4

- fl 
F,t 2 P Q (75) 

1 

The integratioll over f leads to 

\ ' 

Ut = ~ f ~fJ InQ + H(a,a) (76) 

The requirement that SUSY is to remain unbroken by radiative corrections (3) implies 

that H(a,â) cancels the first term of the previous eqU'atio~ when f = ]- 0 50 lhnt U, 

can be written as 

1 J.4 ~21f Ut = 2' a fJ ln[ 1 - 2 2 ] 
(p+vV) 

(77) 

To go beyond one-loop, one would have to calculate the fermion propagator. and 

use the vacU~!D bubble ~~t~od. Thi~ cnlculation , to two-loop order, has bun per-
~ 

formed by Miller [4] and ,also by Fog1eman and Viswanathàn [6J. It' .hould he 
u 

remarked that, even though the'Wess-Zumino model is one of the simple.t SUSY mod-

els, il shows some pecullarities not encouniered in usual field theory modell. One of 
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~ . 
these is the choiu of a renormalization scheme wftich can be tricky because of the 

presence o! only one renormalization constant; Amati and Chou [7J have shown that a 

minimal subtraction scheme leads to a kinetic term with the wrong sign and to an effec

tive potential with a "pathological behaviour" [6]. Thus, one should be careful when 

applying uBual methods of field theory to supersymmetric models. 

- , 

3.2.2 Superlleld FormaDsm 

The calculations of the previous sub-sectioo will be done all over agaio with a 

superfield approach in order to introduce the metllod used in the forthcoming chapters. 

The Lagrangian of the Wess-Zumino model in superfield notation takes the form : 

(78) 

where the field ~ is giveo by equation (46). 

The supcrfield is then shifted by a constant superf:ield =-

(79) 

The shifted Lagrangian is 

1 

L' = f cts {II+" + .:t'Ê + 0 -'2 [ t (m +,\.:') 4>P+' + ;! 1J
2
p+" + 

,,' 
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The zero-loop effective potential can be read directly from the shifted Lagrangian. 

Uo = - f tfe {~'E + 0.112 
[ ~ ::P.E + fi ;:2 P+ E + h.c.]} 

ri-

(81) 

Performing tbe 6-integtJltion is a trivia~ matter and it brings back cquatioh (61) as it , 
should. 

As berore, to evaluate the one-loop effective potential givcn by the l" tadpole, 

the superpropagators have to be derived. This May be donc with the method dcvcl-
\ 

oped by Helayël-Neto et al. [8] for the cases where supersymmetry has been explicitly 

broken. 

First, the action is written in a compact {orm. 

(82) 

where 

(83) 

.1 (84) 

(85) 

and, finaUy, 



c 

c 

1 

A= 
(m + ÀE) 0 -2 P+ 1 

1 

\ 
\ 

From equation (82) , one obtains for the generating functional Zo' 

from which the superpropagators may be derived. 

-__ [P2 0 1 -1 [PI 0 1 ~ 
Ll 0 pAo P °12 . 

1 2 

This may be written un der the forms 

31 

(86) 

(87) , 

(88) 

(89) 

where we used the properties of the projection opera tors and where a and b were 

defined as 

1 
-2 

Q= 0 v 

1 

ëi = 0 -2 v (90) 

(91) 
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As only LlillP is needed for the evaluation of UI , only the (1,1) term of equatioll 

(89) will be calculated. The other terms rnay be derived in the sorne fnshion. 

F 0' a matri" of the form (: ! J. the (1.1) element of the inverse mat,i. is 

c'ld [aéd - brl. Therefore, the superpropagator reads 

where the A's are projection opera tors defined in reference [8). The list of those 

needed herein are tabulated in Table 2 on page 35, with their multiplication table, al 

the end of the chapter. These seveD projection opera tors form a basis which CUlf be 

used to inv~rt expressions like equation (92). There are untichirnl pmtllcrs to these 

projection opera tors which are denoted by PI ,A2 ' A3 ,A~ , A7 ,A9 und AIO , und 

which also form a basis. The ubove sl1perpropag~tor may be expresscd in lcrms corn

ing from both sets. 

(93) 

Tedious calculations yield 

- (Ci + oA2)P _ ab aoW A" 
Ll"jJ = W ç Pl + (W _ ob) iI2 + (W _ Db) , 

ob A + Ciaob A + 7iaob if 
+ (W - tb) .. (W _ ob) (W _ ob) 7 (W _ ob) 9 

+ iiaDbtib A 01 
(W - Db) (W _ ob) 1 

(94) 

with \ 
\ 

-1 , 
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{ 

W= 1- aa (95) 

From there, osing the algebra of the PiS ,and O's, it can be shown that 

(96) 

Superpropagators for a theory where supersymmetry has been explicitly broken 

have a more complex stmcture than those for an unbroken theory. Obviously, it 

makes Httle sense to go through su ch calculations and ob tain such an expression to do 

one-Ioop calculations. This work gets its reward at higher order in perturbation expan~ 

sion because of the lower number of graphs to be evaluated. 
1 

Returning to the evaluatioll of the one-loop effective potential, we have the effec-
" 

tive action: 

(97) 

Using equation (96) for Ll" and the following relations 

(98) 

(99) 

(100) 

,r.\.<., . 

... 
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1.. 

(101) 

(102) 

(103) 

the effective action takes the form 

The auxiliary field of the superfield P is the one in j. !-lence, only the first terrn 
1 \ 

in the O-integration is needed and the effective potentinl is found to be: 

(105) 

This result matches perfectly the one obtained by the component formalism. It 

would be good ta recall that this superfield approach will prove itsel! to be rcaUy useful 
-

beyond one-Ioop order. For exarnple, the vacuum bubble method applied to the cnlcu-

lation of the two-loop effective potential for, the Wess-Zumino model in superspacc 

requires only the evaluation of two supergraphs as opposed to the six graphs" needed in 

a component approach. The method developed in this section will now be applied to 

SUSYQED .. 

, 

.'> 
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Table 2: Extended Table of Projection operators 

0
,/2 ,2 

Az = P2t1 

A, = 01l2iP2 
'\ 

P2 A2 A3 A .. A, Ag A10 ' 

P2 P2 Al A, A .. A .. Ag -Al 

A2 
A' 

2 0 A, 0 0 Al 0 

A3 A3 Ag 0 A3 A3 0 -A 9 

A. A .. Al 0 A .. A .. 0 -Al 
A7 A, A10 0 ,A 

\ ' A7 0 0 

AII - A9 ,0 A3 \0 0 Ag 0 

A,o o Alo 0 -A, 0 0 A10 0 
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Chapter IV 

SUPERSYMMETRIC QUANTt.JM ELECrRODYNAMICS 

'This chapter YAu be devoted to the study of the supers~metric extçnsion of quan-

tum electrodynamiés. The Lagrangian is composed of a vector superfield and two sca-
. , 

'l 

lar superfields along with their he~itian conjugates. ,It includes ail the usual QED 
, 

terms as weU as the on es from scalar electrodynamics in addition to some other terms. 
1 

SQED was the first step in the development of supersymmetric gauge theories [1]. 
~--- r ;'-

Because of its relative simplicity, SQED is a good model to use for developing new 

technique's of caleulation which, hopefully~ could be extended to other field theories. 
~ J 

lndeeâ, it can be noticed in the wqrk done by Miller [2] on the evaluation of the ~ffec-
. 

Jtive potential at one-Ioop order for gauge theories that the results for SQCD (Super-' 

symmetric Qua1ftum Chromodynamics) are a Mere generalization of the o~es obtained 

for SQED. 
,. 

In the first section, the' shifted Lagrangian will be derived and the zero-Ioop effec-

tive potential obtained. Then, in the next section, superpropagators for the shifted 

theory will be ca.lculated and tabu1ated at the very end of the chapter for later use. 
-', " - ~ . 

( 

Tree-Level Eft'eetlve Potentlal 
i 

The supersymmetric extension of Quantum electrodynamics !s a U(l) gauge ~eory" 

with one vector field and two scalar fields Rand S whose Lagrangian is , 

" 

- 37-
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L = f t!% cS e-V 
S + 'R e-ev_R ] + {[ J tlxtfe tt>Ww + m SR 1 + h.c. } 

" -, 

(106) , 

i 
To use the method developed in the previous chapters, one must shift cach superficld 

bya constant superfield. 

R-R'+r 

The constant superfields u, s, r have the follo~ing 8-expansion: 

i rl - i'''f 1 4 .D.f. u = c + '2 (rn+in) - '2 (rn-in) + '2 (1 (D + 2 ) 

r= ar + i Ir 

(107) 

(108) 

(109) 

(110) 

(111) 

_ (112) 

, . These constànt superfields are functions of only spin-D fields because of Lorentz invari

ance. Dropping toe primes, one obtains for the shifted Lagrangian: 

L = J tt:% { [~+S) e'(v+,,) (S+s) + (n+T) eoc(v+u) (R+r)] + 

([ (V+u) ( - OP T) (V+u) - ni (S+s~(O·lI2P+)(R+r)] + h.c.y} 1 (113) 

<- _ One cao read directly from --equ~tion (113) the tree-level effective potential, Ut-~. 

\ 
_! Uo = - J tfe { le ." s + ., e~ r + u (-OP T) ~ - mir rCl) - m 'If ~(8~ } 

1 
1 

.1 
1 

(114) 

- r", 
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Thil 1811 expte .. io~ May be simpHfied wid: th. -~e1P of ";"atioqs of motion. The po~er:-
dal then becomes: _.' _ . -

(115) 

The usual expression for Uo is obtained by using the Wess-Zumino gauge where 
, -

(11~) 

In this case, Uo takes the form 
, J 

(117) 

or, in terms of the component fields, 

(118) 

Before g~ing any further, it would be good to define properly the notation to be 

uscd hercaftér for speéifying the order of perturbation. The subscript will indicate the 

number of loops of the ,graph considered and the superscript will correspond to the 
o 

• 1 

order in the n-expansion. Both will be needed once the renormalization constants are 

introduced. So, we have 
o 

(119) 

with , 

J' 

" 
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' cf.0) ci.1) 1i'-cP) Uo = 0 +,7i 0 + 0 + ... 
, 

cJ.I) 'reR) UI = Ji 1 + 1 + ... 
, -

U2 = rc{) + ... 
t (120) 

Then, the effective potential has the following 1i • expansion: 

cJ.0) r JI) cf.l) ) -2 r.(2) r.(2) .,(2) 
,_ ", U = ° + Ji (uo + 1 + n (uo + ui- + ui ) +... . (hl) 

It is rather easy to see from the previous expression that the cancellation of the 

infini te terms arising from divergent integrals, if any~ will have to take -place betweon 

lenns having identlcal superscripts. 

Now that this point is settled, we may pursue with the derivation of the superpro':' 

pagators for the \ shifted theory. 

rs for Broken SUSY ED 

• 
As stated earlier, a very general method for the calculation of supe~ropagators in 

? 

the case of expliçitly broken supersymmetric tbeories has been developed by Helayël: 
, f . 

Neto et al. [3]. This method may be applied bere. However, tbis will require much 

! care because, in the Wess-Zumino gauge, the superfields V, Sand R are no longer 

superfields as their 8-expansion bas been in sorne way cut off. 

Before, ~îng the actual calculation, il should he ex~ained why the supcrsymmctric 

gauges were discarded. The method of projection operators devised by Helayël-Neto 

requîtes that the breaking terms be decomposed in a 6-cxpansion. In the case ol 

SQED, u has four ten,ns and r, r, sand 8 two each. With 10 many tenns to start with, 

, . 



o 
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the calculation of the superpropagators quickly becomes hardly manageable, not to say 

anything about further calcu1ations with expressions so deri!ed. 

Another method has been tried by Grisaru et al. [4] with a supersymmetric gauge 

choic::e for SQED at one-Ioop order. They were not able to obtain an answer in a 

cloaed form. These two points lead us to choose the Wess--Zumino gauge. 

Once this choice is made, 0rur could work out the propagators of the component 
'. -

fields and place them in the- appropriate O-expansion in order to obtain the superpropa

gators. Alternatively , one can try to stick to the superfield notation aU along ànd use 

Helayël-Neto's ~ethod. This last method will be the one used herein. 

This WBy of doing tbings re,\uires much care as 'truncated'6 superfields are consfd-
\ 

ered. As calculations progr~'ss, the reader will notice what kind of problems may arise 

from this situation. The rest of this work will be restrictedJo the massless case to sim

püfy matters. The quadratic part of the SQED action, equation (113) , in the Wess-

Zumino g~uge is 

So = <t> J ilo { Vwz (c - 20Pf)-Vwz+ 2"SS + 2'RR + 2eu ~S-

2c!u 'RR + 2e (SS' +sS' -rR'-rR1) V wz } (122) 

The constant-superfield u is given by equation (116) , the scalar fields" R and S, 

are of the type given in equatio~ (46) and Vwz is defined in e_9uation (53). The new 

terms are: 

c = ca (fr+ls) 

~ = As + {29fPs + lotil.Ms (123) 

6 Hcre, 'truncated' me ans that sorne terms in the 9-expansion are absent. 



o 

o 

o 

:; 

with 

S = Q. 

r = Q, 
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(124) 

(12S) 

The disappearance of terms in the 6-expansion of these fields cornes from the faet 

that only the ones multiplied by ft will survive the 8-integration. Then, why should one 

bother about these if tbey don't survive after integration? After oU, this is what is usu

ally done in ,such cases. The reason is that the projection -operotors used for deriving 

superpropagators will not have the some effeet if opplied on a 'full' superfield or on a 

truncated one as will be seen in the coming set of equations (141) to (144). Il should 

be noticed that the numb_er of breaking terms- has been seriously re~uced by using this 

gauge. Only 'a.r , ai , D, , a, and (~) ft d are left. 

The next step will be to make the gauge choice for vm which, in the Wess-Zumino 

gauge, is still free as opposed to'the case of supersymmetric gauge fixing where every

thing is set at once. The Lorentz gauge is the best choice for simplifying- calculationa 
t _ 

as vm disconnects complete~y from the rest 1)f the quadratic action. The Lorentz condi-

tion may be stated as 

The action becomes 

" , 

So = (~) J ctn { V WZL (20P J V wu + VL (c - 20 ) YL + 2 'SS;t 2 RR + 

'leu 'SS - 2eu itR + 2e (1S If + iS If - 'fR A - ,1 If) V WZL) 

) 

(126) 

(127) 

f 



o 
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(128) 

(129) 

(130) 

(131) 

Thereon, one may calculate the superpropagators with the method developed in 

chapter III. To do so, equation (127) will be written in a matrix form. This yields an 

action of the form 

1+u 0 0 0 es 
0 1+u '0 0 es 
0 0 1-u 0 -er ' 

0 0 0 1-u -eT 

eS es -eT -er 20PL 

1000 ST f 

" 

+ ( 'ST'ST,RT,RT ) 
0100 ~T 

+ VL (c-20) VL (132) 
0010 RT 
0001 RT 

where 

(133) 

'. t • 

- 1 
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,-

The superpropagators to be derived. from the last \Wo tenns arc quit~ oaay to 

obtain. Indeed, the last one corresponds to a massive gauge field whose propafator in . 

the Landau gauge may be found in most textbooks on Field Theory. 

(134) ,q' 

The second terrn corresponds to a purely scalar Coction and the answer can be foun~ in 

Wess and Bagger [5], with a smaH correction. 

(135) 

1 

The correction lies in the tmncation of the e-expansion of (P2t.2) where the removed 

terms are the ones included in the superpropagator of S A"S A' The O-expansioll of equQ-

tion (135) reads 

(136) 

The expression for ~::Cjs identical. Only the first part o.f equation (132) is now 

left ta evaluate. The best way ta tacIde the problem is to perform independently the 
- . 

calculation for the purely scalar part of the action, then the purely vector iector and 



'. 
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, fmaUy for the scalar-vector part. Using equations of motion, one may write the scalar 

sector of the action as: 

(137) 

with 

(138) 

1 0 0 0 

B= ed 0 1 0 0 
2 0 0 -1 0 (139) 

0 0 0 -1 

and 

-ss 2 
:'$ s -rs 

2 ..2 -ss -::sr ors e $ 

A=O "' 2 ors -rs or; r 
(140) 

ors -sr ..2 or; r 

and l, whiGh is the 4 by 4 identity matrix. 

At this point, it is of the utmost importance to distinguish the double-primed super

fields from the "Û!ll" scalar superfieldso_ The relson lies in the next set of equations. 

(141) 



o 

j 
, ) 
'- / 

o 

f' 

= J lie [~<Î (/' 0> S + SI, (9aO.p)S\,] 

J 10 [ S ~L"S] = J to [ ~ (~ lO) s + ~I, (-(Ju6.p) SI, ] 

J"O[S,lLSAJ= ftO[S<to40)S) 

J 
Thus, with the above relations, the action (137) may be written as 

• 

where the foUowing notation has been introduced : 

and 

-ss 0 -rs 0 
2 0 ss 0 rs 

E=~ 
4 -rs 0 -rr 0 

0 rs 0 rr 

h 
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(142) 

(144) 

(145) 

(146) 

(147) 

When multiplied by il ,the tP A term may be replaced by tP as il does not make 

any difference. Il should also be noticed that ip has replaced tP A in the first term of 

equation (145). By doing this, the contribution of ~he second term of equation (132) 

~ has beeo reincluded in the chiral action. Thus, superpr~pagators calculated with the 

action (145) Will include the part given by equatioo (135). One should then be ~arcful 

not to take tbis contri~ution twice int(J sccount __ 

\, 
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As the 8 (ë)-œmponent singles out in equation (145) , it will he calculated on its 

own. So, one defines an "amputated" l, 

~A = ~ - «PI", 

and gets the following action 

where 

1 0 0 0 

L = 0 -1 0 0 
00 1 0 

00 0-1 

(148) 

(149) 

(150) 

The Il,,, being made out of only one component each , the calculation of their 

superpropagators is similar to the component case ; one has simply to add the proper 

numberôf 9's to the propagators found by usual methods of calculation. The result 

Îs : 

f 1(6) + gl(6) \ 0 0 0 

-r- 0 12(6) + g2(O) 0 0 
â (151) ~II,.·I.,. = (L-E) 0 0 Il (6) + gl (0) 0 

0 0 0 12(0) + g2(O) 
-, 

== - t ~(p,6,6) (L-E)-l. 

and the different (J..fupcti~DS are 

, ... "'~, 
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Il (0) = 292tië1,P 

Cl (8) = - o;~81u6l'P 

12(0) = -2 91u8f P 

2..2 ' 
C2(0) '= 91"202t181'P 
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(152) 

For the calculation of .dJ f ,the procedure will be the one described in chaptcr 
A " , -ru along with the truncation of the O-expansion at the end as do ne before for .c::1'~T' 

First, Iet's define the matrix M as bèing 

A M=B--
2 - (153) 

Then, one adds a term involving the currents to equation (149) and drops the subscript 

" A" for the time bei~8' 

(154) 

The symbol PT represents the matrix coWposed ôf iite projection àperalors P_ and 

p+, 

POO 0 s

p =....L 0 P+ 0 ~ 
T Oln' 0 .0 P_ 

- 0 0 0 P+ 

The .cunent J f is e vector built ûom the four amputated scalar cuneDtl : 

(155) 

(156) 

) 

" 
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]3 

J, = 
JS 

(t57~, 
]'Il J 

JR 

With the above definitions, the generating functional for the amputated scal~r sec

. tor reads 

(158) 

The second derivative of ln Zo with respect to J * ' J, yields the superpropagator: 
1 :: "_ 

wh'erc. 

- -1 X P ( 4M)"1 ..4 L1J 1 = -2 12 { 1 + 8 P } "11 
1 2 

Pl 0 0 0, . 
o P2 0 0 

P=:p.p,= 0 0 rp 0 
1 

o 0 0 ,P2 

• 0 

( . 

(159) 

(160) 

1 
(161) 

- ,-

o 
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The two e ra P.i matricès come from the variational derivatives with respect to chiral 

superfields. The rule for these derivatives may be found in Wess and Bager1s 

book [6]. 

6 ftto jtxJ(r ,U ,9')F(r ,6' ,9') = - 7J4~ F(x.O.i) 6J(x,o,O) 

(162) 1 

Equation (159) is inverted as follows : 

-1 .. 4.. 4 = 2' Xl2 [ IP - P (J M P + P (J M P P (J M P - •.. ] 612 

-1 0 M .. 4 
= 2' Xl2 [ IP - (0 + M) P 9 P] 612 (163) 

This yields the set of superpropagators for the amputated scalar sector which takcs the 

form : 

Pl 0 0 0 A4 0 0 0 

-1 o P2 0 0 M 0 A .. 0 0 
f.2 â~. = 2'X12 0 0 Pl 0 (O/+M) 0 0 A .. 0 AA 

'IF 
0 0 o P2 0 0 0 A4 

Il 

(164) 

where the subscript "A" 1 bas been reincluded to recal1 that the O-expansion has to he 

truncated. The matrix A is formed of the projection opera tors A .. and :A. which have 
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been defined in the previous chapter, more precisely in Table 2 on page 35. The term 
o 

(PZ6t2) .. is given bya simple modification to equation (136). 

(165) 

, 
and (A .. r.2)/.4 is found to be equal to its untruncated version. 

-
"2 24 - 24-+ 114 62 P + 1/4 P °1 02(f0fP + 1/4 P 02 01t:T61·p 

(166) 

Finally, collectÎng ail the constituents of the scala-r: superpropagators, one get~' 

• 
À -1 X {[ p M ('OPo"P\] t. _. C(P,9.8) } 
~f, = '"2 12 - (01 + M) J A 12 4(L-E) _ (i67) 

, " 
where ail the terms have been pteviously defined. The decomposition of L1'f into 

cach of ils constituting co~ponents (~ss, .dRR, ••• ) is straightfo~ard, the o~y t~chni-. 
cal difficulty-being the inversion of the matrices (DI + M) and (L - E). To ease fur-. , 

ther references, the resuIt of this calculation is given at the very end of this chapter in . , 

Table 3 on page 56. 

This compt~tes the most intricate part of this chapter as the remaioing superpropa

gators will be derived quite straightforwardly because we will oot have ta worry about 

the 9 composition of the superfields. This sim~lifies the calculations ~s! welt,Jls' the 
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Il 

understanding of the method.. 

Using the equations of motion in equation (132) , one obtains. a quadratic, action 

- for the vector sector: 

(168) 

-The projection operator AL is formed in the same manner as PL , i.e. 

(169) 

, Both PL and AL will have ta be truncated at the end of the calculation in a way simi-
A . 

lar to the scalar êase. Adding the current term ta equation (168) • one may easily 
, . 
: obtain the logarithm of the- generating funetional Zo tram which one finds 

il = - {(20 - c)P + ed f-- ils - 1 i;, JA }"'I: v wu.Ywu. L 2 ed _ ed L 11 
- (0 + T) (tJ - T) 

? 

(170) 

" 

The technique for inverting in the curly brackct is the samc as th" one used for 
- - - \ 

-, equation (163) and the result 50 derived is 

! 
J 

1 
1 • (171) 1 
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where 

x - .!!! - 2 

and the truncl!ted projection operators are 

. . 
(P2~2)T = t o~~ l- (~ ë1ë·lië" + ~ 0lë201(io1),'p 

S3 

(172) 

(173) 

(174) 

The evaluntion of the scalar-vector sector is most simply done-by starting with the 

action for the vector part, equation (168) , _ and using equations of motion to replace 

one of the V wu/s. This yields 

. , ~a. 

X A '] ·1 (.1 ·1 -1 0
1) (1 ) } <D _ x) _ v e $,$ ," ," + B .p " (175) 

where Band fA are defined in equations (138) and (139) The snme technique is usetl,_ 

over again ta fmd the superpropll-lators: 

Pl + xAt 0 '\ 0 0 

1-; 
~Vf= t 0 Pz +xA, 0 0 1 

0 0 Pl -xl7 0 cl + E..) 
0 0 0 'P2 - XÂ7 -T ' 2 



o 
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o 

(PL - [ i'ls x cl + x) - i Fr x CI,a- x) J 
2p2 

[Cl- i) + 1/2 i ss(p'-+.î) + 112 i 'Pr (l-x) r1 AJ }T 6:2 
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(176) 

The inverse of the terms in the fust parenthesis is easy to obtain with the help of the 

multiplication.table for the projection opera tors , Table 2 on page. 35. 

[Pl + XA7 r1 
= [ Pl + xA7 P2 r1 

= p.2 [ 1 + xA7 r1 

=-1'2 [ 1 - <0 : x) A7 ] 

= P2 - <D: x) A .. (177) 

Once a-gain, the, subscript T in equation (176) means that the "-expansion has to be 

--eut off. For this case, they read 

(178) 

(179) 

/ \ 
AU the results -<lerived in this section are-~c()llected in Table 3 on page 56 Dt the 

end of tbis section. One May check lhat these results,' for the bosonic sector, arc in 
1 

complete agreement with the ones derived with component fields [2]. In thi. aame 
, . 

table, each of the truncated 6-expansions found eartier is given a different name in ,. 

order to avoid confusion in further calculations. 
1 --

'- ~'/, 

\ 
1 



o 

S5 

To conclude this chapter, we would like ta underline'the faet that the technique for 

.. deriving superpropagators worked quite weil, except for the scalar sector, even though 

the fields considered were not su~erfields. Indeed, only at the end of the caiculation, 
, ' 

one bad to worry about this fact by'truncating the 8-expansion in an appropriate way. 

- The 'case of the scalar sector was more involved because of the appearance of purely 

chiraf terms, SS and RR, or antichiral, "SS and 1fR , whose action is defined only 

over d10 or d18 and not over eto . If these terms were absent, this case wou Id be- as 

simple as the others. 

Obviously, aU these calculations would be simplified if the Wess-Zumino gauge 

could be implemented in su ch a manner that the superfield technique would not be too 
<" 

- - -
much affected. It-seems that such a method has been recently devised [7]. With this 

method, Kreuzberger et al. have been able to derive superpropagators for SQED in a 
-

Wess-Zumino like gauge witPt the h'elp of an extended algebra of projection operators 

( 2 projection operators in addition to the original five found in Table 1 on page 22 ) . 

However, it is not evident whether or not this technique would have been a major 

improvemênt here. As the theory was explicitly brpken, an extended basis of project

ion operators, the A's, had to be defined from Pl , P2 ,P+ and P_ • If this new set had -

been applied herein, it would have required an extended basis of projection operators 

of the A-type which would have been much larger and intermediate steps in the deriva

tion of the superpropagators could have been much morl involved. 

Nonetheless, it should be interesting to try this method to rederive the results 
, -

obtained in this chapter. If the method proved to be manageable, it would be a major 

improvement over the method used herein ( especially for the purely scalar sector ), 
, 

first from aD aesthetical point of view and second, for the possibilities it would open 

f~~ the calculation of effective potentials in superspace of more complex theorie~ 

- ~,' 1 _ 
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Table 3: Superpropagators 
, 

Superpropagators for SUSY QED in a Wess-Zumino gauge supplemented with the Lor
entz condition. . ' 

l-Scalar Sector 

2 
ilRR = -1 [ 1 - !?.(p2 _ x) Z] Ap + Bp + (p + a) Cp 

(p~+x) 2 2 (p2 + E..) 
2 

2 
il = (1.) i (p +x) ZA 

ss 4 ,Cl-x) p 

-1 ) il - (- rs ZA 
RS - 4 p 
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The following variables have been introduced: 

- where 

and 

. 2 

b 
e_ 

=-" 2 

z = (p~ - x2) + aCl + x).+.b(p2 - x) ri 
= (pl + w +) (pZ + w _) r' 

B,= ~s! -, 

8',= r.~ 

c 
W=--'Y - 4 



-" 
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2-Vector Sector 

1 1 2 l ~ft ~ 
..1W = { Dp - 2" [ ax(p +x) - bx(p -X) ] Z Ep + (0 - 2 ) Pp } 

2 (p2 + E...) P P 
2 

The foUowing variables have beell introduced: 

3-Scalar-Vector Sector 

o 



c 

! • 

c~, 

( 

J:1.
1J1 

= -; { Hp _ [(ax(l+x) - bX(P2_X» Z + 2x] K } 
.. " 2 C (p2 + X) P 2 (p +-) 

2' 

The following variables have been introduced: 
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Chapter V 

mGHE~ ORDER CORRECflONS TO THE EFFECTIVE 

POTENTIAL 

In this chapter and the next one are concentraled the main results of titis thesis. 

First, in this chapter, the one and two loop order contributions to the effective poten-

tial (UI , U2 ) will be calculated with the help of the superpropagators derived in the 

previous chapter. 

ctlOn, i.e. the ne-Ioop effective potentinl, have nlread 
~ 

ned by Miller [1] by means of a ca ulalion with components. 

as a test for the superfield method applied to S SY gauge th 

this poi t verified, the method will be applied to two-loop order. 

ried ut in the second part of this chapter. 

fmi--ttr:sk will be car-, 

This chapter will be divided into four s.eclions. As mentioned above, the firsl and 

second will be devoted to evaluating the one and two }oop order effective potential. 

These expressions will be in terms of four-momentum integrals which will be calculated 

in the third section. In the last se~tion, the d~rent parts of the effective ~otential will 

be gathered in their analytical form for further use in chapter VI. 

., 

- 60-
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5.1 One-Loop Effective Potential 

c- ) 

.. 

The calculation of the one-Ioop effective potential ff)r SUSY QED resembles 

closely the one already done for the Wess-Zumino model in Chapter III. The contrib

uting graphs are given in Figure 4. There are six of them to start with but only two of 

them need to be evaluate8 because only the auxiliary field tadpole contribution is need

ed when using AFTM, along with the supersymmetric boundary condition, and bec au se 

there are no F-tadpoles: 

(180) 

and similarly for '-;s , R, 1t 

Ss lm VV . ,~ VV VV 

r'~ 0 
»J\ c' 

') . \ ( 

V /-~ 
,J 

--.. -.2, oh' ;, ;., 
T T T T 

V ~V R S 

Figure 4: One-Loop Tadpole Graphs in' SUSY QED 

This leaves us wltllJhe two 1ast graphs whose contributions to the effective action are 
- , 

, 

rl = t J tlp (2fr)4fCpu,) J tlk, J ,te [ ~~UI,e,9) { ~~ - .<:1~ } 't-'2.' ] (181) 

r' 
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As mentioned above, with AFfM, one needs only to know th~ term· corresponding to 

tbe auxiliary field of V, i.e. D . Knowing tbis, one May writc down the one-particlc 

irreducible D tadpole . 

(182}-

With the help of the, expressions for ..115 and ..1Jtq found in Table 3 on page 56, equa-

tian (182) becomes 

Ir would be possible ta start from this expression, ta integrate over d and apply 
- ; 

SUSY boundary condition in arder ta obtain the one-loop effective potentinl. How. 

ever, there is a simpler way to obtain the same result. First, one use~ matrix notativn 
, , 
for""The superpropagators"instead of tbeir explicit version given in Table 3 on page 56. 

So, retaining the notation of equation (163), one may write equation (183) as 

rD,l'(O) = (;) J tk { [(DI + M)
0
l]11 - [(01 + M)0l ]33 ), (184) 

,/ 

Witb the clever-trick used by Miller [1], 

(18S) 

equation (184) can be written in a very simple fashion: 
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r '(0) - (.:!.)ftt" mn [ dt/ml + Ml ] 
D,l - 2 {)d 

(186) 

The abave . quanlity is equal 10 IIftoous Ihe deriva'tive of the ooe-loop effective poleolia! , 

with respect to d. ~us, the integration over d is trivial and the only thing left to do is 

to determine the integration con~tant with help" of the SUSY boundary condition. The 

result is 

1 

42 2 2 42 
VI = (112)!tfkln [ (k -x ) + a (k + x) + b (k -x) ] [k -x ] 

[k2 + !. ] k6 

2 . 

(187) 

This leaves us with the task of performing the inte8ration over the internai four

momentum k. The regularization technique of't Hooft and Veltman [2] will be used to 

work out these integrals. As mentioned in the introductory remarks at the beginning of 

tJ:ùs chapter, this will be done in the third section and the final result given in the next 

one. 

5.2 Two-Loop l!:fI'ective Potentlal 

- , 
At two-Ioop order, the Vacuum Bubble Method may be used, again. Calculations 

are more straightforward th~n fo~ the one-loop case as' no extra integrations ar~ need-
. , . 

ed ,and as everything is done. with superfield 'notation. At tbis order, there ar~ many 

contributing graphs. They are aU listed ih Figure 8 on page 86. 
, - . - 1 

The twe-loop effective potential is ~ven by minus the sum of 3Û these graphs. 
r -

1 
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(188) 

(189) 

(190) 

\ 

The nuinber of graphs to evaluate is quite large but it would be even WOfse if a 

component appr~ach had been considered. Nonetheless, rnany of the se terrna will be 

discarded once the integralÎon over the (J va!iables have been performed. To facilitate 

tbings, each type of graphs will be evaluated separately. Bach contribution will be 

identified with the letter usèd in Figure 8 on page 86. This way, the two-loop effective 

potential is d~fined as ,1" 
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6S 

(191) 

To evaluate UII through Uh , one uses the superpropagators found in Table 3 on 

page S6 , then integrates over etsl cf O2 ( ete for the 1ast two) as weil as over one of ~_ 

the four-momentu~ andofinds : 

2 J A f ~ ( 1) t 2)t (p2 -1 2 -1 a 2 '7P UII = e a fJ d ~ { i (-x [ -x) (q -x) (1 - "2 (p + X)L.- -

, 

+ t (l- x)"l(l- xrl + -\- (aNr-bO)2 cl + WJ-l (il_+ w_r1 
8-y 

, \ 
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1 

~":~:,:') -".;:' J " , , 

where 

w -x 
N=---

w-' +x 

w +x ; 
0=---

w -x 

w -x 
p= -.:..+-

w+ +x 

Q = _w ..... +_+_x 
w+ -x 

U =0 c 

Ud = - i f a"p f ctq { ,{! zP Z' [ a ci + x) (q2 + x) (r-x)"l(l - t (r ~ x) t) 

+ b ci - x) (l :.. x) (r + xr1 (1 - ! (r - x) Z) _L 
2 2 
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(193) 

(194) 

(195) 

, 2 ~ • 

cl + x) (l + x) (r + x) (r - .tri t - t cl- x) (l- x) cr - x) (r + xrl Z 

+ ab t ci - x) cl + x) + cl + x) (q2 - x) ] 
\ 

+ .!.<r,z + !. rI cl + ~ rI z' [i (r + x) + Il' .cr - x) - ~b J } 
2 2 2 . (r _ x) (r + x) 

(196) 

i 
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(6 _ qnqm) 
IJm - 2 q 

[ a(r - xrl (1 - Î cr + x) i) + b(r + xr1 
(1 - ~ (f - x) i) 

4 
/ 

_ IL (f +x)i _ b
2 

(f - x)i+ 2abt] ) 
2 (f _ x) 2 (f + x) 

(197) 

where one e2 has been combined to the constant scalar superfields and written as the 

constants a and b defined in Table 3 on page 56, 

1 [1 - ~ (p' +X) z" 1 b 2 z! 

1 
2 [1 - - (p - x) ] 

V,= 3; J ttp + 
2 (198) 

(p2 _ x) . (l+x) 

V =0 , (199) .. 
In the first five terms, U. through U. , " 1 " has been kept as a short writing. 

-

l=p+q (200) 

. ' AU the different terms in equation (192) to equation (198) may bè put in such a 

form that only two types of integrals will ultimately need to be evaluatedo. Theie typical 

integrals tak~ the form 

l(a,b,c) = J ,fp J tt~ [ cl + a) (r :-b) (q2 ;_ c) ] (201) 

and 
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1 r 

J(a,b) = jt/p Jt/lJ ~-)~[ cl + a) (q2 + b) ] 
(202) 

. In terms of the se two basic integrals, the different parts of the two-loop effective 

potential U become : 

2 6x2 )J ceS 5 si U = e {- (1 + - (-,-) - - J(x,x) - - J(-x,-x) - - J(w ,w )-
a 0 (? 1e 2 16 16 4 2 t' + + • 'Y 

-

si J(w ,w ) _ Sab J(w ,w ) + [ (aP + bQ) + (iP-2ab + b
2
Q) + 2ab~ + 

4l - - Sr2 + - &y Se")' c")''' 

u(aP_bQ)2 ] J(w ,~) + [ -(aN + bOl _ (a
2
N-2ab + b2

0) + 2abw -, + (aN - bOt J 
8")'2 + 2 8")' Be")') c-l 8-./ 

c 3 b-) C 3 a ) c 1 2w + 2 • b2) 
J(w_'ï) + (7 + 2ë)J(x'ï) + (7 + 2c J(-xiï) + 8'Y (1 + c )(a N - Zab + 0 

cc) 1 2w _) 2 2) CC) a ( X) /le cc) 
1('2'W-'2 - 8'Y (1 + c (a P - 2ab + b Q l(ï'w+,z - '2 1 + ë l'-X'I 

w -i ' 
+ , ;2")' ,l(x,w +,x) + (x + ~) 1(-x,c1~,·x) + (-x + i) l(x,c/2,x) -

c2 

ab(- - 4w W +) ;- '!l) 

~ ci - I(w ,O,w +) + k - L) 1(0,c/2,0) + :a. l(c/2,c/2,c/2) -
c - 8 c' c 

, ' 
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2 2 2 2 
U = e2 { (a N - 2ab + b 0) ~(E. w E.) _ (a P - 2ab + b Q) ~(E. w E.) + 

il 4.,. 2' -' 2 41 2' +' 2 

(w
2 -il 2 2 
~.l (aN-bD) l(w _,w _,w J - [ (aw + -x) (w _ -x)(w + + 2w _ + 3x) -

(bw+ + xi(w_ +x)(w+ + 2w_ -3x) - 4abx(w! +_~w+w_ -3i) ] (128x13rl l(w+,w_,w+) + 

[ (aw __ X)2(W + -x)(w _ + 2w + + 3x) - (bw _ + X)2(w + + x)(w _ + 2w + -3x) -

, 4abx(w: + 2w+w_ -3i) ] (128xlr1 I(w_,w+,wJ} 
\ , 
1 

\ 

2 - 2 (w + E.)2 
J(w E..) _ (a N - 2ab + b m. [ 8 + 4 + 2 ] lie!. w E..) + 

-' 2 32')' c2 2' -~ 2 

2 2 (w + E..)2 
(G P - 2ab + b Q) [8 + 4 - 2 ] I(E..,w ,E.) 

321 c2 -~ 2 + 2 / 

(204) 
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,d" , J ~ ... , '" > --
, j"'., .~ 

-
J J . 

(--t-)(ip - 2ab,+ b
2
Q)I(O,w+,O) ... (--r-)(a2N - 2ab + b20) I(O,w_,O) } 

&~ &~ 

3 ( c) 3 c) - .J -x,- - - J(x,- } 
8 2 8 2 

To obtain these results, the on-shell value of the auxiliary field has been used. 

d - e(rr - ss) - b - - -a 2 

This yields 

1 X _ e(b - a) 
- 2 

(20S) 

(206) 

(207) 

(208) 

As both a and b are semi-positive definite, d may only exist between certain Iimits :I_~ ~ 

(209) 

where 

c = 2 (a +b) (210) 
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The four constituent terms of the two-Ioop effectivê potential will be added toge th

er once the integrals 1 and] will have been evaluated. This will be done in the coming 

section. 

5.3 Evaluation or the Divergent Integrais-

The problem of having to solve divergent integrals is as old as the Feynman graphs 

themselves. Many methods have been used to ci~cumven( this difficulty. AlI of them 
p-

have the same goal, that is to isolate the infinite part in order to remove it from the \ 

original Lagrangian within an appropriate renormalization seheme. One of these meth

ods is the dimensional regularization of 't Hooft and Veltman [2]. This method which 

is simple to use yields an infinite part factorized as a residue at somé pole. Moreover, 

infrared divergenciés are handled without additional problems. For the se reasons: this 

technique will be used to evaluate the divergent integrals found in the prev;ous see-

tions. 

5.3.1 Dimensional Regularization , 

Dimensional regularization is so broadly usedonowadays that it can be found in 

O\ost of the reeent textbooks on field theory [3]. The ide a behind this lheory is lhat 

FeynmaniJ,tegrals conv"rge if 'the size of spae~time dimension considered, n, is small 

enough. Hence, one may evaluate thzse integrals in n dimensions and at the end 

retum to 4 dimensions in an appropriate way. There, infinities will show up as finite 

residues at poles in (n-4). To make things clearer, a m>ical integral in the eV81~ation 

of Feynman diagrams will he worked out. 
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, 

(211) 

The arbitrary mass term l' is introduced to keep the overall dimension of A 

unchanged. The 8's are angles in the n-space and should not be confused with Grass-

mann variables defined earlier. 
, 

The integrai A as defined in equation (211) is finite for a number of dimensions Il 

sm aller th8n two times n, the exponenl oi the parenthesis. The angular illtegrlltion is 

easy to perform with the help of the relation 

r(l + !!:..) 
2 2 

r(l + ~) 
(212). 

The properties of Euler Gamma functions may be found in Appendix A. The remain

ing integral over q can be done with the help of the standard result :. 

(213) 

With these two expressions, one finds ~at the integrai A is equal to : 
, 

(214) 

1 
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For the: case a>!!. , A is finite and one has only to replace,n by 4 to obtain the 
2 

final re!ult .. However, equation (214) is still a valid representation of A for a< ~ as 

long as (a - ~) is not equal to a nonpositive integer. This is the idea behind dimen-

il , f 
sion~l regularization. The technique is to ta~ an analytic continuation of these inte-

grais to complex values o! Il where it can be evaluated. The inghiti~s'-reappear at the 

end as poles in th<lJ limit of n going to 4. For example, for the case. a = l , equation 
'. ~ 

(214) becomes , 

A (4 )-2r( 1 +;) 2e 2(1 - t) = 11' - (pm 

2 2 
ni 1 ( 1 ... 211' = -2 [- + 1 - l' ) + (-2) (1 - 21' + 'Y + -6 ) + ... ] (411") (e e e 

2 2 2 

(
ni (2 nt 

[ 1 - ( ln --2) + - ln (--2 ) + ... ] 
411'1' 2 471'p ... 

m2 1 nl 2 = (-) [- - + ( 1 - r + In( --) ) + 0«( ) ] 
'471' ( e 4 2 71'JJ 

(215) 

where '7. is Euler's constant and where n has been expressep as (4 - 2t) close to 4 . 
. 

Results from 'Appendix A nave been used to obtain equation (215) as well as the fol-

d lowing relation: 

( dM 2 l 
_a =e =1+dna+t1na+ ... (216) 

, \ 
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The infiniti part of the integral A has been factorizcd as the residue (-4m )2 at the pole 
11' r 

! where the limit l going to zero is understood. With an approprillte renormllliution 
( , 

scheme, aU these poles should cancel and the limit give a finite result. 

The lypicaJ one-Joop integrais have been caicuJated in the original papcr of 

't Hooft and Veltman, [2], and sorne are tabuted in the first appendix. -They will 

serve as the building blocks in the evalufion of the forthcoming integrals. 

5.3.2 One-Loop Intep'als 

The integrals found in the evaluation of the one-loop effective potentia~ 

(181), are all of the same type, i.e. 'f 

, 
(217) 

where a may take the values x , -x , w + ' W _ and O." Equation (217) may be written 8S 
• 

Il = J da J tlp' 2 1 
(p + a) 

(218) 

The four-mornentum integral has now exactly the form found in Appendix A and its • 

solution is 

11 = Jda[ ~f(-1 +()(~fC] 
(411') 47r1' 

(219) 

a2 1 Il-l + ()(...!!.-2 ft. 
= (411)2 (2 - () 4,,1' 
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Hence, for a = 0 , the integral vanishes but fo~ w _ , there is ab imaginary part as 

well as for a = x when x is negative and fOf a = -x when x is positive. This is a genu

ine effect which will be discussed in subsection 5.3.4. 

5.3.3 Two-Loop Integrais (+ 

. 
ln the case of the two-loop effective pofential, there are two types of integral to be 

evaluated. The first one, 

J(a,b) = J ttp J rI~f 2 ' 1 2 
(p + a)(ti + b) 

(220) 

is simple enough as the a,nswer is given by the multiplication of two one-loop integrals. 

J(a,b) = r(-l + c} ab 
(4'n-)" ( --!L)' ( ....È.-r 

41r/} 41r,l 

(221) 

The other fype of integral, I(a,b:c), is far more difficult to evaluate. For tms case, 
" . 

it will be necessary to use Feyl~man parameters for folding denominators into one. For _ 

the case of two denominators, Feynman's formula reads 

1 _ J\i + /J _ ""L ri ~ JI dx Xi-I (1_"'~J.1 
D~ ~ - r(i) r(j) 0 - [xD! + (1-x)D

2
] I+} 

(222) 

whcre i and j do Dot have to 1 be integers. Thus, let us" rewrite the expression 'for 

I(a,b,c). --. 

.. ~ t 
" , 

/' " 
" 

, 
.-
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• 
I(a,b,c) = (jl)4-ft J tffl J d"lJ 2 ,2 1 2 

Cp + a)(t + b)(q + c) 
(223) 

with 1 still defined as 

l=p + q (224) 

~ With the judicious use of the expression 

(225) 

in equation (223), one may prevent the ultraviolet divergences to find their WB,! into the 
r 

parametric integrals [4]. This yields 

(226) 

" The best way to evaluate this expression is to introduce Feynman parameters one Dt a 

time, starting with the mo~t divergent four-momentum integral. Let us start with the 

first terrn of equation (226). 

, 
, = J d-J tfp 1 f "lJ 1 _ . 

.,~ ci + a)2 -[ q2 + 'jcl + 2p.q + b) + (l .. y)c J Z . " . ' 
\ 

- \ ~' .. '" 

) 
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1 1 (( (-1 
= -Lf'(2€) J dy J dz y (l-y) :(1-%) . (227) 
. (4"i' 0 0 [yz(l-y)a + (l-z)yb + (l-y){l-z)c ]2f 

. 
Obviously, the third term of equatioD (226fwill give a similar result with a and c 

interchanged. For the second term, one siniply has to make a change of variable 

( p --+ p-q, 1 - p, q -+ q ,) to retrieve the same answe~ as before with a and b inter-
l ' 

changed. ! 
This leaves us with the integratiOli" over the two Feynman parameters, y and z. 

Integrating first over z, one uses the faet that 

(l - :)'-1 =.:!. d( 1 - zt 
e dz 

(228) 

. 
to obtain with partial integration -

( 

" 

~ J dy l(l-y)f [ 1 - € - 2dna - 2tlny - 2dn(1-y) + O(Ô J (229) 

1 2) = - [ 1 + € ..... 2 € Ina + O(€ ] 
t: 

With this rcsult, the integral I(Il,b,c) may be written as 

" .. ' 

/(a.b,c) =----:- (lel\~) . -1 .. 2 ~ { (1 + €)(a + b + c) -
-" (411') - (€ -, 

_alna + blnb + clnc] + o(i) } (230) 

With the relations of Appendix A, this finally beeomes 

, . 
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2 

l(a,b,c) = ...:!..- { [-\ +; + 3 + "'6 ) ](a + b + c) -
(4",) 2€ (. " 

(2 + .!) [aln.!. + bln.,!. + clnL ] + <-21 )0(<<) } , M M M « (231) 

where. 

2 -1. 
M = 41(1-' e / (232) 

This last term implies that the integrals over Feynman pnrameters should have 

been carried nt order (.2. so that the finite part of I(a,b,e) be fully determined. The 

problem is that this caleulation is quite involved and that the result cannot be p~lt in 

closed form [5] [6] [7] . In the ,th.ree ref~ren~es just quoted, three similor types of 

approximation wete used for the fiuite pa~t of I(a,b,c). Bach of these reproduccs the 

correct limiting cases) such as a = b = c ; where the finite part may be found exactly. 

Choosing the method of Mahanthappa and Sher [7], one obtains for I(a,b,e) a form' 

which the Buthors claÎm to be numerically good within Il 10% margin of crror. 

2 .. 
l(a,b,e>. = ...:!..- { [(~) + (f-) + 3 + ~) ] (a + b \. c)-

(411') 2, (. 

(3 + .• !) [ aln17 + bln ~ + c'n.li'] . + 3 [ a1n2"Îi + 

bln2 ~ + cln
2..E..] + OCt) } 

M , M 
, ,(233) \ 

,l 
- \ 

If this calculation were to be pursued up to three-l()()p order, the remainder of 

:-equation (233) wouid have to be put down under one 'form or another in order to can-
. 0' 

cel the new infinities which would arise. 
ï 

r , , 
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Like in, the case of the one-loop integrels, a, band c may become negative and 

, give nse ta an imaginary part. Th~ problem will now he discussed. 

5.3.4 Negative Mass Terms in Feynman integrais 

_J~athematically, the fact of having a negative mass teem in a Feynman integral 

presents very little difficulty. Let's consider the simplest case. In Minkowski space, we

have 

'. 
1 = J tp 2 12 (p - m - ia) 

(134) 

In the complex pO-plane, there are two possible pales, one along each of the 
1 

cunes dràwn in Figure 5 on page 80 and of value (±( J p'2.,_ m2 
- ;Q-)). If these 

poles are real, the contour of inte~ratio~ is t~e one giv~~ in Figure 6 on p~ 80 and' 

one may r~pl,e 

OC! lloo' 

f 0 'J 0 dp ..... - dp (235) 
-00 -loo • 

/ 
This corresponds ta a Wick rotation and is equivalent ta going from a Minkowski 

t· '\1 

space ta an Euclidian space. For the (:ase where the poles I;lre purely imaginary, it is 

still possible ta make a Wick-type- rotation in the complex plane but the contour is 

slightly different as shawn in Figure 7 on page 81. The way the contour is drawn allows 

us to perform the rotation without crossing any singularities.' However, the integration ' 

over the two extra half-circles w~ll result in an imaginary part. f-

~ 

o • 



, ' 

o 

o 

o 

, " ~ .. ,LJ .! JIU. 

~ - -
'"'If---- ,-~=-~-=---=--"".-..".... .... ---- '-- . 

-w-iot 

; 

Figure 5: Poles in the complex pO-plane 

c 

w+itll: Re pO 
--------------~~.--~---+----~~~~--------------

. Figure 6: 

-w-1oc 

Contour ofllllegrvtion fC?f the case ,wh~fe the poles are rcot. 
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G-arrying out a1l the calculations in d~tails, one arrives at the conclusi,on that 'hr 
inlegrals labulated in Appendix A' are valid even with ft negative argumenl, the real 

and imaginary part being automatically and correctly included. 

/ . , 

; 

'-
~:r.L~i;;.".' ,.-.;;,..'l!'_"--.J.-~_"--,L::~ __ , _ 

\ 

- t 
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Contour of integtatioll for the case where the poles are imagi
nary 
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The terrn ;0 ( 0 < < 1 ) ~hich is usually dropped once in Euclidian space should 

be kept in the case of a negative argument in order to determine the sign oL the imagi-

nary part as Log(-l) cO,uld be eitper plus ~nus one: even though io was not explic-
( 

itly kept in expressions fot I(a,b,c) and J(a,b), it should be ~ssumed th~t iUs under-

stôod. This is very important from the physical point of view because the imaginary 

part of the effective potential is interpreled as being proportional to the decay ~rob

ability per unit time per unit volume of the system [8]. Coleman and Weinberg [9] 

• 
also studied this phenomenon in their work on effective potential and concluded that 

the vacuum b'ecomes kinematicnlly unstable because of the presence of a negative mass 

terrn. Thus, the system starts to decay. 

In such a case, one must replace U by Re(U) in the relations which define physical 

~uantities such as the set of equations (32) to (34) because the Lagrangian must be 

real. Moreov(!" if infinities arise in the imaginary part, they will have to cancel each 

other as the renormalization constants must also be real since they appear in the renor

malized Lagrangian. 
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ADalytieal Form or the Etfeethe Potential 

n 
This section will çonsist of only the one and two loop effective potential written 

down as an expansion in the parameter ('. The limit f goes to zero is undentood and 

left aside until the theory is renormalized. 
\-

So, using equation (219) along with the resulls of Appendix A, the onc-loop effoc-

tive potential given by cquation (187) takes the fonu 

(236) 

where the dependence on t~e coupling constant e is hidden in the different paramotorl 

.:c, c, w-+ and w _ defined previously. 
o 

For thè two-Ioop effective potenti~l, ~.ne uses equation (221) and equation (231} in 

the expressions U., Uli , U. and U, given in .quations (203) through (206) and obtains 

J, 

Je2 Je' 21 2 Mf Il ,,_2 
(_ + 3x2 ___ ....!:!...) lnl...::.l] - (- +.=L) lnl..Ll-

16 64'Y 16-y M 32 2 2M 

~2 În/..!../- (l1e
1 

+ 5lx
2 

+ 11e' + 51d) Inl~i-
2 M 64 4 ZS6y 16-y M 

(l1C
2 + sli _ Ile' _ std) 1n1~1 _ ( 15c

2 
_ 2~ ) Jn21LI + 

64 4 256r 16-)- M _ 64 8 2M 

, fi ' -
-'J...-

, 
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, , 

2 7 2 :4 2 5ciw w 7 2 (L. + 13 x _ -E- _ Uex _ -) 1021-=-1 + (...f.... _ 
128 8 512,. 2,. 16--/ M 64 

si 7cl 
ci ) cil w + 1 ( 7c

2 si 7c
3 

cx
2 

) 1 c 1- 1 w - 1 -+-+- Inl- In- - ------- ln-m-
·8 25&y 2,. 2M M 64 8 256.,. 2'Y 2M M 

+ i Inl..!.llnl~MI + 15abx
2 

101 w,+ Ilnl w -1 ] 
M 2 8')'2 M M 

2 2 3 2 

-t1r [(.!.)(~ - ~ + ~ +~) + ax2 lnl..!.1 + 
(32 8 128,., 16')' M 

2 -:1_2 7 3 2 S b 2 W (1E... + ~ _ --S.. _ E:..) Jnl_C_1 + 1 a x loi-±" 1 
64 ~ 8 256')' 2,. 0 2M '-. 8l M 

2 \137 2 3 2 W - Il 2 33x2 
+(,S + X _ ~ _ Uex )lol.....::.i _ (--L + __ 

64 4 256.,. ,. MI 64 8 

(231) 

One may verify th al the eXp'ression found fo.r U2 respects at eaçh order in {the 

SUSY boundary condition :-_~ 

(238) 

The same is true Itor Ut but tbis is no surprise as the ~uDdary condition was used to , 
... 

derive it. It is recalled that the finite part of U2 at order l is ooly 8",approXÏInatian 

as explained in section S.3.3. 

/ 
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These expressions have now to be renormalized in order to obtain a finite ( and 

o ___ ~ "T_ 

final) form of the êllective 'potential up to two-loop order. This will he donc in the 

\ 
next chapter. 
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Cbapter VI 

RENORMAUZATION 

The infinities arising in the expressions for the one and two loop order effective 

potential indicate the need of an appropriate renormalization scheme. The simplest 

way this may be' done is to int;oduce renormalization constants in the original Lagr~n-

gian and reformulates Feynman rules in terms of the renormalizedemeters. This 

way, counterterms are automatically included and divergences will be removed within a 

minimal subtraction scheme. 

Once a finite expression for the 'effective potef!tial 'is found, it will be possible to , 
derive the renormalized coupling constant and th'e ,B-function for SUSY QED. 

6.1 R!DonnaUzation scheme 

Looking back at the original SUSY QED Lagrangian, one realizes that three dif-, , 

. ferent renormalization constants need to be introduced: one for the vector field, one 

for the chiral fields and one for the coupling const~nt .. 

• I, 

Z" = 1 + If ~1> + If z?) + ... 

Z ~ = 1 + If rI> + ... .. c, 

j 

... 

, (239) 

(24p) 

(241) 

-

l ' 
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Because of the structure of the effective potential at tree-Ievel, only z!.;> will he 

needed to make the theory finÎte at two--Ioop order. This will become evident later. 
t!' 

From thé renormalized Lagrangian, one may calculate the new superpropagators, 

change the Feynman roles and caleulate V aIl over again. But once the two first stcps 

are done, one realizes that the expressions found up to now are valid if the following 

. definitions are used instead of the old ones. 

c = i (ss + rr) Z Z = 4i z z cr e. c ~ c 

" 
v 

\ 

(242) 

/ (243) 

From these two equations, one may deduce that w + and w _ have now the following 

expansion in 'Fi: 

'-.. 
32, 

[fil + r? + k.. +.!!l....] ,l(1 +.!:.) 
w + = i((1 + G) { 1 + 1iz!1) ' 2 1 + 1i ~11 '2 + 

«(1 + 'Y) (a + "Y) 

, ,,_3 5 2 

2cr
2 + 2r/ + ~ + .=!!L. 

li Z(1) l 1y} 
e 2 

(a + .,,) 
(244) .. 

".. , 

(245) \ 

Witb these seven equations, one can now wor~ out the 1i-expan.ion or ~ac,. loop 

order of the effective potential. The task is tedious but Itraightforward. The relUlt is # 

. " 

.../J~ 
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f 

.9{) 
'" CI 

d:.0) - 1-\ 
(246) ° - 2 

d:.1) = t l ) t.. 
o v 2 (247) 

d:.2) _ z(%) tf 
o - v 2 (248) 

- 4!) 

cf.2) 
l = U1 (249) 

'. 

with U2 giyen in equation (237) ~nd 

cf.l)_ i 1 2 2 Il. I-.!L 2 120'1 ( )2 
1 - - 7i( 16~ ) { (-;-)(27] ) + 37] - 2 ln 2M 1 + 40' ln "if - u--y 

(250) 

, 

,p) == -1f ( i ')21. { (1. +!) [(39
2
) Z(I) + 2Z(I) ~ (~)z(1)] + 

1 16~ 4 f 2 2"" c 2 e 

2 2 2 2 2, 2 
. (.!..) [ (~)Z(I) + (!L )Z(1) + (2!L. )z<l)] _' Z(1) [ !L Inl...!L 1 + !L 

,; 6 4 v OZ c 4 e "2 2M 2 

2 ) , • 20' 
(1 +.!!:.) Inl!..±..l.1 +!L (1- .!!:.) Inl~l] _ Z(I) ( - si Inl-I + 

r M 2. "( MC' M 

232 2 
(4i + !L ,.. 411 _ 2:!!l..) Inl.!..=.I1 + (40'2,+ IL + 

2 "( r M 2 . 
3 2 2 ') 1 

~ + ~) Inl.!..±.21 ]_Z<1) (.!L) Inl.JLl- si 10120' 1 
"'1 "( M • 2 2M M 

3 2 ' • 

+ (4i + ,l-~ - ~) Inf~1 + (4i +,,2 + 
,"( 2"( M 

. . 
o 

/ 
• • 

" . 
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1 

C' 

" 

#~ _' ( .. ~ 4b ; ..... t9~< (t 

2 3 2 ' " 

(2tl + IL _ 20' - ~) ( In\!!..=..11 - 2 Inl!!..::..l.1) + 
,4 "("( M M 

/r 
~.' 

2. 2. 2. f 3 1 
_ i7r [_ ZU) (12- _ ~) _ Z(l) (4112. + !L _ 40' _~) 

• 4 2r c 2 l' 'Y 

2 3 1 
_ z(1) (40'2. + ~ _ 40' _ ~) + { Z(I) (rllnl...!l....1 + 

e . 4 r 41' v 2M 

322 
~ -~) (Inl~l- 1» +! Z(I) (!L( Inl...!l....l-l) + 
r "( M ' 4 2M 

3 2. 
(40'2 + ,l-~ - ~) ( Inl.!..=...ll- 1) )] 

r 21' M 

2 2 2. 3 - i [ l Z<l) (.!L _ ~) + ( Z(I) (2i + !L _ k _ 
" 16 4.., c 4 r • 

~ 2 3 1 
!!!L) +t il) (20'2 + .!L _ k.. _ ~)] } 
l' e 2 r 4")' 

3! 

.. 91 

(251) 

The extra el in the logarithmic tenns have been absorbed in the, 1S2 tcrm understood 

in M. 

The renormalization constants will serve to eliminatc the divergent tcrm. a. well 

as real constant terms in a modified minimal subtraction .cheme. This way, thi hi"'-
r , 

cr order correctio~ lo the potential are expressed as funçtiona of logarithms. 
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Equatlng tenns of lame order in n, oné fust gelr 
~- . 

(252) 

which meaDS> that 

(253) 

As pointed out at the beginning of this section, only ~1) is determined at first order in 

n. Both ~1) and ~1) are determined at second order in,n along with z<;). This is due 
• c 

-- to the structure of the tree-Ievel potential which depends only on d 6~t not on the chiral 

fields nor the coupling constant. This way ~n) always appears at one order lower in 7ï 

than the two other renorrnalization. constants. 

At next order in n, ~he terms in • l ln( ... ) must first be solved to 'obtain ~1) and 
( \ 

Z!1). Then, the se values _for the first order renormalization constants will he used to 

determine ~~). 

Gathering ~ll the' terms in 110( ... ) !rom r,f) and u<,.2), one gets five differ~nt 
l . 

, 0 

relations between the Z's- of whicb .,nly two are linearly independent, 
~ ~ ... 

. ' 
(254) 1 

The values of ~l) an~ ~l) are readily obJained. ' T j~ 

, ç 

. , 
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(255) 

(256) 

/ 

Now that aU of the ,fr;t arder const~nts are determined, thejr value may he uscd 

to get ~2) which appears in terms of order -\-' land (o. The calculation is rather 
• f f 

simple and gives 

• 2 

z<2) = (.!..)" [~ _ B. _1. (k. + 87) J 
v 471" 16l & 8 6 2 

(257) 

., At second order in 1ï, there is only one equation to determine the constant parts 

of l1;,2), Z~l) and Z!l). Bence, for the sake of simplicity, the .whole constant part has 

been put into '42
). This minimizes the number of changes to be done to the logarithmic 

part of the effective potential. To resume, let's write down the complete expressions .. 
for the different renormalization constants. 

With tbese expressions, the effective potential is cured from aU it. diversonçe. up 
/ 

/ 

to 1f ory' inclu~ the ones in 

// 
! In( ••• ) as weU as the imapary one. : 
€ 
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, ' 

(e ) 1 { - 3.,. _ ~ + + 21.,." } = 2 2 2 *2 2 

J.61r 2 32, l' . 16,-

Cl) { 2 [ 4Z(l) + 47<1)] + 2 [ 1 z<l) + .! t l ) .; 1. z<l) ] + 
4 (1 c te '7 4 v 2 C Co 4 e e 

2 
3 [ 4Z<1) + 4Z<1)] +.!!!L [_ 1. z<l) _ ZZ<!) _ i z<l)] } 

(1 c e r 2" c 4 e 

(261) 

One may verify that, with the values found for the different Z(1),s, the above e'fuality 

holds true. At this point, the Iirnit ( going to zero may safely be taken. The final 

expression for the renormalized effective potential up to two-Ioop order is 

,1 ( )2 1 (1 - 'YI . [1 2 r ~)2]} ( + - (1 - 7 ln ----.. -. -" + \(1 - r 4- M 4 

~, ..2 2 e" 5 2 3 2 12(1 9 2 I..!LI + nt (-) {(- (1' + - '7) ln -1 - -" ln -411' 2, 8 M 8 2M 

. . , 
, ' 

[ 5 2 125 2 + (1 (5 2 155 2) + 5 2 (1 + 'Y] 1 21 (1 + -VI 
-(1 - -" - -(1 --fI (1'" ~ n.::......;-s..-
8 32 ~ r 8 32 16-l M 

[ 5 -2 125 2 (1 (5 2 155 2) + 5 2 (1 - 'Y ] 1 21 (1 - -VI + 
-(1 --" -- -(1 --fI (1" ~ n ~ 
8 32 r 8 32 Url M 

-

[1 i -;.... 2..,.,2 + !!... (1. (12 + 1'72
)] lnl~llnl~1 + 

__ ,4 32 l' 4 2 M M 
1 

( 1 (12 _ 2.. ,.,2 _ !!... (1. i + ! ,.,2)] lnl m Ilnl.!..::.!.1 + 
4 32 1'4 2 M M 

t' rllnlm-Ilnl ~ 1 + ~ «(12 - t ,,2)( ~)2 lnl (1 : lllni fT; 11 

\ 

, , \ 

, , 
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_ Î7r [55 2 lnl..!L1 + li abrllnl.!..±.ll _ (Î- 2 _' ~ 2_ 
32 '1 2M 34 2 M 8 fT 32 '1 

'Y 

5 3'5 2 7 3 3 2 
- !!- + ~ .!!1....) Inl!:..:::..11 + (- (,2" + - 'fI2 - 1. !!... _la Inik

M 
l' 

8 'Y 32 "'1 M 4 32 4 'Y 2 'Y 
~ 

3 2 5 2 9 2 5 (1' 9 !!!L) --(1' --'1 +--+- ] 
4 4 4 "'1 4 ''''1 

• 2 2 3 2 22 
_ 1r2 [ _ 5(1' + 555'1 + 5u _ 145(1''7 + k.!L ] } 

8 128 8"'1 32"'1 1&l 
(262) 

.. 

It should b~ noticed that the constant part of U coming from the square of the imagi· 

nary part has not b~en removed during renormalization as for the rest of the constants. 

The reaso~ is that 'cnly terms in '12 could be absorbed in the renormalization constants 

bë"caus~ of the structure of the terms involved. Moreover, this part of the potential 
, , 

originales from-the In2 terms which are just ap"approximation. Hence, il is preferable 

to keep it away from the expressions for the renormalizatioll constants which are 

exact. 

Graphs of the effective potential as a function of fi for different (1 are given in 

Appendix B. It may be seen that for small (1 , ail the contributions to ,ne potential 

have the forrn of parabolas and that the sum of them all is positive definite as should 

be for a supersymmetric potential. For higher values of (1 , the diffetenl contributions 

develop secondary extrema but the sum is still a positive definite parabola with ils min

imum at fj = O. This is due to the fact that the tree-level contribution dominatcs ovcr 1 

the loop corrections by an appreciable factor. 

, 
The first contribution to the imaginary part of U cornes from the term of order 1l in 

o ,,~ .. 

the perturbation expansion. ft has mueh the form of a parabola. The maximum value 

of Ulm is attained for ,,= cr ( U<t!!(cr=fI,'1) ~ ~ (ml». If the value of the fine-

, . 
l 

1 
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structure constant. is uscd for the coupling cons~nt, it is easy to see that the im~ginaryr' 

part of the potential is quite small compd~ed ta the real part ( about two or<lers of' 
• , . 

masnitude ) ; this is quite- normal as the imaginary part of U' is due solely to radiative 

.éorrections. Thus, even if there is some instability away from the minimum, the system 

~may still exist in that state for same time. 

6.2 Konning CoupUn, Constant 

In this section, it will be shown that the supersymmetric extension of quantum elec

trodynamics displays the same long fange behaviour as QED by determining its 
1 

,B-fuftction. To \ do so, the renannalized coupling constant will be derived from the 

• effective potential and fram il, the ,B-function and the running coupling constant. 

The tree-Ievel potential Uo may be expressed in t~I1HS of "with the help of equa-, 
, 

tion (243). _ It gives 

• JO) _ irl 
Uô - 2 

.. 
" " 

. (263) 

Thus, as explained in Chapter n, o~e may de&ne the renormalized coupling constant 
1 

'lis t~e second derivatiy~ of the effective pot~ntial with respect to "at the minimum of . 
~ 

the potential (". = 0). However, there will be logarithmic singularities at this point. 

Hence, the renarmalized caupling constant must he det'ined away fram it [1] at sorne 

point "m'. Along the u-uis,' aoy Point may be chosen as long as il is grealer ,or equal 

to ~e one chosen far -f1 so lhat eqlo1ation (209) he respected. Th~~J th: definitian for 
~ 

the renarmalized coupling constant is • 

, , 

• 
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"" '2 3 
= i { 1 + H(..!..)1 ( ! + 9m + 1. Inl..!?!...1 + ! (1 _ .!!.....) lnl n + ~ 1 + ~ 

4.. 4 16!Y 4 2M 8 .y ~ M 

o • 

" -' 
-'-' 2. 2. 4 12. 24 6 

llnl2n "nl~r + 15 (2n _ 3m + 27m _ 1Sn m + 9n m _ 9m ) 
2 M 2M 32.y .y &fI4 21]14 21]1 8IlI 

Inl!!i!.llnl.!!...=.!l- ..L Inl~l( Inl" + ~ 1 + lnl.!!...::.!!) + 
M M16M M,M 

!!. (1 _"15m
2 

_ 21i + 189n
2
m2. .;. ~) Inll!!.1 ( Inl!!..±Jt1 - lnl.!!..=..!\) _ 

!Ii lW lW 641t·· 32,,4 M M M 

o 3 2.' 4 2 • 
135n m _ 3915nm + 45n III ») } 
~ 51.2V' 3111 

(264) 

1 
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The constant !P corresponds ta "Y , al defined in Table 3 on page 56, evaluated at 
J: 

(cr-n,,,.m). '" 

(265) 

Equation (264) 'may be used to re&xpress the effective potential in terms of the renor
i-

malized coupling Constant. 

/ 
/ 

U " 1 2 2 + ( 1f ) " [ • ,(1) , 1 #',(1) 2 ) + == '2 e, ,., 161" e, U' - 2" U' '1 

(266) 

The hat over U means taking the real part of the second derivative with respect to 17 

evaluated at cr-n, q-m with n~m. At one-Ioop order, this yields an expression for 

the effective potential whiè1t\is free from the arbitrary constant M. , . 

222 2 
U= 1/2i,.,2 + (~)e" {-3.!L + 9m - (2L)lnl.!L1 +!!... (Inl~l +lnl~l)-

r 1611"' 8 g} 8 Ijf 2 n ,+.'fI n - !fi 
, 

2' 3 2 
1!L (Inl~1 + Inl~1) _ Cf'l! Inlti..ll _ ~ Inl n + \li, } (267) 

16 n + 1ft n, - 1/1 2 (f - 'Y 1(!.l n - 1/1 

The arbitrary constant M has been replaced by the arbitrary point ,(n,m) ID the 0 

(cr , '1)-space. The same exercise could be carried out at second arder in 'Tf butît is 

most probable that ail dependency on M could not be removed because of tbe approx-
-J') 

imative nature ot this expression. 1 

To' soe how the p-function is' usually defined, the case of the ~. model will he . 
considorod. Tho analysis 'wilLbe ~arried along the lines of refere~ce [2]. If the bare 

-,. 

t 
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parameters of the theory are expressed in tenns of the physical paramoters and if tho 

current J is properly renormalized, one may de rive an equaUty fbr the one-particlo

irÎ'educible Green's functions ': 

(268) 

where the r's are finite in the limit"\ { goes to zero. The subscript "O' refers to the 

bare parameters. Using the faet that ollly one side of the equality contains I! , one 

mBy de rive with respect to it and obtain the renormalization group equation : 

[u.!L + JJ 8)., .!.. + l' 8m L _ !1.: u 81nZ., ] rit> = 0 
Ou {JI' ô)., 81' ôm 2 {JI' . 

q 

(269) 

The coefficients of equatioll (269) are used to define the ,8-function and the "1 func~ 

tions. \ 

(270) 

ln _ J!. 81nZ", 
'Yd (,\ 'J;' t) = 2 8JJ (271) 

(272) . 

For the case of SQED, the renormalized quantities are function of two variables, ft 

and 1'\ ( not to counfond with the mass term of the (14 model ). Il is cssy to see t~at, 

for that case, the ,8-function inay be de{med as 

• 2 8 1) 2 
(J(e,) = (m'in + nO;; ) e, 

" .. 
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l = D e 
Df' ' 
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(273) 

This combination of differential operlltors yields manageable results as it has the fol

lowing properties. 

D lJi = lJi 
Df' 

D n = n op 

D m=m op 

Dop Inln + !PI = 1 

D op ln ln - !PI = 1 

D op Inl2n1 = 1 

D Inl~1 = 1 
op 2 

D In21n + !PI = 21nln + 1/11 op 

Dop In21n - 1/11 = 21nln - !lil 

Dop In
2

12/11 = 21nl2111 

D In21~1 = 21nl~1 op 2 2 

D (~)Q = 0 
op !li 

D (~)Q = 0 
op !li 

With these relations, the ,8-function is found to be, with 7ï = 1 , 

4 
5859m + 
512!li

4 

-
2 4 

.!!... (15 _ 767lm + 35lm )(lnl n + \li 1 _ Inl Il - lJi /) + 
H 25W 641/14 ,M M 

59 Inl~1 _ .!!. Inl 2n 1 } 
8 2M 4 M 

(274) 

(275) 

The tirst oider result is just as expected, as it differs o~J by a constant factor from , 

the result ob~ained for QED,7 Both theories have the same long range behaviour, i.e. 

---7 It should he Doticed that the definition of the ,8-funCtiOD differs from the usual one. 
To make the connection with the usua1 results, the radiative corrections to the awtil
iary field d must he taken into account. This yields sliptly different values for the 
ren~~a1izatioD constants and the ,8-function, as defined in ref.[3] , becomes 
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that the charge appears weaker at larger distances. At second order t the ,B-function 

for SQED becornes more complicated as it cannot be expressed as ft constant limes 

A l. Thus, it cannot be compared simply with the QED result. 

The running coupling constant, e~, may be found by solving the differential cqua-

tion (273). It is'found that, at first order, 

where 

l 
2 ~ 

eR(II,m) = -----:2:---------::-2 ---
eo m eo n 

( 1 - -2 Inl-I- ---r Inl-I ) 
3211" mo 32,.. no 

2 eo =---2"";;"---
(1 _ _ e_o_ 11l1..!!!!L1 ) 

3211"2 nfl"o 

(276) 

(277) 

and no, mo are arbitrary seales. One can see that the charge e1 becomes wenkcr for 

smalt seales, whieh is equivalent to large distances. 

.. 
.. 

2) r 9l 
p(e = -2 + ----; + ... 

4,.. 128r 

which corresponds'to the resuit derived by other mean. (4)[5} [61. 

, 
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The Lan4au point is the' point at which the running coupling constant' develops a 

1~larity and becomes infinite. For SQED, lms is rather a Landau line in '

(O',I7)-sps.ce whose equation is 

; 

nm = n~o exp[ 3211'2 e~ ] (278) 

This is a very large scale. So-, before reaching such singularities, higher order correc-. 

tions must be included. This contribution could be found by integrating the e~-term of 
. . \ . .... 

equation (275). However, merely by looking at the set of relations (274), one may 

deduce this second order contribution and obtain 

11 ( 21211 1 2, 2110 , ) '~-TlnM-ln M ]} 

where 

2 3mo J 2 ".= · "+""'4 

1 

1 

l, 

(279) 
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It should he recalled that the e:-term of equation (279) Js an approximation al it 

is derivecl from the finite part of cP). This lerm is given only to ha~e an idoa of tho 

behaviour of the running eoupling constant at this order of perturbation. Ono May 100 

in Appendix C how the renormalized coupling constant,' as givon in equation (264) , 

varies with m for different n's. The curves run rather smoolhly on tho~logarithmic sealo 

j. except "for a very sm aU bump near m equal to n whon n is smaU. This is probably duo 

to larger numerical errors or a greater sensibility to the approximation when one works 

with so minute numbers or still, to both reasons together. Thus, one should not pay too 

much attention to this feature and consider that the coupling varies quite monotonicly . 
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7.1 Comments 

Cbaptel\VB 

CONCLUSION 

II} 

" , .'" 

, . 

A fiQjte expression for the effective potential of supersymmetric quantum electro-

dynamics has been obtained at two-loop order. The different loop contributions are 

seen-to converge quite rapidly except for small values of (1 where the ratio of the first 

to second order correction is rather smaH ('N 10 ). This raises sorne questions whether 

or not there will be convergence at three-loop order. 

It mar also be remarked that the different loop contributions are, not necessanly 

positive. This does not violate mpersymmetry. Only the ]otal effective potential,has to 

be positive definite and this is indeed the case as the tree-level potential always domi

nates by a large factor over the radiative corrections. It is also seen that the minimum 

(d-o) is preserved and supersymmetry is unbroken. 

A peculiarity about the effective potential for SQED is the appearence of an imag-
~ 

inary part. II) fa<?t,-the potential is complex everywhere in the (c,d) plane except at the 

minimum (c,d-o). This was not altogether a new feature. te stud~ of spontaneously 

massive dilatons [1] showed the same behaviour as well as a n0!l-abelian SUSY gauge 

model with SU(2) internai symmetry [2f. The imaginary part was associated to the 

decay probability of the system which becomes unstable away from the minimum. It 
"-

was aiso seen that this instability is small enough to allow the exixtence of sucb astate 

for .. relatively long period. 
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The renormalized coupling constant was derived from the effective potentiel . .and 

was shown to have a rather smooth behaviour. The p-function was derived Crom il 

and proved that SQED mnning coupling constant had the expected long range behav-

iour. 

It should be noticed that , in order to apply the effective potential method in 

'" superspace to more complex theories 1 an improved method for the calculo.tioll of 

superpropagators for broken supers5'mmetric theories would be required. For ft cose os 

"simple" as SQED, it was not possible to obtain superpropagators in a Cully supersym

metric gauge ; a Wess-Zumino gauge was us~d and it was seen thot it is a difficult 
~ 

gauge to implement in a supergraph approach. However 1 il was mentioned that thcre 

has been a breakthrough lately as how to deal with a Wess-Zumino gouge' and pre-
., 

serves at the sa me time supergraph techniques [3]. l;Ience, there could be hope thnt, 

with the appropriate modifications to Helayël-Neto's method, superpropagators for 
, 

broken supersymmetric gauge theoriés be calculable in a more'elegant and efficient 

fashion. 

To conclude, il can be said that the effective potential of SQED remains supe~· 

symmetric up to two-loop order even if each term does not necessarily do 50. The vac

uum is unstable under smaU perturbations as the potential develops an imaginary part 

as soon as the minimum is left. Finally, it was shown that SQED ronning coupling con .. 

stant shows the same long range behaviour as'the ()ne for QED. ' 

7 Or, more generally, with 8 non .. SUSY gauge çOoctition 
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Appendlx A 

DIMENSIONAL REGULARIZATION AND GAMMA FUNcrION 

A.t Glossary of mmensional Regularizatlon Fonnulae Used ln th,! Work 

JtI'p 1 = 
<l + M- + 2k·pt 

r(a - !!.) 
2 

. 
" 

1 
Il .. --(M'- _ kl) 2 

# 

Ji 

(281) 

(282) 

J tfp PPt = _ 1 

<l + fil '+ 2k.p)~ (4",l r(a) 

+ t V(G - ~:})] 
(Ii _ k2) 2 

(283) 

A.2 Gamma Fonctlon .. 

The definition of tfte Gamma fu,!çtion il, for n greater than zero, 

o ~ 
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For n 'smàller or equal to~zero, the Gamma fÙnc~ion is défined with, the help of the 
• l ' 

relation 
i 

nn) = !ln + 1) 
n (285) , 

From this definition, one ~ay see that the Gamma fun~tion has pales for aU nonposi

tive integers. 

The exp an si o.; of the Gamma function as il function of l is 

, 2 2 i - 3 
Llm [(1 + t) = 1 - 1. t + !.- (-y + -) - OCt ) 
, ... 0 ' 2 ' 6 , (286) 

Tho constant 'r.ls the Euler constant ans its value is 

, - 1 1 1 
1. = Lü" [ 1 + -2 + -3 + ... -je, - - In(n) ] 

• 11-00 n . (287) 

= 0.5772156649 .... 

With-tho relation _ 

1 
-f 1 (2 '.., = -t.., +-.., 

'. "2 '. 
(288) 

equation (286) May be written as 

-
(289) 
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GRAPHS OF lIŒ En'ECTIVE POTENTIAL FOR SQED 

{ 

In the next pages are gathcred the graphs reprcscnting Ute renormaUze~ effective \ 
- ~ 

potential of SQED at orders zero, one and two in ~ as wcU as the total of-ail cont~· 

butions as given in equation (262) 
? 

In the tirst four pages, the effective potential is given as a function of '1 while (1 il , 

kept fixed. Finally, a three-dimensional representation of V is drawn on the lait page 

.' of thi~ appendix. 

Gr~ph8 1 to 4_ : 

Graphs S to 8 

Graphs 9 to 12 

Graphs 13 to 16 : 

Graph 17 

Vias a functims of '1 for 0' = 0.1 

U as a function of '1 for 0' = 1.0 

U as a function of fi for (J = 10.0 

Ur a function of SJ for 0' = 100.0 

Vasa ~ction of (1 and i] t 3-D Sketch) . 

• 

.. ta? • 

, JI' 

v ' 



~ .. , 
.10· 3 
~ t 

,~ -
6 -

\ 
1 \ 

B- \. 
la 

; 
! -

\ 

i ~ -
\ 
\ 
\ 

1 

\. 
2 f-

I 
1 

• 1 

'5 ... J 

r-

05 i-

0 
-'00 -75 0 • 50 )'5 

ZEROTM OROER POTENT'Al, VS 11 

( 

.-
• 

:l!-

-" 1 

0.6 i-
l 

..-
1 

0' -

o. 

1 J 
~ _. . 

"'0- 6 

I! 

0 

1 : -B ~ 

1 

1 
1 

: 
-5 r-

-75 -

i 
-10 L 

-125 r 
1 

1 
-'5 .... 

1 

1 
l 
1 -175 r 

100. ,0• J -'00 

tr = 0.1 1 

, \ 
65 L \ ., \ 

1 \ 
' r-

I \ , 
Br 

1 

, 

-75 

110 
.? 

f 

7 

-50 ·25 0 25 50 

~IRST ORDE~ POTENTIAL VS 'YJ 

25 50 7\ 100.* 3 

TOTAL POTENTlAl VS. '1 



r --- .: 

111 

.'0- J 

0 
05 O. 

, 
1 
1 

1 

o 4 ~ -02 

1 . j i 
l, 1 \ -04 1 

1 \ ,1 

1 o J r- \ 1 

1 

1 
\ 

1 
Gi 1 

:'06 

1 \ 

\ 02 
~ 

-0 e 

0' -, 

0 -'2 -, 0 05 0 05 

ZEROTH OROER POTENTIA\. VS r, ""ST OROER' POTENTIAL VS 1 .j 

0 fT = 1.0 

1 
.'0- 6 

1 \ 
1\ . 
1\ L l '\60 

1"1 
1 50 ~ 
1 1 

i 
40 :-

1 
03 

1 

025 

30 

0.2 

20 0.15 

01 

10 

005 

0 0 
-1. 

0 
-1. 

SECOND OROER P()T[NTIAL YS " TOTAl. P()T[NTW, VS, 1/ 

( 

Q ... 
1131;; ,( 



( 

" 

~~----------~-------------'l 

\ 

~r \ 
\ 
\ 

30 ... \" l , 

20 

o -10. 

ZERorH OROER POTENTlAL VS '1 

1 

-20 ï 
1 

-50 

If = 10.0 

.' 
112 

1 

,j 
1 
1 

, . 
-5 o 5 

F'IRST OROER POTENTIAL VS '7 

~------------------------------------------------------------------------~I , 
.'0- ;). 

~--------------------------ïl 

, 1 
: • 4 r 
/ 1 

1 

1 
, 2 i 

! 
1 

. r 

o.a ~ 
oe 

\. 
- 1 

0' ~ 
i 

02 

O. -10. 

• 1 
1 

1 -~ ~ 10. 

SECOND OROER POTENTlAL VS. YI 

.. 

40j 
1 

35 ~ 
1 

30 ... 

25 

20 

o -10. 

? 

-5. 

TOTAl POTfNTW. VS • ." 

i 
c 1 

1 
1 

i , 
1 , 



.\0 3 
5 

: \ ! 0 
\ 
\ 
\ 

1 ('t 4 - \ 
\ ; .. 

1 
\ i ! \ 

\ 

( 
J - \ 

\ 
• 1 

1 04 

2 1 
O~ 

1 

-
~ 

1 \ 

~. . 
0 

0 
-100 -75 -50 -25 0 25 50 75 100 -100 -75 -50 -25 0 25 50 75 100 

ZEROTH OROER POTEp«TIAL VS li F'iRST OROER POTENTIAL Ils " 

0 tr = 100.0 

.10- 3 .10 3 

6 L 1\ 7 5 r 

1 l i 

" ~ 
1 

4 -

1 

1 

i 1 

2 - 1 3 ~ 

i 
1 

1 

0 2 

\ 

-2 - 1 \ \ 
! 1 

\ 1 

\ 

0-
-4 ~ 

1 1 1 1 1 1 1 0 
-1C1O -75 -50 -25 0 25 50 75 100 -100 -75 50 75 100 

SECOND OROER POTEHTIAl Ils ." TOTAL ~"'TIAl YI 1" 



--

• 

114 

0::: 
W 
o 
0::: 
o 
0... 
o 
o 
....1 



o 

o 

o 

.. ~ ... - "'Ii ;-..,., 
, " 

t , 1;, G .:.zqw; 44 " .tg44 ,1. .,:sI: P, J .t! 

• 
Appendix C 

GRAPHS OF THE RENORMAUZED COUPIJNG CONSTANT 

~ In this appendix, one may find the graphs depicting the renonnalized coupUng con

stant, as given by equation (264), As in the case of the effective potential, the coupling 

constant are given as a function of m for a fixed n, 

Graph 18 : e~ as a function of ", for (1 = 10" 

Graph 19 : e; as a function of ", for (1 = 10,3 

Graph 20: e; as a function of ", for (1 = 10,1 

Graph 21 : e; as a function of 11 for (1 = 101 
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