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ABSTRACT

The authors propose a model of the elastodynamics of the Peppermill Carrier (PMC), a parallel isostatic

Schönflies-motion generator designed for pick-and-place operations. The Cartesian spring and the finite

element method are used to build the elastodynamics model of the robot. The stiffness and mass matrices

are introduced to obtain the natural frequencies of the robot along a test trajectory—the Adept test cycle—

that serves to evaluate the performance of the robot with respect to the operation speed.

Keywords: Elastostatics; elastodynamics; Schönflies-motion generator.

RÉSUMÉ

Les auteurs proposent un modèle élastodynamique du Peppermill Carrier, un générateur isostatique pa-

rallèle de mouvements de Schönflies conçu pour les opérations de transfert. Le concept du ressort cartésien

et la méthode des éléments finis sont utilisés pour obtenir le modèle élastodynamique du robot. Les ma-

trices de raideur et de masse sont déterminées pour obtenir les fréquences naturelles du robot le long d’une

trajectoire test—Adept test cycle—ce qui permet d’évaluer la performance du robot en termes de vitesse

d’opération.

Mots-clés : Élastostatique ; élastodynamique ; générateur de mouvements de Schönflies.
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1. INTRODUCTION

Pick-and-place operations (PPOs) pertain to tasks that involve the moving of an object from one location

to another. To produce these operations, serial and parallel robots are commonly used. While the former are

known to have large workspaces with respect to their footprint, dexterous capabilities and ease of control,

the latter offer many advantages in terms of speed, accuracy, dynamic response, load-carrying capacity, and

stiffness. The Selective Compliance Assembly Robot Arm (SCARA) is the first and best-known example of

a serial pick-and-place robot (Makino et al. 2007). The set of motions produced by pick-and-place robots

is known to form a subgroup, the Schönflies subgroup, of the Lie group of rigid-body motions (Schoenflies

1893). Systems implementing these motions are designed with four degrees of freedom (dof), namely three

independent translations and one rotation about one axis of fixed orientation.

The H4 robot (Pierrot and Company 1999), a parallel Schönflies-motion generator (SMG), first proposed

by a French-Japanese team, was patented in 2001 (Pierrot et al. 2003). It consists of one moving platform,

one base platform and four identical limbs. A detailed review on the structural synthesis of SMG was pub-

lished by Gogu (2007), who claimed that there are totally three kinds of methods used for the structural

synthesis of SMG, based on: displacement group theory (Angeles 2004, Hervé 2004, Li et al. 2004); screw

algebra (Carricato 2005, Frisoli et al. 2000, Kong and Gosselin 2004); and the theory of linear transforma-

tions (Gogu 2004, 2005).

Commonly used, four-limb SMG architectures are plagued with limb interference, which results in lim-

ited rotation capability, of less than 180◦ without the use of complex mechanisms inside the moving plat-

form (MP). In the last two decades, many attractive four-limb parallel architectures were proposed, such as

H4 (Pierrot and Company 1999), I4L (Company et al. 2002), I4R (Krut et al. 2004), Heli4 (Krut et al. 2006)

and PAR4 (Nabat et al. 2005). An improved version of PAR4 became the Adept Quattro robot (Pierrot et al.

2009), which is the fastest parallel robot nowadays.

Compared with four-limb SMGs, two-limb SMGs have smaller footprint and virtually unlimited rota-

tional displacement of the MP, but their stiffness is reduced (Gauthier et al. 2009). Two-limb isoconstrained

architectures have many advantages, such as more compact envelope, ease of control and low sensitivity

to manufacturing errors (Lee and Lee 2016). Mechanical isotopy2 improves the robustness of kinetostatic,

2Isotropy, associated with the condition number of the robot Jacobian matrix (Salisbury and Craig 1982), offers the maximum
dexterity at a given robot posture.
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elastostatic and elastodynamic performance (Al-Widyan and Angeles 2004). Harada and Angeles studied

an isoconstrained two-limb SMG, dubbed the Peppermill Carrier (PMC) (Harada and Angeles 2014), fea-

turing an architecture proposed by the Lees (Lee and Lee 2012, Lee et al. 2010). The PMC is driven by

two identical cylindrical drives (C-drives) (Harada et al. 2014). The C-drive design is based on a differ-

ential mechanism generator of the cylindrical subgroup; it produces both a rotation and an independent

translation in the direction of the axis of rotation. A translating Π-joint with a strain-wave-gear (SWG)

drive was proposed to enhance the load-carrying capacity of the C-drive (Karimi Eskandary and Angeles

2018) and validated experimentally with an optimum gear-reduction ratio (Belzile et al. 2020). Velocity

scheduling algorithms with time-scaling functions were also proposed to increase the attainable operation

frequency of the PMC (Belzile and Angeles 2019, Karimi Eskandary et al. 2019). While the objective is to

build a manipulator as stiff as possible, deformations are unavoidable due to inertia forces brought about by

high-speed/high-acceleration operations. Therefore, manipulators must be considered flexible under these

circumstances. Flexible-link manipulators have been applied in many scientific realms, involving micro-

surgical devices (Kumar et al. 2000), vibration (Dubowsky 1994) and launch cost reduction (Yamano et al.

2000) in astronautics, high-precision PPOs in industry (Shaheed et al. 2005) and pollution decontamination

in nuclear sites (Meggiolaro and Dubowsky 2001). However, flexible components of a parallel manipulator

will bring about vibration when fast PPOs are conducted. Therefore, the residual vibration after the motion

stops will make the settling time longer and positioning accuracy lower. Moreover, vibration will impact on

system stability (Zhang et al. 2016).

In this paper, the elastostatics of the PMC is first studied. Then, the trajectory used to obtain numerical

data, the Adept test cycle, is briefly detailed. Finally, the elastodynamics, including a Fourier analysis, is

conducted, the ensuing results then being discussed to assess the stiffness of the PMC. This work is an

enhanced version of a paper presented at the 2019 CCToMM Symposium (Yin et al. 2019).

2. ELASTOSTATICS

2.1. Model

The hypothesis underlying the elastostatics model of the PMC is summarized as: all links are modelled as

rigid bodies, except for the arms and forearms, as illustrated in Figs. 1 and 2. The reason for this hypothesis

lies in that the latter are significantly more flexible than the other links. Notice that the screws of the C-drives
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and those of the Peppermill cannot be assumed flexible, because a screw joint, just like a prismatic joint, will

jam if the joint deforms. Moreover, the flexibility of the strain-wave-gear drive is taken into consideration.

While it is not required, the arms and forearms of the PMC have the same length. The limbs of the PMC

and the SWG-enhanced C-drive are depicted in Figs. 3 and 4. The kinematic chain of the PMC is shown
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Fig. 1. Kinematics of the PMC
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Fig. 2. Elastostatics of the PMC

in Fig. 1. The robot is modelled as an elastostatic system, like the one illustrated in Fig. 2. Each of the four
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springs of the figure is, in fact, a Cartesian spring, as defined by Lončarić (1985), i.e., a lump of massless,

linearly elastic material mounted on a rigid plate and supporting a rigid body on top, as illustrated in Fig. 5.

strain-wave-gear drive
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lc
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Fig. 3. Side view of limb J

motor
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SWG transmission
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Fig. 4. SWG-driven C-drive

The two arms and the two forearms are thus modelled as Cartesian springs. As the rigid body on top of

the Cartesian spring is acted upon by an external wrench, the body undergoes a small-amplitude displace-

ment, the Cartesian spring then responding with a balancing wrench, identical to the applied wrench, but of

opposite sign. Let qJ1 be the small-amplitude-displacement (SAD) screw defined at point PJ1, where J is

the limb label, for J = 1,2, as depicted in Fig. 2. Furthermore, let qJ2 be the SAD screw defined at point

PJ2. By virtue of the presence of the RJ1 joint, the SAD screw, defined at point P′
J1, becomes

q′
J1 = qJ1 +δβJsJ, sJ =

[

eT
J 0T

]T

(1)

where eJ is the unit vector parallel to the axis of the RJ1 joint and δβJ the small-amplitude relative rotation

about the same axis. The forearms are connected to the nuts via R (revolute) joints of horizontal axes. The

SAD screws defined at the centre of mass (COM) of the nuts (PJ2) and the COM of the Peppermill (C) are
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Fig. 5. The concept of Cartesian spring: (a) two rigid plates coupled by a Cartesian spring; (b) the coupling of two
Cartesian springs via a R joint

represented by qnJ and qm, respectively. According to the rigidity assumption and the presence of the R

joint, the relationship between qJ2 and qnJ is

qJ2 = qnJ +δγJsJ (2)

where δγJ is the “small” angle of rotation of the RJ2 joint, and sJ is defined in eq. (1). The nuts are connected

to the Peppermill via H joints of nominally vertical axes. The relationship between qnJ and qm is

qnJ = GJqm +δαJsHJ, sHJ =

[

eT
HJ pJeT

HJ

]T

(3)

where δαJ is the “small” angle of rotation of the HJ joint with respect to the direction of its axis, eHJ the unit

vector of its axis and pJ the pitch of the HJ joint. Moreover, GJ is the SAD screw transfer matrix (Pradeep

et al. 1989) that takes the SAD screw of one given rigid body from one point to another point of the same

body. In the case at hand, from point C to point PJ2 of the Peppermill, GJ being given by
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GJ =







1 0

−AJ 1






(4)

where AJ = CPM (aJ), is the cross-product matrix of vector3 aJ , stemming from C and ending at PJ2.

2.2. The Cartesian Stiffness Matrix

The objective of elastostatic analysis is to obtain the Cartesian stiffness matrix Ke needed to conduct the

modal analysis of the PMC. Matrix Ke ∈ IR6×6 maps the SAD screw of the Peppermill into the external

wrench applied onto it, which is given by

wext = Keq (5)

where wext is the external wrench and q the SAD screw of the Peppermill. If we apply a unit external

wrench on six different directions separately, the corresponding SAD screws are nothing but the columns of

the inverse matrix of the Cartesian stiffness matrix.

Firstly, a unit external force in the x-direction, w f x, is applied at the centre of mass C of the Peppermill.

From the mechanical structure of the PMC, we can find that w f x will bring about a deformation of the arm

and the forearm of limbs 1 and 2. Through the force analysis of the Peppermill, balancing forces f f 1p and

f f 2p are added on the Peppermill at points P12 and P22, respectively. Since the effects of force are mutual,

reactive forces fp f 1 =−f f 1p and fp f 2 =−f f 2p are applied on the forearm of each of limbs 1 and 2, henceforth

termed forearm 1 and forearm 2. Therefore, we can obtain the SAD screws of the two forearms in the forms

q f 1 =
(

KF1)−1
wp f 1, q f 2 =

(

KF2)−1
wp f 2 (6)

where KF1 and KF2 denote the Cartesian stiffness matrices of forearm 1 and forearm 2, respectively, while

wp f 1 =

[

mT
p f 1 fT

p f 1

]T

and wp f 2 =

[

mT
p f 2 fT

p f 2

]T

. On the other hand, the forces acting on forearm 1 and

forearm 2 will be transferred to arm 1 and arm 2 via corresponding passive revolute joints. The SAD screws

of arm 1 and arm 2 are given by

qa1 =
(

KA1)−1
w f 1a1, qa2 =

(

KA2)−1
w f 2a2 (7)

3The CPM of AAAJ is defined as the partial derivative of AAAJ ×y with respect to y, ∀y ∈ IR3.
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where KAJ denotes the Cartesian stiffness matrix of arm J, while w f 1a1 = wp f 1 and w f 2a2 = wp f 2. The

concept of SAD-screw transfer matrix is now recalled. Let GJc be given by

GJc =







1 0

−AJc 1






(8)

where AJc = CPM (aJc), vector aJc stemming from PJ2 and ending at C. GJc transfers the SAD screw of

point PJ2 to point C, the COM of the Peppermill. Therefore, the total deformation caused by the external

wrench w f x is

qw f x = G1c(qa1 +q f 1)+G2c(qa2 +q f 2) (9)

The SAD screws qw f y, qwmx, qwmy and qwmz, produced by the unit external wrenches w f y, wmx, wmy and wmz

can be obtained likewise. The deformation qw f z, caused by the unit external force in the z-direction, will be

analyzed separately because it is related to the flexibility of the strain-wave-gear drive.

A unit external force w f z is applied at the centre of mass C of the Peppermill in the z-direction. Because

of the symmetric mechanical structure, each of the wrenches acting on the Peppermill by forearm 1, w f 1p,

and forearm 2, w f 2p, equals half of w f z. Therefore, the deformation of forearm J is given by

q f J =
(

KFJ
)−1

wp f J, J = 1,2 (10)

where wp f J =−w f Jp. On the other hand, the deformation of arm J is given by

qaJ =
(

KAJ
)−1

w f JaJ, J = 1,2 (11)

where w f JaJ = wp f J . As for the angular displacements of the strain-wave-gear drives, which are given by

αJ = f f JaJcos(θJ)r/kharm, J = 1,2 (12)

where f f 1a1 and f f 2a2 are the force components of w f 1a1 and w f 2a2 in the z-direction, θ1 and θ2 defined in

Fig. 1, kharm the torsional stiffness of the strain-wave-gear drive. Therefore, the deformation caused by the
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strain-wave-gear drives at points P11 and P21 is

qhJ =

[

0T dT
hJ

]T

, dhJ =

[

(J−1)α2r sin(θ2) (J−2)αJr sin(θJ) αJ cos(θJ)

]T

, J = 1,2 (13)

where 0 is the three-dimensional zero vector. The deformation caused by the unit external wrench w f z is

qw f z = G1c(qa1 +q f 1 +qh1)+G2c(qa2 +q f 2 +qh2) (14)

Since the unit external forces and moments are applied at the COM of the Peppermill, the SAD screws are

nothing but the columns of the inverse matrix of the Cartesian stiffness matrix of the PMC. Therefore, matrix

Ke is given by

Ke =

[

qwmx qwmy qwmz qw f x qw f y qw f z

]−1

(15)

In the above analysis, KAJ and KFJ are defined in the base frame and K̄AJ and K̄FJ denote the stiffness

matrices of arms and forearms defined in the body-fixed frame. K̄AJ and K̄FJ are posture-independent,

obtained by FEA. KAJ and KFJ are posture-dependent, derived from K̄AJ , K̄FJ by means of similarity

transformations in terms of 6×6 rotation matrices, as described below. The coordinate frames of the arms

and the forearms are shown in Fig. 6. F0 represents the fixed frame. QJ10 is the rotation matrix that carries

FJ1 into F0. Similarly, QJ21 and QJ20 are the rotation matrices that carry FJ2 into FJ1 and FJ2 into F0,

respectively. A 6× 6 rotation matrix RJ10 is now introduced to transfer six-dimensional SAD screws from

FJ1 into F0:

RJ10 =







QJ10 O

O QJ10






(16)

Similarly, the 6×6 rotation matrices RJ21 and RJ20 are further introduced:

RJ21 =







QJ21 O

O QJ21






, RJ20 =







QJ20 O

O QJ20






(17)

where RJ21 and RJ20 carry FJ2 into FJ1 and FJ2 into F0, respectively. Therefore, the relationships between
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KAJ (KFJ) and its “overlined” counterpart K̄AJ (K̄FJ) are readily derived:

KAJ = RT
J10K̄AJRJ10, KFJ = RT

J20K̄FJRJ20 (18)

b
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x21

F22
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F11
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y11
x11

F12

z12
y12

x12

Fig. 6. Cartesian coordinates and body-fixed coordinates

3. ELASTODYNAMICS

To formulate the kinetic energy generated by the flexible-component motion, the generalized coordinates

and the generalized velocities are defined below. The independent generalized-coordinate array is defined

as

q =

[

qT
m qT

11 qT
21 δγ1 δγ2 δβ1 δβ2 δα1 δα2

]T

(19)

with the corresponding generalized velocity array q̇ following suit:

q̇ =

[

q̇T
m q̇T

11 q̇T
21 δ γ̇1 δ γ̇2 δ β̇1 δ β̇2 δ α̇1 δ α̇2

]T

(20)
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As defined in Subsection 2.1, the components of q are, respectively, the SAD screws defined at C, P11, P21,

and the small-amplitude angle of rotation of the R12, R22, R11, R21, H1, H2 joints, Since all the motors are

locked at a particular posture, the motion is generated by the deformation of the flexible components. As

for the PMC, the kinetic energy is generated by the elastic motion of the arms, the forearms, the nuts and

the Peppermill, all displayed in Fig. 1. Let, for J = 1,2, q̇J1, q̇′
J1, q̇J2, q̇nJ and q̇m denote the corresponding

twists, defined at the points PJ1, P′
J1, PJ2, P′

J2 and C, respectively, as shown in Fig. 2.

As mentioned in Subsection 2.1, a schematic side view of limb J is shown in Fig. 3, where the points RcJ

and LcJ are the COM of the arm and the forearm, respectively. Let q̇aJ and q̇ f J denote the twists defined at

points RcJ and LcJ , respectively. The relationship between q̇J1 and q̇aJ is

q̇aJ = GJ1q̇J1, GJ1 =







1 0

−RJ 1






(21)

where RJ = CPM (rcJ), vector rcJ stemming from PJ1 and ending at RcJ . Similarly, the relationships among

q̇′
J1, q̇J2 and q̇′

f J are readily derived:

q̇ f J = GJ2q̇′
J1 +GJ3q̇J2, GJ2 =







1 0

−LJ 1






, GJ3 =







1 0

−L′
J 1






(22)

where LJ = CPM (lcJ), L′
J = CPM (l′cJ), vector lcJ stemming from P′

J1 and ending at LcJ , its primed coun-

terpart, l′cJ , stemming from PJ2 and ending at the same point LcJ . The kinetic energy of arm J is

T A
J =

1
2

q̇T
aJMAJq̇aJ, MAJ =







IAJ O

O mAJ1






(23)

where MAJ , IAJ and mAJ are the von Mises inertia dyad (Mises 1924), the inertia tensor and the mass of

arm J, respectively. Similarly, the kinetic energy of the forearm, the nut and the Peppermill are further

introduced:

T F
J =

1
2

q̇T
f JMFJq̇ f J, T N

J =
1
2

q̇T
nJMNJq̇nJ, T P =

1
2

q̇T
mMPq̇m (24)

where MFJ , MNJ and MP are the inertia dyads of: forearm and nut of limb J, and of the Peppermill,
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respectively, given by

MFJ =







IFJ O

O mFJ1






, MNJ =







INJ O

O mNJ1






, MP =







IP O

O mP1






(25)

The kinetic energy of the PMC is the sum of the kinetic energies of the forearms, the arms, the nuts and the

Peppermill:

Te =
2

∑
J=1

(

T A
J +T F

J +T N
J

)

+T P (26)

Substitution of eqs. (21–24) into eq. (26), the expression for the kinetic energy of the PMC becomes,

Te =
1
2

2

∑
J=1

[(GJ1q̇J1)
T MAJ(GJ1q̇J1)+(GJ2q̇′

J1 +GJ3q̇J2)
T MFJ(GJ2q̇′

J1 +GJ3q̇J2)

+ q̇T
nJMNJq̇nJ]+

1
2

q̇T
mMPq̇m

(27)

Moreover, upon differentiation of the two sides of eq. (1), the relationship between q̇J1 and q̇′
J1 is obtained:

q̇′
J1 = q̇J1 +δ β̇JsJ (28)

where, as mentioned above, δ β̇J is the the small-amplitude angular velocity about the RJ1 joint, for J = 1,2.

By resorting to eqs. (2 & 3), the relationships between q̇J2 (q̇nJ) and its counterpart q̇nJ (q̇m) are readily

derived:

q̇J2 = q̇nJ +δ γ̇JsJ, q̇nJ = GJq̇m +δ α̇JsHJ (29)

where, as a reminder, δ α̇J is the the small-amplitude angular velocity about the HJ joint, for J = 1,2.Substitution

of eqs. (28 & 29) into eq. (27), leads to

Te =
1
2

2

∑
J=1

[(GJ1q̇J1)
T MAJ(GJ1q̇J1)+GJ2(q̇J1 +δ β̇JsJ)

+GJ3(q̇nJ +δ γ̇JsJ))
T MFJ(GJ2(q̇J1 +δ β̇JsJ)+GJ3(q̇nJ +δ γ̇JsJ)

+(GJq̇m +δ α̇JsHJ)
T MNJ(GJq̇m +δ α̇JsHJ)]+

1
2

q̇T
mMPq̇m

(30)

The generalized mass matrix of the PMC is the Hessian matrix of Te with respect to the generalized
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velocities. This matrix maps the generalized velocity array into the generalized momentum array:





















































pm
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p2

p12

p22
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p21

p13
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M11 M12 M13 m14 m15 m16 m17 m18 m19

MT
12 M22 O m24 0 m26 0 m28 0

MT
13 O M33 0 m35 0 m37 0 m39

mT
14 mT

24 0T m44 0 m46 0 m48 0

mT
15 0T mT

35 0 m55 0 m57 0 m59

mT
16 mT

26 0T m46 0 m66 0 m68 0

mT
17 0T mT

37 0 m57 0 m77 0 m79

mT
18 mT

28 0T m48 0 m68 0 m88 0

mT
19 0T mT

39 0 m59 0 m79 0 m99









































































































q̇m

q̇11

q̇21

δ γ̇1

δ γ̇2

δ β̇1

δ β̇2

δ α̇1

δ α̇2





















































(31)

where pm, pJ , pJ1, pJ2 and pJ3 are, respectively, the six-dimensional generalized momenta defined at C,

PJ1, and the generalized angular momenta about the RJ1, RJ2 and HJ joints, O the 6× 6 zero matrix, 0 the

six-dimensional zero vector, the non-zero blocks of the mass matrix being described below:

M11 = GT
1 GT

13MF1G13G1 +GT
1 MN1G1 +GT

2 GT
23MF2G23G2 +GT

2 MN2G2 +MP

M12 = GT
1 GT

13MF1G12, M13 = GT
2 GT

23MF2G22, m14 = GT
1 GT

13MF1G13s1,

m15 = GT
2 GT

23MF2G23s2, m16 = GT
1 GT

13MF1G12s1, m17 = GT
2 GT

23MF2G22s2,

m18 = GT
1 GT

13MF1G13sH1 +GT
1 MN1sH1, m19 = GT

2 GT
23MF2G23sH2 +GT

2 MN2sH2,

M22 = GT
11MA1G11 +GT

12MF1G12, m24 = GT
12MF1G13s1,

m26 = GT
12MF1G12s1, m28 = GT

12MF1G13sH1, M33 = GT
21MA2G21 +GT

22MF2G22,

m35 = GT
22MF2G23s2, m37 = GT

22MF2G22s2, m39 = GT
22MF2G23sH2,

m44 = sT
1 GT

13MF1G13s1, m46 = sT
1 GT

13MF1G12s1, m48 = sT
H1GT

13MF1G13s1,

m55 = sT
2 GT

23MF2G23s2, m57 = sT
2 GT

23MF2G22s2, m59 = sT
H2GT

23MF2G23s2,

m66 = sT
1 GT

12MF1G12s1, m68 = sT
H1GT

13MF1G12s1, m77 = sT
2 GT

22MF2G22s2,

m79 = sT
H2GT

23MF2G22s2, m88 = sT
H1GT

13MF1G13sH1 + sT
H1MN1sH1,

m99 = sT
H2GT

23MF2G23sH2 + sT
H2MN2sH2

(32)
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RJ1, RJ2 and HJ being passive joints, the angular momentum acting on them vanishes, i.e. pi j = 0. The

Cartesian mass matrix Me ∈ IR6×6 maps the small-amplitude twist of the Peppermill into the momentum

applied onto it, namely pJ = 0. From eq. (31), the Cartesian mass matrix is obtained:

Me = M11 −Mb1M−1
b2 MT

b1 (33)

where

Mb1 =















































MT
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MT
13
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mT
15

mT
16

mT
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mT
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mT
19
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, Mb2 =















































M22 O m24 0 m26 0 m28 0

O M33 0 m35 0 m37 0 m39

mT
24 0T m44 0 m46 0 m48 0

0T mT
35 0 m55 0 m57 0 m59

mT
26 0T m46 0 m66 0 m68 0

0T mT
37 0 m57 0 m77 0 m79

mT
28 0T m48 0 m68 0 m88 0

0T mT
39 0 m59 0 m79 0 m99















































(34)

4. THE TEST TRAJECTORY

In order to measure the speed of a pick-and-place robot, a standard industrial test cycle has been defined.

The original (non-smooth) cycle is known as the Adept test cycle. This trajectory involves a vertical upward

translation of 25 mm, a horizontal translation of 300 mm and a final vertical downward translation of 25

mm. The MP has to move through this trajectory back and forth with a rotation of 180◦ during the horizontal

segment. The MP is at rest at the initial and final locations, the two other locations being intermediate

points. The motion between these points takes place along a straight line. Gauthier et al. (Gauthier et al.

2008) proposed a smooth blending of the non-smooth Adept curve using cubic Lamé curves and an optimum

selection of the blending points on the vertical and horizontal segments. This trajectory is the one used in

this paper. For the record, the Quattro robot is capable of three cycles per second.

5. FOURIER ANALYSIS

It is essential to obtain the frequency spectrum of a highly repetitive mechanical system because the

natural frequencies should be placed outside of it to avoid resonance. The frequency spectrum is obtained
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by means of Fourier analysis. A periodic function f (t) with a fundamental frequency ω can be represented

as:

f (t) =
a0

2
+

∞

∑
i=1

ai cos(iωt)+
∞

∑
i=1

bi sin(iωt)

where

a0 =
1
T

∫ T/2

−T/2
f (t)dt, ai =

1
T

∫ T/2

−T/2
f (t)cos(iωt)dt, bi =

1
T

∫ T/2

−T/2
f (t)sin(iωt)dt

in which i and T are the harmonic index and the period of function f (t), respectively. In this case, the

periodic functions are the trajectory functions of the moving platform (MP), namely, the translations along

the x-, the y- and the z-axes along with the rotation about the z-axis.

In order to obtain the excitation frequency spectrum and find the highest operation speed whose excitation

frequency spectrum is under the first natural frequency of the PMC, the distribution of normalized param-

eters |āxn|, |āyn|, |āzn| and |āφn| with respect to the frequency f when the operation frequency is 1 and 2

cycles/s are plotted in Figs. 7 and 8, respectively.

1 2 3 4 5

0

0.5

1

2 4 6 8 10 12 14 16 18 20

0

0.5

1

Fig. 7. Amplitudes of the harmonics of the four independent motions vs. natural frequencies (for an operation fre-
quency of 1 cycle/s): the frequency of the cyclical translation along the z-axis is twice as large as the three other
independent motions
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Fig. 8. Amplitudes of the harmonics of the four independent motions vs. natural frequencies (for an operation fre-
quency of 2 cycles/s): the frequency of the cyclical translation along the z-axis is twice as large as the three other
independent motions

Modal analysis calls for the stiffness and mass matrices, obtained above. The mathematical model of the

robot, at an equilibrium posture, is

Mẍ+Kẋ = 0 (35)

where M and K are the Cartesian mass and stiffness matrices, x the SAD screw. To obtain the natural

frequencies of the system, the well-known dynamic-matrix can be used. One has

(λM+K)u = 0 (36)

where λ and u are, respectively, the eigenvalue and the corresponding eigenvector of the above eigenvalue

problem. Therefore, by computing the eigenvalue of M−1K, the set of values −ω2 is obtained, with ω

denoting one of the natural frequencies. It should be noted, however, that the last three components of the

six-dimensional eigenvector u carry units of length, while the first three are dimensionless.

With the stiffness (Ke) and mass (Me) matrices, respectively obtained in Subsection 2.2 and Section 3, the

natural frequencies along the Adept test cycle were obtained, as displayed in Fig. 9. Only the first natural

frequency is shown, as the subsequent frequencies are well above the first, and thus not significant.

As per Fig. 9, the minimum value of the first natural frequency is 52.5 Hz. According to Fig. 8, the
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Fig. 9. The evolution of the first natural frequency of the PMC along the test trajectory ω1 (Hz)

excitation frequency spectrum for an operation frequency of 2 cycles/s, we can see that the translation along

the x- and y-axis and rotation about the z-axis are obviously on the safe side. The translation along the z-axis

has already reached the limit; hence, resonance will ensue for operation frequencies above this threshold.

6. CONCLUSIONS

The main challenge faced by pick-and-place robots is speed. High-speeds are prone to lead to resonance,

which calls for an elastodynamics analysis of the robot to verify that the harmonics of the prescribed tra-

jectory do not lie within the frequency spectrum of the robot structure. The industry standard Adept test

cycle was used to obtain numerical data of the frequency content of the cycle at different frequencies. The

model and analysis proposed in this paper show that operation frequencies under 3 cycles per second are not

problematic. For higher operation frequencies, the current structural design of the robot under development,

the PMC, will have to be revised.
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