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Abstract: 
The paper examines the debate about the nature and status of “Triple-negative breast cancer”, 
a controversial biomedical entity whose existence illustrates a number of features of post-
genomic translational research. The emergence of TNBC is intimately linked to the rise of 
molecular oncology, and, more generally, to the changing configuration of the life sciences at 
the turn of the new century. An unprecedented degree of integration of biological and clinical 
practices has led to the proliferation of bio-clinical entities emerging from translational 
research. These translations take place between platforms rather than between clinical and 
laboratory settings. The complexity and heterogeneity of TNBC, its epistemic and technical, 
biological and clinical dualities, result from its multiple instantiations via different platforms, 
and from the uneven distribution of biological materials, techniques, and objects across clinical 
research settings. The fact that TNBC comes in multiple forms, some of which seem to be 
incompatible or, at least, only partially overlapping, appears to be less a threat to the whole 
endeavor, than an aspect of an ongoing translational research project. Discussions of 
translational research that rest on a distinction between basic research and its applications fail 
to capture the dynamics of this new domain of activity, insofar as application is built-in from the 
very beginning in the bio-clinical entities that emerge from the translational research domain. 
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Application is not extrinsic to modern knowledge, it is not just 
added to some epistemic core; it exerts its action at the very level 
of concept formation itself; the technical belongs to the essence 
of the modern sciences themselves. 

Rheinberger (2005, p. 324) 

Introduction 

During a June 2012 meeting devoted to National Institutes of Health (NIH) funding, the US 
Senate Appropriations Committee expressed its concern “about the toll of triple negative breast 
cancer” [henceforth TNBC] and urged the National Cancer Institute (NCI) to collaborate with 
other organizations “to help improve treatment and survival rates” (Bin Han Ong, 2012). A 
decade before, the Committee would most likely have expressed concern over the high rate of 
breast cancer in general, rather than a specific subcategory of the disease. Recourse to TNBC 
itself would have been impossible since the disease did not then exist. Its rise to Senate-level 
prominence was thus relatively swift. A search in PubMed shows that the first article using the 
term TNBC in its title or abstract did not appear until 2007 when it also entered the public 
domain, showcased as a national problem in O, The Oprah Magazine (Fischer, 2007; see also 
Okura, 2010). The year before its PubMed consecration, friends of a young woman diagnosed 

http://ees.elsevier.com/shpsc/viewRCResults.aspx?pdf=1&docID=591&rev=2&fileID=8848&msid={C2524B9A-A21E-439C-9E62-89452D94C3E7}
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with TNBC at age 35 had established The Triple Negative Breast Cancer Foundation.1  
 
While mass media and policy forums reacted promptly to the emergence of this new disease, 
TNBC’s status within biomedicine remained controversial, as evidenced by article titles such as 
“Triple-negative breast cancer: disease entity or title of convenience?” (Carey et al., 2010), or 
“Triple-negative breast cancer: making the most of a misnomer” (McCarthy et al., 2012). At a 
2013 breast cancer conference, a leading clinical researcher stated categorically that TNBC was 
not a bona fide disease and that speakers should avoid the term … a statement that did not 
prevent other speakers from using it, with apologies, throughout the conference (fieldnotes, 
IMPAKT 2013 conference, 2-4 May 2013). At the 2015 edition of that same conference, as part 
of a session specifically devoted to TNBC, the pathology presenter stated authoritatively that 
TNBC was “merely an operational term covering a collection of heterogeneous diseases” 
(fieldnotes, IMPAKT 2015 conference, 7-9 May 2015). Despite questions concerning the 
definition, status, and in some cases the very existence of TNBC, by 2014 the Clinicaltrials.gov 
website (the U.S. “registry and results database of publicly and privately supported clinical 
studies of human participants conducted around the world”) listed about 240 studies devoted 
to the disease. Indeed, its widespread clinical use had already prompted a team of European 
clinicians to publish an article entitled “Triple negative breast cancer: proposals for a pragmatic 
definition and implications for patient management and trial design” (Eiermann et al., 2012; our 
emphasis). All of this suggests that even in an evidence-based, research-intensive domain such 
as oncology it remains possible to study and treat diseases that large sectors of the medical 
community consider misnamed, purely conventional, or even non-existent.  
 
TNBC can be deployed as an object of practical clinical concern and as a target of biological 
investigation (an “epistemic thing”). Consider, for example, the 2013 meeting of the American 
Society of Clinical Oncology. As evidenced in the meeting abstracts, clinical researchers framed 
TNBC in multiple clinical and research contexts, and used it to investigate its clinical and 
pathological behavior, to compare it with other kinds of breast cancer, to calculate the rate of 
hereditary mutations it harbors, to study the response of its subgroups to traditional and novel 
(“targeted”) therapies, to combine it with other subtypes of breast cancer in order to establish 
prognostic and predictive subsets, as a starting point for the discovery of yet other breast 
cancer subgroups, and to investigate its molecular pathways and markers both because they 
might predict response to therapy and in order to unravel TNBC’s peculiar biology. In other 
words, TNBC was deemed an entity worthy of investigation on its own, and as an operational 
category at the service of a higher calling, the improvement of cancer therapy. Both are ways of 
saying that TNBC is (clinically) useful, and both are interconnected, as the improvement of 
cancer therapy these days depends upon knowledge of the mechanisms that inhabit and 
animate the entities treated.  
 
Research along these lines proceeds unabated at the time of this writing. While some teams 
continue the search for prognostic and predictive TNBC gene signatures (Pinto et al., 2016; Liu 
et al., 2016), the Intensive Trial of OMIcs in cancer (ITOMIC), a distributed clinical research 

                                                        
1
 http://www.tnbcfoundation.org/ourstory.htm 
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network centered on the molecular features of cancer, selected metastatic TNBC for its first 
clinical trial to exemplify the network’s “intensive longitudinal monitoring” approach (Blau et al., 
2016). As for the Translational Research Network in Oncology (TRIO) — a “worldwide network 
of 2,000 Investigators located in 500 research centers residing in 45 countries spanning 5 
continents”2 — it is looking at repurposing drugs to treat TNBC, i.e. drugs that failed previous 
tests due to possible problems with the high-throughput methods used in their evaluation 
(Slamon, quoted in Nailor & Lewis, 2016). In January 2016, the aforementioned Triple Negative 
Breast Cancer Foundation joined forces with Carol’s Crusade for a Cure Foundation (another 
private charity devoted to “raising awareness and funding to support organizations at the 
forefront of [TNBC] research”), and most importantly, with the American Association for Cancer 
Research, to announce a new grant opportunity for “basic, translational, or clinical” research on 
metastatic TNBC, explaining that “this type of cancer is a particularly aggressive form of breast 
cancer for which there are no targeted therapies”.3 
 
These activities, which link practical clinical concerns with biological investigations, take place 
within a number of programs and networks that, as we just saw, explicitly refer to translational 
research [henceforth TR]. Moreover, several key protagonists of the TNBC domain (e.g., Nielsen, 
2010; more on this below) conceive of themselves as translational researchers. A case study of 
TNBC will thus provide relevant evidence for the investigation of the concrete research practices 
(as opposed to policy statements) that characterize TR as defined by the actors themselves. 
Since its introduction at the US National Cancer Institute in the early 1990s in connection with 
the characterization of breast cancer susceptibility genes (BRCA), the term has become 
ubiquitous in biomedical debates. It is generally taken to refer to major investments in 
biomedical infrastructures, training, and research to help cross a perceived gap (“the valley of 
death”) between laboratory research and clinical applications (Butler, 2008)4, but its exact 
meaning and the practices it entails or ought to entail are open to debate. Several policy reports 
(for a review, focusing on the UK, see Morgan et al., 2011) and articles, some of which in aptly 
named journals (e.g., Drolet & Lorenzi, 2011; Mankoff et al., 2014) have advocated a number of 
different means to steer and promote TR, often represented as a flow (unidirectional or 
bidirectional) between laboratory and clinical settings. Others have advocated initiatives aimed 
at establishing appropriate infrastructures and reward systems for what they consider as a new 
research domain (e.g., Hood 2008). On the more analytical side, researchers have provided 
scientometric evidence of the emergence of a TR domain as characterized at an aggregate level 
by distinctive citation and semantic networks (Cambrosio et al., 2006; Jones et al., 2011); they 
have investigated the dynamics of the organizations involved in TR, for instance the existence of 
a “hidden research system” in universities and academic hospitals (Lander & Atkinson-Grosjean, 
2011), and of scientific-regulatory hybrids (Kohli-Laven et al., 2011); and they have examined 

                                                        
2
 http://www.cirg.org/html/investigator.html 

3
 http://www.ascopost.com/ViewNews.aspx?nid=35201  

4
 Present-day translational research, and its stated goal of realigning biology and the clinic, can be located in a 

specific historical conjuncture. While the aftermath of World War II — a period retrospectively referred to as the 
“golden years” of clinical research (Swazey & Fox, 2004) —

 
saw the emergence of the physician-researcher, the 

years since have been marked by the rise of molecular biology, and the physicians who had initially launched the 
clinical research revolution slowly became outnumbered by Ph.D.’s with no clinical experience (Ahrens, 1992).  
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how researchers and clinicians situate themselves vis-à-vis the institutionalization of this new 
sphere of activity (Morgan et al., 2011; Vignola-Gagné, 2014; Lander, 2016).  
 
Critics have argued that TR, as described in the aforementioned contributions, is “merely” a 
policy object (some would even say: a buzzword), or at best a peculiar set of institutional 
arrangements, with no distinctive epistemological quality. In other words, old wine in new 
bottles, as links between bench and bedside have been around for long time, in particular at 
institutions such as the NIH where research laboratories rub shoulders with a major research 
hospital. This argument, however, depends on maintaining a dichotomy between organizational 
and cognitive/epistemic components of biomedicine which is dubious at best (see Cambrosio et 
al., 2014 for a detailed discussion of the relationship between the organizational and epistemic 
features of oncology research). Historical studies of the emergence of biomedicine and the 
biotech industry (Gaudillière, 2002; Löwy, 1996; Rasmussen, 2014) have likewise pointed to the 
existence, well before the 1990s, of many instances of investigations combining practical clinical 
concerns with the production of biological knowledge, which substantially resemble activities 
that are today identified as TR. While these critiques about the degree of continuity or 
discontinuity of contemporary practices are well taken, an unprecedented degree of integration 
of biological and clinical practices has more recently led to the proliferation of bio-clinical 
entities of the kind that will be discussed in this paper. Most importantly, our focus on the 
objects and entities emerging from TR has led us to examine translations taking place between 
platforms (Keating & Cambrosio, 2003) — such as the work done to bridge traditional 
pathological techniques with more recent high-throughput technologies — rather than 
translations between clinical and laboratory settings. While studies of human practitioners have 
often postulated the existence of an essential tension between researchers and clinicians (e.g., 
Hedgecoe, 2003; Timmermans & Buchbinder, 2011; Quirke and Gaudillière, 2008, p. 451), we 
treat platforms as bio-clinical assemblages which belong from the beginning to both treatment 
and research. Translations taking place between platforms, then, are not processes or sites 
where the laboratory and the clinic are merely interfaced, but where existing bio-clinical entities 
are reworked and remixed, both conceptually and materially, generating the proliferation of 
definitions and uses we see in the case of TNBC.  
 
Our focus on platforms and the objects of TR also allows us to account for another aspect of the 
TNBC trajectory. The opening paragraphs of this article highlighted the controversial status of 
TNBC as a bio-clinical disease entity. As the rest of this paper will show, TNBC is not only a 
disputed entity, but also a rapidly changing one. The existence of competing definitions of an 
entity such as TNBC is less an expression of different schools of thought, or thought styles, or 
paradigms — to borrow terminology from the last century — than the expression of a need to 
define for specific conventional purposes exactly which instantiation of this nosological entity — 
which platform for (re)producing it — is being used at any given time. 
 
 
TNBC and the rise of molecular oncology 
 
TNBC arose at the intersection of two lines of work. The first, pathology, has in recent decades 
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supplemented its traditional focus on the visual inspection of tissues with the adoption of 
immunohistochemistry (henceforth: IHC) and, subsequently, molecular-biological techniques 
such as FISH (fluorescence in situ hybridization), while maintaining close connections to clinical 
activities and routines. The second, genomics, is more commonly associated with TR, and 
thrives on the deployment of the latest “high-throughput” technologies, in particular gene 
expression profiling with microarrays, and more recently DNA and RNA sequencing. These two 
lines of work have led to a number of (sometimes controversial) attempts to align their results, 
both conceptually and technically.  
 
Figure 1 reprinted from an article entitled “Lost in Translation?” (Harbeck & Rody, 2012, p. 688), 
depicts the progressive dismantling of a common pathology — breast cancer — into an 
increasing number of rare diseases. This process relied on two mutually reinforcing events: (a) 
the deployment of a number of platforms that redefined tumors in terms of biomarkers,5 
beginning first with single biomarkers (the ER and PR hormone receptors, and HER2), moving on 
to gene expression profiles defining a set of “intrinsic subtypes” (e.g., Luminal A, Basal-like), and 
to the analysis of DNA mutations and molecular pathways; and (b) the development of new 
chemotherapeutic agents that selectively target tumors harboring specific receptors and 
biomarkers (hence their “targeted therapies” designation). We say “mutually reinforcing” 
because the characterization of tumors in terms of biomarkers has led to the design of new 
drugs targeting specific patient subpopulations, and, conversely, the development of drugs that 
selectively work on subpopulations of clinical trial patients has given rise to the recognition of 
biologically distinct categories of tumors. There was, in other words, a direct connection 
between biological and clinical work, and this is why we speak of bio-clinical objects and 
entities. 
 

FIGURE 1 ABOUT HERE 
 
As noted by Foulkes et al. (2010), the definition of TNBC as a disease first appeared in the 
medical literature in 2005, in a contribution by Brenton et al. (2005) that freighted the term 
from the very outset as both a biological and a clinical matter of concern. The authors of that 
paper employed the term in three different ways. They first used it as a clinical qualifier with 
therapeutic consequences for another, recent subtype of breast cancer (basal-like breast 
cancer) introduced in the year 2000 thanks to the use of a new genomic technology for 
analyzing gene expression (microarrays): “given its triple-negative receptor status …, basal-like 
breast cancer is not amenable to conventional targeted therapies for breast cancer … leaving 
only chemotherapy in the therapeutic armamentarium”. Later on, they deployed the term as a 
qualifier for patients: “triple-negative patients”, and finally, in the conclusion, they evoked the 
existence of (patients with) “a triple-negative cancer”, thus defining, albeit almost as an 
afterthought, a new type of cancer.  
 

                                                        
5
 The definition of a biomarker is itself controversial. As noted by Marchiò et al. (2011, p. 41), “biomarkers are the 

defining facet of translational cancer research; however, there is a great deal of confusion about the actual 
definition of what a biomarker is and what its characteristics are”. 
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Use of the three receptors to describe a class of patients preceded the act of naming the 
disease. In 1998, for example, a large retrospective study identified two cohorts of patients on 
the basis of negative or positive receptor status, showing that the one with a positive receptor 
had a better response to a drug called doxorubicin (Paik et al., 1998). The term “triple-
negative”, however, did not itself appear in the paper. Prior to 2005, then, there were triple-
negative patients (i.e., triple-negative was a classifier) but no triple-negative breast cancer (i.e., 
triple-negative was not yet a distinct disease). Ultimately, the appearance of TNBC as a specific 
category in 2005 required the emergence, five years earlier, of a new experimental classification 
scheme that simultaneously negated the autonomy of TNBC by conflating it with one of its 
components, basal-like cancer. To see how this was possible, we need a closer look at the 
trajectories (first separate, then interwoven) of the three receptors and of gene-expression 
subtypes. 
 
 
What’s in a name? A tale of three receptors 
 
The designation “triple-negative” refers to the absence of three cellular receptors — ER, PR, and 
HER2 — in breast cancer tissue samples. The first two receptors, ER and PR, are hormone 
(Estrogen and Progesterone) receptors. Awareness of their clinical importance as indicators of 
patient response to hormone therapy is generally traced back to the 1960s. But since the 1990s, 
ER and PR have also acted as markers of a biological subcategory of the disease. The third 
receptor, HER2, is a cell surface receptor discovered in the mid-1980s. It was used throughout 
the 1990s as a breast cancer prognostic indicator, before becoming a predictor of response to 
the new anti-cancer drug trastuzumab (one of the poster children of “targeted therapies”) that 
gained FDA approval in 1998. How the receptors became markers requires some explaining that 
takes into account the techniques used to make them visible, and the evidential contexts to 
which they were successively related.6 
 
While ER emerged as a clinical object more than 50 years ago, many aspects of its current use 
are relatively novel. It was only in the 1990s, for example, that all-comers breast cancer clinical 
trials were replaced by trials that accrued patients with a specific combination of markers, in 
recognition of the fact that, for instance, ER-positive and ER-negative breast cancers should be 
considered different diseases. Concurrently, pathologists using IHC took control of ER-testing, 
which was previously under the purview of clinical biochemists using radioactive assays. Thus, 
whereas ER began its existence as a clinical object in the 1960s when initial reports linked 
estrogen receptors to the fact that some patients responded to hormone therapy while others 
did not (Folca et al. 1961), it underwent a profound transformation in the 1990s when it was 
translated into a full-fledged bio-clinical entity.  
 
The transformation began in the 1970s when initial indications that hormone receptors might 
predict treatment response were consolidated in an NCI symposium on the Prediction of 

                                                        
6
 The techniques for determining ER and PR are basically the same and have evolved similarly, but while they 

intersect, the trajectories of the two receptors differ somewhat. For brevity’s sake, we will here focus on ER. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 7 

Response in Cancer Therapy (Jensen et al., 1971). This insight gained clinical status in 1974 when 
the Breast Cancer Task Force of the NCI collated accumulating data on endocrine treatment 
response and its relation to ER status, and concluded that ER status “should permit the 
practicing oncologist to select or reject endocrine therapy with considerable confidence” 
(McGuire, 1975). In 1979 a NIH consensus conference recommended that ER analyses be 
performed on all primary breast cancer patients. While retrospective accounts present these 
events as a linear sequence of increasingly robust guidelines, major uncertainties continued to 
surround the status of ER in the 1970s. Endocrine therapy remained unspecific and included not 
only chemical but also surgical techniques, i.e. oophorectomy. Moreover, there were persistent 
problems with the biochemical measurement techniques: competing methods and different 
cut-offs led to contradictory results (Hawkins et al., 1980). 
 
Uncertainty continued into the 1980s. A 1986 review, for instance, reverted to the conditional 
form when stating that the “application of an estrogen receptor scheme (positive vs. negative) 
for defining breast cancer may allow delineation of cases that may appear quite similar but that 
represent two different types of disease” (Stanford et al., 1986). The review further noted that it 
had “not been established whether estrogen receptor-negative tumors represent an advanced 
stage of the disease or arise de novo”. The 1980s, however, also saw the staging of a landmark 
clinical trial (NSABP’s Protocol B-14) that firmly rooted ER in the therapeutic realm. Begun in 
1981 and completed in 1988, the trial focused on the use of tamoxifen in ER+ patients, 
providing evidence of the benefits of this drug in this specific patient population (Fisher et al., 
1989). In this respect, ER acted as an indicator of response to a specific therapy (tamoxifen) and 
not as a marker of a biologically distinct disease. In other words, the trial turned ER into a bona 
fide clinical object or, to use a now fashionable category, a clinically useful one. The 
transformation of ER into a bio-clinical object had to wait until the subsequent decade and the 
intervention of pathologists. 
 
While initial studies of ER used biochemical assays to measure levels of the receptor and relate 
them to response to hormone therapy (Walker, 1999), the introduction of IHC allowed 
pathologists to visualize ER on fixed tissues, opening up new investigational avenues for the 
study of the etiology and bio-pathology of breast cancer. It was not an easy transition. As late as 
1996, the clinical practice guidelines issued by the American Society of Clinical Oncology 
recognized the entrenched status of biochemical testing by recommending it as the preferred 
method for routine clinical use (ASCO, 1996) even though such tests presented their own 
challenges. Specifically, biochemical measurement of ER demanded a “technically challenging 
and expensive” technology that required radioactive reagents and fresh-frozen tissue (Harvey et 
al., 1999). Fresh-frozen tissue was relatively rare as pathologists (who as tissue curators and sole 
experts in tissue analysis act as gatekeepers for accessing tissue samples) work overwhelmingly 
with paraffin-embedded tissues. Moreover, biochemical testing involved “grinding-up” the 
tissue prior to evaluation, thus preventing visual inspection of the distribution of ER receptors in 
biopsy samples, a key component of the pathologists’ skill set. Finally, the determination of the 
presence or absence of ER receptors was a quantitative undertaking, further excluding 
pathologists unfamiliar with quantitative biochemical approaches (Interview, January 2012). By 
the early 1990s, however, the availability of IHC established a bridge between ER and 
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pathologists, who were now able to use antibodies to stain tissue samples, observe the results 
under a microscope, and, most importantly, use reagents on paraffin blocks, the standard 
means of preserving biopsy specimens.  
 
Pathologists, however, did not simply “take over” from clinical biochemists: they had to adjust 
their practices. The introduction of IHC was a mini-revolution for a specialty that until the end of 
the 1970s had been based on the observation of the morphology of cancer tissues under a 
microscope (Soilleux & Gatter, 2006; Crompton, 2011). Furthermore, as noted by a leading 
breast cancer pathologist (Interview, January 2012), the fact that by the late 1990s breast 
cancer clinical trials began being routinely tailored towards biomarker-defined subpopulations 
of patients, led to the realization that the accuracy and reproducibility of those measurements 
in different pathology laboratories was far from perfect, and that this state of affairs “was 
deleterious for the patients ... and ... it was jeopardizing the results of the trial”. This led to 
further transformations of pathology’s practices via the staging of interlaboratory 
standardization and quality control initiatives, and the widespread adoption of auditing 
practices such as central pathology review to verify the results submitted by local pathology 
laboratories (Cambrosio et al., 2015). In sum, it is fair to say that ER was still relatively new in 
the year 2000 (Harvey et al., 1999).  
 
By the beginning of the 1990s, rather than simply handing off a case to the treating physician, 
pathologists had become increasingly involved in therapeutic decisions. This transformation was 
captured by a series of interviews published in the professional journal of U.S. pathologists 
(Chapman, 1991), where one pathologist ascribed this new form of cooperation to the recent 
availability of new molecular methods:  

 
Being able to tell, through molecular efforts, what’s there, how much, where it is, and 
what it’s doing is going to revolutionize pathology’s role, especially in oncology. Not only 
will pathologists be called to surgery, but I believe we will be the physicians’ instrument in 
individualizing treatment protocol for each tumor patient. [p. 29; our emphasis] 

 
Yet another recounted how breast cancer pathology lay at the vanguard of the “revolution”. 
Whereas pathologists had previously been content to describe, they now attempted to 
prescribe:  

 
Now we not only say it is cancer, but if it is, for example, breast cancer, we will also 
describe what hormone receptors it has, how much DNA is in the average nucleus, what 
oncogenes are activated, what stage of the cell cycle the cancer cells are likely to be in, 
whether it is growing rapidly or slowly and what may be the most effective chemical or 
hormonal therapy. [p. 25; our emphasis] 

 
This transformed the relations between clinicians and pathologists, as shown by the following 
interview excerpts with two leading breast cancer pathologists: 

 
For 50 years we were uninterested in the developments taking place in oncology … [my 
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teachers and mentors’] interest was pathology for pathologists: let’s get really accurate in 
what we do … and that led us to produce reports that at some point in the 90s were two 
pages long, with information that was of little use for clinicians. And now, since the 
beginning of the 2000s, we’ve been asked to do the opposite; [clinicians tell us:] “make 
the reports really concise, synoptic reports only with [only the] information we need”. 

(Interview, May 2013) 
 
Whenever I have residents discussing with me, I will always tell them: “Listen now, you 
prepare your report. Before signing it out, you have to relax and read your report, and 
then try to figure out the prescription. If you are able to do that, the report is correct. If 
you are not able to do that, there is something wrong with your report”. (Interview, 
January 2012) 

 
In contrast to ER, HER2 emerged as a full-fledged bio-clinical object in the post-biotech era 
(Rasmussen 2014; Hughes 2011). Iterations of HER2 were developed in different experimental 
systems in the first half of the 1980s, and by 1985 a consensus was reached that those different 
entities were one and the same (Coussens et al., 1985). It was also concluded that HER2 was 
amplified in breast cancer cell lines. Clinical work began at about the same time when a 
Genentech researcher who had isolated the gene for HER2 struck an agreement with an UCLA 
oncologist, the former supplying biological probes and the latter access to his collection of 
tumor specimens. HER2 stood out from the rest in breast and ovarian cancers, but given that 
the UCLA tumor collection lacked patient histories for the breast cancer samples, the team 
turned to a San Antonio researcher who had a substantial collection of frozen tumors replete 
with case histories (Bazell, 1998, pp. 36-39). Notice the strategic role played by access to clinical 
material. Increasing awareness of such a role would subsequently lead to calls for the 
establishment of biobanks as components of an expanding bio-clinical infrastructure (Gottweis 
& Petersen, 2008). 
 
While early research pointed to a significant correlation between HER2 amplification and 
disease progression, and thus to its prognostic value (Slamon et al., 1987; Cline et al., 1987), 
investigators in both Europe and the United States initially failed to confirm those findings (van 
de Vijver et al., 1988; Ali et al., 1988). Some suggested that one of the reasons for this might be 
that, rather than a simple prognostic indicator, HER2 amplification signified the presence of a 
distinct type of breast cancer (van de Vijver et al., 1988). In any event, a 1995 review of 
prognostic research concluded that a “true idea” of the role of HER2 had yet to emerge (Ravdin 
& Chamness, 1995). As most of the studies had used IHC techniques, and in the absence of 
settled conventions for staining and scoring, the results offered no clear direction: in fact, HER2 
assessment turned out to be even more complex than ER measurement.  
 
HER2’s status changed significantly in 1998 when in addition to a marker, it became a target. 
Genentech (working again with UCLA) gained FDA approval for the anti-HER2 targeted-therapy 
drug trastuzumab (commercially known as Herceptin; see Bazell, 1998). HER2 over-expression, 
in addition to being a prognostic indicator, thus became an indication for the use of 
trastuzumab. Within the context created by this dual role (Dixon et al., 2012), the debate 
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continued over the exact means of HER2 testing (Allison, 2010), with pathologists and 
oncologists producing competing society guidelines (Schmidt, 2011).  
 
The development of trastuzumab profoundly modified the therapeutic landscape: breast cancer 
patients with positive hormone receptors would be offered endocrine therapy, while hormone 
receptor negative patients testing positive for HER2 could now be treated with trastuzumab. 
Only “triple-negative patients” were thus left with few therapeutic options. This situation 
became further problematized as an “unmet medical need” (Hudis & Gianni, 2011), a phrase 
that far from being purely descriptive was an official designation calling for political and 
regulatory intervention.7 Does this then account for the emergence of TNBC as a distinct clinical 
entity? In other words, should we argue, as a leading clinician did (interview, June 2011), that 
TNBC “is definitely not a biological entity … it’s a practical clinical entity based on practicality, 
which means that we need to find treatments for it”? Not quite, as the concept of TNBC as a 
disease did not emerge until 2005, well after the advent of trastuzumab, for reasons that cannot 
be reduced to pragmatic considerations.  
 
 
From immunohistochemistry to gene profiling: microarrays enter the stage 
 
To account for the appearance of TNBC we need to make allowance for the initiation of a 
second line of work at the beginning of the new century. Molecular biologists, quickly joined by 
a novel brand of molecular pathologists, began to churn out breast cancer classifications based 
on newly available genomic tools, such as microarrays. In so doing, they created the problem of 
aligning old and new understandings of a disease and, in the case of breast cancer, of a disease 
that was in the process of fragmenting into a number of distinct diseases. 
 
As we saw above, TNBC was first used as a qualifier and then as a proxy for basal-like breast 
cancer (henceforth BLBC). The latter owes its existence to the deployment of the 
aforementioned microarrays that analyze gene expression. First made available during the 
second half of the 1990s (Cointet et al., 2012), a microarray experiment involves the 
simultaneous analysis of many hundreds or thousands of genes, as opposed to a single gene as 
was then common in molecular genetics. While more recently dislodged by next-generation 
sequencing technologies (Nelson et al., 2013), microarrays were initially hailed as the tool of 
choice for the genomic analysis of biological and biomedical specimens (Mogoutov et al., 2008; 
Rogers & Cambrosio, 2007). Central to the development of this new tool was work performed in 
the middle of the 1990s in Patrick Brown’s lab at Stanford. Brown quickly initiated collaboration 
with David Botstein’s lab, also at Stanford. Botstein’s lab had been involved in the development 
of trastuzumab with Genentech, and he was thus quite aware of the genetic heterogeneity of 
breast cancer.  
 

                                                        
7
 The official definition by the FDA is worth quoting: ““An unmet medical need is a condition whose treatment or 

diagnosis is not addressed adequately by available therapy.  An unmet medical need includes an immediate need 
for a defined population (i.e., to treat a serious condition with no or limited treatment) or a longer-term need for 
society (e.g., to address the development of resistance to antibacterial drugs).” (FDA, 2014, p.  4)   
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Botstein and Brown thus set out to use microarrays to explore the molecular diversity of breast 
cancer (the results of which they termed “molecular portraits”), beginning with samples sourced 
from local surgeons. Charles Perou, a postdoc, joined them in this endeavor and became the 
first author of a widely cited 2000 Nature paper (over 5,500 citations by the end of 2014) that 
classified breast cancer according to gene expression patterns into four biological (not clinical) 
“intrinsic subtypes” (Perou et al., 2000). The term “intrinsic” was a direct reference to the fact 
that the subtypes were held to correspond to the fundamental biology of breast cancer, rather 
than simply matching gene expression with clinical outcomes, as was the case with commercial 
gene expression tests being developed at around the same time (Kohli-Laven et al., 2011). The 
complementary issues of the clinical validation of the subtypes and their clinical utility then 
moved to center stage. 
 
The first microarray studies of breast cancer conducted by the group compared tumor tissue 
with human cell lines and rendered two breast cancer subgroups: one with a high level of 
proliferation genes and one with a high level of transcription genes. The work was co-authored 
by a Stanford pathologist, Matt van de Rijn, experienced in the use of IHC techniques. As a 
result, the Stanford team used commercially available antibodies that translated results from 
one technology into the other as a way of validating the new tool. The microarrays used in the 
initial experiments, however, did not include genes for ER or HER2 despite their role in breast 
cancer biology, for the goal of the initial project was to show only the “feasibility and 
usefulness” of the new approach (Perou et al., 1999).  
 
Although tumor samples for the initial experiments from the Stanford area were in limited 
supply, thanks to a visiting Norwegian oncologist the team gained access to an annotated 
collection of fresh-frozen samples from a number of studies carried out in Bergen. Having 
proven to their satisfaction that the new approach was sound, the team modified the protocol 
by increasing the number of genes on the microarrays from 5,000 to 8,000 and by including the 
well-known tumor drivers HER2 and ER. The results were four clusters: a Luminal/ER gene 
cluster, a cluster overexpressing HER2, and two “basal-like” clusters that became one shortly 
thereafter, in a 2001 paper based on a new series of 78 tumors (Sørlie et al., 2001; approx. 
4,400 citations by the end of 2014). The now unified basal-like cluster correlated with clinical 
data showing that the subtype had a poor prognosis.  
 
The Stanford team now had to validate the new classification, and this required access to 
relatively large collections of clinical material. There were two problems in this regard. Given 
the shortcomings of the US health-care system, it was difficult to access and assemble patient 
materials linked with outcome data, especially from patients treated in a consistent way. 
Moreover, archived patient material usually presented itself in the form of formalin-fixed 
samples, amenable to IHC analysis, but not to microarray testing that required fresh-frozen 
tissue. Collaborations with clinical researchers from Germany, Norway, and, in particular, 
Canada solved the first problem. The second necessitated the translation of the microarray 
intrinsic subtypes into their IHC equivalents. In other words, the development of an IHC version 
of the subtypes was not an afterthought that sought to apply knowledge of a biological entity — 
the subtypes — to the clinic, or to develop a commercial product that could find an easy way 
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into the clinic: it was necessary for the validation, and thus the constitution of the subtypes as 
bona fide divisions of breast cancer. In this respect, a decisive encounter between Perou and a 
British-Columbia pathologist, Torsten Nielsen, took place at the 2000 meeting of the American 
Association for Cancer Research where Perou showcased his initial results in a poster 
presentation.  
 
Both as an MD-Ph.D. surgical pathologist who, “as a pathologist … had access to tissue and … 
could see where the diagnostic problems were”, and as a self-defined translational researcher 
with an interest in both sarcoma and breast cancer (Nielsen, 2010), Nielsen was immediately 
drawn to Perou’s work. He visited Stanford shortly after the meeting and underwent training 
with the team’s pathologist, van de Rijn, who also happened to be an early adopter of another 
technique, tissue microarrays, popularized at the end of the 1990s (Kononen et al., 1998). Not 
to be confused with DNA microarrays, tissue microarrays consist of glass slides spotted with a 
number of small histologic sections from conventional paraffin-embedded tissue blocks that 
display tissue from multiple patients or blocks on the same slide. Nielsen went back to 
Vancouver with “marching orders” to find tissue linked to outcome, a task facilitated by the fact 
that the BC Cancer Agency maintained a provincial database of thousands of cancer specimens. 
He soon discovered a collection of specimens that allowed him to produce a first series of 
tissues microarrays with approximately 900 patient samples (Nielsen interview, April 2014). Two 
aspects of this initial work bear emphasis. First, intrinsic subtypes qualified as bio-clinical 
entities from the very outset insofar as they mobilized novel biological laboratory platforms that 
were triangulated with pathology’s IHC techniques, and, second, their use entailed clinical 
material in association with clinical annotations.  
 
The intrinsic subtypes went through a number of versions over the years as additional tumor 
samples were analyzed: the luminal cluster was divided into Luminal A and Luminal B, and two 
new (albeit minor) clusters were added, named “Claudin-low” and “Molecular apocrine”. Perou 
moved to North Carolina (UNC) where he enjoyed joint membership in the departments of 
genetics and pathology, as well as membership in the local cancer center, thus (not unlike 
Torsten Nielsen) adding an institutional dimension to his TR practices. Having a “vested interest 
in trying to develop and provide the next generation of molecular pathology assays for 
oncology”, he also realized that although oncologists order the tests, pathologists run and 
interpret them (Perou, interview, July 2010), which meant that the platforms on which the tests 
would run needed some adjustment. The NCI apparently shared these concerns, since, in 2004, 
it initiated the Strategic Partnering to Evaluate Cancer Signatures (SPECS) program to support 
multi-institutional, multidisciplinary research teams involving biotechnology companies, 
community hospitals, national laboratories, and academic institutions, to develop “robust, 
reproducible assays” for molecular signatures derived from the molecular analysis of tumors. A 
team consisting of Perou (UNC), Nielsen (UBC) — who had in the meantime discovered another 
treasure trove of about 19,000 breast cancer samples (of which about 3,500 could be cross-
referenced with outcome data) —, as well as colleagues from Washington University, the 
University of Utah, and an oncology cooperative group (CALGB) who specialized in biostatistics, 
bioinformatics, and another key molecular biology technique, the polymerase chain reaction 
(PCR), successfully applied to the SPECS program.  
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PCR was chosen as the preferred option, because it could be adapted to the pathologists’ 
paraffin-embedded samples (like IHC and unlike microarrays), and be used for the simultaneous 
testing of multiple genes (like microarrays but unlike IHC). Moreover, seen from the pathology 
lab, PCR enjoyed a more robust status than the experimental microarray technology. In the 
course of development, the team narrowed down the list of genes necessary to distinguish 
between intrinsic subtypes to 50, produced a PCR-based version of the test called PAM50 
(Parker et al., 2009), and established a company, Bioclassifier, to handle the intellectual 
property. Finding a commercial partner was part of the mandate of the SPECS program, but this 
turned out to be more complex than anticipated. Lack of space prevents us from discussing 
those intricacies here. In the end, a commercial version of the test was eventually marketed by 
the company Nanostring under the name of Prosigna, using a different technology (the 
company’s nCounter system) which can be used in every pathologist’s lab. After extensive 
validation, the test was cleared by the FDA in 2013 (Nielsen et al., 2014).  
 
At this point it might be asked, as indeed it was, whether the molecular portraits of breast 
cancer delivered anything new. The answer depends on the terms of comparison. For instance, 
if compared to traditional morphologic pathology (Ellis et al., 2003), the two classifications are 
hardly identical, as shown by Figure 2. Moreover, the success of the intrinsic subtypes papers, as 
measured in terms of citations, is proof enough of novelty, and, one may add, of the 
“revolutionary” character of the application of genomic technologies to oncology.  
 

FIGURE 2 ABOUT HERE 
 
If, however, one compared the intrinsic subtypes to the results produced by pathologists who 
by then routinely used IHC to analyze receptors, the intrinsic subtypes appeared at once 
compelling and mundane. A 2009 review noted: “in hindsight, this molecular taxonomy 
provided little additional insights to the standard subdivision of breast cancer for therapeutic 
purposes” (Weigelt & Reis-Filho, 2009, p. 722). Notice the “therapeutic purposes” clause: the 
issue is not presence or absence of novelty in the abstract, but in relation to the therapeutically 
useful. A 2012 European task force that investigated the medical usefulness of the intrinsic 
subtypes (and in particular the PAM50 assay) concluded that it remained inadequate, as it did 
“not provide sufficiently robust information to modify systemic treatment decisions”, although 
it “should … be incorporated into clinical trial design” for research purposes (Guiu et al., 2012). 
Criticisms like these relied on empirical studies (for a review see Weigelt et al., 2012) that, 
turning the tables showed that even though IHC’s lack of standardization may have enticed 
researchers to embrace gene expression profiling for its promise of increased objectivity, that 
approach suffered similar problems. In particular, with the notable exception of basal like 
cancers, assignment of tumors to intrinsic subtypes appeared to be method-dependent, and the 
subtypes themselves to be “unstable”. 
 
Between the enthusiasts and the skeptics lay those who recognized the stimulating effect the 
intrinsic subtypes had had on the field of breast cancer research despite their limited 
penetration into routine diagnostics. A long review of microarray breast cancer research in the 
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International Journal of Surgical Pathology concluded that while it was indeed “unlikely that 
microarrays themselves will ever become one of the main tools for making decisions about 
treatment for breast cancer patients”, they had “led to a paradigm shift in the way breast 
cancer is perceived and how breast cancer research is carried out” (Correa Geyer & Reis-Filho, 
2009, p. 302). In fact, the success enjoyed by the intrinsic subtype terminology left one leading 
breast cancer pathologist complaining that pathologists had come to use the terminology even 
in the absence of any gene expression analysis: in particular, fellow pathologists mixed terms 
and tools by speaking of “basal-like” (a gene expression profiling definition) instead of “triple 
negative” (the IHC definition) to report on results obtained with IHC (Fieldnotes, Conference on 
“Prognosis and Prediction in Breast Cancer”, Monaco, October 2008). According to the same 
speaker, this was no minor terminological issue as TNBC (as defined by IHC) and basal-like 
tumors (as defined by genomics) differed significantly. As we will see in the next section, the 
relation between TNBC and BLBC became a key focus of research. But first, a few more 
comments on the attempt to find IHC surrogates of the intrinsic subtypes.  
 
Why would anyone want to use older, established technologies such as IHC, when novel, 
technologies are at hand? This mixture of the mundane and the disruptive relates to the need to 
create continuity between novel entities and existing clinical categories and practices, which is 
both a practical concern for clinical activities, and, in the case of molecular tests, a possible 
determinant of commercial success or failure (Kohli-Laven et al., 2011). As previously noted, 
initial attempts by the Stanford team to find IHC correlates for the intrinsic subtypes were 
prompted by the need to validate those subtypes using patient samples, rarely available in the 
fresh-frozen format required by microarrays. This was particularly true for the basal-like 
subtype, which, unlike the other subtypes, stood out as a “previously unrecognized” subclass 
(Alizadeh et al., 2001, p. 51). In collaboration with Nielsen, Perou developed an IHC equivalent 
of basal-like (Nielsen et al., 2004) as part of the more general endeavor to validate, characterize 
and qualify the new entities, in particular their prognostic value, by triangulating them with 
existing biomedical entities and tools.  
 
The team deployed a panel of four antibodies “routinely used in the clinical setting” with tissue 
microarrays that, as we saw, came with clinical annotations: two antibodies for “negative” 
purposes, i.e. to detect the absence of ER and HER2, and two to detect the presence of two 
other biomarkers: cytokeratin 5/6 and EGFR. The latter were less straightforward than one 
might initially surmise. Cytokeratin was considered specific though not very sensitive insofar as 
it picked out only half of the basal-like tumors. EGFR was neither specific nor sensitive, but a 
marker of bad prognosis. There was also a treatment-related rationale for its inclusion: although 
it was “not a basal-like cancer specific marker”, it was a target for a first generation of targeted 
agents (i.e. gefitinib and erlotinib, mostly applied to lung cancer), and so the marker “could be 
used “to define a subset of breast cancer patients who might benefit from treatment with one 
of those agents” (Nielsen et al., 2004, p. 5373).  
 
Perou’s move to North Carolina opened up the possibility of answering questions that could not 
be answered with the UBC material. UNC had a unique collection of breast cancer specimens 
that contained samples of pre-menopausal African American women, a class of cancer patients 
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with a notoriously poor prognosis for reasons that were then unclear. Teaming up with Lisa 
Carey, a UNC medical oncologist, and using a modified version of the IHC test that added PR 
antibodies to the mix, their study found that African American women were twice as likely to 
fall into the basal-like category than the general population (Carey et al., 2006). Perou's IHC 
panel included tests for ER, HER2 and now PR, and these were all expected to be negative in the 
BLBC cases examined. In this roundabout way, the triple-negative definition was now embedded 
in the basal subtype through the redefinition of the IHC version.  
 
The IHC instantiation of basal-like breast cancer attracted mixed valuations from pathologists in 
what can viewed as yet another staging of the mundane and the disruptive. Those who saw the 
work as something new, a “potentially important tumor subset”, also viewed the results as 
“inherently descriptive”, despite the inclusion of prognostic markers, and as little evidence for 
any conclusion on the existence of a new cancer type (Gusterson et al., 2005). Others viewed 
the work as a contribution to a line of inquiry already underway within pathology, as work on 
those markers and their expression in normal and tumor cells could arguably be traced back to 
the early 1980s. Studies by a number of research pathology collectives had either disaggregated 
the basal type into several subtypes (which meant that “basal-like” was an “oversimplification” 
and that “basal cancers are heterogeneous”; Jacquemier et al., 2005, p. 267), found other 
morphological markers to identify it (Matos et al., 2005), or identified the basal type as an 
already known morphological form (Reis-Filho et al., 2006). Last but not least, measurement of 
some of the IHC markers was particularly problematic. As Perou himself admitted, “the keratin 
5/6 is just a very hard marker to score pathologically. And so, I just didn’t feel comfortable trying 
to use that as a clinical decision maker, and so I left it at that” (interview with Charles Perou, 
July 2010). 
 
And yet, attempts to reduce the intrinsic subtypes to IHC measurements have continued 
unabated. A case in point is the St. Gallen International Breast Cancer Conference, established 
in 1978. One of the key biennial events in breast cancer oncology, St. Gallen is known for its 
respected (albeit often controversial) cancer treatment consensus recommendations. The 12th 
edition of the conference took place in 2011 under the motto “strategies for subtypes” (Gnant 
et al., 2011) and endorsed the use of the intrinsic subtypes of breast cancer to simplify the 
definition of therapy indications. Recognizing, however, that it was often difficult to test for 
subtypes clinically using genomic technologies, they recommended a “simplified classification”, 
in fact a translation from microarray technology to IHC, as a “useful shorthand”. While it 
acknowledged that “subtypes defined by clinicopathological [i.e. IHC] criteria were similar to but 
not identical to intrinsic subtypes”, the St. Gallen recommendation maintained that the IHC 
surrogates nonetheless represented “a convenient approximation”. Basal-like was thus 
translated into ER, PR, and HER2-negative. Although the St. Gallen “shorthand” seemed to 
equate “triple negative” with “basal-like”, the text of the recommendations added that the 
overlap between the two entities was only 80%, and that “triple negative” was in fact a 
heterogeneous category, including mostly cancers with a bad prognosis, but also low-risk 
histological subtypes that could be diagnosed through traditional visual inspection of tissue 
morphology. 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 16 

Another major event in the trajectory of the basal-like subtype had occurred eight years before, 
when studies on tumors associated with the breast cancer hereditary susceptibility gene, 
BRCA1, showed that they fell within the basal-like cluster (Sørlie et al., 2003; Foulkes et al., 
2003). Basal-like thus came to describe a subgroup of cancer that had clinical importance 
because of its dire outcome either on its own terms or because of its association with BRCA1. 
Initially confined to the hereditary cancer, the domain of BRCA was considerably widened in 
2004 when research expanded into sporadic (somatic) cancer through the notion of BRCAness 
(Turner et al., 2004), which denotes a BRCA-like behavior caused by alternative mechanisms in 
the absence of the corresponding mutation (Bourret et al., 2014). Connections between BRCA, 
TNBC, and Basal-like breast cancer multiplied thereafter. The 2005 paper that introduced TNBC 
(Brenton et al., 2005) defined, inter alia, a basal phenotype as “one of the hallmark features of 
“BRCA-ness”. One year later Haffty et al. (2006) showed that “patients with BRCA1 mutations 
develop predominantly triple negative tumors”. Subsequently, a team of French pathologists 
even suggested that basal-like breast cancers be renamed “triple-zero/BRCA1 like” (Vincent-
Salomon et al., 2010). Figure 3 provides a synthetic view of the entanglements between BLBC, 
TNBC, and BRCA circa 2010. Each of these bioclinical entities, as we will see in the next section, 
simultaneously stabilized and disrupted the others. 
 

FIGURE 3 ABOUT HERE 
 
 
TNBC made and remade 
 
The relation between TNBC and BLBC — their status as mutual proxies and their imperfect 
overlap — quickly became an ongoing concern. In 2007, a team from the Dutch National Cancer 
Institute selected triple-negative samples on the basis of IHC, profiled the samples with 
microarrays, and claimed to have found that triple negative tumors were quite simply 
“synonymous with basal-like tumors” (Kreike et al., 2007, p. 1). Indeed, in the years that 
followed its baptism in 2005, early inquiries into TNBC took for granted that almost all of the 
cases were, in reality, basal-like. A 2008 review of the field maintained that while TNBC was a 
“slightly less accurate but reasonable proxy for basal-like breast cancers”, at least “80% to 90% 
are basal-like” (Peppercorn et al., 2008). Expanding on this theme in an interview in 2008, Carey 
explained: 

 
The term “triple-negative” is used to mean a particular molecularly identified subtype, the 
basal-like subtype. And while it is true that almost all triple-negative breast cancers are 
basal-like, it’s also clear that not all of them are. Some basal-like breast cancers actually 
have hormone receptors or HER2/neu positivity. So, these aren’t perfect proxies for one 
another. And, right now, the methodologies that we have are good at identifying hormone 
receptors and HER2/neu expression; they’re just not great at identifying basal-like breast 
cancers. (Carey cited in Berman, 2008; see also Irvin & Carey, 2008)  
 

Others, taking microarray studies as the gold standard, described TNBC not only as a proxy but 
also as a “poor man’s” definition of the real thing (Linn & van’t Veer, 2009). And yet, the 
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relatively easy access to TNBC via IHC opened the doors to retrospective studies and clinical 
trials. The first attempts were somewhat hesitant, as when TNBC appeared in scare quotes in 
the title of an abstract presented at the 2006 San Antonio Breast Symposium (Garber et al., 
2006), or as in 2007 when it was described as the “so-called triple negative phenotype” (Bauer 
et al., 2007). But subsequent studies became increasingly assertive. Figure 4 shows the growth 
in the number of breast cancer publications using the term “triple negative” in their titles or 
abstracts, confirming Prat et al.’s (2014) regretful acknowledgment that “over the years, BLBC 
has become more commonly known as TNBC”. 
 

FIGURE 4 ABOUT HERE 
 
Examples of early clinical studies include a Toronto investigation of a cohort of TNBC patients 
extracted from a collection of slides from the Women’s Hospital between 1987 and 1997, and 
stained for the three markers in the period 2000-2004. Based on the assumption that “the 
‘basal-like’ category of tumors is composed almost entirely of ‘triple-negative’ breast cancers” 
(Dent et al., 2007), this study was followed by a similar one in North Carolina using samples 
collected at the local cancer center defining once again “the basal-like subtype as ER-, PR- and 
HER2-” (Carey et al., 2007). Yet another retrospective study performed at M.D. Anderson 
analyzed response to therapy and long-term survival of TNBC patients (identified via IHC), once 
again equating TNBC with BLBC (Liedtke et al., 2008).  
 
In spite (or because) of the undeniable clinical uptake of the new disease category, some 
pathologists and oncologists began voicing a more critical position, questioning the equation 
between TNBC and basal-like, or even more radically, questioning the existence of TNBC as a 
bona fide nosological entity. In their opinion, the overlap between basal-like and TNBC was not 
only incomplete, but also sufficiently limited to warrant a clear distinction between these two 
entities. In a letter castigating the authors of the aforementioned Dutch reverse-engineering 
paper who had concluded that basal-like and triple-negative tumors were synonymous, a group 
of prominent breast cancer oncologists and pathologists stated in no uncertain terms that 
equating TNBC with basal-like was simply “misleading”, noting that the overlap between the 
two entities involved a game of shifting percentages. ER expression by IHC, they noted, was to 
be found in 5% to 45% of basal-like tumors as defined by microarray, and HER2 overexpression 
in 5% to 15% of basal tumors (Rakha et al., 2007). The task was thus to “unravel” or “dissect” 
the complexity of both TNBC and basal-like tumors (Metzger-Filho et al., 2012). A variety of 
actors, including molecular biologists, pathologists, and clinicians, took part in these debates, 
with fault lines emerging not only between but also within categories, and with arguments 
ranging from the biological to the therapeutic consequences of a given stance. 
 
A detailed critical review published in 2008 examined the heterogeneity of BLBC and concluded 
that in spite of “distinctive morphologic, genetic, immunophenotypic [IHC], and clinical 
features”, no “accepted consensus on routine clinical identification and definition” of BLBC was 
available, nor was there “a way of systematically classifying this complex group of tumors” 
(Rakha et al., 2008, p. 2572). This was not simply a problem of diagnosis: it also had clear 
therapeutic implications, as inconsistent diagnoses might “hamper consistent identification and 
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development of treatment strategies for these tumors”. Indeed, a table in the paper listed 11 
clinical trials allegedly involving BLBC but where, in 10 cases, the definition of basal-like 
corresponded in fact to triple-negative, a definition that “may arguably lead to inaccurate 
conclusions as a result of the noise in subtype definition introduced by relying on a triple-
negative criterion”. The concluding recommendation was clear: “studies analyzing triple-
negative tumors should be labeled as such, whereas the definition used for basal-like phenotype 
should be clearly stated in those dealing with basal-like breast cancers” (Rakha et al., 2008, p. 
2572).  
 
Informal discussions on the sidelines of the annual United States and Canadian Academy of 
Pathology meeting, a conference that attracts mainly research pathologists, led to the drafting 
of a position paper on BLBC and TNBC (interview with Jorge Reis-Filho, May 2013). Published in 
Modern Pathology and co-signed by 19 pathologists from the U.S., Europe and Asia, the paper 
functioned as a sort of advisory to pathologists and oncologists, stating that because “it does 
not lead to any direct clinical action”, and given the variations in its definition, the “use of the 
term ‘basal-like breast cancer’ in diagnostic surgical pathology reports does not appear to be 
justified”. Adopting a pragmatic clinical attitude, the authors added that “perhaps more 
important than identifying the basal-like subgroup within triple-negative breast cancers [was] 
the identification of subgroups of triple negative disease that are sensitive to specific systemic 
therapy regimens” (Badve et al., 2011). This last injunction underlines a well-known fact: the 
important features of any entity are those that are held to be interesting. In the case of TR, 
mechanisms of therapeutic sensitivity and resistance are intrinsically more interesting than the 
multiplication of subgroups. 
 
Indeed, as should by now be clear, the TNBC/BLBC nexus is more than a nosological curiosity, 
partly due to its clinical implications, in particular the fact that TNBC designates a category of 
patients for whom there is no effective treatment. In the era of molecular therapies, however, 
no sharp divide can be drawn between molecularly derived nosology and therapy. TNBC has 
become the starting point for an increasing number of bio-clinical investigations, and although 
initially defined as equivalent to BLBC, it has clearly acquired an independent existence. In fact, 
recent work on the molecular characterization of TNBC has inverted its relationship with BLBC. 
A team from Vanderbilt-Ingram Cancer Center isolated six different molecular subtypes of TNBC 
including two that are basal-like (Lehmann et al., 2011). Rather than a subset of basal-like, in 
other words, TNBC contained subsets of basal-like tumors. In a partial rebuttal of the Vanderbilt 
analysis, Perou and Carey, in collaboration with translational genomics colleagues from 
Barcelona (Prat et al. 2013), argued that the Vanderbilt classification rested on three subtypes 
that were, in fact, “very concordant” with PAM50 subtypes. As illustrated in Figure 5, they thus 
proposed a subdivision of TNBC into basal-like and non-basal-like tumors, insisting on the 
clinical implications of this dichotomy. Readers will notice that Figure 5 includes tentative 
therapeutic indications, and that the authors also argued that clinical trials for TNBC should be 
sufficiently powered to detect differences in response between the two main subgroups. 
 

FIGURE 5 ABOUT HERE 
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The interweaving of the biological and the therapeutic does, however, raise difficult issues. 
While heterogeneity makes TNBC an interesting research subject, the multiplication of subtypes 
could leave practicing oncologists in a quandary, as the exact consequences of the expanding 
nosology remain unclear. When asked by The ASCO Post in the course of a 2012 interview how 
many types of cancer there might be, George Sledge, Past President of ASCO and Co-director of 
the Breast Cancer Program at Indiana University replied:  

 
It depends on whom you talk to. For instance, breast cancer has what are widely 
recognized as four or five intrinsic subtypes. But Dr. Jennifer Pietenpol and her colleagues 
at Vanderbilt University have said that one of those subtypes—triple-negative breast 
cancer—can be further divided into another six subtypes. That’s 15% of breast cancer 
cases with six different subtypes at a molecular level. 

 
Sledge then went on to ponder the clinical consequences of this proliferation of subtypes: 

 
At some level, the question becomes, how do you define a subtype? In theory, every 
patient could represent his or her own subtype, because everyone has different 
mutations. … But is it important from a treatment standpoint? A lot of the supersubtypes 
may not be particularly important from a treatment standpoint, in part, because we 
haven’t yet identified the mutations [that drive the cancer development]. (Bath, 2012) 

 
To sum up, and as shown by Figure 4, the number of papers with the term “triple-negative” in 
their titles or abstracts has continued to grow, overtaking basal-like publications. Perhaps even 
more telling, the intersection between these two sets is about 11%. TNBC attracted the 
attention first and provided the context for the discussion. And even though its heterogeneity 
denies it the status of a unique biological category, there is nothing to prevent an in-depth 
discussion of “the biology of TNBC”. In 2012 TNBC received a (yet again pragmatic) sanction 
from the U.S. FDA Draft Guidance on the use of pathologic complete response as a primary 
endpoint for clinical trials seeking accelerated approval in cases of high-risk, early stage breast 
cancer (FDA, 2012). The only type of cancer explicitly mentioned in the Guidance was TNBC and, 
accordingly, industry observers saw the Guidance as a means to “jump-start” development of 
therapies for TNBC. In an interview with BioCentury, representatives of the FDA admitted that: 
“this is the population the agency had in mind when it drafted the guidance” (McCallister, 
2012). One can speculate whether this has connections, direct or indirect, with the Senate 
Committee hearings and the Triple Negative Breast Cancer Foundation we mentioned at the 
very outset of this paper. While the molecular dissection of breast cancer has not led to an 
equivalent fragmentation of patient advocacy groups and dedicated charities — the broader 
entity, breast cancer, still serves as the rallying point — an “intermediate” entity like TNBC can 
act as a focus for specific initiatives. 
 
As a bio-clinical object TNBC has retained an epistemic relation with the arguably more 
fundamental, albeit less practical, category of BLBC (which means that it also shares the 
unknowns of that category), and with the entire realm of biological research that describes the 
processes that give rise to that phenotype. This is not an atypical situation. In fact, almost any 
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clinical category is surrounded, so to speak, by a host of animal models, cell lines, and research 
hypotheses that act as proxies or avatars for the disease within clinical cancer research. 
Continued research can either stabilize or upset the category along any number of lines. The 
dual nature of the bio-clinical object thus prompted the question, raised at a 2009 conference 
on advances and controversies in breast cancer, of “whether TNBC is a distinct pathological 
subtype of breast cancer or a pragmatic category for determining eligibility for clinical trials and 
guiding individual patient treatment” (Carey et al., 2010, p. 683). The open-ended answer 
provided by practitioners was that it was “neither a single disease entity nor a title of 
convenience”, but from a sociological point of view one could as well have argued that the 
answer was: both. Indeed, its overlap with BLBC reinforced its biological/epistemic nature, while 
its widespread clinical acceptance justified its routine use. These problems, as we saw, have not 
stopped research on TNBC, and thus TNBC’s existence as a bio-clinical object of inquiry. It would 
be trite to say that TNBC is a victim of its own success if only because the point of research into 
TNBC is not to save the phenomenon, but to unravel the processes that underlie it.  
 
 
Conclusion 
 
The complexity and heterogeneity of TNBC, its epistemic and technical, biological and clinical 
dualities, result from its multiple instantiations via different platforms, and from the uneven 
distribution of biological materials, techniques, and objects within the TR space. They are also 
the result of a series of historical contingencies that produced the new disease entity first by 
way of a negative definition — the absence of three markers routinely inspected by pathologists 
— then through the entrenchment of the disease in medical practice. Numerous attempts to 
reconcile evidence that the new entity lacked coherence with its widespread use have so far 
failed. Clinical researchers, however, seem to consider the fact that TNBC comes in multiple 
forms, some of which seem to be incompatible or, at least, only partially overlapping, less as a 
threat to the whole endeavor, than as an aspect of an ongoing TR project. In other words, they 
appear to have implicitly adopted Kripke’s (1980) view of reference according to which scientific 
terms are historical, not logical constructs. According to this picture, referents begin their 
semantic trajectory within a community through an original description that, for a time, fixes 
the object. Subsequent research might significantly modify the description to the extent that 
the items originally involved in the description could be shown to be falsely associated with the 
term. In other words, “later empirical investigations may establish that some of the properties 
did not belong to the original sample” and that, conversely, “an item may possess all the 
characteristics originally used and fail to belong to the kind” (p. 137). Thus, “reference is 
determined by a causal (historical) chain, not by use of any of the items” (p. 139). As shown in 
this paper, understanding innovation in the life sciences clearly requires taking into account 
both the shifting content of bio-clinical practices and entities, and the temporal order in which 
they intersect and assemble (Bourret et al., 2014). Given the constant evolution of knowledge in 
post-genomic medicine (and the many dead ends it entails), the interest in any bio-clinical entity 
rests partly on the significant unknowns that it contains. As noted in our introductory remarks, 
the existence of competing definitions of TNBC can be accounted for by the need to define in 
pragmatic terms which platform for (re)producing TNBC is being used at any given time, while 
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generating further questions as to the clinical and biological make-up of that entity. 
 
Our analysis of the TNBC trajectory allows us to direct attention to what appears to be a blind 
spot of current discussions of TR, which rest, implicitly or explicitly, on a distinction between 
“basic” research and its applications (hence, the need for “translation”). The epigraph at the 
beginning of this paper, excerpted from a discussion of Bachelard’s notion of 
phénomenotechnique, suggests otherwise. As Rheinberger notes (2005, p. 324), Bachelard did 
not endorse “the idea of a science in search of application” but sought instead to describe: 
  

a science that is taken and accepted as science because it moves in and has always existed 
in the realm of the applicable, because its very epistemological constitution has a 
technical dimension, because application is built into the very meaning of concepts and 
into the rules of concept formation, because the technical is built into the experimental 
phenomena, and because, just the other way around and in a symmetrical fashion, the 
noumena are built into the instruments and take on an instrumental form that further 
serves to develop the whole phenomenotechnical machinery. 

 
Biomedical research material in oncology, such as TNBC samples, is by definition human, their 
tissues and/or parts, and (animal) models thereof. Results obtained using these materials are 
directly relevant (and therefore “applicable”) to the understanding of human health and 
disease. In this sense, results made visible in one tissue or disease are then, in principle, 
immediately available to all those with access to patient samples. The “in principle” clause 
renders these observations somewhat problematic, because as we have shown the availability 
of tissue collections or lack thereof played a major role in selecting key participants in the TNBC 
saga and distributing roles among them. And yet, the availability of the material needed to 
produce phenomena across the entire space of TR clearly undermines the notion of separate 
zones of experiment and application. Research is always already applied insofar as it bears upon 
objects of clinical and biotechnological concern. Conversely, clinical research simultaneously 
treats epistemic objects insofar as the targets of therapy are bio-pathological constructs.  
 
There is a second, less obvious sense in which biomedical objects of research have built-in 
applicability, for the TNBC case study clearly shows that the phenomena to be studied cannot 
be usefully separated from the techniques that bring them into view and allow them to be 
manipulated. A number of different platforms are available at any given time, whose results do 
not always or necessarily align (Keating & Cambrosio, 2003). In the case of TNBC, tissue staining 
and light-microscopy, immunochemistry, gene expression profiling with microarrays, DNA and 
RNA sequencing, and, more recently, epigenetics and proteomics, all serve to identify various 
aspects of TNBC, and all these platforms are correlated with clinical findings. Practitioners have 
no trouble using different technical descriptions of what they consider the same, albeit 
controversial object. In this paper we have focused on how, in practice, researchers and 
practitioners manage different uses of TNBC in the rich and diverse sphere of translational 
activities, and thus generate a set of coherent practices, in spite of the lack of coherence of 
TNBC as the entity on which those practices converge. 
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While the emergence and development of TR can be tracked by focusing on the rise of a new 
kind of clinician-researcher or by following the networks and institutions that participate in TR, 
as some of the contributions discussed in our introductory remarks have done, we opted in this 
paper to focus on the epistemic and material objects of TR (TNBC, BLBC) and their conceptual 
and technical, biological and clinical dualities. From this point of view, any discussion of TNBC 
that attempted to draw a line between fundamental and clinically or commercially applied 
aspects will fail to capture the peculiar dynamics of TR in this domain, insofar as application was 
built-in from the very beginning in the bio-clinical entities that engendered this domain. If the 
non-linear view of TNBC research advanced here is correct, then the very idea of research 
travelling down a metaphorical translational pipeline must be fundamentally flawed. In this 
regard, our argument is consistent with recent criticism of the notion of a pipeline of drug 
development. Indeed, as close observers of the drug industry have noted, drug development 
and TR now both work in a different key: “those who are intimately involved in drug 
development use network models and management tools with parallel, iterative and self-
learning components to orchestrate their projects. Successful drug development in the 
networked information age requires teams of basic and translational scientists; clinical services; 
policy, regulation and reimbursement specialists; and consumers, patients and advocates” 
(Baxter et al., 2013, p.1). In short, it requires the assembling of a new regimen (Cambrosio et al., 
2014) of TR. Unlike the “seamless web” favored by historians of technology (Hughes, 1986), and 
similar to the assemblages analyzed by DeLanda (2006),8 such a regimen is characterized by 
relations of exteriority, insofar as over time components of TNBC shifted in and out of the 
assemblage. It also made room for the emergence of novelty, as new instantiations of TNBC on 
different platforms retroactively affected its more traditional components.  
 
Finally, taking a somewhat broader perspective, TNBC provides us with an indication of the 
extent to which “the boundaries between biology and medicine have also entered a process of 
becoming profoundly reconfigured” at the turn of the new century (Rheinberger, 2009). TNBC is 
intimately linked to the rise of molecular oncology, and, more generally, to the changing 
configuration of the life sciences. This reconfiguration did not of course happen all at once. As 
mentioned in the introduction, historians have documented how in the post-WWII period 
practitioners built interfaces between molecular biology and the clinic, experimenting, for 
instance, with clinical material. And yet, we would argue that, as exemplified by the clinical trials 
involving TNBC, the situation has since evolved in important ways, leading to an amalgamation, 
so to speak, of the patient’s body in the clinical ward and the experimental setting. Clinical 
interventions in the age of targeted therapy are simultaneously explorations of the molecular 
mechanisms of normal and pathological cellular processes, and so one can easily maintain that 
in oncology clinical researchers treat the patient and conduct an experiment (Nelson et al., 
2014). TNBC’s trajectory exemplifies these processes, and it’s likely to continue to do so, as this 
bio-clinical entity undergoes further transformations. 
 
 
 

                                                        
8
 See also Rheinberger (2009, pp. 7 and 11-12) for a discussion of assemblages in biomedicine. 
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FIGURES 
 

 
 

Figure 1. The fragmentation of breast cancer from a common disease to a growing 
number of rare diseases. Source: Figure 1 (p. 688) in: Harbeck, N., & Rody, A., Lost in 
translation? Estrogen receptor status and endocrine responsiveness in breast cancer. 
Journal of clinical oncology, 30, 686–689. Reprinted with permission. © 2012 American 
Society of Clinical Oncology. All rights reserved. 
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Figure 2. Comparing histological (font style: regular) and molecular (font style: all caps, 
bold) subtypes. Source: Figure 6 (p. 67) reprinted from New Biotechnology, 29, Portier, 
B. P., Gruver, A. M., Huba, M. A., Minca, E. C., Cheah, A. L., Wang, Z., & Tubbs R. R., From 
morphologic to molecular: Established and emerging molecular diagnostics for breast 
carcinoma, 665–681, Copyright 2012, with permission from Elsevier.  
  



 
 

 

Figure 3. The intersection between TNBC, BLBC, and BRCA-associated breast cancer, 
circa 2010. Source: Figure 1 (p. 686), reprinted by permission from Macmillan Publishers 
Ltd: NATURE REVIEWS CLINICAL ONCOLOGY, Carey, L. A., Winer, E., Viale, G., Cameron, 
D., & Gianni, L. Triple-negative breast cancer: Disease entity or title of convenience?, 7, 
683-692, copyright 2010. 
  



 
 

Figure 4. Number of PubMed references from the “breast neoplasms” MeSH subset 
containing the terms “triple-negative” and “basal-like” in their titles or abstracts. 
  



 

 
 
Figure 5. A “proposed algorithm of stratification” of TNBC. Source: Figure 8 (p. 131), 
reproduced with permission of ALPHAMED PRESS from Molecular characterization of 
basal-like and non-basal like triple negative breast cancer, Prat, A., Adamo, B., Cheang, 
M.C.U., Anders, C.K., Carey L.A., & Perou, C.M. The Oncologist, 18, 123-133; copyright 
2013; permission conveyed through Copyright Clearance Center, Inc. 
 




