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Abstract

Many asymptotic results for kernel-based estimators were estab-
lished under some smoothness assumption on density. For cases where
smoothness assumptions that are used to derive unbiasedness or as-
ymptotic rate may not hold we propose a combined estimator that
could lead to the best available rate without knowledge of density
smoothness. A Monte Carlo example con�rms good performance of
the combined estimator.
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1 Introduction

Asymptotic results for various kernel-based estimators are established under
smoothness assumptions on density which may be excessively strong; for
example, density of disposable income with lump-sum transfers or changes in
tax rates is discontinuous. For situations when smoothness assumptions that
provide optimal rate may not hold we propose an estimator that alleviates
the negative consequences of incorrect assumptions about smoothness.
The approach utilizes the joint asymptotic distribution of several estima-

tors. The joint distribution indicates that complimentary information may
be supplied by estimators for di¤erent bandwidth/kernel combinations, e.g.
di¤erent estimators could be asymptotically independent. A linear combina-
tion may have a smaller mean squared error (MSE) than an individual esti-
mator; this may be particularly useful when sharp asymptotic results based
on smoothness assumptions are not available leading to uncertainty about
bandwidth rate. "Combined estimator� minimizes the estimated asymp-
totic MSE (AMSE) over linear combinations and may achieve the best rate
automatically without knowledge of smoothness. Kotlyarova, Zinde-Walsh
(2004) obtained the joint asymptotic distribution of Smoothed Maximum
Score (SMS) estimators in the binary choice model and provided estima-
tors for biases and variances; similar results were obtained for kernel density
estimation (Kotlyarova, 2005).
While consistent estimators of biases and variances help obtain an optimal

combined estimator, they may be di¢ cult to construct. We indicate ways of
constructing estimators of the asymptotic biases and variances that do not
rely on knowledge of density smoothness. Examples demonstrate that even
when we cannot estimate all the biases consistently the combined estimator
may be better in terms of convergence rates and �nite sample performance
than an estimator based on incorrect assumptions about smoothness. Monte
Carlo experiments demonstrate good e¢ ciency /robustness of the combined
estimator under various models; here we produce simulation results for the
binary choice model.
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2 Linear combinations of estimators

2.1 Notation and assumptions

We consider several kernel estimators for a k � 1 parameter vector �; based
on di¤erent bandwidths hnt, t = 1; :::m; and kernel functions Ks; s = 1; :::; l:
Denote each estimator bn(t; s) (n - sample size). Depending on the combina-
tion of bandwidth and kernel convergence rates may di¤er and may lead to
asymptotic bias (abias) or to Gaussian limit process with or without abias.
Assumption 1. For bn(t; s) A1(1), A1(2) or A1(3) below holds as

n!1:
A1(1). There exist a sequence of positive constants rn(t; s) ! 1, con-

stant k � 1 non-zero vector A(t; s) such that

rn(t; s)(bn(t; s)� �)� A(t; s)!p 0;

A1(2). There exist a sequence of positive constants rn(t; s) ! 1; con-
stant k�1 non-zero vector A(t; s) and constant non-zero k�k matrix �(t; s)
(non-negative de�nite) such that for some k � 1 vectors ~An(t; s) and k � k
(positive de�nite) ~�n(t; s)

rn(t; s)
2~�n(t; s) ! p�(t; s);

rn(t; s) ~An(t; s) ! pA(t; s);
~�n(t; s)

�1=2(bn(t; s)� � � ~An(t; s)) ! dN(0; I)

thus
rn(t; s)(bn(t; s)� �)!d N(A(t; s);�(t; s));

A1(3). A1(2) holds with additionally ~An(t; s) = 0:
Case A1(1) corresponds to abias, A1(2) to limit Gaussian process with

abias, A1(3) to limit Gaussian process without abias.
The Assumption is satis�ed by many estimators even though most of the

results in the literature focus on bandwidths that get rid of abias (case A1(3))
or on optimal bandwidths (case A1(2)). See, e.g. Pagan, Ullah (1999) for
various estimators; Horowitz (1992) discusses all A1(1-3) cases for the SMS
estimator.
Next, de�ne a partial order on rates. For pairs (t; s) if as n ! 1 the

ratio rn(t1;s1)
rn(t2;s2)

! 1; write rn(t1; s1) � rn(t2; s2) (rn(t1; s1) � rn(t2; s2)); if

for constants d;D the ratio satis�es 0 < d < rn(t1;s1)
rn(t2;s2)

< D < 1 for all n;
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write rn(t1; s1) �= rn(t2; s2); write rn(t1; s1) � rn(t2; s2) if either rn(t1; s1) �
rn(t2; s2) or rn(t1; s1) �= rn(t2; s2). Let j = 1; 2; :::; J ; J = l �m correspond
to an ordering of the rates:

rn(t1; s1) � rn(t2; s2) � ::: � rn(tJ ; sJ);

since some rates may be equivalent this ordering is not necessarily unique.
We refer to rn(tj; sj) as rj; to bn(tj; sj) as bj; and similarly Aj (which is

zero in case A1(3)) and �jj (which is zero in case A1(1)).
Consider the joint distribution of estimators bj:

Assumption 2. In addition to Assumption 1 the joint limit

process for vector

0B@ r1(b1 � �)
...

rJ(bJ � �)

1CA is Gaussian

N

0B@
0B@ A1

...
AJ

1CA ;
0B@ �11 � � � �1J

...
. . .

...
�1J � � � �JJ

1CA
1CA ;

with �ij the limit matrix of covariances for ri(bi � �),rj(bj � �); if ri � rj or
if for at least one of i or j the case A1(1) holds the corresponding �ij = 0;
the limit distribution may be degenerate.
The joint limit distribution of Assumption 2 is given for kernel estimators

of continuous density (not necessarily smooth) in Kotlyarova (2005), for SMS
estimator in the binary choice model with less restrictive assumptions on
smoothness than in Horowitz, 1992 (Hölder continuous rather than twice
di¤erentiable conditional density) in Kotlyarova, Zinde-Walsh (2004). Zinde-
Walsh (2002) derived joint limit process for smoothed least median of squares
estimator (LMS) for di¤erent kernels (same bandwidth).

2.2 Asymptotic distribution of a linear combination of
estimators.

Denote by bn the stacked vector of estimators (b01(n); :::; b
0
J(n)): Denote by an

a J � 1 weights vector that satis�es a0n�J = 1; �J is a J � 1 vector of ones.
Consider the linear combination �anjbj(n) of estimators corresponding to
di¤erent bandwidth/kernel pairs; the sum of the weights is one (the weights
are not necessarily non-negative).
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Denote ~A(n) the Jk� 1 vector ~A = ( ~A0
1; :::;

~A0J)
0 with k� 1 subvector ~Aj

~Aj = r
�1
j Aj

Denote ~�(n) the matrix

~�(n) =

0B@ ~�11 � � � ~�1J
...

. . .
...

~�1J � � � ~�JJ

1CA ;
with k � k components

~�ij =

�
(rj)

�2 �jj if i = j;
(ri)

�1 (rj)
�1 �ij otherwise.

Consider for a : a0�J = 1 a vector �n distributed as N(�aj ~Aj;�i;jaiaj~�ij):

Theorem 1 Under Assumptions 1, 2 for any (possibly random) sequence
an ! a (possibly an !p a); a a constant vector, the limit process for �anj(bj(n)�
�) is the same as for �n:

Proof. For bj(n) by convergence of an

(anj � aj) (bj(n)� �) = op(r�1j );

thus anjbj(n) and ajbj(n) have the same limit process; �anj(bj(n)� �) has
the same limit process as �aj(bj(n) � �): Gaussian process with the same
asymptotic mean and covariance as �n:�
Asymptotic mean square error for the linear combination is

AMSE(�anjbj(n)) =
X
i;j

aiaj( ~A
0
i
~Aj + tr~�ij) = a

0Da; (1)

fDgij = ~A0i ~Aj + tr~�ij: (2)

From Assumption 2

AMSE(�anjbj(n)) = AMSE
I + AMSEII = a0ID

IaI + a
0
IID

IIaII (3)

where a = (a0I ; a
0
II)

0; DII corresponds to estimators of A1(1) (abias); rankDII =
1; dimDII � 2; while DI is invertible (and may contain at most one A1(1)
estimator).
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Under uncertainty about model smoothness (thus about the best rate/bandwidth)
combining estimators can at least reduce the worst possible AMSE from an
incorrect choice. Indeed, suppose that an estimator b1 has associated rate r1;
b2 has a slower rate r2 (r1 � r2): If this were known then we would use b1:
If there is uncertainty about the degree of smoothness, a linear combination,
e.g. a0b = 1

2
b1+

1
2
b2 while converging slower than b1 at least halves the AMSE

associated with the incorrect choice, b2:
Next we consider optimizing the choice of weights.

3 Combined estimator and its asymptotic dis-
tribution

First, we �nd a that minimizes the AMSE in (1) subject to a0� = 1 for
known ~A and ~�.
Recall that while the rates, rj; are ordered from fastest to slowest, some

may be strictly faster than others but some may be equivalent; correspond-
ingly, partition f1; 2; :::; Jg as fE1; :::; EV g with Ev = fjv�1 + 1; :::; jvg;
v = 1; :::V : such that rj��1+1 �= rj� and if j1 2 Ev1 ; j2 2 Ev2 for v1 > v2
then rji � rj2 : Partition D correspondingly and denote by D11 the top left
submatrix of D corresponding to E1 (fastest rate).
De�ne

an = argmin
a

AMSE(�ajbj(n)) subject to a0� = 1 (4)

Theorem 2 Suppose Assumptions 1, 2 hold; n!1:
(a) If D � DI ; a = aIlim + o(1); where

aIlim =

��
1

�0D�1
11 �
D�1
11 �

�0
; 0; :::0

�0
: (5)

(b) If D � DII ; then


an � aIIlim

 = o(1); where fIIg consists of vectors

aIIlim satisfying
aII0limD

IIaIIlim = 0; a
II0
lim� = 1: (6)

Proof.
(a) Lagrangian for the AMSE minimization is

a0Da+ �(a0�J � 1):
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First-order conditions are

2Da+ ��J = 0;

a0�J � 1 = 0:

Then a satis�es

a = ��(2D)�1�J ;
a0�J = ���0J(2D)�1�J = 1;

providing
a =

�
�0JD

�1�J
��1

D�1�J : (7)

In the block-matrix D diagonal blocks Dvv � O(r�2jv�1+1) = o(r
�2
jv+1

); �rst
block goes to zero fastest, each successive block converges slower; o¤-diagonal
Dvw = o(r�1jv�1+1r

�1
jw�1+1) and go to zero faster than the slower of the corre-

sponding diagonal blocks. For simplicity partition D as�
D11 D12

D0
12 D22

�
:

Rate structure of D is �
O(r�21 ) o(r�11 r

�1
2 )

o(r�11 r
�1
2 ) O(r�22 )

�
with r2 = o(r1):The partitioned inverse provides

D�1 =

�
D�1
11 + o(r

2
1) O(r2r1)

O(r2r1) O(r22)

�

and D�1 =

�
D�1
11 0

0 0

�
+ o(r21): Substitution into (7) concludes (a).

(b) The minimized value of the limit AMSE is zero in this case. Since
rankDII = 1 < dimDII there exists a (possibly non-unique) aIIlim such that
aII0limD

IIaIIlim = 0; a
II0
lim� = 1: The minimizers of the quadratic form will get close

to a vector that provides a zero limit asymptotically. �
Remarks. In case (a) alim has non-negative components. For (b) the limit

linear combination converges at a faster rate, r(b); than the best of the biased
estimators; . If (3) holds non-trivially consider correspondingly

a = �(aI0lim; 0
0)0 + (1� �)(00; aII0lim)0;
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0 � � � 1: If r(b) is better than the best rate for the DI part then � = 0;
if worse, � = 1; otherwise there could be an optimal combination involving
both undersmoothed and oversmoothed estimators.
Examples.
(a) E1 = f1g : Then alim = (1; 0:::0)0: In the optimal linear combination

the weight on fastest convergent estimator is 1, the others get zero weights.
(b) E1 = f1; 2g : Then if the estimators are undersmoothed alim = (a; 1�

a; 0; :::0)0: For e.g. b1 undersmoothed (no abias, possibly substantial vari-
ance), b2 oversmoothed (zero avariance, but abias), lim r2

r1
= d > 1

r1(a
0
limb� �)!d N(

(1� a)
d

A2; a
2�1):

Linear combination has abias reduced relative to that of b2 and avariance
smaller than for b1:
Typically we do not know the abiases and variances; estimated biases

and variances could be substituted to obtain estimated AMSE for linear
combination of estimators: \AMSE(a0bn): Call bcomb = �acombjbj(n) with

acomb = argmin
an

\AMSE(�anjbj(n))

the combined estimator.
Assumption 3. Consistent estimators Â(n) and �̂(n) for ~A(n)

and ~�(n) are available; so for
n
D̂
o
ij
= Â0iÂj+ tr�̂ij andW = diag(r1; :::; rJ)

W (D̂ �D)W !p 0:

Theorem 3 Under the conditions of Theorem 2 and Assumption 3 for \AMSE(a0bn) =
a0D̂a

acomb = alim + o(1):

Proof. Follows by modifying the proof of Theorem 2.
The Theorem states that a combined estimator that minimizes AMSE

based on consistent estimators of biases and variances has the same limit
weights as the combination that minimizes the (true) AMSE.
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4 Estimation issues and performance

When the degree of smoothness is not known consistent estimators for abias
and avariance that do not rely on such knowledge are required. It is not
di¢ cult to estimate the asymptotic variance consistently, e.g. by bootstrap.
Estimation of bias is more di¢ cult. For various estimators as bandwidth

increases variance declines, but bias increases. If bi is an undersmoothed
estimator its abias is zero and

bi � � = Op(r�1i ):

For some bj that corresponds to a higher (possibly oversmoothed) bandwidth

bj � � � ~Aj = op(r
�1
i );

because avar
�
bj � � � ~Aj

�
< avar(bi � �): So

bj � bi � ~Aj = Op(r
�1
i ):

Then if rj � ri a consistent estimator of ~Aj (abias of bj) is bj�bi: To improve
this estimator consider L undersmoothed estimators and estimate ~Aj by bj�
1
L

PL
i=1 bi (bootstrap could be applied to this estimator). This method was

used by Kotlyarova (2005) in combined estimator for density and for SMS.
Consider the model from Horowitz (1992):

y =

�
1 if �1x1 + �2x2 + u > 0;
�1 otherwise,

x1 � N(1; 1); x2 � N(0; 1); with heteroscedastic u = :25[1 + (x1 + x2)
2]2v;

and v logistic (median=0; variance=0.5). This is the smooth case; we add
a non-smooth case where v is piece-wise linear. We normalize the estimator
b = (b1; b2)

0 by kbk = 1; �1 = �2 =
1p
2
: We use the Horowitz-optimal

kernel/bandwidth f4=h0 (with bias correction) and consider several combined
estimators (no correction). For selection of bandwidths a starting point is
h0 optimal for the smooth case; in non-smooth cases it is oversmoothing,
thus other bandwidths are percentiles of h0: Polynomial kernels are used in
combinations: comb4 uses fourth order f4; comb24 uses f4 and second-order
f2; comb334 combines f4 with two (orthogonal) third order kernels; each
kernel at four bandwidths.
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Monte Carlo results for MSE of these estimators in the following table
demonstrate good performance of the combined estimator.
MSE of estimator.
n Estimator Smooth model Non-smooth
2000 f4=h0 :00026 :00156

comb4 :00021 :00127
comb24 :00020 :00132
comb334 :00023 :00131

4000 f4=h0 :00022 :00130
comb4 :00012 :00090
comb24 :00011 :00091
comb334 :00013 :00088
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