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Abstract

A new approach to structural equation modeling based on so-called extended

redundancy analysis (ERA) is proposed. In ERA, latent variables are obtained as exact

linear combinations ofobserved variables, and model parameters are estimated by

consistently minimizing a single criterion. As a result, the method can avoid limitations

of covariance structure analysis (e.g., stringent distributional assumptions, improper

solutions, and factor score indeterminacy) in addition to those of partial least squares

(e.g., the lack ofa global optimization procedure). The method is simple yet versatile

enough to fit more complex models~ e.g., those with higher-order latent variables and

direct effects of observed variables. It cao also fit a model to more than one sample

simultaneously. Other relevant topics are also discussed, including data

transformations, missing data, metric matrices, robust estimation, and efficient

estimation. Examples are given to illustrate the proposed method.
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Résumé

Nous proposons une nouvelle approche de modélisation des équations

structurelles basée sur une analyse des redondances étendue. Dans ce type d'analyse,

les variables latentes sont obtenues par combinaisons linéaires exactes de variables

observées et les paramètres du modèle sont estimés en minimisant un critère unique.

Cette méthode permet d'éviter les limites asssociées à l'analyse de structure de

covariance - tels que les postulats relatifs à la distribution des variables, les solutions

impropres et l'indétermination de scores factoriels - de même que celles liées à la

méthode des moindres carrés partiels - comme l'absence de procédure d'optimisation

globale. La méthode est simple tout en étant assez flexible pour ajuster des modèles

aussi complexes que ceux comprenant des variables latentes d'ordre supérieur et des

effets directs de variables observées. Elle permet également l'ajustement d'un modèle,

de facon simultanée, à des données issues d'échantillons différents. Nous aborderons

également d'autres sujets pertinents, tels que la transformation des données, le

traitement de données manquantes, la construction de matrices métriques, la robustesse

et l'efficacité de l'estimation. Des exemples illustrent l'application de la méthode.
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• Chapter 1

Introduction

Structural equation models are used to specify and test hypothesized relationships

among observed variables and unobserved variables (called latent variables) in

multivariate data. Structural equation models aIlow us to specify simultaneous

equations among multiple sets of independent variables and dependent variables. They

enable us to construct more general models than traditionaI factor or principal

component analytic procedures. They also a1low for statistical tests to assess and

modify theoretical models, providing insight for further model generation (Jôreskog,

1993). That is, structural equation models involve generalizations and extensions of

traditional multivariate analysis techniques.

Two different approaches have been proposed for structural equation madels

(Anderson & Gerbing, 1988; Fomell & Bookstein, 1982; Jôreskog & Wald, 1982):

Covariance structure analysis and partial least squares. The fonner analyzes covariance

matrices derived from data matrices, whereas the latter directly analyzes data matrices.

In covariance structure analysis (Bock & Bargmann, 1966; Jôreskog, 1970, 1973,

1977), the structure of the population covariance matrix is modeled as a function of

parameters of the specified structural equation model. The modeled population

covariance matrix is often called the implied population covariance matrix (Bollen,

• 1



• 1989). If the model is correct and the population covariance matrix is known, we can

estimate the parameters by minimizing the difference between the population

covariance matrix and the implied population covariance matrix. In practice, however,

the population covariance matrix is unknowo. Then its consistent estimators, the

sample covariance matrix, has to be used to estimate the parameters. Under the

assumption ofmultinonnality, Jôreskog (1970, 1973) developed a maximum likelihood

(ML) estimation method for fitting the covariance structure analysis model. The ML

estimation method is by far the most widely used method (Boilen, 1989), although the

generalized least squares (GLS) and unweighted least squares (ULS) estimation

methods (Browne, 1982, 1984) are also employed. Much ofthe theoretical background

for covariance structure analysis can he found in Bollen (1989), Hayduk (1987), Hoyle

(1995), Kline (1998), Loehlin (1998), and so on.

Partial least squares (PLS), on the other hand, introduced by Hennan Wold (1966,

1973, 1975, 1982), estimates latent variables as exact linear combinations of observed

variables (this is also called the 'weighted relations'). In PLS, mode] parameters are

estimated by a fixed point (FP) algorithm (Lyttkens, 1968, 1973; Wold, 1965, 1981). In

the FP algorithm used in PLS, a set of model parameters are divided inta subsets, and

each subset is 'partially' estimated by ordinary multiple regression analysis with other

subsets fixed. This partial estimation is cycled through repeatedly until convergence is

reached. For more recent information on PLS, refer to Falk and Miller (1992), Fornell

and Cha (1994), Lohmôller (1989), and so on.

Covariance structure analysis and PLS deal with structural equation models from

2



• statistically different perspectives. Velicer and Jackson (1990) pointed out that the

former entails factor analysis, whereas the latter involves component analysis (Meredith

& Millsap, 1985; Schônemann & Steiger, 1976). That is, the latent variables in

covariance structure analysis are equivalent to common factors while those in PLS are

equivalent to components. Therefore, both techniques have their relative advantages

and disadvantages. Covariance structure analysis seeks overall optimization in

parameter estimates through a full information estimation technique (ML or GLS). As

such, it provides efficient and consistent parameter estimates (Joreskog & Wold, 1982).

It also offers a variety of parametric tests for an overall model fit. Nonetheless, the

distributional assumptions required for covariance structure analysis (e.g.,

multinormality of the observed variables) are often violated (Micceri, 1989). Relatively

large sample size, say more than 100 (Boomsma, 1985), is also recommended to

validate its use. The problem of improper solutions (e.g., factor correlation estimates

greater than ±1, negative variance estimates, etc.) is even more serious (Fomell &

Bookstein, 1982). The improper solutions make it difficult to interpret the obtained

results, but unfortunately, they occur with high frequency. In addition, factor scores or

latent variable scores are indeterminate, which indicates that we can calculate different

factor scores to fit the model equally weil (e.g., McDonald & Mulaik, 1979; Steiger,

1979).

The normaJity assumption can be dropped by utilizing asymptoticaJly

distribution-free (ADF) estimators (e.g., Browne, 1982, 1984; Meijer, 1998). The ADF

estimation, however, is more computationally expensive than the maximum likelihood

• 3



• estimation, and is accurate only with very large samples (e.g., Muthén & Kaplan,

(992). The factor score indeterminacy problem seems to have minor practical

consequences in the light of high degrees of similarity between factor and component

solutions (Velicer & Jackson, 1990). On the other hand, it seems that there exists no

obvious remedy against improper solutions in covariance structure analysis. Although it

has been suggested that an improper solution could be considered as a diagnostic for

model mispecification (e.g., Jôreskog & Sôrbom, 1989, p. 239), it may occur even

when the correct model is specified (Kiers, Takane, & ten Berge, 1996).

PLS does not need any stringent distributional assumptions because its model

parameters are estimated on the basis of partial OLS. Moreover, PLS does not suffer

from improper solutions and indeterminate factor scores, since the latent variables are

given by linear combinations of the observed variables. PLS, however, does not solve a

global optimization problem for parameter estimation (Joreskog & Wald, 1982; Fomell

& Bookstein, 1982). This indicates that there exists no criterion consistently minimized

or maximized to determine estimates of model parameters. The lack of a global

optimization criterion makes it difficult to evaluate the PLS procedures (McDonald,

(996). More seriously, PLS has no mechanism to evaluate the overall fit of the model.

It is not likely that the obtained PLS solutions are optimal in an overall fit (Coolen & de

Leeuw, (987).

Despite a number of benefits of both techniques for fitting structural equation

models, in covariance structure analysis the occurrence of improper solutions is most

likely to interfere with meaningful analysis, whereas in PLS the lack of a global

• 4



• optimization criterion seems to make its use limited.

ln this dissertation, 1 propose a new method that avoids the major drawbacks of

the conventional methods, that is, improper solutions in covariance structure analysis

and the lack ofan overall optimization criterion in PLS. The proposed method will be

called extended redundancy analysis. In short, extended redundancy analysis may be

described as a kind of structured component analysis. In this method, latent variables

are estimated as linear combinations ofobserved variables to avoid the problem of

improper solutions as in PLS. Furthermore, it provides a global fitting criterion, which

is consistently minimized to estimate parameters, to overcome the limitation of PLS.

The remaining chapters of this dissertation are organized as follow. In Chapter 2,

the proposed method is studied in detail. First ofail, redundancy analysis is brief1y

discussed, which is the prototype of the proposed method. The basic model for

extended redundancy analysis and its parameter estimation are then presented. How to

incorporate additional constraints into model parameters is aIso discussed. Examples

are given to illustrate the feasibility of the proposed Methode In Chapter 3, sorne

possible extensions of the basic model are discussed. They include higher-order latent

variables, direct effects of observed variables, and multi-sample comparisons. Each

extension is empirically illustrated. Chapter 4 deals with other relevant topics to the

proposed method, such as data transformations, missing data, metric matrices, and

robust estimation. Examples are aIso presented for illustration. The proposed method

can be extended, so that it cao provide efficient estimators when the normality

assumption is satisfied. The final chapter brief1y summarizes the previous chapters and

• 5



• discusses further prospects of the proposed method.
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• Chapter2

Extended Redundancy Analysis

Extended redundancy analysis (ERA), as the name suggests, is an extension of

redundancy analysis (van den Wollenberg, 1977). We therefore start this chapter with a

brief description of redundancy analysis. We then discuss the extension (ERA) in

detail, followed by parameter estimation, additional constraints on parameters, and

illustrative examples.

2. 1. Redundancy Analysis

Redundancy analysis (RA) is a useful technique for finding a directional

relationship between two sets of multivariate data, mediated by latent variables

(Lambert, Wildt, & Durand, 1988). Technically redundancy analysis amounts to

extracting a series of linear combinations or components from one set of observed

variables in such a way that they are mutually orthogonal and successively explain the

maximum variance of the other set of variables. Let Z 1 denote an n by r matrix of

dependent or endogenous variables. Let Z2 denote an n by t matrix of independent or

exogenous variables. Then, the model for redundancy analysis may he written as

•
Z. = Z2WA' + E,

= FA' +E,

7

(2.1)



• (2.2)

•

where W is a t by d matrix ofcomponent weights, A' is ad by r matrix of loadings, E

is the residual matrix, F (= Z2W) denotes the matrix of linear components, and

K 5 min(r,t). Due to the restriction on rank in (2.2), the above model is also called the

reduced rank regression model (e.g., Anderson, 1951; Rao, 1964; Izenman, 1975;

Davies & Tso, 1982; Reinsel & Velu, 1998).

To illustrate further, the redundancy analysis model May be expressed in terms of

a path diagram, a pictorial representation of a system ofequations, as given in Figure

2.1. In the figure, square boxes are used to indicate observed variables, circles are used

to represent latent variables, and straight arrows are used to signify that the variable at

the base of an arrow affects the variable at the head of the arrow. The path diagram

indicates that the redundancy analysis model can be viewed as a simple type of

structural equation model between two sets ofvariables, in which latent variables are

specified as linear combinations of Z2 (i.e., F = [r.,···, rd] = Z2W), which influence

Z 1. This simple structural equation model is often called the multiple indicator/multiple

causes (MIMIC) model (e.g., Joreskog & Goldberger, 1975; Fomell, Barclay, & Rhee,

1988).

8



•
z21 z22 ...... z2t Z2
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z11 z12 ...... z1r Z1

Figure 2.1. A path diagram for the redundancy analysis model.
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• To estimate parameters in redundancy analysis, we seek ta rninimize the

fol1owing least squares (LS) criterian

f= SS(ZI -Z2WA'), (2.3)

•

where SS(X) = trace(X'X), with respect to W and A'. I-Iere it is assumed that

W'Z~Z2W = 1 for identification. Minimizing (2.3) computationally cornes down to

calculating the generalized singular value decomposition (GSVO) of (Z~Z2)-lZ~Zl

with metric matrices Z~Z2 and 1 (e.g., Takane & Shibayama, 1991). (For the

computation of GSVO, refer to Greenacre, 1984, Appendix A.) This indicates that

ordinary redundancy analysis between two data sets has an analytic solution.

2.2. The Extended Redundancy Analysis Model

Given that the redundancy analysis model is a kind of structural equation model

between two sets ofvanables, we may specify and fit a more variety of structural

equation models by extending redundancy analysis to more than two sets of variables.

For simple illustration, we suppose that there are three sets of variables, for example,

Z. = [Zl, Z2], Z2 = [Z3, Z4], and Z3 = [zs, Z6]. We further suppose that there are

relationships among the three sets of variables, as displayed in Figure 2.2.

Figure 2.2 shows that two latent variables, one obtained from ZI (i.e., fi), and the

other from Z2 (i.e., f2), are combined to affect Z3. This relationship may he expressed

as

10
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z1 z2 z3 z4

z5 z6

•

Figure 2.2. A path diagram for a model among three data sets (example 1).
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• WI 0

Z3 = [ZI : Z2]
W2 0 [ QI Q2 J+E0 W3 Q3 Q4

0 W4

= Z(2)WA' +E

= FA' +E, (2.4)

Wl 0

where E = [eh e2], W =
W2 0

, A' = [
QI Q2 Jand F=

0 W3 Q3 a4

0 W4

Z(2)W = [fi : f2]. Model (2.4) is essentially the same as (2.1). The difference is in that

in (2.4) sorne elements ofW are fixed as zeros, and two subvectors in F, fi and f2, are

separately constrained to be of unit length.

We may consider another relationship among the three sets of variables, as

presented in Figure 2.3. In Figure 2.3, we see that fi has an effect on Z2 in addition ta

the effect on Z3. This relationship can be expressed as

WI 0

[Z2 : Z3] = [Zl : Z2]
W2 0 [ QI a2 a3 a4 J+E0 W3 0 0 as Q6

0 W4

= Z(2)WA' + E

= FA' + E, (2.5)

• 12
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z1 z2

z5 z6

•
Figure 2.3. A path diagram for a model among three data sets (example 2).
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Wl 0

where E = [ef,e2, e3, e4], W =
W2 0

, and A' = [ :1 Q2 a3 Q4

J-O W3 0 as Q6

0 W4

Again (2.5) is essentially ofthe same form as (2.1). However, both W and A' contain

sorne fixed zero elements.

It rnay be seen that from the above examples the model for extended redundancy

analysis (ERA) can generally be stated as follows: Let Z(l) denote an n by p matrix

consisting ofobserved endogenous variables. Let Z(2) denote an n by q matrix

consisting ofobserved exogenous variables. When an observed variable is exogenous

as weil as endogenous, it is included in both Z(l) and Z(2). Assume that the columns of

the matrices are mean centered and scaled to unit variance. Then, the model for

extended redundancy analysis cao be generally expressed as

z(1) = Z(2)WA' + E

= FA' + E,

rank(WA') = d :s v,

(2.6)

(2.7)

•

where W denotes a q by d matrix of component weights, A' denotes ad by p matrix of

component loadings, E denotes an n by p matrix ofresiduals, F (= Z(2)W) denotes an n

by p matrix of component or latent variable scores, and v :s min(q,p). For

identification, F is restricted to be diag(F'F) = J. As shawn in the examples, Wand/or

A' in (2.6) are structured according ta the model to be fitted.

Madel (2.6) reduces to the redundancy analysis model when no variables are

14



• shared by both Z(1) and Z(2) , and no constraints other than rank(WA') are imposed on

W and A'. In (2.4) and (2.5), only a single linear component is extracted trom Zl and

Z2 each, that is, rI and '2, respectively. If more than one component are obtained from

each set, we simply replace the veetors of component weights, say w 1 = [w 1, W2]' and

W2 = [W3, W4]', by matrices ofweights, imposing mutual orthogonality of the

components.

A few attempts have been made to extend redundancy analysis to three sets of

variables (e.g., Velu, 1991; Reinsel & Velu, 1998). However, they are limited to madel

and fit a particular type ofrelationship among three sets of variables. Model (2.6), on

the other hand, is quite comprehensive in extending redundancy analysis, and it enables

us to specify and fit various structural equation models.

2. 3. Parameter Estimation

We estimate the unknown parameters in model (2.6), W and A', in such a way

that the sum of squares of the residuals E = Z(t} -Z(2)WA' is as small as possible.

This amounts to rninimizing

f= SS(Z(l) -Z(2)WA')

= SS(Z(l) - FA'),

with respect to W and A', subject to diag(F'F) = 1.

(2.8)

Criterion (2.8) is essentially of the same form as redundancy analysis. Unlike

redundancy analysis, however, minimizing (2.8) does not reduce to GSVD due to the

structure in W and A'. Instead, (2.8) should be minimized byan iterative method. We

• 15



• use an a1ternating least squares (ALS) a1gorithm to minimize (2.8). Our a1gorithm is a

simple adaptation of the ALS algorithm developed by Kiers and ten Berge (1989), that

was used for simultaneous components analysis for two or more populations (MiIlsap

& Meredith, 1988). In the algorithm, parameter matrices W and A' are altemately

updated until convergence is reached. Updates ofone parameter matrix are obtained in

such a way that they minimize (2.8), with the other set fixed. The ALS algorithm is

monotonically convergent (e.g., de Leeuw, Young, & Takane, 1976). This means that

the function value will never increase throughout the iterations. Kiers and ten Berge's

algorithm reduces to the algorithm developed here when Z(l) and Z(2) consist of

distinct variables in a single population.

Ta employ the ALS algorithm, we may rewrite (2.8) as

(2.9)

where vec(X) denotes a supervector consisting of ail columns of X, one below another.

In (2.9),

vec(Z(2)WA') = (A (8) Z(2))vec(W)

= (1 ® F)vec(A'),

where ~ denotes a Kronecker product.

(2.10a)

(2. lOb)

The algorithm consists of two main steps. In the first step, we update W for fixed

A'. (To compute an initial estimate ofW, A' is initialized with arbitrary values.) Let

Cl = A ® Z (2) and w = vec(W) from (2. 10a). There could he quite a few zero elements

in w, depending on the model to he fitted. Let w" denote the vector formed by

16



• eliminating zero elements from w. Let Cl* denote the matrix fonned by eliminating the

columns ofa corresponding to the zero elements in w. Then, we obtain the least

squares estimate of w* by

(2.11 )

assuming that a*'a* is nonsingular. (The regular inverse may be replaced by the

Moore-Penrose inverse ifQ*'n* is singular.) We can simply reconstruct the updated w

from w· by putting back the zero elements to their original positions, and then the

updated W from w. We then obtain F = Z(2)W and normalize it so that diag(F'F) = 1.

When more than one component are extracted from same sets of exogenous variables,

columns ofF are orthonomalized by the Gram-Schmidt orthononnalization method: the

orthononnalized F is obtained by FRF1
, where RF is obtained from the Cholesky

factorization of F'F = RFR~.

In the next step, A' is updated for fixed W. Let r = 1 ® F and a = vec(A') from

(2.1 Ob). We define a* and r* in a way similar to w* and n* were obtained in the tirst

step. For given F, we obtain the least squares estimate of a* by

(2.12)

assuming that r*'r· is nonsingular. (Again the regular inverse may be replaced by the

Moore-Penrose inverse ifr*'r* is singular.) We cao also easily recover the updated a

and the updated A' from â*. The above two steps are altemated until convergence is

reached, that is, until the decrease in the function value falls below a certain threshold

value, say 10-4.

17



• A few remarks conceming the proposed a1gorithm are in order. First of ail,

criterion (2.8) or equivalently (2.9) is consistently minimized by this a1gorithm.

However, the a1gorithm does not guarantee that the obtained minimum is a global

minimum. This so-called convergence to non-global minimum problem may be avoided

in two ways (e.g., ten Berge, 1993). When we choose good (or rational) initial values,

the function value is likely to start near to the global minimum, and it is more likely to

obtain the global minimum. Here, we compute the PCA solutions of Z (2), and use the

principal coordinates as the rational start for W. Then, initial values ofA' are simply

obtained by the least squares estimate, given W. The second possible remedy against

the non-global minimum problem is to repeat the ALS procedure with Many random

initial starts. The obtained function values after convergence are compared, and the

smal1est one is chosen as the global minimum. We consider parameter estimates

associated with the smal1est function value as the optimal ones.

When n is large relative to q, the above algorithm May be made Inore efficient by

the following procedure. Let Z(2) = QR' be portion of the QR decomposition of Z(2),

pertaining to the column space ofZ (2), where Q is an n by q orthonormal matrix, so

that Q'Q = 1, and Rf is a q by n upper-triangular matrix. Then, (2.8) can be rewritten

as follows:

where 8 = WA'. The first term of the right-hand side in (2.13) does not depend on B,

•

f = SS(Z(l)- QR'B)

= SS(Z(l)- QQ'Z(l) + QQ'Z(l) - QR'B)

= SS(Z(l)- QQ'Z(l») + SS(Q(Q'Z(l) - R'B)), (2.13)

18



• and minimizing (2.13) reduces to minimizing

j = SS(Q(Q'Z(l) - R'B))

= SS(Q'Z(l) - R'B). (2.14)

•

It is more efficient to minimize (2.14) instead of(2.8) because the size of R' is usually

much smaller than Z(2}. Moreover, this procedure allows us to use covariance matrices,

or correlation matrices instead of data matrices, because Z(2)'Z(2) = RR' and

z(2)/z(l) = RQ'Z(l), so that Q'Z(l) can be obtained by R-1Z(2)/Zel). This is often

beneficial because in the published literature data sets are frequently provided in the

form ofcovariance or correlation matrices. When we deal with the covariance or

correlation matrices, however, we could not obtain F (Takane, Kiers, & de Leeuw,

1995).

It may also be worthwhile to compare the estimation procedure with that of

covariance structure analysis and PLS. Covariance structure analysis is typically based

on maximum likelihood estimation (MLE) although least squares estimation (GLS or

ULS) is also used. The MLE estimates parameters in such a way that they maximize the

probability of obtaining the observed data (or the sample covariance matrix derived

from the data) given the hypothesized model (reflected in the implied covariances)

under certain distributional assumptions. In contrast, our method estimates model

parameters by minimizing the sum of squares ofdiscrepancies between the observed

endogenous variables and their predicted counterparts from the exogenous variables

without any explicit distributional assumptions. This is similar to PLS. However, PLS

does not optimize a global fitting criterion; instead, it repeats solving a series ofsimple
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• or multiple regression analysis problems. Our method, on the other hand, solves a

global optimization problem by consistently minimizing (2.8) or (2.9). This is akin to

covariance structure analysis that maximizes a likelihood function. Due to the absence

of a global minimization criterion, PLS defines convergence as a sort ofequilibrium

(i.e., the point at which no difference between the previous and current estimates),

whereas our method defines convergence as the decrease in the function value falling

below a certain threshold.

Many fit indices used in covariance structure analysis (e.g., X2 , GFI, CFf,

RMSEA, AIC, etc.) can not he used to assess the goodness of fit of a model in our

method, since those indices are valid only under specifie distributional assumptions

such as multivariate normality. Instead, in our method, the total fit of a hypothesized

model to data is measured by the total variance of the observed endogenous variables

explained by the exogenous variables, or equivalently, by the total variance of the

endogenous variables minus its unexplained variance. This is given by

. SS(Z(l) - Z(2)WA')
Fit = I--......:.------~

SS(Z(l))
(2.15)

•

This fit index ranges from 0 to 1. The larger is the fit value, the more variance of the

endogenous variables is explained by the exogenous variables.

We may use resampling methods such as the jackknife and the hootstrap methods

to calculate standard errors of pararneter estimates. In our method, the standard errors

are estimated by the bootstrap method (Efron, 1982; Efron & Tibshirani, 1998). The

bootstrapped standard errors can be used to assess the reliability of the parameter

20



• estimates. The critical ratios (i.e., the parameter estimates divided by their standard

errors) can be used to test the significance of the parameter estimates (e.g., a parameter

estimate having a critical ratio greater than two in absolute value is considered

significant al .05 level).

2.4. Imposing Additional Constraints on Parameters

We May be interested in testing various structural hypotheses regarding W and/or

AI. For instance, we May examine the hypothesis that sorne elements in W are equal or

that sorne elements in A 1 are equal, and so on. A variety ofother structural hypotheses

regarding W and A' can be incorporated in the form oflinear constraints (Bockenholt

& Bôckenholt, 1990~ Bôckenholt & Takane, 1994~ Takane & Shibayama, 1991;

Takane, Yanai, & Mayekawa, 1991~ ter Br~ 1986~ Yanai, 1986, etc.).

The linear constraints may be specified by either the reparametrization or the

null-space method (Bockenholt & Takane, 1994; Takane, Yanai, & Mayekawa, 1991).

The former method specifies the space spanned by column vectors of a constraint

matrix, while the latter specifies its ortho-complement space. In our method, aillinear

constraints are imposed by the reparametrization method. Let H denote a matrix of

linear constraints on a. In the final step of the ALS algorithm, we incorporate H into a

as follows:

•

a = Ha,

for sorne Œ. An LS estimate ofŒ is then given by
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•
which leads to

â = Hâ. = H{H'r'rH)-1 ur'vec(Z(l)).

(2.17)

(2.18)

This approach is called the projection method (see Seber, 1984, pp. 403-405; Takane,

Yanai, & Mayekawa, 1991).

It is sometimes easier to specify constraints in the null-space form (e.g., equality

or zero constraints). In such cases, the constraints are first expressed in the null-space

foon, and then transformed into the reparametrization form. The transformation is

straightforward. Let

p'a = 0 (2.19)

•

represent the constraints in the nun space form. Suppose that the first and the last

elements ofa are equal, then, p' comes down to a vector whose first element is l, the

last element is -1, and the other elements are zeros. We may reparametrize (2.19) into

the foon of (2.16) by defining H = 1- P{P'P)-P'. This implies that Ker(P') = Sp(H),

where Ker(P') denotes the nuH space of p', and Sp(H) denotes the space spanned by

the column vectors of H. Linear constraints can be imposed on w in a similar way. The

validity of certain hypotheses May be empirically investigated by comparing fits of the

constrained and unconstrained solutions. The standard errors and critical ratios of the

obtained parameter estimates can also be used ta evaluate the hypotheses.

In the special case in which the constraints on A' (a = Ha) can be written as
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• A·'B, the extended redundancy analysis model May be expressed as

z(l) = Z(2)WA*'0 + E

= Z(2)B*H+ E, (2.20)

where 0*= WA*'. This is essentially the same as generalized multivariate ANOVA

(GfvIA!~OVA) or the growth curve models (Potthoff& Roy, 1964). IfB* is further

assumed to have reduced rank, i.e., rank(O*) < min(p,q), (2.20) cornes down to

reduced-rank growth curve models proposed by Reinsel and Velu (1998).

Furthermore,letZ(2) = [Z.,···,ZI],W= [Wl,···, WI], A*' = [Ai', ···,Aj'],

H = [8 1,"', H[], Then, (2.20) may be rewritten as

1

Z(l) = LZ;B;H; + E,
i=1

(2.21)

•

where 8; = W ;Ar. This is analogous to the constrained component analysis model

proposed by Takane, Kiers, and de Leeuw (1995), where different sets of constraints

are imposed on different dimensions (DCDD) of the data matrix. This indicates that the

constrained extended redundancy analysis reduces to the OCDD type-constrained

component analysis, as the number of subsets (or submatrices) ofZ(2) and H are

identical. Hence, our method May be viewed as a generalization of the constrained

component analysis model.

2.5. Example: The Basic Bealtb Indicator Data

In this section, we present an example to demonstrate the feasibility of the

proposed method. The example is part of the so-called basic health indicator data
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• collected by the World Health Organization in the United Nations. They appear in the

1999 World Health Report and also are available through the internet

(http://www.who.int). From the entire data set, we only used six variables measured in

different countries. The six observed variables were as follows: (1) infant mortality rate

(IMR)~ defined as the number ofdeaths per 1000 live births between birth and exact

age one year in 1998. (2) maternai morta1ity ratio (MMR)~ defined as the number of

maternai deaths per 100000 live births in 1990~ (3) real gross domestic product (GDP)

per capita adjusted for purchasing power parity expressed in 1985 US dollars~ (4) the

average number ofyears of education given for females aged 25 years and above

(FEUD) (5) the percentage of children immunized against measles in 1997 (Measles)~

and (6) total health expenditures as a percentage ofGDP in 1995 (Healthexp). The

sample size was 51, which corresponded with the number of countries for which the

data were available.

We assumed two latent variables for the last four observed variables. One latent

variable called 'social and economic (SE) factor~ was defined as a linear combination

ofGDP and FEUD, and the other called 'health services (HS) factor' as that of Measles

and Healthexp. The two latent variables were in tum deemed to influence two observed

endogenous variables~ IMR and MMR. The specified two latent variable model is

depicted in Figure 2.4. For this model~ W and A' were identical to those in (2.4). Using

extended redundancy analysis, this model was fitted to the data. Results are provided in

Figure 2.5. The bootstrapped standard errors and the critical ratios ofparameter

estimates obtained with 100 boostrap samples are given in Table 2.1 .
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GDP FEDU Measles Healthex

IMR MMR

•

Figure 2.4. The two latent variable model for the WHO data.
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Fit = .6512

GDP FEDU

(.73)

IMR

Measles

MMR

Healthex

•

Figure 2.5. The two latent variable model for the WHO data (output).
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Table 2.1. The parameter estimates~ and their standard errors (SE) and critical ratios (CR)
obtained from the two latent variable model for the WHO data

Estimate SE CR

WI -.50 .17 -2.9

W2 -.57 .16 -3.6

W3 -.96 .12 -8.0

W4 -.13 .24 -0.5

al .58 .10 5.8

Qz .43 .10 4.3

a3 .41 .09 4.6

Q4 .45 .11 4.1
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• The goodness of fit of the model was equal to .6512, indicating that about 65% of

the total variance of the endogenous variables were accounted for by the two latent

variable model. The fit tumed out to be significant in terms of its critical ratio obtained

from the bootstrap method (14.5), indicating that the fitted model was signiticantly

different from the model which assumed 8 = O. The squared multiple correlations of

IMR and MMR were .73 and .57, respectively. This indicated that about 73% of the

variance of IMR and about 57% of the variance of MMR were explained by the two

latent variables. They a1so tumed out significant according to their bootstrapped critical

ratios (18.7 and 10.0 for IMR and MMR, respectively).

In Figure 2.5 boldfaced parameter estimates indicate that they tumed out to be

significant in terms of their critical ratios. The component weights associated with SE

were ail significant and negative. This indicates that SE was characterized as social and

economic underdevelopment. Similarly, the component weights of Mealses and

Healthexp were negative, indicating that HS was likely to represent a low level of

heaIth services. However, only one variable, Measles, was associated with HS. Both

latent variables were found to have a significant and positive effect on IMR and MMR.

This indicates that social and economic underdevelopment and the low level of health

services are likely to increase infant mortality rate and maternai mortality ratio. The

correlation between the two latent variable was .47. It tumed out to be significant in

terms of its bootstrapped critical ratio (3.9).

Given the solutions in the two latent variable model, we further assumed that the

component weight for Healthexp was equal ta zero (i.e., W4 = 0). This additional
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• assumption could be incorporated by imposing zero constraints on w, as explained in

Section 2.4. Let p' denote the vector of the zero constraints. The p' was defined as

[0001].

It was required that p'w = o. Then, the p' was transfonned ioto a reparametrization

form by the procedure described in Section 2.4. Results offitting the constrained model

are presented in Figure 2.6. The bootstrapped standard errors and the critical ratios

obtained with 100 bootstrap samples are given in Table 2.2. Due ta the zero constraint,

the component weight for Healthexp was shawn as zero in Figure 2.6. This indicated

that HS was solely defined in terms of Measles, which further implied that HS was

completely equivalent ta Measles. ft thus was analogous ta eliminating HS from the

analysis, and hypothesizing direct effects of Measles on the endogenous variables.

Measles was found to have negative direct effects on IMR (-.40) and MMR (-.43). The

fit of the constrained model was .6491. This was almost the same as that of the

unconstrained model. It tumed out to he significant in terms of its bootstrapped critical

ratio (13.5). The squared multiple correlations for IMR and MMR were equal to .73

and .57, respectively, which were essentially the same as those obtained from the

unconstrained case. They tumed out significant in terms of their bootstrapped critical

ratios (18.5 and 8.9 for IMR and MMR, respectively). The correlation between the

latent variables became somewhat smaller (.41) than that from the unconstrained case

(.47). This is due to the elimination of Healthexp from HS. Yet the correlation tumed

out to be significant (the bootstrapped critical ratio = 3.2). Despite the zero constraint,
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Fit =.6491

GDP FEDU

(.73)

IMR

Measles

MMR

Healthex

•

Figure 2.6. The constrained two latent variable model for the WHO data (output).
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Table 2.2. The parameter estimates, and their standard errors (SE) and criticaJ ratios (CR)
obtained trom the constrained two latent variable model for the WHO data

Estimate SE CR

WI -.49 .16 -3.1

W2 -.57 .16 -3.6

al .61 .11 5.5

a2 .47 .13 3.6

a3 .40 .11 3.6

a4 .43 .15 2.9
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however, interpretations of the solutions from the constrained model seemed to be

essentiaIly the same as those from the unconstrained model. Therefore, it may be safe to

say that the additional assumption on the component weight for Healthexp is

acceptable. This allows for simpler interpretations of the obtained solutions by reducing

the number of parameters.
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• Chapter3

Some Extensions

3. 1. Tbree Possible Extensions

The ERA model in (2.6) can be readily extended in various ways. In particular,

we discuss ways to handle higher-order latent variables (i.e., latent variables nested

within other latent variables), direct effects of observed variables on other observed

variables, and multi-sample comparisons. It is a1so shawn that the extended models can

be expressed in essentially the same form as (2.1), and essentially the same estimation

procedure can be applied to fit them.

To include the Kth-order latent variables, the ERA model may he expressed as

follows.

where

In (3.2), W(k) denotes the matrix of component weights for the kth-order latent

(3.1)

(3.2)

variables (k = 1,·' -,K), and each kth-order latent variable is restricted to he of unit
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• length for identification. Madel (3.1) is essentially the same as (2.6). Hence, a similar

ALS a1gorithm cao be used to fit the model. In this case, however, a set of parameter

matrices are split into K +1 matrices, that is, W(k)'S and A', and we update them

a1temately until convergence is obtained. For instance, an ERA model with

second-order latent variables may be written as

z(l) = Z(2)W(l)W(2)A' + E,

= Z(2)WA' +E, (3.3)

,., (1) () ,."
where W = W W 2 . To estimate W and A, in (3.3), we may update W(I) for tixed

A' and W(2), normalize Z(2)W(I), update W(2) for fixed A' and W(I), normalize

Z(2)W, and update A' for fixed Z(2)W in each iteration. An example of a model with

higher-order latent variables will be given in the next section.

The ERA model including the direct effects may also be written in the same form

as (2.6). For example, we suppose that in (2.4), ZI OfZ(l) has a direct effect on Zs of

Z(1) in addition to the effeet on Zs through fi. To include this effect, we may write the

ERA model as follows.

where

Z(I) = Z(2)WA' + E, (3.4)

1 Wu 0

0 Wl2 0
W=

0 0 W21

0 0 W22
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•

and

A' = [ ::: a: J.
Q31 Q32

Model (3.4) is a simple variant of(2.6), where the only distinction is in that W and A'

contain an extra (first) column and row, respectively, in order to represent a direct

effect OfZl on ZS. In this way, we cao readily incorporate direct effects ofany ohserved

variables in Z(2). The supplementary column ofW consists of ail fixed elements, zeros

or unities, whereas the corresponding row ofA' has free parameters to be estimated as

weil as fixed elements. Essentially the same estimation procedure can be applied to fit

(3.4). To update W, however, the effect corresponding to the unit elements in W is

subtracted from Z(l), the unit elements in W are eliminated from vec(W) like the zero

elements, and the corresponding columns in n are eliminated. Then w· is obtained by

equation (2.11). The unit elements are then refilled when W is formed from w*. Ta

demonstrate the addition of direct effects to the ERA model, an example will he

presented in Section 3.2.

We May also be interested in fitting a single ERA model to more than one sample

simultaneously. Such a simultaneous analysis enables us to test various hypotheses

concerning the relationships among parameters across samples. Suppose that J samples

are fitted by the same ERA model,
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• Z (l) - Z(2)W ·A' + E·
j -j Jj 'J

=F·A~+E·J 'j 'J' (3.5)

may he identical acrossJ samples. Model (3.5) may he re-expressed as

=

o

o o

(3.6)

It can thus be expressed as a single equation,

• (0 • (2) • A' •z = z W +E, (3.7)

where Z(1) = [ZP),···, Z,S0]', Z(2) = diag[Z~2), '.',zy)], W= diag[W l, .. ', WJ],

A' = [A '1 , .•• , A~] " and Ë = [E 1, ••• , EJ]'. Model (3.7) is essentially the same as (2.6),

and the same optimization procedure can be used. To test structural hypotheses

conceming the parameters acrossJ samples (e.g., equality among sorne parameters

across sample), J sets of parameters in Wj and A; can be regarded as a single set of

parameters in Wand A' as in a single sample, so that the same procedure in Section 2.4

can he used. More specifically, we update the vector, say w·, which is formed by

•
eliminating zero elements from vec(W), by equation (2.11), and recover the updated

W. We nonnalize Fj for each sample, such that diag(F5Fj) = 1. Then A' is updated

from i* formed by eliminating zero elements from vec(A'). We may easily compare the
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• means of the components, Fj , across samples. In this case, however, the unstandardized

data should he analyzed instead ofthe standardized data since the means are a priori

eliminated in the standardized data The set of exogenous variables should also include

a constant tenn. An example of the simultaneous analysis of several samples will be

provided in the next section.

3. 2. Examples

The basic health indicator data are again used to demonstrate the extensions

described in the previous section. We specify two models more complicated than the

two latent variable model shown in Section 2.5: One adds a second-order latent

variable and the other a direct effect. Another data set, called social function data, is

employed to show the feasibility of simultaneous analysis of several samples or

multi-sample comparisons. Note that the two structural equation models for the basic

health indicator data are specified without well-grounded theories or hypotheses to

support our model specification. They are simply improvised to illustrate the usefulness

of the proposed method. On the other hand, an empirically well-motivated structural

equation model is fitted in the analysis of the second data set.

3.2.1. The Basic Health Indicator Data

To demonstrate the feasibility of incorporating higher-order latent variables, we

supposed a second-order latent variable nested within the two first-order latent

variables in the two latent variable model shown in Figure 2.4. The second-order latent

variable was named 'combined effect (CE)'. The specified second-order latent variable

• 37



• model is provided in Figure 3.1. In the model, W(l) was analogous to W in (2.4), and

W(2) and A' were specified as follows.

W(2) = [ :: l
and

Results of fitting the model is presented in Figure 3.2. The standard errors and critical

ratios of the parameter estimates obtained from the bootstrap method with 100

bootstrap samples are provided in Table 3.1. This model showed a slightly worse fit

(.6492) than that without the second-arder latent variable. Yet it tumed out ta he

significant in terros of its bootstrapped critical ratio (15.0). Both component weights of

SE and HS (.67 and .50, respectively) for CE were found ta he significant and positive.

The loadings of CE on IMR (.87) and MMR (.77) tumed out to be significant and

positive as weil. This indicates that CE is a negatively combined effect for health

supports, so that a large value on CE is likely to increase the possibility of infant and

maternaI deaths. The squared multiple correlations ofIMR (.73) and MMR (.57) tumed

out to he significant in tenns oftheir bootstrapped critical ratios, 21.9 and 9.9,

respectively. The correlation between the latent variables was .46. It aIso tumed out ta

be significant (the bootstrapped critical ratio = 3.8).

Ta illustrate the effect of adding direct effects, we assumed that GDP had a direct
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GDP FEDU Measles Healthex

IMR MMR

•

Figure 3.1. The second-order latent variable model for the WHO data.

39



•
Fit =.6492

GDP FEDU

(.73)

IMR

Measles

(.57)

MMR

Healthex

•

Figure 3.2. The second-order latent variable model for the WHO data (output).
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Table 3.1. The parameter estimates7 and their standard errors (SE) and critical ratios (CR)
obtained from the second-order latent variable model for the WHO data

Estimates SE CR

WI -.49 .18 -2.7

Wz -.57 .18 -3.2

W3 -.96 .13 -7.4

W4 -.13 .23 -0.6

Ws .67 .13 5.2

W6 .50 .13 3.8

al .87 .02 43.5

az .17 .04 19.3
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•

effect on IMR in addition ta its effect through SE. The two latent variable model with

the direct effect is depicted in Figure 3.3, in which the structures ofW and A' were

equivalent ta those in (2.20). Results offitting the model is presented in Figure 3.4. The

standard errors and critical ratios of the parameter estimates obtained from the

bootstrap method with 100 bootstrap samples are presented in Table 3.2. The model

showed almost the same fit (.6513) as that without the direct effect, which turned out to

be significant in terms ofits critical ratio (15.1). This seems to be compatible with that

the direct effect ofGDP was non-significant. The effect of SE on IMR tumed out ta be

nonsignificant as weil. It is due ta the effect of adding the direct ofGDP on IMR to the

model. The squared multiple correlations of IMR and MMR were .73 and .57,

respectively. The squared multiple correlation ofIMR is quite similar to that obtained

from the model without the direct effect. This is also consistent with the nonsignificant

direct effect of GDP on IMR. Both squared multiple correlations tumed out ta be

significant in terms oftheir critical ratios (17.1 and 11.6 for IMR and MMR,

respectively). The correlation between the latent variables (.47) tumed out ta be

significant as weil (the bootstrapped critical ratio = 3.4).

3.2.2. The Social Function Data

The second example was obtained from Park's (1996) social function data. Park

(1996) studied cultural differences in the functional and structural aspects of social

funetions between South Korean and German adolescents. She assessed seven social

functions, such as attachment, self-validation, intimacy, guidance, control, conflict, and

comparison, that seemed to play important roles in the development ofadolescents.
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Figure 3.3. The two latent variable model for the WHO data with a direct effect
added.
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Fit = .6513

GDP FEDU

IMR

Measles

MMR

Healthex

•

Figure 3.4. The two latent variable model for the WHO data with a direct effect
added (output).
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Table 3.2. The parameter estimates, and their standard errors (SE) and critical ratios (CR)
obtained from the two latent variable model for the WHO data with a direct etTeet added.

Estirnates SE CR

WI -.46 .25 -1.8

W2 -.60 .24 -2.5

W3 -.96 .08 -12.0

W4 -.13 .21 -0.6

QI -.01 .21 -0.0

Q2 .53 1.46 0.4

a3 .44 .10 4.4

a4 .41 .11 3.7

as .45 .13 3.5
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• (See Park (1996) for detailed explanations about those social functions.)

Fifty-nine South Korean adolescents and sixty German adolescents participated in

her study. The South Korean participants were from a junior high school in Seoul (29

males and 30 females) and the Gennan participants from 3 Gymnasiums in Kahn (30

males and 30 females) . The mean age of the South Korean participants was 14 years

and 1 month old and that of the German participants was 14 years and 2 months old. A

self-report questionnaire was administered to measure the degree of the social functions

to which South Korean and German adolescents would be exposed. The self-report

questionnaire consisted of 18 items on adolescents' behaviors related to the seven

social functions specified above. Most of the items were constructed on the basis of

analysis of diaries of 10 South Korean adolescents who were Il years old. Items

indicating each social function were as follows: (1) attachment: HDid you feel happy

when you did something with him/her togetherT', HDid you feel happy when he/she

gave you something , or you could give himlher something?", "Did you worry about

himlher?", (2) self-validation: "Did you gain recognition from himlher?", HDid you gain

praise frorn himlher?", (3) intimacy: "Did you talk ta him/her about what happened to

you todayT', "Did you speak to him/her about your innermost feelings?", (4) guidance:

"Did he/she help you solve problems?", "Did the person advise you?", "Did you speak

ta the person about your problem?", (5) control: "Did the person say to you that you

must do something (e.g., studying, making up the room, etc.)?", "Did the person punish

you?", (6) conflict: "Did you quarrel with the person?", "Did you hate the person?", (7)

comparison: "Did you feel superiority to the person?'\ "Did you feel inferiority to the
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• person'" "Were you envious of the person?" To assess a dependent measure, 'trust', a

corresponding item was also included in the questionnaire: "How often will the persan

help you ifyou are in trouble?" .

The South Korean adolescent sample was collected in the fall semester of 1992

and the German adolescent sample was in the spring and fall semester of 1993 and

1994, respectively. Ali participants were tirst asked to make a list of significant persans

whom they have contacted at least once per week by various means, including by phone

and by mail. The significant persons on the list were considered as social network

members. The participants were then askecl to answer each item of the questionnaire for

each person on the list. The questionnaire was fillecl out every clay in the evening, and

was collected claily in school for a week. About 50% ofthe participants could

successfully complete their claily reports for a week in both countnes. The number of

social network members was 741 for South Korean adolescents and 760 for German

adolescents. The number of social network members corresponded to the size of each

sample.

On the basis of her factor analyses on the combined sample of South Korean and

German adolescents, Park (personal communication, May 1998) has suggested two

potential latent variables underlying the seven social functions. One latent variable,

called 'positive function', was associated with five social functions such as attachment,

control, guidance, intimacy, and self-validation, and the other, called 'negative

function' was associated with two social functions such as comparison and conflict.

Hence we assumed a single two latent variable model that was fitted to both samples.
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• In the model, the latent variables were specified in the same way as above, and they

were assumed to have direct influences on trust of adolescents toward other social

network members. The specified model is provided in Figure 3.5.

In Figure 3.5, Zj2) was an nj by 7 matrix (j = 1,2), whose first five columns

corresponded with the five social functions associated with positive function, whereas

the last two corresponded with the two social functions related to negative function. On

the other hand, zjl) was a column vector of order nj, corresponding to an endogenous

variable, trust. In the model, W j and A; were specified equally across samples as

follows:

WI 0

W2 0

W3 0

Wj = W4 0

Ws 0

0 W6

0 W7

and

Using the multi-sample comparison feature in extended redundancy analysis, we

simultaneously fit the two latent variable model to South Korean and German

adolescent samples in order to examine differences in two sets of parameter estimates.
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control guide attach intimacy selfval compar conflict

•

trust

Figure 3.5. The two latent variable model for the social function data.
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• Results are presented in Figures 3.6a and 3.6b. The bootstrapped standard deviations

and critical ratios of parameter estimates in both samples are given in Table 3.3.

The model fit obtained from this multi-sample analysis was .166. It tumed out ta

be significant in tenns of its bootstrapped critical ratio (11.9). It was found that in bath

South Korean and Gennan samples, control, attachment, and intimacy seemed to be

significantly associated with positive function. In the South Korean sample, on the

other hand, conflict was likely to be significantly related to negative function, whereas

in the Gennan sample both comparison and conflict were found to be significantiy

associated with negative function. In both samples of adolescents, positive function

showed a positive and significant influence on trust (i.e., .46 and .42 in South Korea

and Germany, respectively), while negative function had a negative and significant

influence on trust (i.e., -.09 and -.19 in South Korea and Germany, respectively). It was

thus found that for bath samples, positive function tended to have an effect of similar

strength on trust. On the other hand, negative function in the Gennan sample seemed ta

show a stronger effect on trust than that in the South Korean sample (i.e., negative

function affected trust more negatively). The correlations between two latent variables

were .26 and .45 in South Korean and German adolescents, respectively. They tumed

out to he significant in terms of their bootstrapped critical ratios (2.2 and 9.7 for the

South Korean and German samples, respectively). The squared multiple correlations of

trust were equal to .19 and .14 in the South Korean and German samples, respectively.

Bath tumed out to be significant according to their bootstrapped critical ratios (8.7 and

8.6 for the South Korean and German samples, respectively).
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•
Fit =.1660

control guide attach intimacy selfval

(.19)

trust

compar conflict

•
Figure 3.6a. The unconstrained multi-sample analysis for the social function
data (Korean adolescents).
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•
Fit =.1660

control guide attach intimacy selfval compar conflict

•

trust

Figure 3.6b. The unconstrained multi-sample analysis for the social function
data (German adolescents).

52



Table 3.3. The parameter estimates, and their standard errors (SE) and critical ratios (CR)

• obtained from the Wlconstrained multi-sample analysis for the social function data

Estimates SE CR

"'1 .40 .08 5.0

"'z .01 .08 0.1

W3 .42 .12 3.5

W4 .31 .08 3.9
KA 1

Ws .12 .09 1.3

W6 .04 .48 0.1

"'7 .85 .35 2.4

al .46 .03 15.3

az -.09 .03 -3.0

"'1 .42 .10 4.2

Wz .14 .09 1.6

W3 .45 .11 4.1

W4 .26 .13 2.0
GAz

Ws -.06 .09 -0.7

W6 .60 .15 4.0

W7 .58 .14 4.1

QI .42 .03 14.0

Qz -.19 .04 -4.8

1. KA =Korean Adolescents
2. GA =German Adolescents
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• On the basis of the obtained solutions in multi-sample analysis7 we further

assumed that the effects of control and attachment on positive function were identical

across two samples. We also hypothesized that positive function had the same effect on

trust across two sampies. These across-sample assumptions could be incorporated by

imposing equality constraints on the portions offree parameters in Wand A', that is,

w* and i*, as described in the previous section. Let p' denote a matrix of equality

constraints on w·. Let p' denote a vector ofequality constraints on a·. The p' and p'

was easily specified as

p' = [

and

1 0 0 0 0 0 0 -1 0 0 0 0 0 0 ],

o 0 1 0 0 0 0 0 0 -1 0 0 0 0

p' = [ ) 0 -) 0 J.

•

We require p'",. = 0 and p'a· = O. In the above, the tirst row ofP' indicated that the

component weight for control (corresponding to w1) was identical across two samples.

The second row of p' represented that the component weight for attachment was

equivalent across two samples. Likewise, p' meant that the loadings for positive

function were equal across the two samples. Theo the p' and p' were transfonned ioto

reparametrization foons by the procedure described in Section 2.4. Results of

incorporating the equality constraints into the model were provided in Figures 3.7a and

3.7b. The standard deviations and critical ratios of the parameter estimates obtained

from the bootstrap method with 100 boostrap samples are presented in Table 3.4.
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•
Fit = .1658

control guide attach intimacy selfval

(.19)

trust

compar conflict

•
Figure 3.7a. The constrained multi-sample analysis for the social function
data (Korean adolescents).
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•
Fit =.1658

control guide attach intimacy selfval compar conflict

(.14)

trust

•
Figure 3.7b. The constrained multi-sample analysis for the social function
data (German adolescents).

56



Table 3.4. The parameter estimates, and their standard errors (SE) and critical ratios (CR)

• obtained from the constrained multi-sample analysis for the social function data

Estirnates SE CR

WI .40 .06 6.7

W2 .03 .11 1.6

W3 .4S .07 6.4

W4 .32 .08 4.0
KAI

Ws .10 .10 1.0

W6 .00 .47 0.0

W7 .94 .28 3.4

al .44 .02 22.0

az -.08 .03 -2.7

WI .40 .06 6.7

W2 .14 .08 1.8

W3 .45 .07 6.4

W4 .24 .09 2.7
GA2

Ws -.05 .09 -0.6

lt'6 .60 .15 4.0

W7 .54 .16 3.4

al .44 .02 22.0

az -.20 .04 -s.a

1. KA = Korean Adolescents
2. GA =German Adolescents
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• In the figures, due to the equality constraints imposed, the component weight of

control was identical across two samples (.40) and also tumed out to be significant.

This was the case for the component weight of attachment (.45) and the loading for

positive function (.44). The goodness offit of the sample-wise constrained model was

.1658. It was almost the same fit as that obtained from the unconstrained multi-sample

analysis. The fit tumed out to be significant (the bootstrapped critical ratio = 10.8).

Also, the constrained multi-sample analyses provided quite similar solutions to the

unconstrained case. Therefore, it might he safe to say that our hypotheses regarding the

relationships among the parameters across samples were reasonable. This yields

simpler interpretations of the solutions, reducing the number of parameters to be

interpreted.
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• Chapter4

Further Considerations

In this chapter, we discuss a number oftopics that further enhance the capabilities

of the proposed method. They include data transformations, missing data, metric

matrices, robust estimation, and efficient estimation. I1lustrative examples are provided

to demonstrate how they are handled in the proposed method.

4. 1. Data Transformations

In structural equation models, ail observed variables are usually assumed to be

numerical or measured at an interval or ratio scale level. However, our method can

readily analyze categorical variables through data transformations. In this section, wc

are concerned with a certain type of data transformations, often called optimal scaling.

In optimal scaling, variables are assumed to he related to their model predictions, and

then are transfonned in such a way that they agree with the model predictions as much

as possible, while the measurement characteristics assumed of variables are strictly

maintained. A variety of measurement restrictions can be imposed on the

transformation, depending on the measurement characteristics of the data, such as

measurement levels (nominal, ordinal, or numerical) and measurement process

(discrete or continuous). For instance, for an ordinal variable, it is required that its
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•

observations should be order preserving and tied observations should remain tied (in

the case ofdiscrete ordinal variables) or become untied (in the case of continuous

ordinal variables). The transformation under this restriction is called a monotonie

transfonnation (e.g., Kruskal, 1964; Ramsay, 1988, 1998). Referto Young (1981) for

detailed infonnation on the measurernent restrictions.

On the other hand, model parameters are estimated so that the model predictions

derived from the parameter estimates are as close as the (transformed) variables as

possible under the constraints (e.g., normalization restrictions, orthogonality

restrictions, etc.) imposed on those parameters. See van Buuren (1990, Chapter 3) for

more varieties of parameter restrictions.

A number of such data transfonnations have been proposed in redundancy

analysis (e.g., Israëls, 1984, Meulman, 1986, van der Burg, 1988, etc.). We May follow

a similar approach: hriefly speaking, we view the data matrices, Zef) and Z(2), as data

parameter matrices, denoted by S(I) and S(2), respectively. The data parameters are

subject to constraints imposed by the measurement characteristics OfZ(I) and Z(2). We

divide ail parameters into two subsets: the model parameters and the data parameters.

We then optimize a global fitting criterion by a1temately updating one subset with the

other fixed. Note that Sel) and S(2) May contain variables with different measurement

characteristics; e.g., sorne variables can be nominal, others ordinal, and others interval.

This indicates that a variable may not be directly comparable with other variables, 50

that each variable in S(1) and S(2) should be separately updated.

More specifically, the ALS procedure with the data transformation feature
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• proceed as follows. Let Zi denote a variable in either Z(l) or Z(2) , so that i = 1, .. ',

p + q. Let Si denote a variable in either SeI) or S(2). Then, our problem amounts to

. .. .. ..
mlnlmlZlng

f = SS(S(l) - S(2)WA')

= SS(S(l) - S(2)8), (4.1)

•

with the conditions that diag(W'S(2)'S(2)W) = 1, S~Si = 1, and Si =Ç(Zi), where ç

refers to a transformation of the observations in Z;, which is a function of their

measurement characteristics.

To minimize (4.1), two main phases are a1temated. One phase is the model

estimation phase, in which the model parameters are estimated. The other is the data

transformation phase that estimates the data parameters. The model estimation phase

represents estimating W and A', for fixed s(1} and S(2), which is analogous to the

procedure described in Chapter 2. We thus focus on the data transformation phase here.

The data transformation phase mainly consists of two steps. In the first step, the model

prediction of Si is obtained in such a way that it minimizes (4.1). In the next step, Si is

transformed in such a way that it maximizes the relationship between Si and the model

prediction under certain measurement restrictions.

The first step of the data transformation phase is given as follows. Let s~l) and

si2) denote the g-th and h-th variables in S (1) and S(2) , respectively Cg = 1,···, p;

h = 1, ..., q). Let Si denote the model prediction ofs;. Then (4.1) may be rewritten as
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• p+q

f = LSS(s;l1' - (â - '1')).
i=1

(4.2)

In (4.2), 'l', A, and qt are defined as follows: suppose that if Si is shared by S(1) and

S(2), it is placed in the g-th column and the h-th column ofSO) and S(2), respectively.

Then, when the model predictions of the variables in S(1) are updated,

{

S~~~B(h) if Si is shared
4= ,

S(2)B otherwise

\II - S(l)
T - Cg)'

ifSi is shared

otherwise

•

When the model predictions of non-common variables in S(2) are updated,

'II = S(1),

1 b''1 = h·

In the above, matrix S~~~B(h) is a product ofS(2) whose h-th column is the

n-component veetor of zeros and B whose h-th row is the p-component vector ofzeros.

Matrix S~~ equals to S(2) whose g-th column is an n-component vector of zeros. e~
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• denotes a p-component row vector whose elements are ail zeros except the g-th element

being unity. Vector b~ corresponds with the h-th row ofB.

Then, Si is obtained by

where A = A- 'l'.

... A ( 1 )-1
Si = """ ,

(4.3)

In the next step, Si is transfonned in such a way that it is close to Si as much as

possible under the appropriate measurement restrictions. In many cases, Si is updated

by minimizing a least squares fitting criterion (e.g., the (oormalized) residuals between

Si and Si)' This cornes down to regressing Si onto the space ofZi, which represents the

measurement restrictions. The least squares estimate of Si can be generally expressed as

follows

(4.4)

•

In (4.4), Yi is determined by the measurement restrictions imposed on the

transformation. For example, for nominal variables, Yi is an indicator matrix, whose

element stands for category membership, and is known in advance. For ordinal

variables, 00 the other hand, Yi indicates which categories must be blocked to satisfy

the ordinal restriction, and is iteratively constructed by Kruskal's (1964) least squares

monotonie transformation algorithm. The updated Si is then normalized to satisfy

S~Si = l.

In this step, Si may also be transformed by a maximum likelihood method (e.g.,

Ramsay, 1988, 1998; Takane, 1978; Winsberg & Ramsay, 1980, 1983). Box and Cox
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• (1964) reeognized that the least squares transformation of dependent variables was

likely to lead to serious bias problems, and instead the maximum likelihood or the

Bayesian method whieh took into account the Jacobian ofthe transformation (i.e., the

determinant of the tirst derivative ofthe transformation with respect to variables) might

be preferred (also see Ramsay, 1988). In the ease of monotonie transformations,

smoothness of the transformation can be ofvirtue (Ramsay, 1998), since it plays a role

in stabilizing estimated transformations. By contrast, the least squares monotonie

transformation often looks like a step funetion. In such cases, smooth monotonie

transformations based on the maximum likelihood method (e.g., Ramsay, 1988, 1998)

cao be employed. In particular, Ramsay (1998) developed a computationally elegant

procedure for estimating smooth monotonie transformations, whieh amounts to

estirnating an arbitrary twice differentiable strietly monotone function defined on an

interval [0, co), maximizing a penalized (log) likelihood criterion by the

Newton-Raphson rnethod. For the transformation ofeach variable, the fitting criterion

may be written as

f= n-1SS(si - ai - f3i m(zi» + Ài lm2 (z;)dzi, (4.5)

where ai and f3i are regression coefficients, m(zi) = {D-I exp(D-1m)} (z;) (D- l refers

to the partial integration operator), and À i is the smoothing parameter detennining the

amount of penalty. Function m may be defined as a linear combination of sorne set of

basisfunctionstPv, v = 1,···, V. Let' = [;I,···,tPv]'. Then,m(z;) = 't~'(Zi)' where'ti

is the coefficient vector defining the linear combination. Criterion (4.5) is thus
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• minimized with respect to 'fi, ai, and (Ji in order to update Si.

In (4.2), we see that updating a variable is dependent on other variables. To assure

convergence, therefore, we must immediately replace the previously estimated variable

by the newly estimated and normalized variable. Moreover, when Si is included in both

S(1) and S(2) , the rescaled and normalized Si should be substituted for the

corresponding columns in both S(I) and S(2). This indicates that at each iteration, the

number of variables being updated is equal to p + q*, where q* = q - the number of

common variables in S (2) .

The proposed method is akin to those used in redundancy analysis in that data

transformations are incorporated by the process of altemating two main phases until

convergence is obtained. In our procedure, the model parameters are iteratively

re-estimated due to the structure ofW and A', whereas they are analytically solved in

redundancy analysis. In addition, the data transformation phase in our method tums out

to he a bit more complicated than its counterparts in redundancy analysis, in order ta

take into account the variables common to both SO) and S(2), which frequently appear

in structural equation models.

The data transformation may be considered as one of the principal assets of our

method. This makes the data more in line with the model, and goodness of fit may be

improved (Takarle & Shibayama, 1991). This also enables us to examine relationships

among various types ofdata measured at different levels. This kind of data

transformation is feasihle because our method directly analyzes the data matrices rather

than the covariance or correlation matrix. However, in PLS, which also analyzes the
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data matrices, this particular way ofdata transfonnation is not attainable since it asks

for a well-defined global criterion that is consistently minimized!maximized by

updating the transfonned variables.

Categorical variables can a1so be analyzed in covariance structure analysis (e.g.,

Muthén, 1978, 1984, 1987). Covariance structure analysis cannot be directly applied to

categorical variables, since they are usually non...normal, and their population

covariance structure cannot be specified by model parameters. It is a1so difficult to use

the ADF estimator since categorical variables can also yield heteroscedastic errors and

the ADF estimator assumes homoscedasticity (Bollen, 1989). Instead, it is assumed that

there exists a latent continuous variable, a so-called response strength, underlying an

observed categorical variable, and both variables are connected by a threshold model

(i.e., the observed variable is discretized from the latent continuous variable). Then

under the assumption of normality of the latent continuous variable, correlations among

the latent continuous variables (e.g., the polychoric correlation for two ordinal observed

variables and the tetrachoric correlation for two dichotomous observed variables) are

calculated based on the discretization thresholds, and the differences between the

sample correlations and implied correlations are minimized by the generalized least

squares or unweighted least squares method. However, the assumption that the

underlying latent continuous variable is normal may be often invalid. In addition,

correlations among the latent variables are only measured, and improper solutions can

occur and factor scores are indeterminate. Examples of the least squares monotonie

transfonnation and the smooth monotonic transformation will be provided in Section
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4.6.

4. 2. Missing Data

It is not uncornmon that sorne observations are rnissing for sorne reasons,

particularly in large data sets. A number of methods have been proposed to deal with

missing data One simple procedure for handling missing values is to delete any cases

having at least one rnissing observation. However, this is unsatisfactory if missing

values are numerous and scattered throughout the data set, as deletion of the cases May

incur substantialloss of information. Another method is to estimate rnissing values

prior to analysis and then use the estimates in subsequent data analysis. We may, for

example, use the mean of non-rnissing values or any prior knowledge/experience ta

replace a missing value by sorne actual value.

A third method is to iteratively re-estimate values for missing observations (e.g.,

Gabriel & Zamir, 1979; Gifi, 1990). We start by completing the data with sorne initial

estirnates for missing data, obtain model estimates by fitting the model to the complete

data, update estimates ofmissing values based on the model estimates, fit the model ta

the updated data, and so on. These procedures are repeated until no significant changes

take place in the estimates. This approach May be particularly advantageous in the

context of our method, since it can he readily incorporated into the ALS procedure

described in the previous section (e.g., Young, de Leeuw, Takane, 1976). That Îs, if

sorne values in Si are missing, we start by filling in the Mean ofnon-rnissing values.

Then, we estimate Si, and only the non-missing values are transforrned based on their

corresponding values in 5; while the missing values are simply replaced by the
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• corresponding values in Si. The updated Si consisting of the newly transformed

non-missing and re-estimated missing values is then normalized, and is used as a

substitute for the previous Si.

This process, however, may he computationally expensive since missing values

are variable-wise estimated, that is, missing values in a single variable are only handled

at a time. Furthermore if a certain type of data transformation is applied for

non-missing values, additional substeps are required to distinguish missing parts and

non-missing parts in Si, which are treated differently.

Ifno data transformations are involved, we may consider a different ALS

approach to iteratively estimate rnissing values. In this approach we view missing

values in Z(l) and Z(2) as additional parameters, and they are estimated with

non-missing values fixed. To estimate the missing values in Z(2) for fixed W, A', and

z( 1), (2.8) may be written as

f = SS(vec(Z(l») - vec(Z(2)B))

= SS(vec(Z(I)) - (B'® l)vec(Ze1»)). (4.6)

Let E = B'® 1. Also, let z*(2) denote the vector fonned by eliminating non-missing

values from vec(Z(2». Let E* denote the matrix formed by eliminating the columns of

:5 corresponding to the non-missing values in vec(Z(2». Then, the least squares

estimate of missing values in Z(2), say i*(2), is obtained by

•
assuming that a*'E* is nonsingular. vec(Z(2» is easily updated from Z·(2), and is
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normalized. vec(Z(1) is then updated by simply replacing the previous estimates of

missing values with the corresponding elements ofvec(Z(2)B»~ and is also nonnalized.

These procedures are repeated until convergence occurs. When sorne variables are

shared by Z (1) and Z (2) ~ they should remain identical during iterations. This May be

done by setting the shared variable in Z(l) equal to the updates of the same variable in

Z(2). This approach seems to be computationally efficient because ail missing values in

a data matrix are estimated in a single step.

4.3. Metric Matrices

Our estimation procedure can incorporate metric matrices in the optimization

criterion. Two kinds ofmetric matrices May be considered, one on the row side~ and the

other on the column side ofZ(l) (e.g., Takane & Shibayama, 1991). Let K denote an n

by n row-side metric matrix. Let L denote a p byP column-side metric matrix. Matrices

K and Lare both assumed to he non-negative definite. To estimate W and A' with

these metric matrices incorporated, we minimize

(4.8)

•

where SS(X)K.L = trace(KXLX'). When K = 1 and L = 1, (4.8) reduces to (2.8). Even

when K ~ 1 and/or L ~ 1, however, (4.8) can be reduced to (2.8) by a simple

transformation (e.g.~ Rao, 1980). Let K = RKR~ and L = RLR~ be any square root

decompositions ofK and L. Then, (4.8) May be rewritten as
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• f = SS(R~Z(1)RL - R~Z(2)WA'RL)

= ss(i(I) - i(2)WA'), (4.9)

.... (l) , (1) .... (2) 1 (2) ., ,
where Z = RKZ RL, Z = RKZ , and A = A RL. This is essentially the same

as (2.8), and may be minimized in a similar way. In (4.9), we can estimate A' without

destroying its structure (e.g., zero elements), because the least square estimate of a is

obtained by

(4.10)

•

where cD* is the matrix fonned by eliminating the columns of cD (= R~ ® i(2)W)

corresponding to zero elements in vec(A').

Judicious choice of metric matrices broadens the capacity ofour method. Takane

and Hunter (2000) provided examples of non-identity metric matrices used for various

purposes. For instance, in Section 2.2, the data are assumed to be a priori standardized

so as to avoid incomparable scales across different variables. This is equivalent to using

the inverse of the diagonal matrix ofsample variances OfZ(l) as L. Meredith and

Millsap (1985) proposed to use the matrix of reliability coefficients or of inverses of the

variances ofanti-images (Guttman, 1953) as L. When the columns of the residual

matrix are correlated and/or have markedly different variances after a model is fitted to

the data, the variance-covariance matrix among the residuals may be estimated, and its

inverse be used as L. This has the effect of getting smaller expected mean squared

errors of parameter estimates by orthonormalizing the residuals in evaluating the overall

goodness offit (Takane & Hunter, 2000). In maximum likelihood common factor
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analysis, scale invariance is obtained by scaling the data (with communalities on the

diagonal) by 9-1, where 9 2 is the diagonal matrix ofuniqueness. This is the same as

setting L = g-2 in our method, assuming that g2 is known in advance. There are a

number of methods proposed to estimate g2 non-itematively (e.g., Ihara & Kano,

1986). In addition, Rao (1964, Section 9) argued that scale invariance could be

achieved by specifying certain non-identity L matrices.

When rows OfZ(I) consist ofseveral responses made by the same subjec~ they

are likely to be correlated. In this case, a matrix of serial correlations is estimated, and

its inverse can be used as K (Escoufier, 1987) in arder to achieve independence among

observations. When differences in importance and/or in reliability among the rows are

suspected, a special kind of diagonal matrix may be used for K that has the effect of

differentially weighting rows ofa data matrix. (In correspondence analysis, for

example, the square root of row totals of a contingency table is used as K.)

Although K and L are specified as fixed matrices above, we May also use

iteratively updated metric matrices during the optimization procedure. Such metric

matrices may be considered for robust estimation, which is presented in the next

section.

4. 4. Outlier Diagnostics and Robust Estimation

Our method May not he rohust against outliers as far as it is based on solving

ordinary least squares (OLS) crit~rion, which amounts ta minimizing the sum of the

'squared' residuals of (2.8). In general, there exist two approaches to deal with outliers:

Outlier diagnostics and Robust estimation. In the diagnostic approach, we try ta identify
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outliers, remove or adjust them, and fit the data by a traditional method. For instance,

leverage points may be used to assess influence ofeach row in Z (2). The leverage point

of the ith row (i = 1, ···,n), denoted by hu, is equivalent ta the ith diagonal element of

Z(2)(Z(2)'Z(2»)-IZ(2)'. Influential points are usually determined by hi; > 2qln or 3qln.

Mahalanobis distance (MD) is another useful diagnostic tool ta detect influence of rows

in Z (2). The MD for the ith row is calculated by

MD7 = (zf) - z;2) l q)C-1(z;2) - z}2) l q )',

where z~2) is the ith row ofZ(2), z;2) is the average of the ith row, C is the covariance

matrix of Z (2) , and 1q is the q-component vector of ones. The MD has the same

diagnostic power as hii since

MD7 = (n - I)(h;; - lin).

To examine the influence of the ith row in ZO), we may use Cook's squared distance

(CD2 ), defined as

where iP) is the ith row of the LS estimates from full z(l}, i?)(i) is the ith row of the

LS estimates from Z(l) with the ith row deleted, and M = Z(2)'Z(2). Constant € is

usually chosen as lp(Ertl(n - ,,)1 where Lrt is the sum ofresiduals, and li' = ~hii.

The large value ofCn2(i) implies that the ith row is influential. For more detailed

expositions of diagnostics in regression, refer to Belsley, Kuh, & Welsch (1980), Cook

& Weisberg (1982), etc.
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In the robust estimation approach, on the other hand, we start by fitting a model to

a majority of data points, and detect outliers which are observations with large

residuals. Rousseeuw and Leroy (1987) pointed out that the two approaches pursued

the same goal but proceeded in opposite directions. Nonetheless the classical

diagnostics based on OLS often fail to detect multiple outliers (e.g., Singh, 1996;

Walczak & Massart, (995).

Griep, Walkeling, Vankeerberghen, and Massart (1995) applied three different

robust estimation methods (i.e., least median of squares, Siegel's repeated median, and

Beaton and Tukey's iteratively reweighted least squares) to PLS. To evaluate their

performance, they were applied to a data set with outliers artificiaJly added, and the

solutions were compared with the ordinary PLS solutions without outliers. It was found

that the iteratively reweighted least squares (IRLS) method (Beaton & Tukey, (974)

performed better al least for the low dimensional PLS than the other methods. The least

median of squares (LMS) is known as the best in regression analysis (Rousseeuw &

Leroy, (987), which requires the slope as weil as the intercept to caJculate a set of

squared residuals. In PLS, however, data sets are preprocessed to be mean-centered, so

that there are no intercepts available. Griep et al. (1995) pointed out that this might

influence the performance ofLMS. Since in our method data matrices are usually

standardized in advance and a few linear components are extracted from the data

matrices, we may employ IRLS to handle outliers.

In IRLS, a data weight matrix (different from the component weight matrix, W)

is obtained to give different weights to observations, depending on the size of outliers.
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• The data weight matrix is iteratively re-estimated by the following procedure. Let U

denote the 1by 1diagonal matrix ofdata weights, where 1 = n x p. That is, U is

diag(u Il, U22, ••• , UII).

Let U = RuR~. Then, the fitting criterion may be written as

f= SS«vec(Z(l)) - vec(Z(2)WA'))U.1

= SS(R~(vec(Z(l)) - vec(Z(2)WA')). (4.11 )

In (4.11), W and A' cao be obtained for fixed U by the sarne ALS procedure as in the

previous section. (Matrix U may be initialized by Il.) After W and A' are estimated, a

vector of residuals, say f, is calculated by

r = vec(Z(1)) - vec(Z(2)WA').

The median of the absolute values of residuals, say 6, is then computed as

~ = median(lril), for i = l,···, l.

From (4.12) and (4.13), the elements ofU are calculated by

Uii = { [1 - (ri/c~)2]2 for Iril < c~
o for Iril < c8

(4.12)

(4.13)

(4.14)

•

With the updated U fixed, W and A' are re-estimated, then U is updated, and so on.

These procedures are repeated until convergence is reached. In (4.14), c represents a

variable sensitivity factor that defines a threshold beyond which a weight ofzero is

assigned to that observation. Either 6 or 9 is usually used for c, but the results are quite

74



• similar (Wakeling & Macfie, 1992).

We notice that the above procedure for robust estimation can be viewed as

specifying a non-identity and iteratively updated (row-side) metric matrix, U. The

metric matrix has the effect ofdifferentially weighting rows or observations ofdata

matrices.

4. 5. Efficient Estimation

The assumption of normality is not essential in our method due to the least

squares fitting of the ERA model. If it is assumed, nonetheless, we have

z(l) = Z(2)WA' + E

= Z(2)O + E,

and

vec(E) - N(O,I ® 1:),

(4.15)

(4.16)

•

where E is the unknown population covariance matrix ofp variables. We may estimate

parameters of the ERA model under this specifie distributional assumption. In this case,

we seek to maximize the log of the likelihood function:

where p = - ~ nplog(21t) (e.g., Anderson, 1951, Izenman, 1975, Tso, 1981, Davies &

Tso, 1982; Reinsel & Velu, 1998; van der Leeden, 1990).

To maximize (4.17), we may use an optimization procedure similar to an

a1temating maximum likelihood (AML) procedure (de Leeuw, 1989; van der Leeden,
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1990). The procedure consists oftwo main steps: in the tirst step, (4.17) is optimized

over B (that is, W and A'), for fixed :E. In the second step, (4.17) is optimized over I,

for fixed B. These steps are altemated until convergence is obtained.

The tirst step amounts to minimizing

for fixed I. Minimizing (4.18) reduces to minimizing

g* = SS(Z(l}-Z(2)B)1.t-1

= SS((Z(l)-Z(2)B)Rl;) (4.19)

where E-1= R1:R~. Then, (4.19) cao be minimized by the same procedure as given in

Section 4.3.

In the next step, we update l for fixed B. This amounts to maximizing

g(1: 1B) = P + ~ log 11:-11- ~ tr[V1:-1], (4.20)

where V = (Z(l)-Z(2)B)'(Z(l)-Z(2)B). Criterion (4.20) may be re-expressed as

due to nlog 11:-11 = n log 1l 1-1 = -nlog 1Il. Maximizing (4.21) amounts to

minimizing

g•• = nlog Il: 1+ tr[\'1:-1].

(4.21)

(4.22)

•
By the standard results ofmatrix derivatives that dtr(\'1:-1) =tr(dVI-1), d(log 1l 1) =
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• tr(l:-lcŒ), and d(l:-I) = -1.:-1(cŒ)E-1 (e.g., Schott, 1997, pp. 332-333),

8g** tr a(nE-1 - l:-1 \'1:-1 )1:
al: al: (4.23)

•

In (4.23), we set 8g**18l: = O. Theo, nE-1 - E-1VE-1 = 0, and the estimate ofl: =

n-1V. Thus the error covariance matrix, E, cao be replaced by its maximum likelihood

estimate, n-1V, where V=(Z(l)-Z(2)B)' (Z(l)-Z(2)B).

We altemate the two steps until convergence of(4.17) is reached. When the

errors are assumed to be multivariate nonnal and the error covariance matrix is

estimated by n-1V, the estimators obtained by maximizing (4.17) are efficient (e.g.,

Velu, 1991). As shown above, maximizing (4.17) cornes down to minimizing

J{B,E) = ~ tr[(Z(l)-ZC2)O)E-1 (Z(l)-ZC2)B)'] with respect to B and I. The parameter

estimates obtained by minimizing this generalized least squares criterion are

asymptotically equivalent to the maximum likelihood estimates (e.g., Bradley, 1973~

Goldstein, 1986).

Besides providing the efficient estimator, the additional assumption of normality

also enables us to perform significance tests without recourse to resampling methods

such as the bootstrap method. In general, those significance tests cao be thought of as a

comparison of goodness of fit between two nested models. Two models are called

nested if one is a restrictive version of the other. There are three asymptotically

equivalent tests of differences between two nested models: the likelihood ratio (LR),

the Wald test, and the Lagrangian multiplier (LM) test (e.g., Buse, 1985~ Engle, 1984~

Lee & Bentler, 1980; Satorra, 1989~ Silvey, 1959). The LR test compares the value of
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• the likelihood function for a less restrictive model with that ofa more restrictive model.

Thus, it requires fitting of both restrictive and less restrictive models. On the other

hand, the Wald and LM tests do not require fitting both models. For the Wald test, only

the less restrictive model is fitted, whereas for the LM test, only the more restrictive

model is fitted.

These tests are employed to compare the fit of more restrictive to less restrictive

models. As a special case, a specifie model of interest can be compared against a

saturated model, which provides the goodness of fit of the specifie model relative to the

saturated model. As another example, a model with additional constraints can be tested

against a model without the constraints, which allows us to investigate the validity of

the constraints. When a more restrictive model (or specified model) is rejected, we may

try to modify the model, removing constraints on parameters. For this purpose, we can

use the modification index (Joreskog & Sôrbom, 1984), which is analogous to the

univariate LM test. The modification index tells us which constrained parameter should

be freed from zero to obtain the maximum improvement in fit, without fitting models

that eliminate one constraint at a time.

For significance tests in extended redundancy analysis, we employ the LM test.

The LM test statistic is given by

(4.24)

•
where 9, denotes the vector ofparameters in a more restrictive model, v(9,) is the

vector of the first-order derivative ofthe log likelihood function for a less restrictive
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• model evaluated at 9" called the efficient score, and J(8,) is the matrix of the expected

second-order derivatives of the log likelihood function for the less restrictive model

evaluated al 9" called the information matrix.

As an example, suppose that 9 is the vector consisting of parameters without any

additional constraints imposed, i.e., 9 = [vec(W)', vec(A')']'. When we set 1: = n-1V,

then, maximizing (4.17) reduces to minimizing

(4.25)

where J1= vec(Z(I)- Z(2)WA'), and TI = I-I® 1. We note that

Ji = vec(Z(I)) - (1 ® Z(2»)vec(WA')

= vec(Z(I)) - (1 ® Z(2»)(A ® l)vec(W)

= vec(Z(l)) - (1 ® Z(2»)(I ® W)vec(A').

Then, v(9) can be expressed as

af{9) a ' [A'@I ]v(O) == 1.. = -11-nf1 = - (1 ® Z'(2) )nJ1.
2 ao 2 ae 1 ® w'

(4.26)

Also, J(9) can be written as

J(9) .. -4~~ ]= [(~ )n(~ )'J. (4.27)
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• These v(9) and J(9) are evaluated at 9 = 9,.. The LM asymptotically follows a

chi-square distribution with degrees of freedom equal ta the difference in degrees of

freedom between restrictive and less restrictive models under the hypothesis that the

more restrictive model i8 true. When a specifie mode) is compared against the saturated

model, the asymptotic distribution of LM is chi-square with degrees of freedom equal

to the difference hetween the number of the parameters in the saturated model and the

specifie model under the hypothesis that the model to he evaluated is true.

van der Leeden (1990) pointed out that it would he difficult ta specify the

saturated model in redundancy analysis, since the saturated model would arise if each

individual observation had its own set of parameters. This is also the case in our

method. The prohlem of formulating a suitable saturated model interferes with testing

the goodness offit of a specifie model. However, the multivariate regression model

without any rank constraints on the matrix of regression coefficients (the so-called

full-rank model) may be used as the most general model (van der Leeden, 1990). What

we can do with confidence is to test a more restrictive model against a less restrictive

mode) from a set of nested models. Nested models may he created by successively

reducing the ranks of B = W A'(e.g., Velu, 1991). It may also he of interest to compare

a specifie model against the null model in whieh it is hypothes1zed that B = 0 (or

rank(B) = 0). In this case the former is the less restrictive mode!.

The univariate LM test, which 1S equivalent to the modification index., is given hy

•
[

8j{9) J2 J-l(9 ) ..
88 ,. "'

i 8 t = (9,);
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• where (Sr)i indicates the ith element ofSr, and J-1(9r)ii represents the ith diagonal

element ofJ-1(9r ) (e.g., Bollen, 1989, pp. 298-299). The only difference between a

less restrictive model and a more restrictive model is in the constraints on Oi. The

univariate LM test is an asymptotic chi-square test with one degree offreedom to assess

the improvement in fit when 8 i is freed.

In conclusion, nonnality is not necessary for our method. If it is assumed,

nonetheless, our method can provide efficient estimators and also enables us to perform

statistical inferences such as the tests of hypotheses without recourse to resampling

methods such as the bootstrap method.

4. 6. Examples

In this section, we illustrate only data transformations, robust estimation, and

efficient estimation, since missing data can he easily handled in the process ofdata

transfonnations. Robust estimation and efficient estimation procedures involve

specifying an iteratively updated row-side metric matrix and column-side metric matrix,

respectively. Throughout this section, we fit the two latent variable model for the basic

health indicator data, given in Section 2.5.

To exemplify data transformations, two observed endogenous variables, that is,

IMR and MMR, were monotonically transformed, based on the procedure described in

Section 4.1. We applied Kruskal's (1964) primary least squares monotonie

transformation to those variables. This indicated that observation categories were

order-preserved but tied observations might become untied. The least squares

• monotonie transformations of the variables are shown in Figures 4.1 a and 4.1 b.
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Figure 4.1a The least squares monotonie transformation of variable IMR.
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Figure 4. 1b. The least squares monotonie transformation ofvariable MMR.
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• In both figures, the original observations (horizontal) are plotted against the

transfonned scores (vertical). We find that the monotonie transfonnations are quite

steep although they contain sorne ties. Due ta the transformation, the fit ofthe model

was dramatically improved (.9571), while providing similar interpretations ofparameter

estimates as those obtained when the variables were treated as numerical. The

correlation between two latent variables was, however, counter-intuitively low (-.04),

compared with that from the untransformed case. This leads sorne difficulty in

interpretations of the obtained solutions.

We then applied Rarnsay's (1998) smooth monotonie transformation to the sarne

endogenous variables. (The matlab codes for the smooth monotonie transformation

were kindly provided by lim Ramsay.) The estimated smooth monotonie

transformations of the same variables are provided in Figures 4.2a and 4.2b. For each

of the endogenous variables, we used low dimensional B-spline base funetions with a

single interior knot, which was positioned at the median, and chose the value of the .

smoothing parameter as 0.01 .

The model fit was .8589. This is worse than that from the least squares monotonie

transformation. It is because the smooth monotone transformation is more restrictive,

removing more wiggles of the transformed scores. Nevertheless, the smooth monotonie

transformation showed a much better model fit than that obtained from the

non-transformed case. More significant was that Ramsay's smooth monotonie

transformation also provided almost the same correlation between two latent variables

(.46) as that obtained From the non-transformed case (.47).
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Figure 4.2a The smooth monotonic transformation of variable IMR.
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Figure 4.2b. The smooth monotonic transformation of variable Ml\fll
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• This seems to make the obtained solutions more interpretable. As the smooth

monotonie transformation is applied ta endogenous variables, however, the

conventional distributional assumptions of regression analysis (i.e., errors are assumed

to be normal, and independently and identically distributed with mean 0 and variance

0'2) are needed due to the emploYment of the maximum likelihood estimation.

To illustrate robust estimation, the IRLS procedure described in Section 4.4 was

implemented, and the robust extended redundancy analysis was applied to fit the two

latent variable model. The variable sensitivity factor was chosen to be 6. Results of

fitting the model by the robust estimation method are presented in Figure 4.3. The

bootstrapped standard errors and the critical ratios obtained with 100 bootstrap samples

are given in Table 4.1.

Due ta the effect ofrobust estimation, the model fit was equal to .7379. ft tumed

out to be significant in terms of its critical ratio (12.0). The squared multiple

correlations ofIMR and MMR were .79 and .66, respectively. They also turned out to

be significant in terms oftheir critical ratios (18. 1 and 7.8 for IMR and MMR,

respectively). Interpretations of the solutions obtained from the robust method were

essentially the same as those from ordinary extended redundancy analysis, given in

Section 2.5. In the robust estimation case, however, GDP tumed out ta be more

strongly associated with SE than FEDU, which was opposite to the case ofordinary

extended redundancy analysis. This may indicate that sorne countries had exceptionally

high or low GDP relative to the other countries, acting as outliers, and the adjustrrlent

ofthem led to a better association with SE.
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Figure 4.3. The two latent variable modal for the WHO data (robust estiination).
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•

Table 4.1. The parameter estimates, and their standard errors (SE) and critical ratios (CR)
obtained from robust estimation of the two latent variable model for the WHO data

Estimate SE CR

Wl -.58 .18 -3.2

W2 -.48 .18 -2.7

W3 -.94 .17 -5.5

W4 -.18 .26 -0.7

al .54 .10 5.4

a2 .32 .10 3.2

a3 .29 .10 2.9

Q4 .34 .13 2.6
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•

The correlation between the latent variables (.47) tumed out significant (the

bootstrapped critical ratio = 3.1).

To demonstrate efficient estimation under the normality assumption, we

compared the two latent variable model against the full-rank model (i.e., the regular

multivariate regression analysis model). The efficient parameter estimates of the two

latent variable model are presented in Figure 4.4. Their standard errors (i.e., the squared

diagonal elements ofJ-1(9,.) and critical ratios are given in Table 4.2. The fit of the

two latent variable model was quite good (LM = .30 with df = 2), indicating that the

two latent variable model was more appropriate than the full-rank model. (The degrees

offreedom of the full-rank model were equal ta n - 8, while those of the two latent

variable model were equal ta n - 6 due ta the identification restriction,

diag(W'Z(2)'Z(2)W) = 12, where 12 is an identity matrix of order 2.) The squared

multiple correlations of IMR and MMR were .64 and .57, respectively. Less variance of

IMR was accounted for by SE than in the least squares estimation case (.73), given in

Figure 2.5, whereas almost the same variance ofMMR was explained by HS. The

correlation between the latent variables was equal to .44, which was about the same as

that from the least squares estimation (.46). Variable GDP was found to be a bit more

strongly associated with SE (.54) than FEUD (.52), which was opposite to the least

squares estimation case. Nonetheless, interpretations of the efficient estimates were

essentially the same as those of the least squares counterparts.

Furthermore, we compared a more restrictive model, in which the component

weight for Healthexp (i.e., W4) was additionally constrained ta be equal to zero, against
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Figure 4.4. The two latent variable model for the WHO data (efficient estimation)

89



•

•

Table 4.2. The parameter estïmates, and their standard errors (SE) and critical ratios (CR)
obtained from efficient estimation ofthe two latent variable model for the WHO data

Estimate SE CR

"'1 -.54 .12 -4.5

"'2 -.52 .13 -4.0

"'3 -.97 .08 -12.1

"'4 -.10 .09 -1.1

al .58 .15 3.7

a2 .44 .10 4.4

a3 .41 .16 2.6

a4 .45 .11 4.1
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• the two latent variable model. The efficient parameter estimates of the constrained two

latent variable model are provided in Figure 4.5. "lbeir standard errors and critical ratios

are given in Table 4.3. In Chapter 2 the same comparison was carried out on the basis

of the least squares estimation~ depicted in Figure 2.6.

The constrained model showed a fairly good fit (LM = .21 with df= 1), indicating

that it is more appropriate than the unconstrained two latent variable model. This is

consistent with the conclusion from the least squares estimation. The squared multiple

correlations ofIMR and MMR were equal to .64 and .57, respectively. The correlation

between the latent variables was equal to .40. The efficient estimates of the constrained

model could be similarly interpreted to the least squares counterparts.

The LM test between the two latent variable model and the constrained two latent

variable model was equivalent to the univariate LM test~ since the only difference

between them was in the zero constraint on W4. Thus, the modification index of the

constrained parameter was identical to the value of the LM test (.21). This indicates that

removing the constraint from the constrained model does not improve the model fit

significantly.
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LM =.21
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Figure 4.5. The constrained two latent variable model for the WHO data
(efficient estimation)
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Table 4.3. The parameter estïmates, and their standard errors (SE) and critical ratios (CR)
obtained from efficient estimation ofthe constrained two latent variable model for the WHO data.

Estimate SE CR

Wl -.54 .16 -3.4

W2 -.52 .17 -3.1

al .61 .04 15.3

a2 .47 .06 7.8

a3 .40 .07 5.7

a4 .44 .08 5.5
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Chapter 5

Discussion

A new method, called extended redundancy analysis, is proposed for analysis of

structural equation models, which is viewed as an extension of redundancy analysis.

One of the major characteristics of the method is ta estimate latent variables as exact

linear combinations of observed exogenous variables. This enables us to avoid

improper solutions which frequently occur in covariance structure analysis. Another

crucial feature is to employa well-defined least squares criterion to estimate mode)

pararneters. This allows for an overall model fit, and also ensures an optimality of

obtained solutions, which is not guaranteed in PLS. An a1temating least squares

algorithm is developed to optimize the criterion. Our experience is that the algorithm is

quite efficient. It converges fast, and seems to he hardly afllicted by the non-global

minimum problem.

The proposed method is simple yet versatile enough to fit various complex

relationships among variables, including direct effects of observed variables and

higher-order latent variables. Moreover, it is able ta perfonn multi-sample comparisons.

The method can deal with data transformations, missing data, and robust estimation in a

simple way, which further broadens its capacity. When the normality assumption is

satisfied, the present metbod can also allow for tests of statistical significance.
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Sorne researchers daim that linear components should not be called latent

variables (e.g., MacCallum & Browne, 1993; McDonald, 1996). They distinguish a

latent variable as an unobserved, error-free, and more generaIizable variable that

accounts for observed variables with sampling error added, usuaIly represented by

common factors (Velicer & Jackson, 1990). On the other hand, latent variables

estimated as linear combinations of observed variables are obtained without taking

account of measurement errors in observed variables. In practical sense, however, it is

difficult to find any substantial differences between factor score estimates and

component scores (Velicer, 1976; Velicer & Fava, 1987). More importantly,

component loadings can be used as reasonable and interpretable estimates when factor

loadings cannot (Kiers et al., 1996). Furthermore, if a population distribution is known

(e.g., a normal distribution), the proposed method can provide efficient estimates.

Further studies are, however, needed to compare the quality of parameter estimates

obtained from our method with those from covariance structure analysis and PLS.

A more fundamental limitation of the present method is that it cannot

accommodate as various relationships among variables as covariance structure analysis

or PLS can do. One example is that our method can only accommodate formative

relationships between latent variables and observed exogenous variables so far. That is,

the observed exogenous variables are always assumed to be multiple causes ofa latent

variable. However, our method May capture reflective relationships among latent and

the observed exogenous variables (i.e., the observed exogenous variables are affected

by an underlying construct) by exploiting the principle of principal covariates
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regression (de Jong & Kiers, 1992).

In principal covariates regression (PCR), it is assurned

ZI = FA'+E,

Z2 = FD'+ E*,

F = Z2W, (5.1)

where D' is a loarling matrix, and E* is the matrix ofmeasurernent errors ofZ2 . The

ather matrices are defined as in (2.1). In PCR, latent variables are determined in such a

way that they account for sorne of the variance OfZ2 while they a1so predict Za. The

fitting criterion in peR is given by

f= SS([Za : Z2] - Z2W[A' : D'])

= SS(Z - Z2WT), (5.2)

subject to W'Z~Z~W' = 1, where Z = [Z] : Z2], and T = [A' : D']. Criterion (5.2) is

essentially the same as (2.8). Optimizing this least squares criterion amounts to

calculating the eigenvalue decomposition of[Z.Z; + Z2Z~] (see de Jong & Kiers,

1992, for detailed derivations).

PCR may be extended to more than two sets of data. The extended PCR model

may be written as follows.

Z(1) = FA'+ E,
Z(2) = FO'+ E* ,

F = Z(2)W, (5.3)

where D' is a matrix ofloadings, and E* cantains measurement error ofZ(2). The other

• matrices are defined as in (2.6). To estimate parameters, we may aim to minimize the
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• following criterion

f = SS([Z(I) : Z(2)] - Z(2)W[A' : D'])

= SS(Z - Z(2)WT),

where Z = [Z(1) : Z(2)], and T = [A' : D']. In (5.4), W and T can be structured

(5.4)

•

according to the model to be fitted. Criterion (5.4) is essentially of the same fonn as

(2.8), and the same ALS a1gorithm can be used to minimize (5.4).

By incorporating the PCR feature, our method can deal with both reflective and

formative relationships among latent and observed exogenous variables. This is

comparable to PLS, which is also capable of handling both kinds of relationships. In

covariance structure analysis, on the other hand, the reflective relationships are typically

assumed because they are consistent with its statistical algorithm based on ail the

covariances among observed variables (Chin, 1998). Modeling fonnative relationships

in covariance structure analysis requires certain conditions (e.g., a latent variable

defined by linear combinations of observed variables needs to emit at least two paths to

different latent variables) in order to avoid sorne identification problems (MacCaIlum &

Browne, 1993). Yet it may be often difficult to satisfy those conditions in model

specification.

Another noticeable drawback of the present method is that it is impossible to

assume any latent variables for the observed endogenous variables. This happens

because our method is an extension of redundancy analysis, whose main goal is to

obtain linear components of the observed exogenous variables that explain the

maximum variance of the observed endogenous variables, 50 that no linear components

97



• are considered for the observed endogenous variables. Hence, this problem seems

inevitable unless we propose models outside the realm of redundancy analysis. We may

consider canonical regression analysis (e.g., van der Leeden, 1990, p. 47) as a potential

candidate to resolve the problem.

The model for canonical regression analysis may be written as

ZlN = Z2WA' + E,

F. = F2A' + E, (5.5)

where N is a matrix of component weights for Z l, FI = Z 1N, F2 = Z2W, and the

other parameter matrices are defined as in (2.1). From (5.5), we see that the canonical

regression analysis model specifies an asymmetric relationship between two sets of

latent variables, one from a set of the observed exogenous variables, and the other from

a set of the observed endogenous variables. This is different from canonical correlation

analysis that is concerned with a symmetric relationship between the two sets of linear

components. To estimate model parameters, we may minimize the criterion as follows:

•

f= SS(ZIN- Z 2WA')

= SS(FI - F2A'),

with respect to N, W, and A'.

Canonical regression analysis may be extended in a similar way to extended

redundancy analysis. This extension may be called extended canonical regression

analysis (ECRA). The ECRA mode) may be written as
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• Z(1)N = Z(2)WA' + E,
F(l) = F(2)A' + E, (5.7)

where N is a matrix ofcomponent weights for Z(l), F(l) = Z(l)N, and F(2) = Z(2)W,

and the other matrices are analogously defined as those in (2.6). Matrices N, W, and

A' can he structured according to the model to he fitted. The fitting criterion may be

glven as

f = SS(Z(I)N - Z(2)WA')

= SS(F(I) - F(2)A'). (5.8)

We may use an ALS algorithm to optimize the criterion, which updates altemately each

of the parameter matrices (i.e., N, W, and A') with the others fixed.

ft seems promising to incorporate the PCR feature into ECRA. This may provide

a comprehensive component-based analysis for structural equation models. Future

research is needed to investigate the feasibility ofthis approach.
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