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X ABSTRACT
The formalism of effective potential method is first studied for usual field theory and

extended to supérsymmetric field theory. The specific case of supersymmetric quantum

berg's method for the evaluation of ‘effective potentials and superpropagators are
derived with the method developed by Helayél-Neto for cases where supersymmetry is
explicitly broken. Then, the one and two loop' corrections to the effective potential
m‘ay be calculated. These corrwectionS ,aré seen to be complex everywhere but at the
minimum of the potential. The theor;; is then renormalizgd/ in a modified minimal Sl;b—

straction scheme and a finite expression is finally obtained for the-effective potential.

Thereon, the renormalized coupling constant and the g-function are calculated.
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electrodynamics is then introduced. The superfields are shifted as required by Wein-
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La méthode du potentiel effectif est d'abord étudiée dans le cadre de la théorie du
champ'usuelle et ensuite appliquée & la théorie du champ supersymétrique. Le cas Yplus
spécifique de I'électrodynamique quantique est présenté, On fait subir une translation
aux superchamps tel que 1'exige la méthode' de Weinberg pour évalu;r un potentiel
effectif et les superpropagateurs sont obtenus a l'aide de la méthode qu'Helayél-Neto a
développée pour les cas ol la supersymétrie est e,xpliciiement “;)risée. Les corrections
du premier et second vrdre de l'expansion en boucles au potentiel effectif sont alors
calculées. NCes corrections s'avérent étre complexes partout sauf ai minimum du poten-
tiel. La théorie est ensvite renormalisée dans le cadre modifié de soustracuons mini-

males et une cxpréss{on finie est fmalcment obtenue pour le potentxel effectif. De plus,

la constante de couplage renormalisée ainsi que la fonction g sont calculées.
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Chapter 1

INTRODUCTION

‘
L}

1.1  Introductory Remarks

The method of effective potential has an important role in today’s quantum field
theory. The symmetry properties of the vacua may be determined with the help of this
meihod [1}{2][3], which makes it a powerful instrument for the study of spontaneously
broken theories.

Three methods for evaluating the &ffective potential were put forward in the early
seventies. First, there was the method of Coleman and Weinberg [1]. It has the
drawback of havmg to sum. an infinite number of graphs for each loop order (except
tree-level). Obvno\{sly, calculatlons at two-loop order or hlgl;er become very difficult

with such an approach. The second method is ‘the one devised by Jackiw [2] where

the effective potential is evaluated functionally. The potential is given by a-perturba-

,tion series of vacuum bubble graphs. With the third method, due to Weinberg [3] , the

effective potential is calculated by summing the scalar tadpole graphs of the translated

~ theory!. This method has the advantage of being easy to use and to understand as the ,

oyt

. underlymg theory is sxmple [4]. This last method is quite powerful for supersymrhetric

theories because of the reduced number of graphs to be evaluated as first remarked by

Miller [5] who gave to this extension: of Weinberg's method the name of "Auxiliary

*

3 By this, it is meant that the scalar fields of the theory have been shlfted by a con-
stant.

o
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Field Tadpole Method" (AFTM) Moreover, Wemberg‘s method may be simplified so
that it corresponds to the Vacuum Bubble Method (VBM) of Jackiw for all orders but
the first. For all above methods bit AFTM, one can work with copstrained or uncon-
strained theories, whichever is simpler. With AFTM, the auxiliary fields, as the name”
of the method implies,.are explicitly needed. The potential can therefore be put on-
shell only at the very end of the calculations.

All three methods h;ave been used in the evaluation of supersymmetric (SUSY)
effective potentials both with component ﬁfld and superfield formali§ms. The
Coleman-Weinberg method has been applied by O'Raifeartaigh and Parravicini (6]
with a component approach and by Grisaru et al. [7] with supergraphs. Jackiw's meth-
od was used by Huq [8] for the evaluation with component fields of the one-loop effec-

tive potential of the Wess-Zumino model and extended later on to superspace by the

PR

same author [9]. Weinberg's method has been applied by many people {o the case of
the Wess-Zumino model; at one-loop order by Miller [5] with components and by Sri-
vastava [10] and Miller [11] with superﬁeld;. The two-loop contribution of the Wess-
Zumino model was also calculated with this safﬁe method by Miller {12] and Fogleman
and Viswanathan [13], both with component fi;ldf. Coleman-Weinberg's method has
also been used for the ssierspace evaluation of the effective potential of supersymme-
tric gauge theories [7] as weli as Weinberg's [4] and Jackiw's [14] with a component
approach.

The main reason of working with superfields 15 the reduced nur;lber of graphs to
evaluate. As higher loop contributions are considered, the benefit of using superfields
becomes overwhelming. However, as the superﬂelﬁs have to be shifted to evaluate the
effective potential with VBM or AFTM, supersymmetry is explicitly broken and that
brings ai:out a lot of problems [11]. Fortunately, a method has recently been devel-

oped by Helayél-Neto et al. [15] for calculating superprop?ators in such cases. With
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this method, the superpropagators are expressed/in terms of a series of projection
operators Whi;:h form a basis. Thus, the advantage of havin'g fewer graphs to evaluate
is some;vhat counterbalanced by the increased complexity of the superpropagators.

Although this method is a major improvement for the evaluation of superpropaga-
tors for explicitly broken supersymmetric theories, it is still not as good as or;e could -
wish. Indeed, even for supersymmetric quantum electrodynamics (SQED), one of the
simplest SUSY gauge theories, Helayél-Neto's method yields unmanageable results
when workipg with a SUSY gauge fixing condition. Hence, much progress will have to
be made before it is possible to calculate effective potentials in superspace of more
interesting (or realistic) models.

A combination of two of the methods presentéd for calculating effective potentials,
VBM and AFTM, will be used herein for the case of the supersymmetric extension of
quantum electrodynamics in superspace. As mentioned before, superpropagators can-
not be calculated with a SUSY gauge fixing condition. Thus, they will be evaluated

within a Wess-Zumino gauge scheme supplemented by Lorentz condition ( or equiva-

lently with a Landau gauge). Withip this framework, the one-loop results stiould_coin-; \

cide with the ones Miller [4] obtained-with a component field formalism. The two-
loop effective potential has never been calculated before and therefore is an original
result of this thesis as well as the quantities derived from it, the renorr\nalized coupling

o
constant and the S-function.

1.2  Work OQutline

This work is divided in five main parts. The second chapter is devoted to the study

of the method of effective potential in usual? field theory; the &* model is used as an

2 As opposed to supersymmetric
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example. The basics of supersymmetry are given in the first part of Chapter IfI. At the
same time, some of the notatign is set. In the second part of this chapter, the effective
potential formalism is extended to supersymmetry and the case of the Wess-Zumino
model is worked out in detail. Supersymmetric quantum electrodynamics is introduced
in Chapter IV. The tree-level potential is given and the superpropagators are derived
to be used in the next chapter to calculate the oge and two loop contributions to the
effective potential. The fact that these contributions develop an imaginary part is ana-
lyzed in the fifth chapter. In the sixth one, the theory is renormalized and the

kﬂ-function as well as the running coupling constant are derived. Finally, in Chapter

VII, some last comments are made and conclusions are drawn.
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Chapter I _

EFFECTIVE POTENTIAL IN FIELD THEORY

In order to study the behaviour of vacuum states of field theories at higher order in
the perturbation expansion, one should resort to the method of effective potentiai
which allows the survey of all the minima of the theory. This method is well suited {or
studying the phehomenon of spon:taneous symmetry breakdown and [or obtaining the

renormalized parameters ( masses, coupling constants ) of the theory considered.

2.1  Method of Effective Potential

AN

We shall develop the technique by looking at the case of a self-coupled scalar -
field, as done in most references. The method is really releyant when' the scalar field
is coupled to other fields, such as a gauge field. However, the point here being to study
how the method works, the simpler the model the better.

Consider the Lagrangian .

1 .
L=> 808,6 - V9) (1)
with -
y=ag Mg (2)
T 4 _

The vacuum expectation value for the field & is defined as
. -6-

¢




\

- B b rascana e e Lty T T I A
=, PANFraS FRERIC ARSI o K ' iy

<o*|o |0 >
op J

<¢> = lim = lim &, (3)
Jus0 <¢+l¢'> J—0
with the notation ~ L \

. c .

|#™> : vacuum state at a time t= — oo

[@t> : vacuum state at a time t= + oo

o, Heisenberg operator

LY
: current

@ (x) : vacuum expectation valué¢ (VEV) of the field &

in presence of an external source J(x)

and is not necessarily the same as the classical minimum of the potential. The field ¢

-~

may be expressed in terms of the generating functional W(J) , that is

-

_6W
o= S0 ) » - @

H

with the usual definition for W{(/J) :

“expl (&) W) = N [D0 exp (L) [ 5 Ls) + 0] 5)
where / . E B
) = fd‘x J(x) #(x) J ' (3)
) L4
\ ‘ ! - :f;‘:p

.

@
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and N is the normalization constant. Now let's define an effective. action by doing a

Legendre transformation of the generating functional
ne)=wJ) - J.e) o , 0

The current J in equation (7) can be eliminated by solving equation (4). This per-
mits the use of &, as an independent variable. Differentiating equation (7) with
respect to &, yields after a straightforward calculation )
?

5 1) .
50 - W - | ®

Then, putting J equal to 0, the VEV <&,> becomes the root of

dI@,)

d¢ I¢0-<b> =
[

0 : 9)

It can be shown [1] that [{9,) is the generating functional of the one-particle irreduci-

ble (1-PI) Green's functions.

The effective action can be expanded in terms of &, and its derivatives as follows

I3

@)= [d'x[-Us @) + 3 & 0,0,9,F@) + ] (10)

_where U is what is called the effective potential. Equating &,(x) to a constant g , one

gets . B

ng)=- f d'xU@g) = - O.U(gi o (11)




v

, r ' 9
e where £2'is the total volume of spacetxme The effective action could also be expand-

¥

ed in the followmg way.

H

- »
£ \ ) 4
’ re)=Y) X [ds..[ds rEe..r) 66).20) '" (12)
= . K - v, .
- which gives, once the-right-hand side has been Fourier-transformed
v _ hnd 1 d4kl d4 " iy = ~ - N - :
‘ . N@)= 20 [ f e f = — [ 8K k™) Fhysnok,) B0k 2e))  (13)
.where \
(3c(k) = f d'x exp™* & (x)
qk sk ) 8k ppeeik,) = f d'x, fd‘x r (xl, 1) explikyx, +... + ik x ) (14)
Putting once again &,(x) equal to g , one obtains for the Fourier transform of P,
L $k)=2g . (15)
and for the effective action, e
- . =
1) = n_z (&) 1,0) \ @9
r) ' ’
with the notation o, .
O LO=LO0.0 .
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(18)

Thus, the effective potential is given by the infinite sum of the one-particle irreducible

graphs with n external legs. In such a form, there is little hope of being able to calcu-

late the effective potential of any but the simplest field theories. However, differenti-

ating U n times near zero yields the following expression.

E"_Uf"&llg_o =-T1,0 h (19)
dg

R

{

4
From thére, one may develop a suitable method to evaluate the effective poten-

T

tial [2]. We must first translate the theory

o, =9 +c (20)
1 =
and expand it around &', = 0. This gives v
d"U(s) :
B T () 21
ra lojeo = = 1O @)

N

where I’ is the 1-PI amplituae for the translated theory.  The last equation can be

written as
U _ : .
aue) oo =~ 1/ (22)
ag; I~ "0

L4

prorT
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As U(#,) is the potential expressed in terms of the untranslated theory, it has no ¢

dependence and therefore, equation (22) can be written under the form

490 - -1y (23
” .

+ As said previously, n refers to the number of external legs. Thus , if one uses n = 0,

U(c) = - I/(0) o (24)

i.e. that U is given by the summation of the vacuum bubbles in the theory as shown in
Figure 1. As mentioned in the introduction, this corresponds to Jackiw's methg:l {31

for evaluating effective potentials.

-+{\O +\8+CD,

—

" Figure 1: Vacuum Bubble graphs for translated Self-Coupled Scalar Field

2 e

The point in Figure 1 represents the constant terms in the translated Lagrangian.
However, there is a problem at one-loop order in the perturbation expansion. ‘Indeed,
there is no propagator nor vertex for this graph.  For this reason, one has to resort to

the tadbolg method [4] at this order. This method results from taking n equ,ﬁal to 1in

equation (23).




v ’ 12
r o
dc ! \ .
The contributing graphs are drawn in Figure 2. ’ !
g -

reeeeeeef]

Figure 2: Tadpole graphs for translated Self-Coupled Scalar Field

-

+ —-
) -

The major drawback of the tadpolé method is the extra integration that has to be

performed once the graphs have been evaluated. Hence, the easiest way to calculate -
- L S
the effective potential, order by order in the loop expansion, is to use the vacuum bub-

+

ble method except for the one-loop case. At this order, the extra integration should not

uspally be a major problem. - '\

e




2.2 Application to the case of a Self-Coupled Scalar Field

8 N
; i
. -
.

We will now work out the simple example of the self-coupled scalar field whose

Lagrangian is given in equation (1). Shifting the field by a constant ¢ yields

L_-a“¢a¢+—— (¢ +2c¢+c)--- (@* + 4co +6s3¢ +4c +¢)  (26)

4

At zero-loop order, the effective potential is simply given by the constant terms in the

translated Lagrangian.

Ufe)= = I’ &+ & (27)

At one-loop order, the &’ tadpole has to be evaluated. Simple calculations lead to the

= C following finite part for U,: -
= - (=8 q - X \
Ue) = - (225) Jdele{-K+KIn(55) )] (28)
k= (o —a) §j @
. 4 :
“ - s
. M=dxple " * ‘ (30)

The evaluation of divergent integrals is carried out in Appendix A. One can then per-

ety

- form the c-integration to get
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Uy(c) = ( P ) {5 In(35) - <} : (31) -
K 4
which is the standard result [5]. L

Having calculated the effective potential, one can derive from it some physically
useful quantities such as the renormalized masses and coupling constants. For the spe-

cial case of ¢*-theory, we have

% CmCmin m®  (renormalized mass) (32)
d'v - lized coupli | ) »
= o = (renormalized coupling constant) 33
dc i

dU \ Co.

e = 0 (conditiqn onc,..) &4

With m*>0 , equation (32) and equation (34) just state the fact that c,, must be"

min
the minimum of the potential.  This last set of equations shows how useful is the
effective potential method for deriving the renorlmalizec} quantities appearing in the
Lagrangian. ‘ -

Before closing this chapter, it would be good to recall that the effective potential
is not itself a physica} quantity. Ind;czl, it has been common knowledge that it is a
gauge-dependent quax;tity since the very beginning of its dev;lqpment [3]. Nonethe-
less, .very interesting physical results were obtained such as the scalar to vector mass

ratio for spontaneously broken electrodynamics of massless scalar mesons [6]. Since

then, it has been shown [7] that the ‘minimum and the quantities derived at. this point

- M ‘ 2

- A ]
) \ -

e
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are gauge-independent as it has to be for physical quantities if the theory is to make

any sense.
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Chapter 11l
"EFFECTIVE POTENTIAL IN SUPERSYMMETRIC FIELD
THEORIES.

In this chapter, the method of effective potential developed in the last chapter for

usual field theories will be extended to the supersymmetric ones. First, a quick review

" of supersymmetry will be done, allowing us to set the notation and conventions to be
used thereafter. In the second section, working out the effective potential of the Wess-
Zumino model will show how to use the method for supersymmetric theories as well as

how to derive superpropagators when supersymmetry is explicitly broken.

3.1  Supersymmetry, A Quick Review

o Symmetries have played an important role in the development and the understand- .
ing of particle physics. They lead to the unification of theories describing the interac-
tions of particles. One of these symmetries, supersymmetry, was put forward in the
early sevénties [1]. It unifies bosons with fermions as well as spacetime symmetries
with internal ones. Moreover, the local version of supersymmetry ‘(supergravity) uni-
fies gravity with matter. | '

In addition to being aesthetically appealing, this symmetry has also led to techni-

cal improvements such as the cancellation of the quadratic divergences which plague

o ‘usual’ field theories. Some models have even been shown to be finite at all orders in

i

, - 16 -
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perturbation expansion. Even though there is no experimental eviden(ee yet that this
symmetry exists in nature, there is hope it will.  If not, it is believed that, at least, it
will be a step in the good direction, towards the "right theory”.

The goal of this section is to give to the reader a quick overview of supersymmetry
and, at the same time, to set the notation and conventions.> What follows is based
mainly on the book written by Wess and Bagger [2].

Superfields are a function of superspace variables: F(x, 8, 8). The 6 and @ are
Grassmann variables which obey the rules given below and x represents the position in

spacetime. *

(6°,8)=6"6+66"=0 ’

[Pm,90]=Pmﬂa—0°Pm=0 (395)

fedo: (36)

?=7, 5

=67 (37)

”

The Latin indices refer to spacetime and run from 0 to 3. The Greek indices run from
1 to 2. They denote the two-component Weyl spingrs, the undotted indices being the

representation (1/2,0) of SL(2,C) and the dotted ones their complex conjugate repre-

N~

-

3 For more details, the reader should consult the book's by Wess and Bagger or the
one by Gates et al. listed in the bibliography. /

»




O

O

sentation (0,1/2)*.  These indices can be moved up and down with the -help of

€ ? () and €, (€55 ) wherg

G =€ = 1 ‘ (38)
21

€ =¢€¢ = -1
11 22

With this, the most general form of F(x, 6, ) can be written down

F(x,8,8) = [+ 0¢ + 0% + 6'm + 81 + 0a™Bv_ + 66X + 86y + 6°0°d (39)

where f, ¢, m,n,v,, x, A, ¥ and d are all functionsof x, and o™ is the Pauli matrix

with one dotted and one undotted index: ¢,,. Its complex conjugate takes the form

""" . Both are related by

—maa ab aff m N
7o = _ (40)

b

To go any further, differential operators must be defined in superspace. They are

m

N D=-—a-a—+i0 5&3

[+ 89 aa m
D.=29_ _is" 8 : (41)
a~ 8-9—0' aa m .

To define D™ and D* , one uses ¢ and ¢ along with

v

4 In Minkowski space .
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7

=0 (42)

4

To be really useful, the superfield F has to be restrained in some way with appro-
priate conditions. The first class of superfields that can be defined is the scalar super-
field ¢ whose definition is

D°¢ =0 (43)

In terms of usual fields, ¢ may be decomposed as

¢ = AG) + V20 y0) + 6°F() (44)
where

S iws 45)
> AN

O=A(XH O™ 8 AR) + 1/4 0°0 AR) + V204(x) - i 87 8_ v(x)o™ B + 6°F(x) (46)
with

D=06"6, . ' ' _(47)
A(x) is a scalar field and gives its name to the whole multiplet, t¥(x) is a spinor and
F(x) the auxiliary field. The most general renormalizable Lagrangian in terms of sca-

lar superfields only is

[N



m g
L=o] 0+ [ (5L o,0+ L0, +20) +hec] (48)

The second type of superfield most commonly éncoumercd is the vector superfield.

It must obey the relation
\

v=v* . ' (49)

Its expansion reads

- Vx8,8) = Clx) + 6 x(x) - 1 8%(x) + % 6 [ M(x) + iN(x)] - -L— 7 [M(x) - INGW] —
00™ Dy, (3) + i CILA) + 35" 0, X(W] ~ 17 00 3¢ +
-;- ™8 x(x)] + -21- ¢ [ D+ % 0ce)] (50)

where C,M, N, Dand v, must all be real in order to satisfy equation (49). C,M, N

are scalar fields, x and X are spinors and D is the auxiliary ficld. With a vector field,

one may define a field strength.f

,

12 \
W,=- 2D,V
_...1.1)225’ v ‘ - (51)
a~ 4 &

It is possible to obtain a supersymmetric extension of quantum electrodynamics, usually

called SUSY QED, using both vector and scalar superfields.

-

F“

& e
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9%

- 1 + eV + <V
Logy=T(WW| <+ W, ) + 8] & ¢+|ﬁ,+¢7e‘ @_|

+ MNP P ‘,+¢+¢j|,,) : (52)

Even though this Lagrangian may look nonrenormalizabic because of the infinite series

of terms coming from e** , it may still be evaluated in the Wess-Zumino gauge where

~ the third power of *V vanishes. In this gauge, the vector field has the following

[}

f-expansion

Ve=—00"8v +i6 8ix) - iF 0A() +~-;- 6'D(x) . (53)

Such a gauge choice explicitly breaks supersymmetry. This means that the superfields l

are no longer a valid representation of the supersymmetric algebra. However, as will
be seen later, the potential of SQED is still supersymmetric. Usual gauge transforma-
tions for v, are still possible.

To calculate superpropagators, one must introduce a set of projection operators.

- D252
Fi= @ :
D* -
Po=—7 .
asm?
p o DD A
27 (1600)
P = Dz n -
asm)? “ P
, .
PT =T %-D—D-Q e » . ‘ N . (54°)

g2
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They have the following multiplication table.
Table 1: Multiplication table of the projection operators..
PP, P P P,
| P P 0O P O O
P, 0 P 0 P O
& P, 0 P 0 'P 0
P, P_. 0 P O O
P, 0 0 0 0 P,
]
When applied on scalar fields, one gets the following results.
P é=0
P =0
P,o=9¢
P,¥=0
P +P+P =1 (55)

;T

"~ With this set of projection operators, it is p&ssible to calculate superpropagators

for Junbroken' supersymmetric theories ( in SUSY gauges ). It will be scen later on that
a larger basis of projection operators can be defined with the above operators and the

@'s. They will be used for deriving superpropagators for theories with explicitly broken

N

e

~
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supersymmetry.
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s

This will close this short review of supersymmetry. It should be noticed that we

work in an Euclidian space with a metric §* ~ (1,1,1,1) .

3.2 Wess-Zumino Model

o~

This section will be divided in two parts. First, the effective potential for the

Wess-Zumino model will be derived with the component field formalism which will

prove very similar to the case studied for usual field theories. In the next part,

superpropagators will be calculated in order to work out the effective potential with-a

superfield approach.

3.2.1 . Component Field Formalism

4
1Y

The Wess-Zumino model is one of the simplest example of a supersymmetric field

theory. Its Lagrangian reads _

The auxiliary fields, F and F, are kept in order to be able to use AFTM.

ue.

\

= -

L.—.tamwa""p-yx[]AﬁFF-[m(AF-—;-w)+

%—A(AAF—¢¢A)+h.c.]

1

(56)

Following the last chapter recipe, the Bose ficlds are translated by a constant val-

—
.

A=A"+a

-
5~

.

)




F=F4f . . - (58)

P %
The Fermi fields are not translated because a vacuum expectation value <y> differ-
ent from zero would violate Lorentz invariance.

This leads to a new, shifted Lagrangian

L'=i8 90"y +A0A'+ FF - [v(AF - 129 yp)
+ U2M(A'AF — Y $A') + 12)A'A’ + F (mar+ 1/2 Maa - f )

+ VfA'+ h.c. )+ Jf + [maf + 1/2 ) aaf + h.c.) (59)‘

— 5]

with

)

v=m-+4 Aa ¢ - (60)

The tree-level effective potential is simply given by the constant terms in the

Lagrangian times minus one (-1). -

U= —.{]f+[m af+-%- ,\a;zf+ h.c.]} ‘ (61)

—_r

Using equations of motion to go on-shell, the effective potential may be written under

its usual form [3].

Uy=Jf - 4 (62)

-

This result will be rederived WWinp of the tadpole method in ‘order to show

one peculiarity which éimpliﬁes calculations in the case of supersymmetric theories

" when_using this method. Once again , at zeto-loop order, one can read directly from
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the Lagrangian the linear terms: ] — ,

Ipo0) = = (ma + -;- Maaf ) ; B (63)
which ))'\elds, Iafter an integration over ff‘)

UX:—]]-}.(ma-i-—zl;-,\aa)f-i-HG',a,E) (64)

\
1
|

-

. o)
where H is the integration constant. Now, by simple symmetry between f and f, it is

easy to see that

H({\a,3) = (ma + %— Aaa) f+I(a,a) . ‘ (65)
N 2
‘K u .
i

Hence, the effective potential is

—

Uo;~]f+ [ (ma + 1 saa )f+h':c.] +I(a,a )

. (66).

5

At this point, one would normally have to evaluate the contribution coming from

I, 4(0) to obtain I(a,a). However, it is well known that the potential for a supersym-

metric theory must vanish at its minimum. This means that

— o1 -

: UOV-]-O);»O | - : 6N

Using this condition, it becomes obvious that I(a,@) must be zero and (61) is retrieved.
This is one great simplification that occurs in SUSY theories. Only the auxiliary field

tadpoles have to be evaluated, the contribution from other fields being automatically -

I . ©
P—
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generated by the imposition of SUSY bowndary condition [4].. An additig:ial advan- .
tage to this method is that the auxiliary fields couple to fewer fields due to their higher
dimensionality and so there‘ are less graphs to consider. Equations of motion can be
used at the very end of the calculation of the effective.p;t;ntial. -
To calculate the one-loop correction, only the, bosonic operators are required.

Writing the Bose "action under the compact form:

4

So= [d4L L o7a 8 10" B) (68)"
!
where
L¥
o =(AAFTF) , : . (69)
B = (JAJ;{JFJ):‘) ' - (70)

N

the source term, and

= [0 v -
_ 0 -3 0 % 7
A=l v 0 Q1 (71)
0 -¥ 10 = -
Then, the generating functional can be written as
. \
=L [dyB" At 7
In(Z) = = fd‘xB A'B . ’ (72)
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2 o
In(Z, :
and the propagators can be found by looking at fz%]-o—y » The results are condensed
192 -
in Figure 3. )
Fiél!re 3 Bosonic propagators for the Wess-Zumino model.

Applying the Auxiliary Field Tadpole Metﬂo& [§] , it is realized that the only tad-
pole to be evaluated is the FAA one. The Feynman rules for the effective action

yields :

A A M
) 0
_A :
Fﬂ_F 0
- 2+Vv
Q
S
A___F )
. AT _;\Qﬂ
F )3 '\sz-Pz(Pz"}‘W) -
B - Q
Q=0+ v - N

M2

!
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r= [dken's® [d'P (_-zf\-)AM Pk + o - . (1)
" where
4= d'k .
(21r)4 . -

-One can read off from the previous equation

-~

~

2
I (0) = % [dp :\éﬂ (75)

The integration over f leads to

t

Uy=2 [d'p nQ+H@3) . (76)

The requirement that SUSY is to remain unbroken by radiative corrections [3] implies
that H{(a,a) cancels the first term of the previous equation when f == 0 so that U,

can be written as -

o

2
Ul=-%-jd‘p 1n[1--(-p-;§;%] . (77)

A o

To go beyond one-loop, one would have to calculate the fermion propagators and
use the vaculxm bubble ;;licth.od. This calculation , to two-loop order, has been per-
formed by Miller [4] and also by F:oglcman and Viswanathan [6). It should be
remarked that, even though the ‘Wess-Zumino“ model is one of the simplest SUSY mod-

els, it shows some peculitirities not encountered in usual field theory models. One of

-

S

PR .
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these is the choice of a rengrmalization scheme which can be tricky because of the
presence of only one renormalization constant; Amati and Chou [7] have shown that a |
minimal subtraction scheme leads to a kinetic term with the wrong sign and to an effec-
tive potential with a "pathological behaviour” [6]. Thus, one should be careful when

applying usnal methods of field theory to supersymmetric models.

Kl

" 3.22  Superfield Formalism ) 1

The calculations of the previous sub-section will be done all over again with a T
superfield approach in order to introduce the metfiod used in the forthcoming chapters.

The Lagrangian of the Wess-Zumino model in superfield notation takes the form :

i .
L=[d'% "0+ (3 moPo+(X) P 8)+ha]) (78)
where the field ¢ is given by equation (46).

“The superfield is then shifted by a constant superfield =.

5=a+92f ¢ (79)
The shifted Lagrangian is 4
-3, \
’ . 2
L =fd‘o{¢*¢+s*.-.+[] [5 (412 oP0+ 2 0P 0+
=t 4+ msP, + X ='2P)¢+-1-ni SP c+X 2P = he]} \(80)
= et 2T T 2 =4 3"‘+"‘+"
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The zero-loop effective potential can be read directly from the shifted Lagrangian.

U, = - fd‘a (=240 %— EP,Z + -5‘-\i- 2P, = +hc)) (81)

&

Performing the #-integration is a triviak matter and it brings back equation (61) as it
should.

As before, to evaluate the one-loop effective potential given by the ¢* tadpole,
the superpropagators have to be derived. This may be done with the method devel-
oped by Helayél-Neto et al. [8] for the cases where supersymmetry has been expiicitly
broken.

»

First, the action is written in a compact form.

5, = [d* {%¢TA¢+¢TPB} (82)
where

o = (6,6") | ‘ (83)

B = (,f)‘ ! (84)

P [:; ‘:,J | )

and, finally,




A
\

(m+A5)[ 2P, 1

= . (86)
1 (m+35)0 P_
From equation (82) , one obtains for the generating functional Z,,
1 8 Tp 4-1
ano_--z—D— fdz (B"PA' PB) (87)
from which the superpropagators may be derived.
P, 0 P 0O
2 -1 1 4
3 )
This may be written under the form?
P, +bP§P, P !
a
A= * A 1 5 (89)

12

P

=2
, aP_+ bP§P_

where we used the properties of the projection operators and where a and b were

defined as
-1 t 1
a= D 2y a=1] 5 (90)
b=0"f b=0"7 \ (91)

S The symbol 6}, stands for &(8, — 6,) &3, - 5,).
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As only 4,, is needed for the evaluation of U, , only the (1,1) term of equation

(89) will be calculated. The other terms may be derived in the same fashion.
X ab . .
For a matrix of the form c di the (1,1) element of the inverse matrix is

c*d[ac'd — b]". Therefore, the superpropagator reads

Q4 =(a+bAYP_[ P, - (aP+ + bP+A3) p2 (@+ bAz)P-]—l‘s:z (92)

where the A's are projection operators defined in reference [8]. The list of those
needed herein are tabulated in Table 2 on page 35, with their multiplication table, at
the end of the chapter. These seven projection operators form a basis which can be
used to invert expressions like equation (92). There are antichiral partners to these
projection operators which are denoted by P, , 4, , 4, ,4, , A, , 4, and 4, , and
which also form a basis. The above superpropagator may be' expressed in terms com-

ing from both sets.

A,, = (a+bA)P_ [ (1-da)P, — abA, - ab A, - bE A, 1" 6}, - (93)

Tedious calculations yield

_ (5+EA2)P abwW
9e=""37 LAt 5 K+(w’ Eb)x‘“

Bb dabb _dabb__ 7
) ‘+(w-b'b)(w=-b'b) "W —tp)

@abbab - '
A 94
+(w—5b)(w’-5b) ol ¢4

with (\ s
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W=1-aa (95)

From there, using the algebra of the P's and ¢'s, it can be shown that

-1 (16t D : D'D¢D
Y=g 11 @ +w) +\[<p’+vv)’—asz] t
—l DDD" - ﬁfL) (D%'D°D* + D'D%'D*) ) &, (96)
P +W) .

Superpropagators for a theory where supersymmetry has been explicitly broken
have a more complex structure than those for an unbroken theory. Obviously, it
makes little sense to go through such calculations and obtain such an expression to do
one-loop calculations. This work gets its reward at higher order in perturbation expan-
sion because of the lower nun}ber of graphs to be evaluated.

Returning to the evaluation of the one-loop effective potential, we have the effec-

tive action:

= f d'k (2,;)254(k) f 4’3 {a ”}01_02_0 ok,0,0) + .. " 97)

Using equation (96) for 4,, and the followiiig relations

1

bl:'o,-;z =0 ~ (98)
afbiﬁiﬁzlo‘..z =160] w (%9)
D*a*v’a;,q, s, =160, ; : (100)
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0 ‘
‘ © DD, = 166] SNV
, D{8)D783lg 0, = 16 6} (102)
fd‘a Fo=0, (103)

the effective action takes the form

[dor1- 2 ) Fo00.0) + ... (104)
@ +w)

F=(2) [d o
r=[dr (@ +w) - 2]

The auxiliary field of the superfield d5 is the one in 6°. Hence, only the first term
\

/
in the @-integration is needed and the effective potential is found to be:

.

U =02 [a [d A
> =t o] p[(pzwv)’-fm

(105)

This result matches perfectly the one obtained by the component formalism. It
would be good to recall that this superfield approach will prove itself to be really usgful
beyond one-loop order. For example, the vacuum bubble method applied to the calcu-
lation of the two-loop effective potential for the Wess-Zumino model in superspace

requires only the evaluation of two supergraphs as opposed to the six graphs needed in

a component approach. The method developed in this section will now be applied to

{

SUSY QED. ' _

YAl

g
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. Y.A.GelFand, E.P.Likhtman, JETP Lett. 13(1971)323¢

Table 2: Extended Table of Projection operators
A, = []Uz Pzﬂz
A, =0"¢P, f
A, =0 Pg'P,
A, =F6' P,
Ay=( P6'P,
4
Ag=00"P,
P2 AZ A3 A4 A? A9 AIO
P, P, A, A A A A, A
A, A, 0 A, 0 0 A 0
A, A, A, 0 A A 0 A g
A, A, A 0 A A O A B \\
A A Ay O A A 00O
A A0 A 0 0 4
Ap <Ay O 4, 0 0 4,
4 ]
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. " Chapter IV
SUPERSYMMETRIC QUANTUM ELECTRODYNAMICS

This chapter will be devoted to ihe study of the supersymlmetric extension of quan-
‘' tum electrodynamics. The pagrangian is composed of a vector superfield and two sca-
lar superfields along with their h¢.=,rtpitial'1L conjugates. It includes all the usual QED

terms as well as the ones from scalar electrodynamics in addition to some other terms.

i _ SQED was the first step in the dcvelo;)ment of supersymmetric gauge theories [1]-
Because of its relative simplicity, SQED. is a good model to use for developing new
techniqués of calculation which, hopefully, could be extended to other field theories.
Indeed, it can be noticed in the work done by Miller [2] on the evaluation of the effec-
~tive potential at one-loop order for gauge theories that the results for SQCD (Super-
symmetric Quafftum Chromodynamics) are a mere generalization of the ones obtained
for SQED. - ‘ .

In the first section, the shifted Lagrangiaxnx’ will be derived and the zero-loop effec-

tive potential obtained. Then, in the next section, superpropagators for the shifted

theory will be calculated and tabulated at the very end of the chapter for later use.

-

< 4.1  Tree-Level Effective Potential

The supersymmetric extension of Quantum electrodynamics is a U(1) gauge theory~ —

with one vector field and two scalar fields R and S whose Lagrangian is
A%

/
w

-37-



e B “\! 3 v
s £ foov A
T«

Fr %’};‘~ﬁ4§~p P N S I T

38

L=fd‘z[se'VS+R;*V-R] + {[ja‘xd‘ocn})wW+mSR]+h.c.} (106)

¢
To use the method developed in the previous chapters, one must shift each superfield

L

by a constant superfield.

-1

VoV tu - o 107)
S84 (108)
R—»R'+r (109)

—

The constant supetfields u, s, r have the following 6-expansion:

‘ &
Uu=c+ —;— 6 (me+in) - -;- & (m-in) + % ¢* (D +‘£%£) (110)
s=a,+0f (111)

r=a, + 02fr . (112)

- These constant superfields are functions of only spin-0 fields because of Lorentz invari-

ance. Dropping the primes, one obtains for the shifted Lagrangian:

L= [d' ([ E+3) €T (S+5) + Ren) V™ (Ren) ) + »

([ (V+2) (- DP) (V4u) = m (S+s?_(D'lnP+)(R+r) ] +he)}, (113)

-

“_One can read directly from -Nequgtion (113) the tree-level effective potential, Uy .

A (114)
!
! -
|

~

-~ fd‘o{ie'"s+?e""r+u(-[]1;1 u-msrbz@-mquzw)‘}
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This last expression may be simplified with the‘imelp of equations of motion. The poten-
R . "A

tial then becomes:

v
-3

uo=fd‘o{u(np,)u+ze"‘s+re*"r} o (115)

The usual expression for U, is dbtained by using the Wess-Zumino gauge where

u=20'd . K (116)

In this case, U, takes the form
b

U°=fd‘9{-uD’i’Tu+3s+Fr} (117)

or, in terms of the component fields,

~

Up= 3 dz’_+],f,+];f, - (118)

/

Before going any further, it would be good to define properly the notation to be

used hereafter for specifying the order of perturbation. The subscript will indicate the \

number of loops of the :graph considered and the superscript will correspond to the

> §
order in the %-expansion. Both will be needed once the renormalization constants are

~

introduced. So, we have .

[+

~UzUp+ Uy + U+ o | : @9

-

with — . : -

-



Uy= U+ 5 + RUP + ... '
U= iU+ 700 4 .

U= BRUP + ... | ' (120)

Then, the effective potential has the following % . expansion:

LU= +R L+ U) e (R 0P L Uy 4 (121)

It is rather easy to see from the previous expression that the cancellation of the
infinite terms arising from divergent integrals, if any, will have to take place between
terms having identical su;‘)erscripts.

Now that this point is settled, we may pursue with the deri\"ation of the superpro-

pagators for the ‘shifted theory.

4.2  Superfropapdfors for Broken SUSY QED

As stated earlier, a very general method for the calculation of superpropaéntori in
the case of explicitly broken supersymmetric theories has been developed by H?l;yél-“
Neto et al. [3]. This method may be applied here. However, this will rcquiré much
care because, in the Wess-Zumino gauge, the superfields V, S and R Aare no longer
superfields as their §-expansion has been in some way cut off.

Before, doing the actual calculation, it should be cxg}ained why the supersymmetric

gauges were discarded. The method of projection operators devised by Helay&l-Neto

requires that the breaking terms be decomposed in a f-expansion. In the case of

SQED, u has four terms and 7, 7, s and § two each. With 30 many terms to start with,

[

Y -
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:;e calculation of the superpropagators quickiy becomes hardly manageable, not to say
anything abt;ut further calculations with expressions so derived.

Another method has been tried by Grisaru et al. [4] with a supersymmetric gauge
choice for SQED at ong-loop order. They were not able to obtain an answer in a
closed form. These two points leaé us to choose the Wess-Zumino gauge.

-

Once this choice is made, on¢ could work out the propagators of the component

fields and place them in the-appropriate §-expansion in order to obtain the superpropa-

gatc;rs. Alternatively , one can try to stick to the superfield notation all along and use
Helayél-Neto’s method. This last method will be the one used herein.

This way of doing things requires much care as 'truncated's superfields\ are consid-
ered. As calculations progré'ss, the reader will notice what kind of problems may arise
from this situation. The rest of this work wili be re'strictedjo the massless case to sim-

plify matters. The quadratic part of the SQED action, equation (113) , in the Wess-

f} »

Zumino gauge is

So=(-;-)fd‘0{ Viz (€ = 20P;) Vyyy + 235 + 2RR + 264 35 -

" 2euRR + 2¢ 38'+sS'-FR'-IR) V,,, } - (122)

1

i

- The constant-superfield u is given by equdtion (116) , the scalar fields:, R and S,

are of the type given in equation (46) and V,, is defined in equation (53). The new

\

terms are: -

¢ = ¢ (Pr+¥s)
8 =Ag+ V2 0y + i 00D-8A . (123)

6 Here, ‘truncated’ means that some terms in the $-expansion are absent.
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R =Ag+V26¢p,+i0608-04, (124)
with
§= a,
rea (125)

The disappearance of terms in the @-expansion of these fields comes from the fact

that only the ones multiplied by ¢* will survive the 8-integration. Then, why should one
bother about these if they don't survive after integration ? After all, this is what is usu-
ally done in ;uch cases. The reason is that the projection-operators used for deriving
»superpropagators will not have the same effect if applied on a 'full’ superfield or on a

truncated one as will be seen in the coming set of equations (141) to (144). " It should

be noticed that the number of breaking terms has been seriously reduced by using this

gauge. Only u,,a,,a,,a; and (-%-) ¢° d are left.

The next step will be to make the gauge choice for v which, in the Wess-Zumino
gauge, is still free as opposed to'the case of supersymmetric gauge fixing where every-

thing is set at once. The Lorentz gauge is the best choice for simplifying. calculations
# -
as v" disconnects completely from the rest of the quadratic action. The Lorentz condi-

" tion may be stated as

8mv|ﬂ =0. (126)

The action becomes

$0= () [d0{ Vyy QOP) Vigy + V, € - 20) ¥, +235+ 2RR +

Q

20u 35— 26u RR + 2¢ (3, + 55, - IR, = 1R,) V) (127)
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with )
S, =8 —1i008-8A; (128)
] V, = - 05"Fv, : (129)
Vazo = Yz = Vs (130)
P =P +P, (131)

- A

Thereon, one may calculate the superpropagators with the method developed in

P v

chapter III. To do so, equation (127) will be written in a matrix form. This yields an

action of the form

_:’i <
s,=7 [d'o
C“ 144 0 0 0 es Sh
0 144 0 0 €5 SA
G S RyR,Vyp) | 0 0 1w 0 -er | R,
0 0 O 1u - RA
el es -ef -er 2[JP, V.
‘ )
1000 5]
- 0100 | |5
+ (FT,S,.,R.,,R,.) 0010 || |*" c20) v, (132)
000
1 Rr J

where o -




-

The superpropagators to be derived from the last two terms are quitg casy to
obtain. Indeed, the last one corresponds to a massive gauge field whose propagator in "

the Landau gauge may be found in most textbooks on Field Theory.

1 (87" - 22 :
Ay y, =~ 708,06, ——(pz:f-)—— (134) =
2

The second term corresponds to a purely scalar cction and the answer can be found in

Wess and Bagger [5], with a small correction.

As,s, = ( P26:z )r (135)

4

The correction lies in the truncation of the §-expansion of (P,8;,) where the removed
terms are the ones included in the superpropagator of S,5,. The 6-expansion of equa-

tion (135) reads

Asx = _-;; { exp[ (6,00, + 0,00, = 26,08, )p] },

1 7 373, o 2
== { —0,08,p — 6,00, p + 1/4 6, - 63,8, p" + 1/20,0,80,p" +

p 2
6%, p* — 626,8, p° + 1/4 6, + 1/4 p* 6} 0,00,p -

s

p’ 600,08, -p + 1/4 p* 838,08, -p - 1116 6,6} p" ) (136)

The expression for Ay Ry 18 identical. Only the first part of equation (132) is now

left to evaluate. The best way to tackle the problem is to perform independently the

calculation for the purely scalar part of the action, then the'plxrely vector sector and
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finally for the scalar-vector part. Using equations of motion, one may write the scalar

sector of the action as:

=3 [de0,(01-4P,+6'B)s, (137)
with
o, =@,.5.R.R) , (138)
100 0
_ ed 010 0
B=F 100 10 (139)
000 -1
and

S5 8 TFs -rs

2 .
2\ F 5 TF 1§

A= £ N " (140)
0 15 -rs -If r
- 2

S -SF F -rr

and I, which is the 4 by 4 identity matrix.
At this point, it is of the utmost importance to distinguish the double-primed super-

fields from the "full” scalar superfields. The reason lies in the next set of equations.

fd‘&[S'PLS] =fd‘0 [3$] (141)

J40U3,88,1 = [d913,& 6* D)5, +3,;008p) 5, ] )
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= [d9[3(36* D) S+ S}, @eFp)S), ) (142)
f &[S P3]= f o3 (% 6'0) S + 3, (-008p) 51, 1 (f’ja)
fd‘o[sApLsA]=fa‘o[3(%o‘[))s] (144)
, S
Thus, with the above relations, the action (137) may be written as \
Sy = % f d'o {3 [1+6'(B- % )10 ~5l; , [(058-p) E1 9, 5) (145)

where the following notation has been introduced :

3'ly, = (1Sl Rl Rl ) (146)

and

-5 0 -5 0
2 0 35 0 7s

-
E= ] 0 (147)

0 rs 0 7Fr

When multiplied by 6*, the &, term may be replaced by & as it does not make
any difference. It should also be noticed that & has replaced &, in the first term of

equation (145). By doing this, the contribution of the second term of equation (132)
has been reincluded in the chiral action. Thus, superpropagators calculated with the
action (145) will include the part given by equation (135). One should then be careful

not to take this contrit\)ution twice into account,

-
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As the ¢ ()-component singles out in equation (145) , it will be calculated on its

own . So, one defines an "amputated” & ,

O, =0-9,, (148)

and gets the following action

So=3 [dUTL1+6 B-5)10,+F 5, [0Fp) LE)] 9),5) (149
where
10 00
0100
L=100 10 ) (150)
00 O -1

]

The &|,; being made out of only one component each , the calculation of their
superpropagators is similar to the component case ; one has simply to add the proper
number of #'s to the propagators found by usual methods of calculation. The result

is :

@ +g6) 0 0 0
o 0 £,(6) + 8,0 0 0
A'la.. s ~ (L-E) 0 0 1,(6) +,(0) 0 (151)
: o ) 0 £, +8,0

~

= -2 CpsD) LB*

and the different 6-functions are

& -



0

fl(o) =2 92751'1’ (152)
8(0) =~ 0i0§0‘a§2-p
fz(g) =-2 olaﬁz-p

8,(6) = 620,08, p

For the calculation of 4,4, » the procedure will be the one described in chapter
I along with the truncation of the 6-expansion at the end as done before for '-2&;,,7.

First, let's define the matrix M as béing

M=B- £2‘:. . - (153)
Then, one adds a term involving the currents to equation (149) and drops the subscript

"A" for the time being.

5= -;- fd‘o {8+ Mo+3PJ,) ‘ (154)

The symbol P_ represents the matrix composed of the projection operators P_ and

P,. R ”
P 0O 0\
- 0 PO O
= -1 + ‘ 1
P#"'Duz 00 PO (55)
40 0 0 P+
g*-_-r; : oo (156)
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(1.57% ‘

With the above definitions, the generating functional for the amputated scalar sec-

‘ tor reads

5

»

InZ, = -51- [do (@) a+6 My P, 1,) a

1 T PRI
=...2.fd‘o{J,P;(1+q My P 1,)

P it . v R

T

-‘(,158)

The second derivative of In Z, with respect to Jop Js, yields the superpropagator:

where

-1 4y -1
43,02=TX12{P(1+9M) P} &,

P00 O .
0 P00
P=PPe=lo o P, 0
000R| -
, i
- 2 ife =0,
R7h ife e, 2

(159)
*

(160)

(161)




The two extra P, matricés come from the variational derivatives with respect to chiral

superfields. The rule for these derivatives may be found in Wess and Bagger's

book [6]. “
- ’/
U(x,o ) fd‘o fd‘xj(f ¢ .F)F(x.0.8) = -— F(x 6.9)
~ = D”z P_ F(x,O,p) (162) (
Equation (159) is inverted as follows :
430,= 351-)(12 [IP+P6'MP]™ 6
- :'zl‘xn [IP-P6'MP+PO'MPPO'MP~ ..] &,
=3 X L= iy PG ° (163)

This yields the set of superpropagators for the amputated scalar sector which takes the

form : g
[(P,0 0 0 A,0 0 0 )]
4 =:1X°P2°°_ M 0 A, 00 p
@ 27110 0 PO OI+M) [0 0 A, 0 12
000 P 00 0 4]]
-1 .
=5 X [P- 55 M)A]A 5, : (164)

where the subscript "A”  has been reincluded to recall that the f-expansion has to be

truncated, The matrix A is formed of the projection operators A, and A, which have
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been defined in the previous chapter, more precisely in Table 2 on page 35. The term
(P,83,), is given by a simple modification to equatiox; (136). -

(P = -;%+ (P81, (165)

A

and (A,4},)|, is found to be equal to its untruncated version.

A =L [-1-000,p - 0,68,p+1/46} p* + 120,63, p* -
| p

+1/4 655 + 1/4 p* 6 6,08, p + 1/4 p’ 636,06,

™ 1 4,
" 16 %]
T - o 4 4
= A, =[0.Po'P, 6, - (166)

Finally, collecti;lg all the constituents of the scalar superpropagators, one gefs‘

M__ ore'p, ¢, - @b (167)-

-1
Agg=5 X 12~ a(L-E)

) ‘2{[P—(DI+M)
. ¢~

where all the terms have been pzeviously defined. The decomposition of A4,, into

each of its constituting components (Ag, Agg, ...) is straightforward, the only techni-

cal difficulty-being the inversion of the matrices ([J7 + M) and (L — E). To ease fur- ‘

ther references, the result of this calculation is given at.the very end of this chapter in
Table 3 on page 56. »

This compl¥tes the ;nost intricate part of this chapter as the remaining superpropa-
gators will be derived quite straightforwardly because we will not have to worry about

N

the ¢ composition of the superfields. This simpiiﬁes the calculations gs/well_,,gs the

-

ke -
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o | understanding of the method. e

Using the equations of motion in equation (132) , one obtains. a quadratic action

~ for the vector sector: -

So=3 [d'9Vyy (207, - B[P, - 2@’:& A
2
—ER[P o+ —E A1}V, (168)

2([]—--—-)

“The projection operator A, is formed in the same manner as P, , i.e.

_AL=A‘+Z4 (169)

Both P, and A, will have to be truncated at the end of the calculation in a way simi-
lar to the scalar case. Adding the current term to equation (168) , one may easily

* obtain the logarithm of the- generating functional Z; from which one finds

3 .
- .

ed |: ¢ Es & r :l -1 04 (170)

B} f Avmym::-{(ZD—C)P + 2 (D+ (D_f_i

¢

=
o

- The techmque for mvertmg in the curly bracket is the same as the one used for

" equation (163) and the result so derived is

1 .
AV v = - {PL— -

I

N [ Ifsxjp +2)-¢ rrgL-x)] )
o . L2 -D Bl 0+ R 0] ’J’t:’

, -

|

{




where - - ¥

x=£8 - , (17)

and the truncated projection operators are

(P 25:2)7 = ;8'1. : 3 P - (9: 8,8,0,08, + ‘92515201”31)}? (173)
Ui =3 667 - (174)

Y

The evaluation of the scalar-vector sector is most simply done by starting with the

action for the vector part, equation (168) , and using equations of motion to replace
one of the V,'s. This yields

%

- - __..._fd‘a vzl [20 P, -85 (P, — =2 — L) err(P+

2

x
a+»

= i - (U Ab)]e (s ,s,r,-r)(I+B)}d> (175)

where B and &, are defined in equations (138) and (139) The same technique is used,

over again to find the superpropagators: ' : \ -

e P,+xZ,_ 0 0

_ 3
— AV,=-°- 0 P,+41:A7 0 s| 1
0 00 P-m|lr) 2

.

- e

1
%
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- . . L

~ W
. 54
@, - [ezl‘sx(p2+x)—ez?rx(pz~x)] -
, L 2
[0 - 5") + 128 350™3) + 126 Fr (PP0) 172 A4)) 1, 61, (176)

-

The inverse of the terms in the first parenthesis is easy to obtain with the help of the

multiplication table for the projection operators, Table 2 on page. 35.

[P2+—xA7]'l=[P2+m7Pz]'l

=P, [1+x4,]"

=_P2 [1- ]

(D+)

=P,

=T A (177)

v 1Y

Once again, the subscript T in equation (176) means that the 6-expansion has lo be

~“cut off. For this case, they read

s‘z), @ - 4633, (178)
Wb =31 o (179)

\

All the results-derived in this section are-collected in Table 3 on page 56 at the

s

~

end of this section. One may check that these results, for the bosonic sector, are in
complete agreement with the ones derived with component fields [2]. In this same
table, each of the truncated f-expansions found earlier is given a different name in

order to avoid confusion in further calculations.
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To conclude this chapter, we would like to undetline the fact that the technique for
deriving superpropagators worked quite well, except for the scalar sector, even though
the fields considered were not superfields. Indeed, only at the end of the calculation,
one had to worry about this fact by truncating the #-expansion in an appropriate way.

The ‘case of the scalar sector was more involved because of the appearance of purely

chiral terms, SSand RR , or antichiral, 33 and RR , whose action is defined only

\

over d*for d*f anq not over d‘6 . If these terms were absent, this case would be as
simple as the others.

Obviously, all these calculations would be simplified if the Wess-Zumino gauge
could be implemented in such a manner that the superfield technique would not be too
much affected. It-seems that such a method has been reééntly devised [7]. With this
method, Kreuzberger et al. have been able to derive superpropagators fo; SQED in a
Wess-Zumino like gauge with the help of an extended algebra of projection operators
( 2 projection operators in addition to the original five found in Table 1 on page 22 ) .

However, it is not evident whether or not this technique would have been a major

improvement here. As the theory was explicitly broken, an extended basis of ;;}oject-

ion operators, the A's, had to be defined from P, , P,, P_and P_ . If this new set had

been applied herein, it would have required an extended basis of projection operators
of the A~type which would have been much larger and intermediate steps in the deriva-
tion of the superpropagators could ha;ze been much mors involved.

Nonetpeless, it should be interesting to try this method to rederive the results
obtained in this chapter. If the method proved to be manageable, it would be a major
improvement over the method used herein ( ?specially for the purely scalar sector ),

first from an aesthetical point of view and second, for the possibilities it would open

. for the calculation of effective potentials in superspace of more complex theories.
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Table 3: Superpropagators
Superpropagators for SUSY QED in a Wess-Zumino gauge supplementéd with the Lor-
entz condition.

.

1-Scalar Sector

P+_.£Li.l.,)._cp &
<P %) 20+ %)
tgp= 1~ 2 ~x) 2] 4, + B +—1LﬂLc,,
() S 20+ )
= SE_*‘;").ZA
Ags ()5 7
Am=(-)f$’ff£)lu,, e
-x‘
_(P_;’ELZA
N 4 (p+x)
Am_(-) MZA
b= (3) 15 24,
1,
Amz(T)rS?AP
-1y Fs

4
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A§=(%>'3ZAP+”»+7P;§—;;C;
2 + =
2

-

The following variables have been introduced:

2
a= —2—3&'

2
b=£2-7r

Z= [(¢'- ) +a@” + 2).+b(0" -]
= [ +w) ' +w)]"

- where , )

and

—
N= —;% - (a-b-x)x L.
det(p* I-M) = (' - ©*) P> +w,) (O + w_)

1

2 1 .4 =
Ap=p" [-6,00,p~ 0,00, p + Z'.?; pP-0,8,8,0" + )

2 o= 2
8,6,6,6, p" ~ 929291 p

1,4 2 1 2,4 1 24 1 44 4
+ -4-0 Pr+zp 8,0,00,p + <P 6,6,00,:p — 16 02 P ]

57
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Cp = 20,00, + 0:6:0,08,p

2
Cp = 20,00,p — 613:0,06,p

2-Vector Sector

Ay = —';l—z—{Dp-—12-[ax(p’+x>-bx<p‘—x>125p+<6'“"-BT?'->FP*
2(p+'2—) 4

The following variables have been introduced:

1, 44 2 222, = 2% 7
D,= ('§') 0,0, p~ ~ 6,6,0,0,00,-p — 6,6,0,0,00,-p

-1, 4,4 2
Ep= ("8—) 0102p

Fp=— 0,057,

3.Scalar-Vector Sector

A S (6,- [ (ax(p’+x) = bx(p®-x)) Z — x] k)

26 4%) @ -
NA =S — (H, - [ (ax(p’+x) — bx(p>-x)) Z - 2x] K,
2048 ) ’

-—I (G- [(ax(p2+x)—fx(gz-x))z+2x] K,)
20°+3) @ +x)
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- 2 2
R = 2’c {H,- [(ax(P"‘x)—fx(P‘x))Z'*'zx] K,)
2(p+-2'. (P+x)

)

The following variables have been introduced:

G, = (%') (0: - 40:5132)
H, = (3) (6] - 46,770,

4

1
KP = (Z) 6, \
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Chapter V
. HIGHER ORDER CORRECTIONS TO THE EFFECTIVE
POTENTIAL
o

In this chapter and the next one are concentrated the main results of this thesis.
First, in this chapter, the one and two loop order contributions to the effective boten-

tial (U, , U, ) will be calculated with the help of the superpropagators derived in the

previous chapter.

The results of the firstseClion, i.e. the Jne-loop effective potential, have alread

been obtafned by Miller [1] by means of a calculation with components. Hefice, this
will serve as a test for the superfield method applied to SNSY gauge thepries.” With
this poift verified, the method will be applied to two-loop order. k will be car-
ried gut in the second part of this chépler.

This chapter will be divided into four sections. As mentioned above, the first and
second will be devoted to evaluating the one and two loop order effective potential. .
These expressions will be in terms of four-momentum integrals which will be calculated
in the third section. In the last section, the digfrent parts of the effective potential will

be gathered in their analytical form for further use in chapter VI.
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5.1  One-Loop Effective Potential

[

5

The calculation of the one-loop effective potential for SUSY QED resembles
closely the one already done for the Wess-Zumino model in Chapter III. The contrib-
uting graphs are given in Figure 4. There .are six of them to start with but only two of
them need to be evaluated because only the auxiliary field tadpole contribution is need-
ed when using AFTM, along with the supersymmetric boundary condition, and because

L
there are no F-tadpoles:

[d%s,4,=0 ‘ (180)

and similarly for '3 , R, R.

[}
3s RR w . V7 W vV
N {:} 2 }
A
. P ) & & a
2 2 2 2
\ >v R R 3 S
Figure 4:  One-Loop Tadpole Graphs in SUSY QED

a

This leaves us with the two last graphs whose contributions to the\effective action are

Li=ef o @n'6'(,.) [d'k [d'0L V(P b D) { Axs =~ Ape) 4 npm] (181)

®
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As mentioned above, with AFTM, one needs only to know the term corresponding to
the auxiliary field of V, i.e. D . Knowing this, one may write down the one-particle

irreducible D tadpole .

Ty @y =0) = .;- f d'R [ 8% ~ Apg] yoo (18-

With the help of the expressions for As.; and Ap, found in Table 3 on page 56, equa-

tion (182) becomes

-[1- & +02") [1--’;-(k’_x)z‘]

I, (0) = % f d'r{ } (183)

) T W

It would be possible to start from this expression, to integrate over d and apply

SUSY boundary condition in order to obtain the one-loop effective potential. How-
ever, there is a simpler way to obtain the same result. First, one use$ matrix notation

for"The superpropagators instead of their explicit version given in Table 3 on page 56.

So, retaining the notation of equation (163), one may write equation (183) as

I @ =) [dE{ LQI+M" ), - [O1+ M7 ]y) (184)

+

With the clever-trick used by Miller [1],

8ln[det(a% +M] _er@r+M*1, - (QI+M" 1) (185)

equation (184) can be written in a very simple fashion:
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I © = (3 [andnldell+ )] \ (186)

Thel above quantity is equal to ihinus the derivative of the one-loop effective potential‘
with respect to d. Thus, the integration over d is trivial and the only thing left to do is

to determine the integration constant with help- of the SUSY boundary condition. The

result is

—(1/z)fd‘k1n [ (k*-x%) + a (K +x)+b(k x) ][ k'] 187)
[+ £ ]k

This leaves us with the task of performing the integration over the internal four-
momentum k. The regularization techmquc of 't Hooft and Veltman [2] will be used to
work out these integrals. As mentioned in the introductory remarks at the beginning of
this chapter, this will be done in the third section and the final result given in the next

one.

N

\
§

P

5.2 Two-Loop Effective Potential

At two-loop order, the Vacuum Bubble Method may be used‘aéain. Calculations
are more straightforward thgn for the one-loop case as'no extfa integrations are need-
ed and as everything is done. with superfield ‘notation. At this 'order, there are many
contributing grgphg. They are all listed in Figure 8 on page 867

The two-loop effective potential is given by minus the sum of all these graphs.

/
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—




Uy=- r;(a)\ , :

¢

=-ezifd‘olfd‘ozfd‘pfd‘qfd‘lé‘(p+q+l)

4

4
P Al ! € 4P 9
{ Y4 Qa3 %%, t 7 dw )N Qv izety+

=} i=]
=1 el

.2 4 4

£ AP q ! P Al

5 Aw Dt A, Aa,v"’ ) Ao,al Avo,Ai,v"u"'
i=1 im1
i1 =0

.2 4

€ P q i

) Aw Aw 2 ’t’j AO.-OI )
i=]1
j=1

2
- % [d% [d'p [d'78p+re) { £, [ 8% + a%)
+ [&F, Al + 4%, 401 ) ¢

-

¢ = (3,5,R,R) t = (3,5,7,r)

n = 1 if number of RR (or7R ,R‘;Jrir)palrs is even
#7111 if number of RR (or7R , WPr¥r) pairs is odd

(188)

y

(189)

(190)

The number of graphs to evaluate is quite large but it would be even worse if a

component apprdach had been considered. Nonetheless, many of these terms will be

discarded once the integration over the @ variables have been performed. To facilitate

things, each type of graphs will be evaluated separately. Each contribution will be

identified with the letter used in Figure 8 on page 86. This way, the two-loop effective

potential is defined as »

/
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Uy= - [U+U,+U+U+U+U+U, +U,] (191)

To evaluate U, through U, , one uses the superpropagators found in Table 3 on

page 56 , then integrates over d*f, d'd, ( d'0 for the last two) as well as over one of -

the four-momentum and’finds :

U, =& [dp [d'7{(D) (D7 [ 00" 0" 1~ L 6'+ 97 -
g‘ @ +0Z° + -222: @* + %) v(qz +0ZZ2)+ @+ 0" (§ 4+ x)!

-3¢} -07 - 2 (¢ =02+ L7 - 0 (¢ - 927) - 0 727

1 (6""'--";4) 1,2 1,2 1 ’
"'5'(1’"1),,, (lz+-§-) (P'Q),.[-Z'(P +x) (¢ +x)

+2 @ -0 -9+ 8—:;- (aN-bO)’ (@ +w )" (424w )

+ -8-:? (aP-bQ)_2 @ +w) @ +wh + —‘% @ +w)'@ +w)")

/ 27
. I -
- LD
+3__1_’_._:_( 1’)31 @ +b) (+b)
2

2P+ 7O+ DH @+ D o
JPta) @va) b . pg

P+ @+ C+DEC+H P+
[E -t - 2+ E 40~ =) - & (2 |

| 715 @1 (,,z+%)) i T

P 2y a ‘b 0 9 .
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+ 2 ]_...--—-..-——b _-a—b- Iz-f- .‘—12 1t < 192
el (,,2+§)) D (4w = ) 0+ D] 109)
where
w ~-X
N ==
- W, . 4+X
0=2*%
W ~X
P= We T X
w++x ¥
0= x22 (193)
U,=0 : © (194)
U=0 (195)

Ud=—e2;/'d4ﬁfd‘q{{-;— Z"Z"[a(p2+x)(q2+x)(lz‘x)'l(1—-52’-(11-{-_1:)2‘)
+b(p2-x)(q2;x)(f+x)"(1--g-(z’-x)z‘ -i‘;-

G I @ )40 -2 - E 0@ -0 -0 P40 7

+abZ @ - +0)+ G +2) (G -]

s o @ e o' 2 LR 2 C=0 oy 196
+50°+3) @ +2)“ o st o 11} (196)
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) @ - B2y 5, - Salm, )
Ucz-—ﬁ-—fd‘pfd‘q{ 4 q ,

¢+ G+3)

[0 -2 (1 -2 @+ D D) +b0 +0" 1= 2 (P -0 2)

s/

A Pany B oDy s
2 (lz-x) 5 (Iz+x) + 2abZ' ]} \ (197)‘0

where one € has been combined to the constant scalar superfields and written as the

constants a and b defined in Table 3 on page 56,

¥
W [(1-2¢'+02Z] [1-26'-92]
U= [dP - + - (198)
4 ¢ - ' +4)
. U,=0 . (199)
2
In the first five terms, U, through U, , " I " has been kept as a short writing.
I=p+gq ' (200)

.- All the different terms in equation (192) to equation (198) may be put in such a
form that only two types of integrals will ultimately need to be evaluated. These typical

—

integrals take the form

~w

Kab,c) = f d'p f d'g

1 201
[C+a) P+ +0] . @l

and




Xab) = [d'p [d* 1 : 202
W= [ T )

., In terms of these two basic integrals, the different parts of the two-loop effective

potential U become :

ccy, 5 5 5x°
..e {-(14+ = )J( ) -IEJ(X,X)— -Ié-!(x,-x).—;-;-iléw+,w+) -

2 ) 2 2 w
2 gow_w )~ 2L jou w )+ [ LELDQ) | (@Pb4DQ) 4 g0p 74
472 - - 87 8y 8cy 671

(aP-bQ)? ) Jow,, Sy 4 [ KGN +BO) _ (a'N2ab 4 b'0) | 2abw_ (aN-boﬁ]
2 +2 8y 8cy ‘ c'yz 811

a3 ISy 3+ Sy + L1 2Ly - 20b 4+ B
J(w-’2)+(4+2c)](x’2)+(4+zc)’("'z)+37 (1+ —£)(@'N - 2ab + b°0)
C C 1 W_ c X c .. c
[(-2—,W_,-2-)—-§‘-Y-(1+ )(aP 2ab+bQ)I( ,W )- (1+C)I(2:x,2)

"""1"-)1( ’) )—' —(P+Q+2)I(—,W f)"' -

2
€ w 0) 4 LaNBO (€ 4y y 1w Ew)
2"~ 67 2 2

-
" 4abw w
+ LB (L) 1+ S - ( *-)1<w+. Lw)-
16y

2 2 2 2
W_ - W =X
- ...L_. -
o I(x,w_,-xy+ ICx,w %) > I(x,w_,x)
2 ,
+ 252 faw 0+ (2 + S Ht,el20) + (x + £) Kxel2,0) —
T3y O+ g/ e g’

2
ab(-%- —-4w_w)

p Iw_0,w, ) + L ) 1(0,c/2,0) + 31‘1 K(c/2,c/2,¢/2) ~
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2
Wy ) (@P-bQ)’ I(w W)

b 2xy yC a 2X\ ,C
- "‘i‘ (1 +""c"") l("z"'v ):,0) - "a’ (1 - P )I('i"xyo) +

2 2 - 2 2
Wor) (aN-bOY* I(w_w_w_) + [ Sablw, =) —1:;:? O W-%)]

[ 8ab(w’-x") ~ (aN-bO)*(w’+") ]
128y

Y (W+ W_ ,W+) - I(w,_ W, :w_) } (203)

\

(a’N — 2ab + b*0) cy_(d®P—2ab+bQ) ¢ ¢

a D)
= (s )+ 1) + —E=s= (aPbQY Iw,w w,) -
64y’

W’ -2
3

p” (aN—bO)2 Iw_w_w)~=[(aw +—x)2(w_-x)(w L E2w_+ 3x) -
&

(bw, + x)z(w_ +x)w, +2w_-3x) - 4abx(wi + 2w +w__—.'&:cz) J(128¢)! 1w SW_W,) +
[ (aw_~2)"(w,=x)(w_ + 2w, + 3x) = (bw_ + 20w, +x)(w_ + 2w,3x) —

dabx(w? + 2w, w_~3") J(128x9)" Iw_w, W ) } . (204)
\

A\

2 ‘2 2 2

16cy &y X ) 8’y
2 2 2 2
2 2 € cy_ (a’P~2ab+bQ) €y, (a'N—2ab+b°0)
.(aN 2ab + b°0) 1 Az 5 %y Iw,7) + Sy
cy2 ) i
+_ -
¢\ (a°N -2ab + b°0) w3 e c
J(w, £y - W [8+4 3 ] I(z,w_,2)+
+--)
(a’P - 2ab + B°Q) .




2 - 2 ; -
w
(5P - 2 + BQ) HEw,,0) + ()N - 2ab + b0) (S w_0) +
4c’y 2= 4c’y 2
o W .
(—3-)@’P - 2ab+ H*Q)IOw, ,0) ~ (—-)a’N - 2ab + b°0) I(0,w_,0) }
8y 8y .
(205)
)
=2 £y 4 £y -
U=e { 6 (aP + I;Q){(wt,z) + 16 (aN + b0O) J(w_, 2)
% J(-x,-g-) - % J(x,-g-) } 7 " (206)
To obtain these results, the on-shell value of the auxiliary field has been used.
¢ . .
d= ﬂ'Lz-_s_sl =b-a : (207)
This yields -
x= 2(’12:_"1 (208)
- -
=4f L4138
=V, 0

As both a and b are semi-positive definite, d may only exist between certain limits Fy g

(209)

(SITLY

where

c=2(a+b) ° | _ " (210)
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5.3.1 Dimensional Regularization .

‘ 1

The four constituent terms of the two-loop effectivé potential will be added togeth-

er once the integrals I and J will have been evaluated. This will be done in the coming

section.

5.3  Evaluation of the Divergent Integrals

The problem of having to solve divergent integrals is as old as the Feynman graphs
themselves. Many methods have been used to ci{cumvent~ this difficulty. All of them
have the same goal, that is to isolate thep;nﬁnite part in order to remove it from the
original Lagrangian within an appropriate renormalization scheme. One of these meth-
ods is the dimensional regularization of 't Hooft and Veltman [2]. 'f'his method which
is simple to use yields an infinite ;aan factorized as a residue at somé pole. Moreover,
infrared divergenciés are handled without additional problems. For these reasons, this

technique will be used to evaluate the divergent integrals found in the previous sec-

tions.

Dimensional regularization is so broadly used nowadays that it can be found in
most of the recent textbooks on field theory [3]. The idea behind this theory is that
Feynfﬁan@tegrals converge if the size of spacétime dimension considered, n, is small
enough.\ Hence, one may evaluate those integrals in n dimensions and at the end
return to 4 dimensions in an appropriate way, There, infinities will show up as finite
residues at poles in (n-4). To make things clearer, a typical integral in the evaluation

of Feynman diaérams will be worked out.




\)J‘:/ ‘ . (7

4-n
= .

q+m)

= ,“”‘(zx) f dq f ds, f de, sin,.. f de,  sin"™%9_ (211)

The arbitrary mass term g is introduced to keep the overall dimension of A
unchanged. The ¢'s are angles in the n-space and should not be confused with Grass-
mann variables defined earlier.

The integral A as defined in equation (211) is finite for a number of dimensions n
smaller than two times a, the exponent of the parenthesis. The angular integration is

easy to perform with the help of the relation

Ik + %)
[dosin*o = r(.;_) _i__k%_ (212).
n+ =)

The properties of Euler Gamma functions may be found in Appendix A. The remain-

ing integral over q can be done with the help of the standard resuit :.

2b-1

dx —> = 1b) Nab) (204 (213
‘[ G + m? 2 Ia) () )
. 4
With these two expressions, one finds gmt the integral A is equal to :
A = p " (4r)™ J‘ﬂ’izl— a>2 (214)

Na) (m* y 2
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For thé case a>Z , A is finite and one has only to replace.n by 4 to obtain the

2

final result. However, equation (214) is still a valid representation of A for a<—'23- as

long as (a - 12’-) is not equal to a nonpositive integer. This is the idea behind dimen-

. e o, . . . . . . ¥
sional regularization. The technique is to take an analytic continuation of these inte-

grals to complex values of n where it can be evaluated. The int}&;itieé*reappear at the

end as poles in the limit of n going to 4. For example, for the case a = 1 , equation

(214) becomes

A= (411')-2[‘(-1 -+-5¢s);12'mz(l -9 ¢ .

2 2

m 1 1 - 2 T
- 24+ (1 - — - —_
(41r)2[€+( 7,)+(2)(1 27,+7,+6)+ ]

1

2 2 2
Uﬁmmn%mm)%q

41r;42 41r;42,

- 1 2
;(fjr-)z[—;+<1—7,+1:1<;:L”2-))+o<3)1

(215)

where =y, is Euler's constant and where n has been expressed as (4 — 2¢) close to 4.

Results from"Appendix A have been used to obtain equation (215) as wéll as the fol-

ot

- lowing relation:

2
B @' =e"™=1+edna+ 52- in%a + ...

o~

(216)




|

74

The inﬁnitc? part of the integral A has been factorized as the residue (2";-)’ at the pole

1 where the limit ¢ going to zero is understood. With an appropriate renormalization
( ©

scheme, all these poles should cancel and the limit give a finite result.
The typical one-loop integrals have been calculated in the original paper of
‘t Hooft and Veltman, [2], and some are tabulted in the first appendix. “They will

serve as the building blocks in the cvaluwon of the forthcoming integrals.

§.3.2 One-Loop Integrals

The integrals found in the evaluation of the one-loop effective potential, equati

(187), are all of the same type, i.e.

N\
I = f d'p In(p® + a) (217)

where a may take the values x,-x , w, , w_ and O.IEquation (217) may be written as

Y

L= [ [dp = i > | (218)

The four-momentum integral has now exactly the form found in Appendix A and its .

solution is

I = fda[ (4‘;)2 14 (4:“2 )] (219)
a2 1

- a 1 - __g__ -t
T @} @-9 e+ o 4:,3)
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-~

Hence, for a = 0, the integral vanishes but for w_ , there is an imaginary part as

well as for a = x when x is negative and for a = -x when x is positive. This is a genu-

+

ine effect which will be discussed in subsection 5.3.4.

5.3.3 Two-Loop Integrals “

In the case of the two-loop effective potential, there are two types of integral to be

evaluated. The first one,

Nab) = [d'p [d'g fel , 220
(ab) = [d'p [ a,(pzm(q,”) (220)

is simple enough as the answer is given by the multiplication of two one-loop integrals.

7

(-1 +¢) ab :
Ja,b) = (221)
(4-”)‘ ( a > )(( b - )l
4xu”  4np

The other type of integral, I(a,b,c), is far more difficult to evaluate. For this case,
it will be necessary to use Feynman parameters for folding denominators into one. For B

the case of two denominators, Feynman's formula reads
Y

1

1 _Nt) [ g x ) o)
D\, W I'(f)-[ (2D, + (12D, 1" @2

where i and j do not have to,be integers. Thus, let us rewrite the expression ‘for

Ka,b,0). S o ' -
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Haboe) = (" [ [d 1 223
Wb =6 [0 [ o =

with [ still defined as
I=p+q . (224)

. With the judicious use of the expression

4

1=l o . (225)
2n " g oq

in equation (223), one may prevent the ultraviolet divergences to find their way into the

2 Yo
parametric integrals [4]. This yields
a b c
He [@2 ) Frn) | @ )]
Habe)= - YA fap [arg LU+ (D) (@.4c (226)

@ +a)(*+b) ([ +0)

The best way to evaluate this expression is to introduce Feynmz';n parameters one at a
time, starting with the most divergent four-momentum integral. Let us start with the

first term of equation (226).

&p [d" 1
o] ZJ(112+a)2(l’+b)(qr’+c)

3

= [anfdp —L & 1 _
, f)‘[ p(P2+a)2f q’[qz+y(p’+2p'q+b)+(1-y)c]’ ,

\ . . .




1 - -t 1 1
= ~ d D
| “ S Tan )
1 1 € € €~
= Lo [dy [ar —LMAD"___ )

o o [yaiy)a+ 12y + (1y)12)c ]
Obvxously, the third term of equatxon (226Tw1ll give a similar result with a and c
interchanged. For the second term, one sxmply has to make a change of variable |

(p-pq,1—p,q— g°) to retrieve the same answer as before with a and b inter-

I

changed. ) |

This leaves us with the integration® over the two Feynman parameters, y and z.

Integrating first over z, one uses the fact that

¢
1-2)"= _61. i(_l‘;;__ZL (228)

to obtain with partial integration .

j . i ' e 4
' ’ . §
-‘1- [y y@9)' 11 = ¢ - 2¢lna - 24ny - 2n(1-y) + 0D T (229)

=-:'-[1+e——261na+0(£2)]

With this rcsult,—the integral I(a,b,c) may be written as

~

<

4( 1
I(a,b,C) = -

(1.25) “ )4—2¢

ﬂf‘)i(1+c_)(a+b+c)- '

‘ \ ) .
i . Aalna + blnb + clnc] + o) } o (230)

@ With the relations of Appendix A, this finally becomes
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Ka,b,c) = ( ) { [ +—+3+ 2)](a+b+c)—
@+ -) [ainL + bln_b o]+ (--)0(«) } (231)
where-
- M=dnple " / / (232)

This last term implies that the integrals over Fe%man parameters should have

been carried at order ¢’ so that the finite part of I(a,b,c) be fully determined. The .
problem is that this calculation is quite involved and that the result cannot be put in
closed form [5] [6] [7] . In the three references just quoted, three similar types of
approximation were used for the finite part of I(a,b,c). Each of these reproduces the
correct limiting cases, such as a = b = ¢ , where the finite part may be found exactly.
Choosing the method of .Mahanthappa and Sher [7], one thains for I(a,b,c) a form’

which the authors claim to be numerically good within a 10% margin of error,

)+( )+3+ ](a+b3rc)-

L4

b
(3+—)[alnM+blnM+cln-—] +3[aln-ﬁ+
bm=L+cxn £1+00) " (233)

!

If this calculation were to be pursued up to thre.é-l‘oop ordel", the remainder of

&

~equation (233) wouid have to be put down under one form or another in order to can-

cel the new infinities which would arise. -

i .
* r
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Like in the case of the one-loop integrals, a, b and ¢ may become negative and

© give rise to an imaginary part. This problem will now be discussed.

>

-

5.3.4 Negative Mass Tegns in Feynman Integrals

3

_Mathematically, the fact of having a negative mass term in a Feynman integral
presents very little difficulty. Let's consider the simplest case. In Minkowski space, we.

have

szd‘p 1 ( ({34)

- m* - ia) -

In the complex p%plane, there are two possible poles, one along each of the
'

curves drawn in Figure 5 on page 80 and of value (&(Vp*— m® - ia*)). If these

poles are real, the contour of integration is the one given in Figure 6 on p&g 80 and

one may r¢pl‘e
o9 0 J; oo 0 .
dp -~ [adp - : ’ (235)
[#=-{1 - g

/

This corresponds to a Wick rotation and is equivalent to going from a Minkowski
X <
space to an Euclidian space. For the case where the poles are purely imaginary, it is

still possible to make a Wick-type™ rotation in the complex plane but the contour is

. slightly different as shown in Figure 7 on page 81. The way the contour is drawn allows

us to perform the rotation without crossing any singularities.’ However, the integration *

e

over the two extra half-circles will result in an imaginary part.

A

)

/
[
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Y

Carrying out all the calculations in details, one arrives at the conclusion that the

integrals tabulated in Appendix A" are valid even with a negative argument, the real

\ / 3

and imaginary part being automatically and correctly included. :




81

Re «p"

Figure 7: Contour of integration for the case where the poles are imagi-
nary '

- |

\

The term ia (a << 1) \yhich is usually dropped once in Euclidian space should
be kept in the case of a negative argument in order to determine the sign of the imagi-
nary part as Log(-1) could be eitlg(;r plus orminus one: even though ia was not e:;plic-
itly kept in expression;’t;ot I(;,b,c) and J(a,b), it should be assumed that it .is under-
stood. This is very important from the physical point of view because the imaginary
part of the effective potential is interpreted as being proportional to the decay frob-
ability per unit time per unit volume of the system [8]. Coleman and Weinberg [9]
also studie:i this phenomenon in their work on effective potential and concluded that
the vacuum becomes kinematically unstable because of the presence of a negative mass
term. Thus, the system starts to decay.

In such a case, one must replace U by Re(U) in the relations which define physical
cuantities such as the set of equations (32) to (34) because the Lagrangian must be
real. Moreove:, if infinities arise in the imaginary part, they will have to cancel each

other as the renormalization constants must also be real since they appear in the renor-

malized Lagrangian. ' ;

—h
v




5.4  Anslytical Form of the Effective Potential

: 1
This section will consist of only the one and two loop effective potential written

dc;wn as an expansion in the parameter ¢ . The limit ¢ goes to zero is understood and
left aside until the theory is renormalized.

So, using equation (219) along with the results of Appendix A, the one-loop effec-
tive potential given by equation (187) takes the form - (SN

¢

U= - o (rched +2é — 28] 4 SinlE| - whin| e

w

- wz_lnl-il'-l +0()] +in[22+w ]) (236)
where the dependence on the coupling constant ¢ is hidden in the different parameters
x, ¢, w, and w_ defined previously.

For the two-loop effective potential, one uses equation (221) and equation (231) in

the exprcésions U,,U,;, U, and U, given in ¢quations (203) through (206) and obtains

(——) {[( 5E )+(—)(—-—-) ( )[( )IHIZMI

——

CSWEARC PRI o 2“">m| |+

a .2 3 2t .Y 11 W c
(—1'6-+3X—-6-4:; =) In|—|] - ( ) In| M'
154° uc 51 Slcx’
——-lnll 64+4+256,,+1(,7)| l
- 1é | s1é 1l sl Yo 15c 214
&t T 86 e Bl - e 3 Wlarl +
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2 2 3 2 Sextw
2 X [ 137x c 1lex” £ 1n? w,
a#lnlMl+(128+ it T o )n’|—%] +
~ R
(—"i- B _ & 11l X o) otz + (Zﬁi -
§ 512y 2 w T g
=3 2567 64 8 ~ 2567 2
211X Inl € 15abx* W, W -
+x¥n|'ﬁ|lnleI+ o lnlMllnlMl]
i [ (A)E- - 33 + 3¢’ 21” ) + &° lnl [+
"7 s ey
¢ % 1 o c 15abx’ | Vs
PR S T 2 Y PY NI P L
CRAE - T T A R
2 2 3 2 2
¢ (Wi ¢ lex - i | 3%
+(64+ 4 256 )llMﬂ (64 3
1c> 51cx2)]
256y 16y
2 ‘ 2 3 2 5cx2w v
_prL 153" ¢ lex” _ 237
I 28T "8 5127 24 167 ]+ 0() } (237)

One may verify that the expression found for U, respects at each order in ¢ the

SUSY boundary condition :.-..

Uy(c,x=0) = 0 ) @9

The same is true for U, but this is no surprise as the boundary condition was used to .

derive it. It is recalled that the finite part of U, at order ¢° is only an.\approximation

as explained in section 5.3.3.

i
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These expressions have now to be renormalized in order to obtain a finite ( and

final ) form of the""éﬁectiVe'potential up to two-loop order. This will be done in the

next chapter.

¥
¥
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6.1  Renormalization scheme : \

Chapter VI
" RENORMALIZATION

¢

‘ '

The infinities arising in the expressions for the one and two loop order effective
potential indicate the need of an appropriate renormalization scheme. The simplest
way this may be done is to introduce renormalization constants in the original Lagrgn-
gian and reformulates Feynman rules in terms of the renormalized #parameters. This
way, counterterms are automatically included and divergences will be removed within a
minimal subtraction scheme.

Once a finite expression for the ‘effective potential is found, it will be possible to

»
derive the renormalized coupling constant and the S-function for SUSY QED.

-~

Looking back at the original SUSY QED Lagrangian, one realizes that three dif-
ferent renormalization constants need to be introduced : one for the vector field, one

for the chiral fields and one for the coupling constant.

Z,=1+RZ0+ 7 294 ... - L . (239)
Z=1+8Z% .. I | o . (240)
Z=1+82%4 .. (241)
‘ . J . ’
- ’W -w-
4 -

-




)]

i \
Because of the structure of the effective potential at tree-level, only Z® will be

needed to make the theory finite at two-loop order. This will become evident later.
g’
From th¢ renormalized Lagrangian, one may calculate the new superpropagators,

change the Feynman rules and calculate U all over again. But once the two first steps

are done, one realizes that the expressions found up to now are valid if thé following

~ definitions are used instead of the old ones. \
" 2
¢ =€ (s + ) Z,Z = 4e* 2,Z o (242)
d 3,5 &t
ed ,2 ,7 _ e =
= — == Z" 2 !
X == Z; Z 5 Ze n / o (243)

>

From these two equations, one may deduce that w_and w_ have now the following

expansion in f:

<
3 2 4
(2 47+ 22+ 2] fa+l
w+=e2(o+G){1+ﬁZ§” ( ")2 X +ﬁZ§,)_z__)72_+
o+ o+
3 2 .
20" + y,2+_22_+££1. \
5 7V 1 T (244)
‘ (e +7) <
20° on’ ’ 2 [4
[20" 47 - = - 2] (n(1-2)]
w_=elo—y{1+72Z" r ") x +HZ$"-7-z——-)1-——
c—7 o~
3
1)[262.,.22__22__21'1.] )
Az, ) &5)
o~

With these seven equations, one can now work out the A-expansion of each loop

order of the effective potential. The task is tedious but straightforward. The result is
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with U, given in equation (237) and

1

. ' 2
InZE = @+ ' 2L i [ L4 0~ )13

. ’ | Ua #(136#)

1+Z >nn|——l|+ﬂ-a——>1n|—1n 2L -8t w2

(40° +-'l-.--_7_..ﬂ)1n|--l|+(4a +17—+

7

[

+(4a +n -—”n-)lnl——7-|+(4¢r +n+

) ac’ Jsonly, 1047 r Dy 1 (T 1l
o /27 ) M|J+e25‘[(4)ln|2Mg—(2>ln12M|+

2 - 2 g _ 2
P - 2 (0’12 - 2122 + (L) + 5

v = -n(" Tl G Lyar) + 39 —-"—mi-ﬂ—1+4a lnl ~ (o—9)’

2 | ‘ 2
(G+ D 2N +720 4 Lz +

2 2 2 2 ‘ 2 ' 2
(Z) [ (2yz® RENE/RYCL D CEY MW R
CLERZ+ @20 + (FhzP1- 20 [ L 1n|2M|+ :

i’ 20112 o+ 1) 2 2, 20y
] 20 _.!L - 8¢° Inj<Z

(246)
(247)

(248)

(249)
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The extra ¢* in the logarithmic terms have been absorbed in the u® term understood
in M.

The renormalization constants will serve to eliminate the divergeni terms as well
as real constant terms in a modified minimal subtraction scheme. This way, the high-

r ! »
er order corrections to the potential are expressed as functions of logarithms,

{
»

4
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: Equath:g terms of same order in A, oné€ first ge;'
¢ o

"2 2 2 '
L 70 (“o) L +39)=0 (252)
r 64x° ¢ .

! which means that

N _ e 1.3 f
A (T6_1r?) (=+3) (253)

) s
a

As pointed out at the beginning of this section, only Zﬁ” is determined at first order in

-2

-~ Ai. Both Z% and Z{" are determined at second order in & along with Z®. This is due
“ to the structure of the tree-level potential which depends only on d but not on the chiral
fields nor the coupling constant. This way Z" always appears at one order lower in &

c ~. than the two other renormalization, constants.

At next order in 7, the terms in’ 1 In(...) must first be solved to obtain Z" and
€ §

R -

Z{", Then, these values for the first order renormalization constants will be used to

determine Z®,

i
a

- Gathering all the terms in 1 In(...) from U® and UP, one gets five different
- p :

' -

1
=]

relations bgtwee:; the Z's of which only two are linearly independent,

) ' . ? - \
] R o 2 ° . o | I
1 , 3 ) N
2P DY
7 , » (254
v 2
- 1) 1) v € 2_ ) ’ - .
. 2z® 4 22! -1——1&2) c .

Y

- A N

_r\\:;.""
i
J

- PRI

O . 'The values of Z® and Z are readily obtained. . . .
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0 E zW = (_’2_.) (2 - (255)
e T 16‘!’2 ¢ .

2 _ ‘ ,
20 =(5) F9 (256)
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Now that all of the first order constants are determined, their value may be used

to get Z® which appears in terms of order -1?, 1
- € €

and ¢°. The calculation is rather

¢

5

2N

simple and gives

} 2
Z§2’=(f;)‘[£;—-21-2(i+§21)] (257)

8& 8 6

~At second order in F, there is only one equation to determine the constant parts

0 of Z®, ZW and ZM. Hence, for the sake of simplicity, the .whole constant part has

been put into Z?. This minimizes the number of changes to be done to the logarithmic

part of the effective potential. To resume, let's‘write down the complete expressions

for the different renormalization constants.

| With these expressions, the effective potential is cured from all its divergences up

P
o .. to R order; including the ones in -:- In(...) as well as the imaginary ones :

s /

S

Z. =1+ n(if;)’(;f-) - (258)
z=1+RENL) - (259)
” | . |
2, = 14 RENG + PR 1 2 -5 - 3+ P @60)
|
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z -
o )1{ -3a B, le&’g = SN
v D (P 1 220 12‘" F8%1+
(261)

o [4z0 44z + f:/'f—[- %Zﬁ”—zzg’_.f.zf’]}
4
One may verify that, with the values found for the different Z!”'s, the above eduality
holds true. At this point, the limit ¢ going to zero may safely be taken. The final

expression for the renormalized effective potential up to two-loop order is

U= -—'L+He (=)’ {ﬂ-ln|_!l.u-o 1n| 22 |+—(a+7) 1n|—-—l|

4

+%(¢r-—7)zlnl4'————7-l—i[;1;nz+(0-732] }

S R, +—n)l|——-§n insli~
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S 2 1285 2 o5 2 155 2 2 0-9 20—
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R PNIR P AP SR S GV ICTWT & £ TP T ok VR
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WG 7l g SLw -G

56 145 m) tr--y 3 2 7¢ 1 on
2 1 - - oo
3 ) In] |+( o+ = il W

32 R

52 9 2, 506 9o
i Sl gl ol
" 2. 555 5550 | 50°  Seq’ | So’y’
- [ g + 138 +-§-— T2y + 1672 1} . (262)

g

It should be noticed that the constant part of U coming from the square of the imagi-

nary part has not been removed during renormalization as for the rest of the constants.

The reason is that ‘only terms in n” could be absorbed in the renormalization constants

beécause of the structure of the terms involved. Moreover, this part of the potential

briginates from-the In’ terms which are just an’l-approximation. Hence, it is preferable
to keep it away from the expressions for the renormalization constants which are
exact. s ’ C

| Graphs of the effective potential as a function of 5 for different o are give;n in
Appendix B. It may be seen that for small ¢ , all the contributions to phe potential .
have the form of parabolas and that the sum of them all is positive definite as should
be for a supersymmetric potential. For higher values of ¢ , the different contributions
develop secondary extrema but the sum is still a positive definite parabola with its min-
imuﬁi at 5= 0. This is due to the fact that the tree-level contribution dominates over
the loop corrections by an appreciable factor.

The first contribution to the imaginary part of U comes from\the term of order H in

1)

the perturbation expansion. It has much the form of a parabola. The maximum value

» ] ‘
of U, is attained for n = o ( UD(o=nm) ~ -1%:2— (617)). If the value of the fine-
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_ structure constant is used for the coupling constant, it is easy to see that the imaginary

- 6.2 Ru;min_LCoupling Constant

.

9 ~ ' E 9%

part of the potential is quite small cbmpa'red to the real part ( about two orders of -

. .

magnitude ) ; this is quite normal as the imaginary part of U'is due solely to radiative

corrections. Thus, even if there is some instability away from the minimum, the system

'may still exist in that state for some time.

)

-

In this section, it will be shown that the supersymmetric extension of quantum elec-

trodynamics dis;;lays the same long range behaviour as QED by determining its

¥

i
f-fufiction. To,do so, the renormalized coupling constant will be derived from the

. effective potential and from it, the p-function and the running coupling constant.

The tree-level potential U, may be expressed in térms of 15 with the help of equa-

tion (243). It give;s

1

22 '
0) T p "~
y= Sk .. (263)

Thus, as explained in Chapter 11, oixe may define the renormalized c:Jupling constant
s the second derivative, of the effective potential with respect to 7 at the minimum of
the potential (n = 0). However, there Q;‘ill be logarithmic singularities at this point.
Hence, the renormalized coupling constant must be defined a‘way from it [1] at some
point "m". Along the o-axis, any point may be chosen as long as it is greater or equal
to the one chosen for « so that equation (209) be respected. Thu:s, the definition \for

the renormalized coupliné constantis -

¥ -
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imative nature ot this express:on.
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~

The constant ¥ corresponds to v , ad defined in Table 3 on page 56, evaluated at

(o=n,=m). °

v=A 4+ 2’:—- | (265)

Equation (264) ‘may be used to reexpress the effective potential in terms of the renor-

#
malized coupling constant. —
U=%eq+( [U“) 1Umrlz]+
G LU - 2 000 4 (7 - L 07 ) 59

The hat over U means taking the real part of the second derivative with respect to 7
cvaluated at o¢=n, y=m with n>m. At one-loop order, this yields an expression for

the effective potential whidh\is free from the arbitrary constant M.

[

U= 120 + () e {-3”-““ 9:;' ‘(-"—>1n|-'1|+ (m| gt 2250 -
32 G-I- o - g+ N+W

1

~

The arbitrary constant M has been replaced by the arbitrary point (n,m) in the”

(o , n)-space. The same exercise could be carried out at second order in &* but it is

most probable that all dependency on M could not be removed because of the approx-
)

To'see how the A-function is usually defined, the case of the #* model will be
considered. The analysis will be carried along the lines of reference [2]. If the bare

-

-9
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parameters of the theory are expressed in terms of the physical parameters and if the
current J is properly renormalized, one may derive an equality for the one-particle-

irreducible Green's functions *

If;‘) Pyseb, * Ags Hgr €) = Z:n l"‘")(pl,...,p" s m, ) (268)

where the I''s are finite in the limit ¢ goes to zero. The subscript "0" refers to the

-

bare parameters. Using the fact that only one side of the equality contains ; , one

may derive with respect to it and obtain the renormalization group equation :

0 a0 o 8 ns 0InZ, ..,
Loypa L, en g ny, e =0
[uOu tu Op 8 +u du Om 2 “ O ][‘ . .

- /

(269)

The coefficients of equation (269) are used to define the S-function and the 7 func-

tions. N

B0 gz u & L @70)

B on
dInZ ,

m h= 4 L4 1

7¢(A»“r€)-—2 P ‘ N ] (27)

2
v 0,2, g £ Olun (272)-
" 2 Op

For the case of SQED, the renormalized quantities are furiction of two variables, n

and m ( not to counfond with the mass term of the &' model ). It is easy to see that,

for that case, the g-function may be defined as

ae)) = (.m;:;- + n-g- ) e
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2 .
=D op G’ . (273)

This combination of differential operators yields manageable results as it has the fol-

lowing properties.

2
D v=v Doplnltt+&14=21n|n+sp| \
D,n=n D” In*jn - 9| = 2lnjn — |
D,m=m D,, In’|21] = 2In|2n| .
D, Inln + V=1 D, 02|24 = 2In Im ¢ (274)
D, Injn -v¥|=1 P 2
Nnya
D, Inf2n| =1 D,, (2)" =0
D In =1
1= D, (Z) =0

With these relations, the A-function is found to be, with =1,

6
e e, 87 | 1463m*  5859m’
Bl = —5 + S -
26 8 et s120t

16x
_¢1_5_(1+3m m4 9m )(l|"+w|+|ﬂ| ‘|)+,-
20 169°
¢ 2 as- ’26;’6‘;2 L NL j(j”l - 222 +
2l - L2 (275)

7

The first order result is just as expected as it differs only by a constant factor from

the result obtained for QED .7 Both theories have the same long range behaviour, i.e.

.

7 It should be noticed that the definition of the A-function differs from the usual one.
To make the connection with the usual results, the radiative corrections to the auxil-
iary field d must be taken into account. This yields slightly different values for the
renormalization constants and the S-function, as defined in ref.[3], becomes
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O ' that the charge appears weaker at larger distances. At second order, the A-function

for SQED becomes more complicated as it cannot be expressed as a constant times =

A% ¢, Thus, it cannot be compared simply with the QED result.

The running coupling constant, e, may be found by solving the differential equa-
§ coupling R Y B

tion (273). It is'found that, at first order,

2

;
e;(n,m) = = 9 =
(1= =% ]| - —2= o] )
21rz m, xz By
o2
= 5 9 . (276)
H € nm
(1- =2 In| 1)
327° ngny,
where
e; = e; (15, my) : (277)

aind n, , m, are arbitrary scales. One can see that the charge e}t becomes weaker for

small scales, which is equivalent to large distances.

6
ﬂ(ez)z—e—-z-+——9-e-7+... . . %
4x 128x

which corresponds‘to the result derived by other means ([4][5] [6] ,

4

4
‘ i
-
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The Landau point is the point at which the running coupling constant develops a

~N

Almty and becomes infinite. For SQED, this is rather a Landau line in

v

(a,q)-space whose equatxon is

+

nm = nym, exp{ 327’ e: ] (278)

This is a very large scale. So, before reaching such singularities, higher order correc- -

tions must be included. This co\ntribution could be found by integrating the e’~term of
) _ ' )
equation (275). However, merely by looking at the set of relations (274), one may

deduce this second order contribution and obtain

2

2 2 ) nm 1463m’
-€-{mm)y=e, {1~ ln| | - [(-_. -
R 0 320t Ay (512; 7
amt | mt oom®

5859m* 45.
) Inj=f 4 (14 2 4
smi\ ngm, ' 4 w168 161[/6

n,+ Y, - n, -9 .
(10| 2L ) 10200 4 | 2 |2 ) 4+ () (25 -

M
. 726;7:!;2+ 351m (\lnlu+W| In?| ny + ¥, ol ‘n;le
T ) - i (2 )
N ST AR M
where )

¥, =
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It should be recalled that the e5-term of equation (279) is an approximation as it

is derived from the finite part of U®. This term is given only to have an idea of the
behaviour of the running coupling constant at this order of perturbation;. One may sece
in Appendix C how the renormalized coupling constant, as given in equation (264) ,
varies with m for different n's. The curves run rather smoothly on the‘logarithmic scale
except for a very small bump near m equal to n when n is small. This is probably due
to larger numerical errors or a greater sensibility to the approximation when one works
with so minute numbers or still, to both reasons together. Thus, one should not pay too

much attention to this feature and consider that the coupling varies quite monotonicly .
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Chapter, VII
CONCLUSION

3

-

7.1 Comments

;,,
A finite expression for the effective potential of supersymmetric quantum electro-

dynamics has been obtained at two-loop order. The different loop contributions are
seen-to converge quite rapidly except for small values of & where the ratio of the first
to second order correction is rather small ('~ 10 ). This raises some questions whether
or not there will be convergence at three-loop order.

It may also be remarked that the different loop contributions are not necessé‘rily'
positive. This does not violate siipersymmetry. Only the total effective potential has to
be positive definite and this is indeed the case as the tree-level potential always domi-

nates by a large factor over the radiative corrections. It is also seen that the minimum

(d=0) is preserved and supersymmetry is unbroken.

A peculiarity about the effective potential fc;r SQED is the appearence of an imag-
inary part. I fact, the potential is complex everywhere in the (c,d) plane except at the
minimum (c,d=0). This was not altogether a new feature. 'E;e study of spontaneously
massive dilatons [1] showed the same behaviour as well as a nop-abélian SUSY gauge
model with SU(2) internal symmetry [2]. The imaginary part was associated to the
decay proba?\ility of the system which becomes unstable away from the minimum. It

was also seen that this instability is small enough to allow the exixtence of such a state

for a relatively long period.

- 104 -
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The renormalized coupling constant was derived from the effective potential and
O was shown to have a rather smooth behaviour. The A-function was derived from it
- and proved that SQED running coupling constant had the expected long range behav-

iour, * |
It should be noticed that , in order to apply the effective potential method in
superspace to more complex theories , an improved method for the calculation of
superpropagators for broken supersymmetric theories would be required. For a case as
"simple” as SQED, it was not possible to obtain superpropagators in a fully supersym-
metric gauge ; a Wess-Zumino gauge was used and it was seen that it is a difficult
gauge to implement in a supergraph approaci:. However, it was mentioned that tahere
has been a breakthrough lately as how to deal with a Wess-Zumino gauge’ and pre-
serves at the same time s;pergraph techniqixcs [3]). Hence, there could be ho;;e that,
with the appropriate modifications to Helayél-Neto’s method, superpropagators for
' broken supersymmetric gauge theories be calculable in a mor;iclegant and efficient

o fashion.

To conclude, it can be said that the effective potential of SQED remains super-
symmetric up to two-loop order even if each term does not necessarily do so. The vac-
uum is unstable under small perturbations as the potential develops an imaginary part

as soon as the minimum is left. ‘Finally, it was shown that SQED running coupling con-

stant shows the same long range behaviour as'the one for QED.

¢
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| Appendix A
DIMENSIONAL REGULARIZATION AND GAMMA FUNCTION

A.1  Glossary of Dimensional Regularization Formulae Used in this Work

/

S PP . 7 3 (281)
‘ @ + M + 2%-p)* (47" a) o Mz ] ki).-g.
Na- %) .
[ J—— 2 4 (282)

@+ M+ e’ C@e s

—

4

- | | . n 1 n
[ PP, _ 1 kky e - 3) + 7hMe-1-3)
. 2 . . a - n a- ..[-.'.'.
. @ + Mz + 2k-p). (4m)2 IXa) M- M-y
(283)
A2 Gamma Function S | | -

The definition of the Gamma function is, for n greater than zero,

#
]
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For n'sn}hller or equal to:zero, the Gamma fimc;iop is defined with the help of the

. A4
relation . .

a

) = LS (285)

From this definition, one may see that the Gamma function has poles for all nonposi-

tive integers.

!

The expansion of the Gamma function as a function of ¢ is

Pl

2 2
Lim M(1+¢)=1- 9+ 52_ O + 1’6—) - 0(e’) (286)

The constant 7, is the Euler constant ans its value is

’ —Limf1+ 1,1 1_ | 287
-y'._’l'._{zz[l+2+3+...4&n In(n) ] ) (287)
) = 0.5772156649....
" With'the relation . . -
-t cz 2 - r
1, =1-—€7.'+—2"7. , . (288)

equation (286) may be written as

’ . 2
LimI(1 + ) =] (1 + J-!ﬁ) +ot) . (289)
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Appendix B

. GRAPHS OF THE EFFECTIVE POTENTIAL FOR SQED

In the next pages are gathered the éraphs representing the renormalized effective .

-

potential of SQED at ordets zero, one and two in % ;s well as the total of all contri-

butions as given in equation (262)
&

In the first four pages, the effective i:otential is given as a function of n while o is

kept fixed. Finally, a three-dimensional representation of U is drawn on the last page

© of this appendix.

Graphs 1 to 4w :
Graphs 5 to 8

Graphs 9 to 12

Graphs 13 to 16 :

Graph 17

U as a function of g for o = 0.1

U as a function of 7 for o =1.0

U as a function of 7 for o = 10.0

U(!S a function of 5 for ¢ = 100.0 ‘

U as a function of o and # (3-D Sketch)' :
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Appendix C

GRAPHS OF THE RENORMALIZED COUPLING CONSTANT

-

- In this appendix, one may find the graphs depicting the renormalized coupling con-

stant, as given by equation (264). As in the case of the effective potential, the coupling

constant are given as a function of m for a fixed n.

Graph 18 : €’ as a function of 7 foro = 10°
Graph 19 : ¢’ as a function of nfor o = 10°
Graph 20 : e’ as a function of 7 foro = 10"

Graph 21 : e’ as a function of 7 foro = 10'
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