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ABSTRACT
Dynamics modeling is essential in the design and control of mechanical systems, the focus of the paper being
redundantly-actuated systems, which bring about special challenges. The authors resort to the natural orthogo-
nal complement (NOC), based on an adaptation of screw theory, to derive the dynamics model. Benefiting from
the elimination of the constraint wrenches, the NOC offers a simple, systematic alternative to the modeling of
redundantly-actuated mechanical systems. The optimum actuator-torque distribution is determined via Euclidean-
norm minimization; then, by relying on the QR-decomposition, an efficient and robust method is produced to com-
pute explicitly the right Moore-Penrose generalized inverse of the coefficient matrix. The methodology is illustrated
via a case study involving a redundantly-actuated parallel-kinematics machine with three degrees of freedom and
four actuators.
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1 Introduction
In modeling the dynamics of multibody systems, explicit equations of motion for the system of interest are to be gen-

erated using a suitable methodology. Two methods are mostly employed to construct the dynamics equations, namely,
Newton-Euler (NE) and Euler-Lagrange (EL) [1–3]. There are also other widely used methods, such as the virtual work
principle [4–6], d’Alembert’s principle [7], the principle of Hamilton [8], and Kane’s formulation [1], among others [9–13],
to cope with the aforementioned task. We adopt in the paper the NE equations to formulate the system of p coupled equations
of motion free of constraint wrenches, where p represents the degree of freedom (dof) of the mechanical system at hand. The
wrenches at stake are eliminated by means of an orthogonal complement of the matrix of constraints linear in the twist of the
individual links. Orthogonal complements have been applied in the realm of mechanical systems since the seventies [14–17].
In the early application of the concept, orthogonal complements were determined by purely algebraic means, not considering
the physics involved, which led to orthogonal complements with entries having additions of quantities with different units,
as first pointed out by Lipkin [18]. To cope with this issue, the Natural Orthogonal Complement (NOC) [2, 19], based on
the reciprocity relations between feasible twists and constraint wrenches, was introduced. The NOC, owing its name to the
forgoing natural reciprocity relations, allows the elimination of the constraint wrenches upon multiplication of the uncon-
strained dynamics equations by an orthogonal complement of the velocity constraints. Therefore, compared to the classic
NE method, the advantages of this method lie in its systematic computational procedure and low number of intervening
variables.

It has been shown that, compared to their non-redundant counterparts, redundantly actuated mechanisms help cope
with singularities, besides improving the stiffness of their structures [7, 20, 21]. As a result, there are many applications of
actuation redundancy in a variety of application fields, such as haptic systems [22], parallel kinematics machines [23,24], and
medical devices [25]. The NOC methodology can still be applied systematically with inclusion of actuation redundancy. The
dynamics modeling of redundantly actuated mechanisms, however, poses an inherent challenge as a result of their closed-
loop structures. Redundant actuation implies that the actuator torques required, at any instant, to drive the robot throughout
a prescribed trajectory, are not unique. This is reflected in theunderdeterminacy of the inverse-dynamics equations in the
actuator torques. Underdeterminacy means that the torque requirement at every instant is not unique. The solution is
generally solved by resorting to optimization strategies in which an objective function is defined and minimized. The obvious
strategy is to choose the actuator-torque array, τ, of minimum cost, i.e., of minimum norm. Of the various norms available, we
choose the Euclidean norm, because it lends itself to a closed-form solution, as given by the right Moore-Penrose generalized
inverse [26]. This solution is henceforth referred to as the minimum-norm solution.

The paper is organized as follows: We recall the dynamics equations of mechanical systems at large in Section 2,
followed by the extension of the modeling to redundantly actuated systems in Section 3. The outcome is an underdetermined
system of linear algebraic equations in the actuator torques. The optimum actuator-torque distribution is solved numerically,
via the right Moore-Penrose generalized inverse, by means of the QR-decomposition applied to the transpose of the matrix
coefficient of the system. In Section 4, the proposed methodology is illustrated in a case study involving a 2PUR-2RPU1

parallel robot. The paper ends with the Conclusions included in Section 5.
This paper is an extended version of a paper [27], to be presented at the 9th ECCOMAS Thematic Conference on

Multibody Dynamics 2019, 15th–18th July 2019, Duisburg, Germany.

2 Model Formulation
2.1 Preliminary Definitions

It is assumed that the mechanical system at hand is composed of n rigid bodies. The system has r redundantly-actuated
joints, its degree of freedom being p < r and its degree of redundancy (dor) r− p. Referring to the motion of the ith body, a
few concepts are introduced. The six-dimensional twist ti of and the wrench wi acting on the ith body are:

ti ≡ [ωT
i ċT

i ]
T and wi ≡ [nT

i fT
i ]

T , i = 1, . . . ,n (1)

where ωi and ċi are the angular velocity of the body and the velocity of its center of mass, respectively, while ni and fi are the
moment about and the force applied at the center of mass of the body, correspondingly. Next, the wrench acting on the ith
body is decomposed into a generalized external working wrench wE

i and a generalized nonworking constraint wrench wC
i ,

i.e.,

wi = wE
i +wC

i (2)

1P stands for prismatic, R for revolute, and U for universal joint, actuated joints being underlined.

2 JMR-19-1074, Li



Then, the 6×6 angular velocity dyad Wi and inertia dyad2 Mi of the ith body are defined as

Wi ≡
[

Ωi O
O O

]
and Mi ≡

[
ICi O
O mi1

]
(3)

where Ωi is the 3×3 cross-product matrix (CPM)3 of vector ωi. Moreover, O and 1 are the 3×3 zero and identity matrices,
respectively, while ICi is the 3×3 inertia tensor about the center of mass of the ith body, and mi the mass of the body.
N.B.: Henceforth, we refer to the above concepts, twist and wrench, along with its germane concepts, angular velocity dyad
and its inertia counterpart, as Cartesian variables.

2.2 Single-body Dynamics Equations
The Newton-Euler equations of motion of the ith body are recalled below:

ICiωi +ωi× ICiωi = ni (4a)
mic̈i = fi (4b)

With the definitions introduced in Section 2.1, the foregoing equations are cast in a compact form as [2]:

Miṫi =−WiMiti +wE
i +wC

i , i = 1, . . . ,n (5)

Let x≡ [x1, . . . , xp]
T represent the generalized coordinates of the system, its time-rate of change ẋ≡ [ẋ1, . . . , ẋp]

T denoting
the array of generalized velocities of the same. The twist of the ith body is obtained as

ti = Tiẋ, i = 1, . . . ,n (6)

where Ti is the 6× p twist-shaping matrix of the ith body, which maps ẋ into the twist array of the ith body. Note that the
power developed by the constraint wrench wC

i on the feasible twist ti vanishes, i.e.,

tT
i wC

i = 0 (7)

Upon substitution of Eq. (6) into Eq. (7), we obtain

ẋT TT
i wC

i = 0 (8)

Since Eq. (8) must be satisfied for arbitrary values of the generalized velocities ẋ, because they are independent, the product
TT

i wC
i must vanish. Therefore, upon multiplying both sides of Eq. (5) by TT

i , we obtain

TT
i Miṫi =−TT

i WiMiti +TT
i wE

i , i = 1, . . . ,n (9)

Notice that, for the ith body, the external wrench wE
i arises from all forces and moments exerted on the body by its environ-

ment, namely, actuator wrenches wA
i , gravity wrenches wG

i , and dissipation wrenches wD
i :

wE
i = wA

i +wG
i +wD

i (10)

Hence, upon differentiation of both sides of Eq. (6) with respect to time,

ṫi = Tiẍ+ Ṫiẋ, i = 1, . . . ,n (11)

2Here we adopt the term, “dyad”, first introduced by von Mises [28], to represent the inertia properties of a rigid body, mass and moment of inertia, in
one single 6×6 array, displayed as Mi in Eq. (3).

3The CPM V ∈ R3×3 of any vector v ∈ R3, is defined as V = (∂v×x/∂x),∀x ∈ R3.
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Finally, when Eqs. (10) and (11) are substituted into Eq. (9), the Newton-Euler equations of the ith body are obtained in the
domain of the generalized coordinates, as opposed to those in Eq. (9), expressed in the domain of Cartesian variables, twist
and wrench associated with the same body, namely,

Iiẍ+Ciẋ = TT
i wA

i +TT
i wG

i +TT
i wD

i , i = 1, . . . ,n (12)

where Ii denotes the 6× 6 inertia dyad of the ith body and Ci the 6× 6 dyad of Coriolis and centrifugal terms of the same
body, namely,

Ii ≡ TT
i MiTi, Ci ≡ TT

i (MiṪi +WiMiTi), i = 1, . . . ,n (13)

2.3 Mutlibody Dynamics Equations
We formulate here the mathematical model of the whole system free of constraint wrenches. The latter are eliminated by

virtue of the reciprocity relations between system twist and system wrench, concepts that are defined in the same subsection.
Global concepts, pertaining to the whole system, are now introduced: system twist t; system constraint wrench wC;

system actuator wrench wA; system gravity wrench wG; and system dissipation wrench, wD. Additionally, the 6n×6n block-
diagonal matrices of system mass M and system angular velocity W, along with the 6n× p system twist-shaping matrix T,
are also introduced:

t =

t1
...

tn

 , T =

T1
...

Tn

 , wC =

wC
1
...

wC
n

 (14a)

wA =

wA
1
...

wA
n

 , wG =

wG
1
...

wG
n

 , wD =

wD
1
...

wD
n

 (14b)

M =diag(M1, . . . , Mn) (14c)
W =diag(W1, . . . , Wn) (14d)

Then, the unconstrained system dynamics equations take the form as:

Mṫ =−WMt+wA +wG +wD +wC (15)

The kinematic constraints of the system can be formulated as a linear homogeneous system in the 6n-dimensional system
twist t, as shown elsewhere [19]:

Kt = 0 (16)

where K is a 6n×6n matrix of rank 6n− p, and the system twist is obtained as:

t = Tẋ (17)

Upon substitution of Eq. (17) into Eq. (16), we can readily derive:

KT = O (18)

where O is the 6n× p zero matrix, which shows that T is an orthogonal complement of K. In fact, upon transposing the
two sides of the foregoing equation, an equivalent relation is derived, showing that, correspondingly, KT is an orthogonal
complement of TT . By virtue of the foregoing analysis, that led to Eq. (18), upon resorting to the reciprocity relations
between feasible twists and constraint wrenches in a mechanical system of rigid bodies, K is termed the natural orthogonal
complement of T.
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Furthermore, upon differentiation of both sides of Eq. (17) with respect to time, an expression for the time-rate of change
of the system twist t is obtained:

ṫ = Tẍ+ Ṫẋ (19)

Then, upon substitution of above equation into Eq. (15), followed by premultiplication of the two sides of the equation thus
resulting TT , while considering that

TT wC ≡
n

∑
i=1

TT
i wC

i = 0 (20)

the Newton-Euler equations of the system are obtained in the domain of the generalized coordinates, as opposed to those in
Eq. (9), expressed in the domain of Cartesian variables, twist and wrench associated with the system bodies, namely,

Iẍ+Cẋ = TT wA +TT wG +TT wD (21)

where

I≡ TT MT≡
n

∑
i=1

TT
i MiTi

C≡ TT (MṪ+WMT)≡
n

∑
i=1

TT
i (MiṪi +WiMiTi)

Now, let τ, γ, and δ denote the p-dimensional vectors of actuator, gravity and dissipation generalized forces exerted on the
system, i.e.,

τ≡ TT wA ≡
n

∑
i=1

TT
i wA

i (22)

γ≡ TT wG ≡
n

∑
i=1

TT
i wG

i (23)

δ≡ TT wD ≡
n

∑
i=1

TT
i wD

i (24)

Thereby obtaining the mathematical model sought:

τ = Iẍ+Cẋ− γ−δ (25)

Considering that the angular velocity dyad Wi is skew-symmetric and the inertia dyad Mi is symmetric, it can be readily
shown that I is symmetric. Moreover,

İ =
n

∑
i=1

ṪT
i MiTi +

n

∑
i=1

TT
i ṀiTi +

n

∑
i=1

TT
i MiṪi

=
n

∑
i=1

ṪT
i MiTi +

n

∑
i=1

TT
i (WiMi−MiWi)Ti +

n

∑
i=1

TT
i MiṪi

Thus,

İ−2C =
n

∑
i=1

ṪT
i MiTi−

n

∑
i=1

TT
i MiṪi︸ ︷︷ ︸

skew-symmetric

−
n

∑
i=1

TT
i (WiMi +MiWi)Ti︸ ︷︷ ︸

skew-symmetric

(26)

5 JMR-19-1074, Li



thereby verifying two basic results in the realm of mechanical systems of rigid bodies:

1. I is symmetric and positive definite.
2. İ−2C is skew-symmetric.

This result leads to the controllability of a multibody system, holonomic or nonholonomic, with a linear PD controller.
Indeed, any control law methodologies available for serial robots can be applied to their parallel counterparts because of
the skew-symmetry of İ− 2C [29]. It is noteworthy that care should be taken upon application of control schemes to
redundantly-actuated systems, as significantly large internal forces can be generated [30]. Moreover, play and wear are
always present [31], but not considered in the model, their existence preventing application of pure position-control schemes.
Therefore, typically, a force/position scheme is recommended to control multibody mechanical systems.

3 The Computation of the Optimum
Actuator-torque Distribution

Let q≡ [q1, . . . , qr]
T be the array of the actuated-joint coordinates, and q̇≡ [q̇1, . . . , q̇r]

T the array of the actuated-joint
rates. By virtue of the Principle of Conservation of Energy, the power delivered by the actuators at every instant equals its
counterpart, developed by the robot links, in generalized space, i.e.,

τ
T
a q̇ = τ

T ẋ (27)

where τa is the array of the actuator torques. Moreover, the r× p matrix A, that maps ẋ into q̇, is introduced as

q̇ = Aẋ (28)

Upon substitution of Eq. (28) into Eq. (27), we obtain

τ
T
a Aẋ = τ

T ẋ (29)

Now, the generalized rates stored in array ẋ are independent, and hence, can be assigned arbitrarily. Therefore, ẋ can be
“deleted” from Eq. (29), which leads to

τ = AT
τa (30)

which is a system of p equations in τa for r > p components of τa. Hence, given any value of τ in Eq. (30), to carry
the robot through a given Cartesian trajectory, infinitely-many values of τa are available for the task at hand, a result of
redundant actuation. Under the foregoing conditions, the obvious strategy is to choose the actuator-torque (or force) array
of minimum cost, which means of minimum norm4, whatever the norm of choice is. Of the various norms available, we
opt for the Euclidean norm, which allows for a closed-form expression of the actuator-torque (or force) array τa in terms of
the right Moore-Penrose generalized inverse of AT . In the paper we assume that matrix A is of full rank. This is the case
if no two actuators are duplicated, as in the case of two rotational actuators mounted on the same axis. Symbolically, the
minimum-norm solution sought is expressed as [32]:

τa0 = A†
τ (31)

where

A† = A(AT A)−1 (32)

which is the right Moore-Penrose generalized inverse (RMPGI) of the rectangular matrix AT . It can be seen that the straight-
forward evaluation of A† involves the inversion of the product AT A, which is not only computationally costly, but also prone
to ill-conditioning5 [26].

4In the case of a combination of rotational and translational actuators, the norm in question must be suitably weighted, so as to allow for a physically
meaningful norm.

5The condition number of the product is, roughly, the square of the condition number of A.
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The way to compute robustly the minimum-norm solution τa0 is by means of the QR-decomposition of matrix A [26],
namely,

A = QR (33)

where Q is r× r orthogonal matrix and R is a r× p upper-triangular matrix, with r > p. Moreover, the above factoring is
obtained by means of r Householder reflections [26], i.e., improper orthogonal matrices6. That is, if Q and R are expressed
in block form:

Q = [QL QR], R =

[
U

Or′p

]
, r′ = r− p (34)

then A† becomes

A† = QLU−T (35)

and hence, the minimum-norm solution τa0 becomes

τa0 = QLU−T (Iẍ+Cẋ− γ−δ) (36)

The basic concepts and steps of the proposed modeling method are shown in Fig. 1. The procedure will be illustrated with
an application to a redundantly actuated parallel robot with three dof and four actuators. Since the aforementioned modeling
approach is generally applicable to redundantly actuated systems with dor= r− p, it should be applicable to hyper-redundant
systems as well.

Input geometry & inertia data of the system

Formulate the Newton-Euler equations of the system

Calculate the time-rate of the twist-shaping matrices

Obtain the unconstrained dynamics model of each body

Derive the constrained model by eliminating the constraint wrenches

Solve for the generalized torques/forces

QR-decompose matrix A to solve the minimum-norm problem

Compute actuator torques/forces

Derive the twist-shaping relation between each body and the generalized rates

Derive the twist-array of each body

Fig. 1: Basic concepts and modeling logic

6These are defined as orthogonal matrices whose determinant is -1, as opposed to their proper counterparts, of determinant +1, which represent rotations.
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Table 1: Robot Geometric Data

Description Symbol Value Units

Limb BiAi length (i = 1,2) l 120 mm

OCi length (i = 3,4) l3 80 mm

PAi length (i = 1, . . . ,4) f 60 mm

CiBi length (i = 3,4) d 20 mm

Distance between A1A2 and A3A4 e 0 mm

4 Case Study: The 2PUR-2RPU Parallel Robot
4.1 Robot Description

B

P

U

V
W

X

Y

Z

X1

X2

X3

X4

Y1

Y2

Y3

Y4

Z1

Z2Z3

Z4

O

PLimb1

Limb2

Limb3

Limb4

BP

MP

Fig. 2: 2PUR-2RPU robot

The foregoing methodology is now illustrated and applied to a redundantly-actuated PKM. The machine under study is
of the 2PUR-2RPU 2R1T7 type [21], as shown in Figs. 2 and 3, its geometric parameters being listed in Table 1. The robot
is composed of a base platform (BP), two identical PUR and two identical RPU limbs, each pair actuated at its respective
P joint, and a moving platform (MP). The ith limb for i = 1,2,3,4, is AiBiCi. A Cartesian coordinate frame, B(X ,Y,Z), is
attached to the fixed base at the intersection O of lines B1B2 and C3C4. A moving coordinate frame, P (U,V,W ), is attached
to the moving platform at P, the midpoint of the line segment A3A4. The platform is capable of two rotations, through angles
α and β, about corresponding skew axes, X and V , at right angles, and one translation, ζ, along vector p =

−→
OP, normal to the

V -axis.
In the machining of workpieces with complex curved surfaces, such lower-mobility 2R1T PKMs, integrated either with

a two-to-three-dof tool head or a two-dof gantry to form a five-to-six-dof hybrid PKM, have been considerably researched
and subsequently applied [33–37]. These applications require high speed and high precision, hence the importance of the
dynamics modeling and analysis.

In the definitions below, for i = 1, . . . ,7, the ith link of the system denotes, in the given order: the moving link of the P
joint of the first limb; link B1A1; the moving link of the P joint of the second limb; link B2A2; link B3A3; link B4A4; and the
MP. Furthermore, for i = 1, 2, lc denotes the distance from the center of mass of link BiAi to the center of the corresponding
U joint, Bi, while qc denotes the distance from the center of mass of link BiAi, for i = 3, 4, to the center of the corresponding
U-joint, Ai. Furthermore, let θi denote the angle between Zi and

−−→
BiAi for i = 1,2, and between Yi and Y for i = 3,4. A tool,

7A PKM with two rotational and one translational dof.
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A1

A1

A2

A2

A3

A4

B1

B2

C1

C2

D1

D2

X

YZ

O

P

α

e

θ1

θ2q1

q2

(a) PURRUP chain of limbs 1 & 2

A1

A2

A3

A3

A4

A4

B1

B2

B3 B4

C3 C4X Y

Z

O

P

β
e

d

θ3 θ4

q3 q4

(b) RPUUPR chain of limbs 3 & 4

Fig. 3: Dimensions of the 2PUR-2RPU robot

of length h, is added at the reference point P in the MP. The tool length is measured from P along the axis W , in its positive
direction.

4.2 Twist Arrays of the Robot Links
Coupled by a revolute or prismatic joint, the relative gesture of two rigid links, i.e., the twist of link 2 with respect to

link 1, can be expressed as a corresponding screw of the revolute or the prismatic pair involved. The twists, tr and tp, of the
relative gesture of two rigid links coupled by the the revolute and prismatic pairs, respectively, are given by

tr = θ̇

[
e1

e1× s

]
, tp = ḃ

[
0
e2

]
(37)

where, for the revolute joint, e1 is the axis of rotation, θ the angle of rotation, and s the vector directed from a point O of the
axis to the center of mass of link 2; for the prismatic joint, b is the translation, and e2 the direction of translation. Thus, the
twist t of the end link of a serial chain of j links can be obtained as a combination of consecutive twists:

t =
j

∑
i=1

ti (38)
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where ti denotes the relative twist of link i with respect to its parent link i−1.
Given the generalized coordinates array of x ≡ [α, β, ζ]T , the inverse-displacement solution, i.e., the array of the

actuated-joint coordinates q≡ [q1, q2, q3, q4]
T , is recalled:

q =


q1
q2
q3
q4

=


−g11 + f1 cosβ− esinβ

g21− f1 cosβ− esinβ√
g2

31 +g2
32√

g2
41 +g2

42

 (39)

Thus, using the aforementioned procedure, the six-dimensional twists of the system bodies are obtained as:

t1 = [0, 0, 0, q̇1, 0, 0]T , t2 = [0, 0, 0, q̇2, 0, 0]T

t3 =



α̇

cosαθ̇1
sinαθ̇1

lc cosθ1θ̇1 + q̇1
lc(−cosαcosθ1α̇+ sinαsinθ1θ̇1)
−lc(sinαcosθ1α̇+ cosαsinθ1θ̇1)



t4 =



α̇

cosαθ̇2
sinαθ̇2

lc cosθ2θ̇2 + q̇2
lc(−cosαcosθ2α̇+ sinαsinθ2θ̇2)
−lc(sinαcosθ2α̇+ cosαsinθ2θ̇2)



t5 =


θ̇3
0
0
0

(qc−q3)sinθ3θ̇3 + cosθ3q̇3
(q3−qc)cosθ3θ̇3 + sinθ3q̇3



t6 =


θ̇4
0
0
0

(qc−q4)sinθ4θ̇4 + cosθ4q̇4
(q4−qc)cosθ4θ̇4 + sinθ4q̇4



t7 = [α̇, cosαβ̇, sinαβ̇, sinβζ̇,−sinαcosβζ̇, cosαcosβζ̇]T

10 JMR-19-1074, Li



Table 2: Computational cost of the dynamics model

Description Symbol Flops

Number of flops to compute θi Nθi 19×4

Number of flops to compute gi j Ngi j 33

Number of flops to compute ki j Nki j 74

Number of flops to compute Ti NTi 90

Number of flops to compute Ṫi NṪi
7×18

Number of flops to compute I NI 7×72

Number of flops to compute C NC 7×145

Number of flops to compute γ Nγ 7×18

Number of flops to compute τ Nτ 18

Number of flops to compute τa0 Nτa0 63

Total computational cost NIDA 2125

4.3 Twist-shaping Relations
The twist-shaping matrix, mapping the three-dimensional array of generalized rates into the link twist, is derived by

calculation of the partial derivative of each twist with respect to the generalized rates array ẋ≡ [α̇, β̇, ζ̇]T . Therefore, in this
case, the twist-shaping matrices are all 6×3 arrays, obtained as

Ti ≡
∂ti

∂ẋ
, i = 1, . . . ,7 (40)

The array expressions for the seven twist-shaping matrices being rather bulky, they are displayed in the Appendix8.

4.4 Computational Cost
We recall below the number of flops estimated for the computation of trigonometric functions, harmonic or otherwise

(Nt ), their inverse (Ni), and square roots (Ns), as reported by Karimi-Eskandary et al. [38]:

Nt = 18, Ni = 23, Ns = 6 (41)

The computational cost of the dynamics model can be calculated by counting the total number of flops required to compute
the various terms in Eq. (21). Note that items such as inertia dyad Mi, the angular-velocity dyad Wi, and the wrench vector
wi are either constant or obtained by simple look-up from a data file; hence they do not contribute to the cost. The cost of
the other parameters involved is listed in Table 2.

4.5 Simulation
An example of the inverse dynamics is included here. Assuming that links and joints are made of 6061-T6 Alloy, with

a density of 2700 kg/m3, the mass of each body and their moment-of-inertia matrices at the respective centers of mass are

8This is done with the purpose of preserving continuity in the main body of the paper.
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listed below:

m1 =3.261 ·10−2kg

[I1] =diag(4.855,12.742,12.795) ·10−6kg ·m2

m2 =3.300 ·10−2kg

[I2] =diag(40.048,39.770,1.054) ·10−6kg ·m2

m3 =3.261 ·10−2kg

[I3] =diag(4.855,12.742,12.795) ·10−6kg ·m2

m4 =4.200 ·10−2kg

[I4] =diag(52.324,50.786,2.543) ·10−6kg ·m2

m5 =6.082 ·10−2kg

[I5] =diag(109.396,3.349,110.827) ·10−6kg ·m2

m6 =6.082 ·10−2kg

[I6] =diag(109.396,3.349,110.827) ·10−6kg ·m2

m7 =8.200 ·10−2kg

[I7] =diag(16.631,27.155,37.459) ·10−6kg ·m2

Although line-path or circle-path are two typical types of test trajectories used by the robotics community, a third
type, namely, helical-path, which combines line-path and circle-path, is more general and widely used in PKM dynamics
analysis [39]. The path to be traced, fixed on the base frame, is given by

x =r cosφ− r (42)
y =r sinφ (43)
z =z0 +h0φ/(2π) (44)

with the numerical values: r = 5mm; initial height z0 = 127.48mm; pitch h0 = 20mm; and the angle 0≤ φ≤ 2π.
The trapezoidal velocity trajectory, consisting of three phases: acceleration, coasting, and deceleration, is known for its

simplicity, hence very common in the industrial practice. Its acceleration, however, is discontinuous. In order to obtain the
continuity of the acceleration profile, we resort to a modified trapezoidal trajectory [40], which is divided into six phases of
either second degree polynomial or cycloidal function, as shown in Eq. (B-1), where T is the cycle-time, assumed to be 10s
in this case.

Furthermore, notice that the mobility of the mechanism under study comprises two rotations about skew axes and one
translation along vector p =

−→
OP. Under these conditions, the Cartesian coordinates of the operation point of the tool-head,

attached to the MP, can still be controlled, if at the sacrifice of the orientation dof, as illustrated below.
Now, the relation between Cartesian coordinates y ≡ [x,y,z]T , of the tool head, and the generalized coordinates x ≡

[α,β,ζ]T , of the MP, is derived as:

α =arctan(−y/z) (45)
β =arcsin(x/h) (46)
ζ =(z−hcosβcosα)/cosα (47)

The relations between actuated joint variables and generalized coordinates can thus be obtained in closed form. The
initial values are chosen as α = β = 0 rad, and ζ = 70mm. The corresponding time-histories of the generalized coordinates,
velocities, and accelerations, as well as moments and forces acting on the MP are calculated, as plotted in Figs. 4–6, while
their counterparts of the actuated joints are shown in Figs. 7–10.

5 Conclusions
A modeling methodology applicable to redundantly-actuated systems, based on the NOC, was introduced. The method

described was then applied to a redundantly-actuated PKM. The underdetermined actuator-torque array is optimized via
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Fig. 4: Displacement, velocity, acceleration, and torque of generalized coordinate α

Euclidean-norm minimization. A robust methodology was introduced to compute the minimum-norm actuator-torque array
of the PKM under study. It is pointed out, however, that internal forces can be generated under actuation redundancy [30],
thereby inducing additional loads on the structure. Hence, great care should be taken upon application of control schemes
to redundantly-actuated systems, as unavoidable geometric errors of both the geometry and the control system can produce
unacceptably high internal forces. To cope with this downside, a robust approach to the dimensioning of the various links is
recommended as an issue worth further research.
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Fig. 5: Displacement, velocity, acceleration, and torque of generalized coordinate β
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Fig. 6: Displacement, velocity, acceleration, and force of generalized coordinate ζ
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Appendix A
The seven twist-shaping matrices are:

T1 =

0 0 0 0 0 0
0 0 0 −k11g12/g11− k12 0 0
0 0 0 g12/g11 0 0

T

T2 =

0 0 0 0 0 0
0 0 0 k22− k21g22/g21 0 0
0 0 0 −g22/g21 0 0

T

T3 =

1 0 0 0 −lcg12 cosα/l −lcg12 sinα/l
0 −k11 cosα/g11 −k11 sinα/g11 (lc/l−1)k11g12/g11− k12 lck11 sinα/l −lck11 cosα/l
0 −cosα/g11 −sinα/g11 (1− lc/l)g12/g11 −lc sinα/l lc cosα/l

T

T4 =

1 0 0 0 −lcg22 cosα/l −lcg22 sinα/l
0 −k21 cosα/g21 −k21 sinα/g21 −(1+ lc/l)k21g22/g21 + k22 −lck21 sinα/l lck21 cosα/l
0 −cosα/g21 −sinα/g21 −(1+ lc/l)g22/g21 −lc sinα/l lc cosα/l

T

T5 =

 (g31k32−g32k31)/g33 0 0 0 k33(g31k32−g32k31)/g33− k32 k34(g32k31−g31k32)/g33− k31
0 0 0 0 0 0

(g31 sinα+g32 cosα)/g33 0 0 0 k33(g31 sinα+g32 cosα)/g33− sinα cosα− k34(g31 sinα+g32 cosα)/g33

T

T6 =

 (g42k41 +g41k42)/g43 0 0 0 k43(g41k42 +g42k41)/g43− k42 −k44(g41k42 +g42k41)/g43 + k41
0 0 0 0 0 0

(g42 cosα+g41 sinα)/g43 0 0 0 k43(g41 sinα+g42 cosα)/g43− sinα cosα− k44(g41 sinα+g42 cosα)/g43

T

T7 =

1 0 0 0 0 0
0 cosα sinα 0 0 0
0 0 0 sinβ −sinαcosβ cosαcosβ

T

with the definitions below:

k11 = f cosβ− esinβ, k12 = ecosβ+ f sinβ, k21 = f cosβ+ esinβ, k22 = f sinβ− ecosβ

k31 = ζsinα+ f cosα, k32 = ζcosα− f sinα, k33 = qcg31/
√

g2
31 +g2

32, k34 = qcg32/
√

g2
31 +g2

32

k41 = f cosα−ζsinα, k42 = f sinα+ζcosα, k43 = qcg41/
√

g2
41 +g2

42, k44 = qcg42/
√

g2
41 +g2

42

g11 =
√

l2− (ζ− f sinβ− ecosβ)2, g12 = ζ− f sinβ− ecosβ

g21 =
√

l2− (ζ+ f sinβ− ecosβ)2, g22 = ζ+ f sinβ− ecosβ

g31 = ζcosα− f sinα−d, g32 = l3− f cosα−ζsinα, g33 = g2
31 +g2

32

g41 = ζcosα+ f sinα−d, g42 =−l3 + f cosα−ζsinα, g43 = g2
41 +g2

42
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Appendix B
The expression of the modified trapezoidal trajectory:

φ(t) =



2π

2+π
[ 2t

T −
1

2π
sin( 4πt

T )], 0≤ t < T
8

2π

2+π
[ 1

4 −
1

2π
+ 2

T (t−
T
8 )+

4π

T 2 (t− T
8 )

2], T
8 ≤ t < 3

8 T
2π

2+π
[−π

2 +2(1+π) t
T −

1
2π

sin( 4π

T (t− T
4 ))],

3
8 T ≤ t < T

2
2π+ 2π

2+π
[π

2 +2(1+π) t−T
T −

1
2π

sin( 4π

T (t− 3T
4 ))], T

2 ≤ t < 5
8 T

2π+ 2π

2+π
[− 1

4 +
1

2π
+ 2

T (t−
7T
8 )− 4π

T 2 (t− 7T
8 )2], 5

8 T ≤ t < 7
8 T

2π+ 2π

2+π
[ 2(t−T )

T − 1
2π

sin( 4π

T (t−T ))], 7
8 T ≤ t ≤ T

(B-1)
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