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Simple Models of Diabatically Forced Mesoscale Circulations 
and a Mechanism for Amplification 
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A two-dimensional, linear, Boussinesq, inviscid, hydrostatic model is used to simulate the flow over an 
elevated diabatic source and a surface diabatic source. The elevated source is identified as being due to 
cooling by melting, while the surface source is associated with land/sea temperature differences. Melting 
frequently produces near-0øC isothermal layers. The atmosphere in this case tends to have strong static 
stability in the melting layer, capped by a much less stable layer aloft. This creates a strong change in the 
vertical wave number, which might lead to resonant amplification of mesoscale perturbations, just as in 
mountain wave theory. Comparison with sounding data suggests that this amplification mechanism is 
potentially important for precipitation enhancement due to melting. 

1. INTRODUCTION 

There are many examples of mesoscale circulations in the 
atmosphere where diabatic forcing plays an important role. In 
this study we focus on simple models of melting-induced 
mesoscale circulations. Observational studies such as those of 

Atlas et al. [1969], Carbone [1982], Stewart [1984], and Stew- 
art and Kin•l [1986] clearly demonstrate that cooling due to 
melting may affect the mesoscale environment significantly. 
Although the latent heat of fusion is about 8 times smaller 
than the latent heat of vaporization, melting is concentrated in 
a relatively shallow layer of near-0øC temperature. This means 
that the cooling induced by melting can be comparable to that 
induced by evaporation. This point will be discussed in more 
detail later in this study. 

Atlas et al. [1969] presented a detailed Doppler-radar study 
of the mesoscale wind perturbations induced by melting snow. 
They found that the spatial structure of these wind pertur- 
bations was the same as the variation in the precipitation 
pattern. They tried to explain the observations by modeling a 
hydrostatic, nonrotating inviscid atmosphere with no vertical 
motion. They showed that 1 mm of melted snow would pro- 
duce a 350-m-deep 0øC isothermal layer and a pressure in- 
crease of 0.12 mbar at the base of the layer, and then inferred 
that a "m½so-high" produced the observed wind perturbations. 
By assuming steady state conditions, they were able to obtain 
horizontal wind perturbations in rough agreement with obser- 
vations. 

Lin and Stewart [1986] studied the steady state response of 
the atmosphere to prescribed temperature perturbations corre- 
sponding to typical melting environments. They used a linear, 
two-dimensional model, with the effects of friction and rota- 

tion included. Thermally driven circulations having a length 
scale similar to that of the temperature perturbations were 
produced. Lin and Stewart suggested that the updraft branch 
of this type of circulation might cause enhanced precipitation 
in a saturated environment. Sze•to et al. [!988a, b] investigated 
this cooling-by-melting mechanism by using a nonlinear two- 
dimensional numerical model. It is found that the resultant 

melting-induced circulations consist of a forced response re- 
sembling a gravity current and transients which are gravity 
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waves. Model results show that the melting associated with 
realistic precipitation rate can induce horizontal wind pertur- 
bations of a few meters per second and vertical motions of 
tens of centimeters per second. The results are also applied to 
three mesoscale circulations where melting often plays a sig- 
nificant role: rain/snow boundaries, the production of deep 
0øC isothermal layers, and the trailing stratiform regions as- 
sociated with severe squall lines. 

There have been other modeling studies of mesoscale circu- 
lations forced by elevated diabatic sources. Smith and Lin 
[1982] used linear hydrostatic theory to examine the response 
of a stratified airstream to both diabatic and orographic forc- 
ings. The magnitude of the heating aloft is computed from 
observed rainfall rates. The phase relationships between the 
heating and induced vertical displacements is found to be 
negative. This may explain why mountain wave amplitudes 
are sometimes reduced in moist atmospheres. Lin and Smith 
[1986] explained the negative phase relationship by solving 
the time-dependent problem to obtain the transient approach 
to steady state. The vertical displacement is negative at the 
heating center because of the superposition of downdrafts as- 
sociated with all of the regions of heated air drifting down- 
stream. The results are applied to three problems in mesoscale 
dynamics: cloud interaction, heat island/orographic rain, and 
squall lines. 

In the models referred to earlier, the influence of the vertical 
structure of the basic state is not considered. The main objec- 
tive of this paper is to examine, using a simple model, the 
effects of varying static stability and wind structure in the 
vertical and the possible implications for melting-induced 
circulations. An amplification mechanism will be identified, 
which might be important in the enhancement of vertical ve- 
locities in diabatically induced mesoscale circulations. This 
mechanism is similar to that described by Klemp and Lilly 
[1975], who found that the strong winds near Boulder, Col- 
orado, can be explained in terms of superposition of upward 
and downward propagating buoyancy waves. 

The effects of combining an elevated cooling source, such as 
that due to melting, and a surface diabatic source are also 
examined. The latter source might be due to temperature con- 
trasts between ocean and land. This combination of elevated 

and surface diabatic forcings would be important for a pre- 
cipitation band in which melting occurred in the vicinity of a 
cold land/warm ocean boundary, such as the Gulf Stream 
regions. 
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The model used and its solution, for an elevated diabatic 

source, are presented in section 2. Section 3 presents the re- 
suits for constant vertical wave number of the basic state..In 

section 4 we derive the solution for a surface diabatic source 

and a constant vertical wave number. Section 5 compares the 
relative magnitudes of different diabatic sources/sinks on the 
mesoscale. The amplification mechanism and effects of varying 
vertical wave numbers are examined in section 6. Some Cana- 

dian Atlantic Storm Project (CASP) data are given in section 
7, which shows support for the amplification mechanism. Fi- 
nally, section 8 contains the conclusion. 

2. MODEL AND SOLUTION 

Consider the equations describing the inviscid two- 
dimensional flow of a perfect gas in a nonrotating system. For 
simplicity an incompressible Boussinesq atmosphere will be 
used here, although the extension to a compressible atmo- 
sphere is straightforward. The steady state governing equa- 
tions are 

I 

_ c•u' dU 1 c•p' 
u • + w' - (1) 

8x dz Po •x 

c•w' 1 c•p' gp' 
u • = (2) 

•x Po t•z Po 

-- + -- = 0 (3) 
c•x •z 

I• t•p' N2w ' J 
- (4) 

Po •?x g CvT 

where N 2 is the Brunt-V•iis/il/i frequency squared (g/OXdO/dz) 
and J is the heating (or cooling) rate of the diabatic source. 
The notation used is standard, and a list of symbols is present- 
ed in the notation section at the end of the paper. Equations 
(1) and (2) represent momentum equations in x and z, while (3) 
and (4) are the continuity and thermodynamic equations, re- 
spectively. This set of equations is the same as that used by 
Smith and Lin [1982], except that we now allow for variation 
of U and N in the vertical. 

We may combine the equations to obtain the vertical veloc- 
ity equation 

t•2W ' t•2W ' (N 2 1 C•2[•'• , gJ + z--r + t7 - 
Equation (5) is a Boussinesq form of the forced Taylor- 

Goldstein equation [Raymond, 1984]. The simplest solution to 
(5) is obtained by assuming a constant vertical wave number 
m, where 

N 2 1 c•2U 
m 2 _ (6) 

[7 2 [7 •Z 2 

Since we consider horizontal scales of more than a few ki- 

lometers, the hydrostatic approximation is used' this is equiv- 
alent to assuming 

t•2W ' (•2 W' 
-- >> (7) 
c•z 2 c•x 2 

Using (6) and (7), we then have from (5) (after dropping 
primes) 

t•2w gd 
0z--- •- 4- m2w = -U---•- • (8) CvT 

Equation (8) may be solved for a finite depth heat source by 
using the Green's function method, as done by Smith and Lin 
[1982]. However, here we will solve the problem with the 
Fourier transform method. This is simpler mathematically for 
the type of vertical heating profile that we are dealing with in 
this paper. 

We consider a three-layer piecewise constant model for m 
and assume that the structure of the diabatic source J is separ- 
able in z and x. 

J = JoF(z)G(x) (9) 

F(z) = sin M(z- ho) ho < z < H 

F(z) = 0 otherwise 

M = n/(H -- ho) 

The horizontal structure function G(x) is given by the bell- 
shaped function 

G(x) = a2/(a 2 + x 2) (11) 

We express the Fourier transforms of the vertical velocity w 
and G as follows: 

ff'(k, z) =- w(x, z) exp (--ikx) dk 

(7(k) = 1 f_•• G(x) exp ( ikx) dk 
Equation (8) then becomes 

d2v• gd o 8( k)F(z) (12) dz 2 -- m2• = Cp•,U2 
with (•(k) being the Fourier transform (x--• k) of (11); that is 

•(k) = a exp ( - ka) (13) 

The function G(x) simulates a localized diabatic source in x, 
and F(z) has a sinusoidal shape. The latter is a good approxi- 
mation to the cooling rate due to melting [Szeto et al., 1988a]. 
A schematic sketch of this vertical structure is shown in 

Figure 1. The diabatic source acts in the middle layer (between 
ho and H) and is zero for z _> H and z _< h o. 

LAYER 3 

m 3 

LAYER 2 • H 
• DIABATIC rn2 SOURCE 

•- •"•- t'1o LAYER i 

- F(Z) + 

Fig. 1. Piecewise constant three-layer model for the vertical wave 
number m. The elevated heat sink is located between heights h o and H 
and has a sinusoidal form with scale M. 
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We obtain the solution of (12) for the Fourier-transformed 
vertical velocities in the three layers (}½1, }½2, }½3)as 

}½1 = '• exp (imlz) + t• exp (--imlz) z < h 0 

}½2 = C exp (im2z) + D exp (--im2z) 

gdo•J(k ) sin M(z - ho) 
+ h o < z < H (14) 

Cp•[•2(m22-- M 2) - 

}½3 -- E exp (im3z) + F exp (--im3z) z > H 

Notice that coefficients •, /•, (7, /•, E-, ff are dependent on 
the Fourier wave number k and are complex quantities. The 
solution for layers 1 and 3 is simply the homogeneous solution 
of (12), whereas in layer 2 (h 0 < z < H) the complete solution 
is the sum of the homogeneous solution plus a particular solu- 
tion which depends on the diabatic forcing profile. 

Since the set of equations (14) contains six unknown coef- 
ficients, we need six independent boundary conditions. These 
are 

Condition 1 

Condition 2 

Condition 3 

Condition 4 

Condition 5 

Condition 6 

}½1 ---0 Z •--0 

}½3 '•' exp (im3z) 

½1 = ½2 z=ho 

}½2 -- }½3 Z = H 

Oz Oz 
z=h o 

0}½ 2 0}½ 3 
Oz Oz 

z=H 

(15) 

Conditions 1 and 2 represent free slip boundary conditions at 
the ground and upper radiation condition, respectively, Con- 
ditions 3 and 4 express continuity of vertical velocities at both 
interface h o and H, while 5 and 6 represent the continuity of 
pressure at both h o and H. (See Appendix A for more details.) 
This method for solving (12) is similar to that used by Hayashi 
[1976], although the physical problem examined there is 
somewhat different. The final solutions, after using the six 
boundary conditions and taking the inverse Fourier trans- 
form, are 

,, ,f sinmlz } wl(x, z)= •emlsin mlho [C exp (im2ho)+ D exp (-im2ho) ] 

w2(x, z) = Real{C exp (im2z) + D exp (-im2z) 
JoG(x) sin M(z --.ho) } (16) + m2 2 -- M 2 

w3(x, z)= Real{exp [im3(z- H)][C exp (im2H) + O exp (--im2H)] } 

with 

c = 

m2 + m 3 

ß exp [im=(H- ho)]} (17) 
A=(m• 2 -- M2){(ml cos mlho-im 2 sin mlho) exp (im2ho) 

+ :z(m 1 cos mlh 0 +im 2 sin mlho) exp [im2(2H -- ho)]} 

iMQ exp (im2H) 
D = :zC exp (2im2H) + (18) 

(m 2 + m3)(m2 2-- M 2) 

Joag(a + ix) 
Q = (19) 

(a 2 q- x2)Cp•[• 2 

• = (20) 
m 2 q- m 3 

Note that the quantity :z represents the coefficient of reflec- 
tion of vertically propagating gravity waves at the interface H 
between a top layer having a vertical wave number m 3 and a 
middle layer having a vertical wave number m 2. If y is greater 
than zero (but less than 1), there is partial reflection at the 
interface z- H, which may lead to significant amplification 
(resonance). This is described in a later section. A major differ- 
ence between our model for diabatically forced circulations 
and some of the studies in the literature [e.g., Hayashi, 1976; 
Smith and Lin, 1982] is that the latter assume no vertical 
variation of the wave number m. A reflective level is thus 

absent in these studies. 

3. RESULTS FOR CONSTANT VERTICAL WAVE NUMBER 

The airflow described by solution (16) is presented below for 
constant vertical wave number (m 1 = m 2 = m3). The effects of 
vertically varying m are considered in section 6. 

To obtain physically acceptable solutions, we will include in 
all computations a compensative diabatic source to avoid the 
problem of net heating [Smith and Lin, 1982]. That is, instead 
of (11), we write 

G(x) = a 2' • x 2 ao >> a (21) a 2 7 X 2 a 0 
This ensures that the net heating at any level z is zero: 

_••G(x) dx = 0 (22) 
Including the second term in (21) results in very little change 
in the circulation near the region of interest. It is an alter- 
native to including the effects due to radiative processes or 
friction that actually occur downstream of the diabatic source. 
Failure to include such a term in (21) leads to an unbounded 
solution for the stream function at x = •, that is, in the direc- 

tion of the mean wind. A generalized discussion of this prob- 
lem, using a group velocity argument, is given by Bretherton 
[1988]. 

Figure 2 depicts the vertical motion over a strong cooling 
source (e.g., melting, evaporation) located between the ground 
and 2 km (i.e., h o -0 and H - 2 km). The maximum cooling 
occurs at z = 1 km and x- 0, with a horizontal half width 

a= 10km, anda 0- 100km. 
We see maximum positive vertical velocity just upstream 

and above the point where the maximum cooling occurs. The 
maximum downdraft occurs 4 km right above the location of 
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o' 
X • • 

Fig. 2. Vertical motion (in centimeters per second) over an elevat- 
ed heat sink centered at x = 0, z = 1 km, with depth 2 km (h o = 0, 
H- 2 km). A sinusoidal structure is assumed in the vertical, and a 
bell-shaped structure with scale a - 10 km is assumed in the horizon- 
tal. The maximum amplitude of the cooling source is -4 J kg- •' 
other parameters are [7 = 15 m s- •, m -- 0.67 km- •, and • = 273øK. 

the maximum cooling. Note that the extrema of the upward 
displacement, •,,, occurs where w = 0, as w = U 3•/(?x. There 
is thus a region of maximum upward displacement located 
just downstream of the point of maximum cooling. This 
occurs because, in the steady state, the flow adjusts itself in the 
presence of mean horizontal advection to produce a negative- 
phase relationship between the diabatic forcing and the 
upward displacement field [Raymond, 1972; Smith and Lin, 
1982]. It is worth noting that our results are in qualitative 
agreement with those of Lin and Smith [1986], who developed 
a time-dependent solution of the same problem with a slightly 

X [KM ) 

Fig. 3. Perturbation stream function (in square meters per second) 
over the elevated heat sink of Figure 2. 

1 

X [KM ) 
6'0 

Fig. 4. • Perturbation wind speed u' (in centimeters per second) over 
the elevated heat sink of Figure 2. 

different vertical structure of the diabatic forcing. Our steady 
state solution (Figure 2) gives good qualitative agreement 
when compared to their solution for large times (see Figure 9d 
of their paper). Note in Figure 2 that the phase relation be- 
tween w and J is also negative. We show in Appendix B that 
as the thermally induced Froude number tends to zero, the 
vertical motion and the heating become in phase. 

Figure 3 shows the stream function, obtained from the verti- 
cal velocity by integration 

Ud(x, z)= - fx w dx (23) 
The maximum stream function value is located at x = 0 and 

just above the cooling layer, which extends from 0 to 2 km. 
Figure 4 shows the solution for u, the wind perturbation ob- 
tained from • by differentiation with respect to z. 

u - (24) 

We see that the wind shear is maximum for slightly positive 
x values in the diabatic layer (z < H). A possible qualitative 
comparison is with the results of Stewart [1984], who noticed 
that strong wind shears exist across a melting layer. These 
wind shears may in fact be partly the result of the diabatic 
forcing. Expressions for the density perturbation are easily 
derived from the thermodynamic equation (4)' 

ß 

N 2 UlJ p o 
p(x, z) = z > H (25a) 

Ug 

p(x, z) - [7g I. [7• G(x) dx z < H (25b) 
Figure 5 shows the solution' it consists of a mesohigh in the 

downdraft region within the cooling layer (at x = 25 km, 
z = 1.2 km). Note that we may regard the solution obtained 
here as due to a steady cooling source located at x = 0, in the 
frame of reference moving at speed -U. That is, Figure 5 
might represent a leftward moving squall line with the meso- 
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o 
X (KM) 

Fig. 5. Perturbation density (10 -3 kg m -3) over the elevated heat 
sink of Figure 2. 

high behind, at x > 0. Pressure and density perturbations are 
related through the hydrostatic equation; the latter then 
implies that a mesohigh pressure area is located below the 
region of maximum density perturbation in Figure 5, near 
x- 30 km. Studies such as those of Fujita [1959], Fernandez 
[1982], Lin and Smith [1986], and others noted such meso- 
highs behind squall lines, which might be caused by melting 
and evaporation. The strong horizontal density gradient near 
x = 0 below 2 km could be associated with the gust front 
observed immediately in front of moving squall lines. 

4. SOLUTION FOR A SURFACE DIABATIC FORCING 

We now examine the effects of a stationary surface diabatic 
source such as that due to land/sea temperature contrast. We 
assume adiabatic source whose maximum strength is located 
at the surface and which decreases linearly with height to zero 
at z = h 0 (Figure 6). 

d = dogs(1 -- z/ho) z < h o 
(26) 

d=0 z>h o 

Other functions could be used to simulate the variation of 

heating in the vertical [e.g., Rotunno, 1983], but we choose 
(26) for mathematical simplicity. This simulates the vertical 
transport of heat and permits a straightforward solution of 
(12). We take for the horizontal structure of the diabatic forc- 
ing 

%(x) = 2cx cZ + Co z 
where c and c o are the scales of the heating function and 
compensative source, respectively. Notice that (27) gives a 
bounded stream function, whereas the first term of (27) alone 
does not. The boundary conditions remain as before. 

The solution of (12) for a three-layer piecewise constant 
model for the vertical wave number m, for a surface diabatic 
source with this spatial structure, is 

ff:l(k, z) = A s exp (imiz) + B s exp (--im•z) 

gJO•s(k)(1 - z/ho) 
+ z < h 0 (28) 

cpr•2ml 2 

ff'2(k, z) = (•s exp (im2z) + I• s exp (--im2z) 

with 

½3(k, z) = E s exp (im3z) 

ho <z <H 

z>H 

~ 1 [.i{j(0) exp (-im,ho)(m • + m27) ' _+_ (t3Q/t3z)] As = --• m27 sin m•h 0 + im• cos m•h 0 / 
B• = --(fi-s + {j(0)) 

~ {,•s exp (im•ho)+ B• exp (-im•ho) • Cs = 1 + • exp (i2m2)(H -'• J exp (-im2ho) (29) 
D,• = Cs• exp (2im2H) 

E s = Cs(1 + •) exp [i(m 2 -- m3)H ] 

and 

7={1--• exp [2im2(H--ho)]}/{1 +• exp [2im2(H--ho)]} (30) 

Q(0)= g JOGs(k) (31) 
cp r I•2m• 2 

•Q aJods(k) 
- (32) 

•Z hoCe•2ml 2 

ds(k ) = 2ircc{exp (-ck) - exp (-c0k)} (33) 

Gs(k) is the Fourier transform (x-• k) of (27). Analytical solu- 
tions in real space are easily obtained by taking the inverse 
Fourier transform of (28). The horizontal variation of the 
heating is illustrated in Figure 7. There is cooling for x < 0 
and warming for x > 0, which could simulate an idealized 
land/sea temperature contrast, with the coast located at x = 0. 

The result for the case where m• = m 2 = m 3 is shown in 
Figure 8' a negative phase relation is again obtained between 
heating and vertical motion. This is in agreement with Smith 
and Lin [1982], and more recently with Hsu [1987]. The latter 
also shows that as the scale of the heating increases, this nega- 

LAYER 3 

m 3 

LAYER P_ 

rn2 

h o 

LAYER I < 

m I 

///// o 

DIABATIC 

SOURCE 

- F(Z) + 

Fig. 6. Vertical structure function F(z) for the surface diabatic 
forcing. 
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HEATING RATE (I•1/KG) VS DISTANCE 

X (KM) 

Fig. 7. Horizontal structure function of an idealized surface heat- 
ing distribution simulating land/sea contrast, with cooling over land 
(x < 0) and warming over ocean (x > 0). The coastline is located at 

tive phase relation no longer holds and heating becomes posi- 
tively correlated with vertical velocity. 

Figures 9 and 10 show the associated stream function and 
the perturbation density, respectively. The maximum density 
perturbation is located where the heating changes sign. This is 
consistent with (25b) as the density perturbation is related to 
the horizontal integral of the heating profile. The second term 

o' 
x (KM) 

Fig. 8. Perturbation vertical motion (in centimeters per second) 
over surface diabatic forcing of Figure 6. The parameter values are 
rn= 1.0 km-•, c=50 km, c o=200 km, U= 15 m s-•, and •= 
273øK. 

, o o 
x (KM) 

Fig. 9. As in Figure 8, but for the stream function (in square meters 
per second). 

thus has its maximum value where G(x) changes from cooling 
to warming. Note also that the perturbation stream function is 
exactly out of phase with the perturbation density over the 
heating layer, in agreement with (25a). 

The effects of varying the vertical structure of rn will be 
discussed in section 6. 

5. A COMPARISON OF SURFACE AND ELEVATED 

DIABATIC FORCINGS 

Precipitation bands frequently occur in the presence of 
near-isothermal 0øC layers [Stewart, 1984], which suggests 
that these circulations might be associated with elevated 
melting-induced diabatic forcings. Szeto et al. [1988a], using a 
nonlinear two-dimensional numerical model, showed that or- 

o o 
X (KM) 

Fig. 10. As in Figure 8, but for the perturbation density (10 -3 kg 
m-3). 



ROBICHAUD AND LIN' MODELS OF DIABATICALLY FORCED MESOSCALE CIRCULATIONS 3419 

ganized mesoscale circulations can indeed result from this ele- 
vated diabatic forcing. A surface heat source would also be 
present, when a melting-induced circulation develops across a 
land/sea boundary, such as that associated with the Gulf 
Stream. In our linear model we may simply add the solutions 
obtained from elevated melting-induced (Wm) and surface (Ws) 
diabatic forcings to yield the total vertical motion field 

W "- W m -[- W s (34) 

with w m and w s given by (16) and (28), respectively. Although 
this linear superposition yields no additional physical insight, 
it is interesting to compare the relative magnitudes of the 
responses due to both types of diabatic forcings. The ampli- 
tude of the cooling due to melting (Jrn) may be expressed as 

LœPo 
Jm - (35) 

dm 

where Po is the rate of the background precipitation, which is 
assumed to melt over the distance dm' Lœ is the latent heat of 
fusion. The amplitude of the surface melting (Js) may be repre- 
sented as 

Ho 
J• - (36) 

poho 

where H o is the surface heat flux, assumed to be distributed 
over a vertical scale h o' Po is the air density. A typical value 
for the heat flux might be H o = 250 W m -2 over the Gulf 
Stream region, distributed over a distance h o = 500 m. Typical 
melting layer depths are d m = 500 m from both observations 
[Stewart, 1984] and modeling results [Szeto et al., 1988a]. The 
ratio Jm/Js is then unity for a precipitation rate of about 5 mm 
h-1. Thus on the mesoscale under typical conditions, melting 
may induce circulations of comparable amplitudes to those 
generated by surface diabatic sources associated with land/sea 
differences. 

The amplitude of melting-induced cooling can also be com- 
parable to that due to evaporation (Je)' The latter may be 
expressed as 

LvfPo 
Je -- (37) 

de 

where Po is the precipitation rate and f is the fraction under- 
going evaporation over the distance de; Lv is the latent heat of 
fusion. A measure of the relative cooling magnitudes of melt- 
ing to evaporation is thus the ratio 

Jm L• d e 1 
Je L•dmf 

Typical values are Lœ/L•= 1/8, dm= 500 m; Atlas et al. 
[1969], in their study of melting effects in precipitation band 
formation, give f= 0.2 for d e = 1.5 km. This ratio is then of 
order unity, suggesting that melting effects are comparable to 
evaporative cooling. 

Our simple estimates of this section thus suggest that melt- 
ing as adiabatic forcing in mesoscale systems should not be 
neglected. Both observation [Stewart, 1984] and modeling 
studies [Szeto et al., 1988a, b] suggest that melting effects 
could give rise to organized mesoscale circulations of signifi- 
cant amplitudes. In section 6 we examine the effects of varying 
vertical wave number in our linear model. In particular, we 
investigate an amplification mechanism through which the re- 
sponse to melting-induced cooling may be enhanced. 

TABLE 1. Amplitude of the Maximum Vertical Velocity Below 
the Interface z = H, as a Function of the Reflection Coefficient a 

C• Wmax, cm s -• A m3, km -• 

0 2.8 1.0 1.57 
0.1 3.1 1.1 1.28 
0.2 3.5 1.25 1.05 
0.3 4.2 1.5 0.85 
0.4 5.2 1.9 0.67 
0.5 6.5 2.3 0.50 
0.6 8.6 3.1 0.39 
0.7 12.1 4.3 0.28 
0.8 19.1 6.8 0.17 

A is the amplification factor relative to the case a = o' m3 is the 
vertical wave number in the top layer- maximum vertical velocity is 
Wmax. 

6. RESULTS FOR VARYING VERTICAL WAVE NUMBER 

AND AN AMPLIFICATION MECHANISM 

We now examine the effects of varying vertical wave 
number. In particular, we seek the possibility of perturbation 
amplification due to vertical nonuniformity. Inspection of the 
expression for the coefficient C for the vertical velocity in (17) 
shows that there are two possibilities for the denominator to 
vanish. The more obvious one has m 2 = M. The other possi- 
bility will be discussed later in this section. 

When the vertical scale of the wave in the second layer 
(•/m2) coincides with the vertical scale of the forcing (r•/M), a 
large perturbation amplitude results. If m - m• -- m 2 -- m 3 
and h o -- 0 in (17), we recover the solution presented by Hay- 
ashi [1976]. In that study, Hayashi shows that the solution 
becomes indeterminate and a bounded solution is obtained 

using l'Hospital's rule. The solution has maximum vertical 
velocity just above the level of maximum diabatic forcing; 

2'. 3 •. 4' 0 0 .0 

m• h 0 

•0 

Fig. 11. Amplitude of vertical velocity (in centimeters per second) 
in the region below z = H, as a function of the nondimensional verti- 
cal wave number of the lowest layer (m•ho), over an elevated cooling 
source. The parameter values are m•- 2.0 km -•, m•_--n/2 km -•, 
•-0.75, andH--h o-- lkm. 
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Fig. 12. Vertical velocity profiles (in centimeters per second) as a function of height for different values of the reflection 
coefficient' (a) • -- 0, (b) • = 0.4, (c) • = 0.6, and (d) • = 0.8. 

Hayashi refers to this solution as "non-singular resonance." 
However, this type of solution with a bounded maximum is 
due to the sinusoidal nature of the vertical structure function 

F(z) of the diabatic forcing and is not associated with vari- 
ation of vertical wave number with height, or with wave trap- 
ping. In Appendix C we show the solution for a nonsinusoidal 
structure function F(z), where no amplification of this type 
occurs. 

We examine instead the other possibility of "resonance," 
which is due to the presence of at least one reflective level or a 
discontinuity in the vertical wave number m. This resonance 
condition obtains when the other part of the denominator of 

C in (17) vanishes, that is, 

(m 1 cos mlh o - im 2 sin mlh0) exp (im2ho) 

+y(rnl cos rnih o +ira 2 sin rniho) exp [irn2(2H--ho)]=O 

Necessary conditions for amplification are then 

re(2q + !) re(p + 1) 

ml -- 2h• m2 = (38a) H-- h o 
or 

re(q + 1) re(2p + 1) 

m, - h• m2 = 2(H- ho) (38b) 
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Fig. 13. Soundings for temperature T, dew-point temperature T a, wind speed, and direction at Shearwater, Nova Scotia, 
February 22, 1986, at 1318 UT (GMT). 

with p, q = 0, 1, 2, 3, .--. If any of these two sets of conditions 
(38) are satisfied, the atmosphere is then tuned for maximum 
response as • varies from zero to unity, with the largest ampli- 
tude occuring at • = 1. Recall that the parameter • = (rn 2 
- rn3)/(rn • + m3) i'epresents the coefficient of reflection of ver- 

tically propagating gravity waves at the interface between two 
layers with vertical wave numbers rn: and rn3, respectively. 
These amplification conditions, derived above for a three-layer 
atmosphere, •reduce to the following for a .two-layer atmo- 
sphere: 

•(2n + 1) (39) m• = 2h ø 

with n = 0, 1, 2, ..-. This is identical to the condition for 

resonance and ducting of hydrostatic waves as found by Lind- 
zen and Tuna [1976]. This resonant condition can be easily 
understood in terms of the two-layer model: when the vertical 
wave number in the bottom layer is larger than that in the top 
layer, the coefficient of reflection is nonzero and vertically 
propagating gravity waves would be partially reflected down- 
ward at the interface H. Depending on the number of quarter 
wavelengths between the ground and the discontinuity, there 
is interference with the reflected waves, and the wave ampli- 
tude may be enhanced in the steady solution. For the three- 
layer model, two different sets of "resonance" conditions are 
possible, as shown in (38). For the zero mode (p = q = 0) reso- 
nance to occur, we need the bottom layer thickness to coin- 
cide with a quarter wavelength of the perturbation and a half 
wavelength in the middle layer. The other possibility is to 
have a half wavelength in the bottom layer and a quarter 
wavelength in the middle layer. 

In Table 1 we show the amplification of the maximum verti- 
cal velocity (Wmax) below the interface z = H for a three-layer 
mpdel, as the coefficient of reflection • varies from zero to 
unity. The amplification factor, A, is defined as the amplitude 
of"maximum response normalized by the amplitude obtained 
with •z = 0 (i.e., when rn• = m 2 = m3). Figure 11 shows the 
"resonant" amplificaiion of the vertical velocity as a function 
of the nondimensional vertical wave number of the lowest 

layer (m•ho). For an atmosphere with no wind shear,'the latter 
quantity is also the inverse thermally induced Froude number 

of the bottom layer. The peak is associated with the zero- 
mode (p = q = 0) "resonance" in (38b); the value of the reflec- 
tion coefficient is • = 0.75. The amplitude would be reduced in 
the atmosphere due to the presence of viscosity. 

Figure 12 shows the change in the vertical motion field w(x, 
z), as the reflection coefficient is varied from zero to unity. For 
• = 0, 0.4, 0.6 (Figures 12a, 12b, and 12c), the amplitude of the 
circulation is weak. The amplitude for •z- 0.8 is significantly 
enhanced. However, the limit •z = 1 is not considered here, as 
nonhydrostatic effects become important and a new discrete 
spectrum of horizontal wave numbers becomes resonant; for 
example, lee waves appear. Scorer [1949] first treated this 
problem for a vertical wave number which varies strongly 
with altitude and showed that a rapid decrease of the vertical 
wave number with height produces trapped lee waves. A1- 

VERTICAL NAVE NUNBER VS PRESSURE 
SHEARNATER FEB 22, 1318 GHT 1986 

26. o 
' i I ! i 

-3.0 O. 0 3.0 6.0 9'. 0 
2 -2 
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Fig. 14. Square of the vertical wave number (m 2) as a function of 
pressure, for the soundings of Figure 13. 
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SHEARWATER FEB 5 1956, 17:18 GMT 
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Fig. 15. As in Figure 13, but for February 5, 1986, at 1718 UT (GMT). 

though these results were originally derived for flow over to- 
pography, they also apply to flow over a heat source, as the 
governing equations are similar in both cases. We note that in 
terms of our model formulation, the hydrostatic approxi- 
mation can be expressed as [Smith, 1980] 

rnia >> 1 (40) 

where i = 1, 2, 3 is the layer index and a is a horizontal scale 
characterizing the heat source dimension. The trapped reso- 
nant horizontal waves which appear in the nonhydrostatic 
regime, as described by Scorer [1949], probably do not play a 
major role in the amplification mechanism examined in this 
study. This is supported by numerical simulations of topo- 
graphically forced flows by Durran [1986], which suggest that 
lee waves are small-scale features superposed on the forcing 
hydrostatic flow. The latter is dominant as long as the hydro- 
static condition (40) holds. When rnia approaches unity, super- 
posed lee waves would appear, but they are unlikely to quali- 
tatively change the nature of the amplification mechanism. 

We also see from Figure 12 that the isopleths in the top 
layer (z > 2.57 km) display an upstream tilt for low values of •t 
(Figures 12a and 12b), which becomes progressively vertical as 
:t tends to unity. This in turn means that the downward mo- 
mentum flux (u'w'), which depends on the vertical tilt, de- 
creases as •t approaches unity. We note that in Figure 12d the 
depth of the lower layer (h o = 1.57 km) is such that it contains 
a half wavelength of the perturbation, whereas the middle 
layer between z = 1.57 km and z = 2.57 km contains a quarter 
wavelength. This is consistent with the "resonance" conditions 
(38) discussed earlier. These conditions, derived for an elevated 
diabatic source, remain unchanged for a surface diabatic forc- 
ing. There are other physical analogues of these resonant 
modes. For example, the normal modes of a rope fixed at one 
end (z = 0) and free to move at the other end (z = ho), are 
identical to those for vertical standing gravity waves in our 
two-layer model atmosphere (i.e., equation (39)). 

Our analysis of the amplification mechanism due to partial 
reflection from the layer interface z- H is similar to the 
analysis of Klernp and Lilly [1975] of wave-induced down- 
slope winds for flow over topography. One difference is that 
the effect of the stratosphere is included in their analysis. 
However, removing the stratosphere, which is the top layer in 

their three-layer atmosphere, would still produce an amplifi- 
cation of standing vertical buoyancy waves. In this case, am- 
plification in the troposphere still results when the static sta- 
bility of the second layer is much smaller than that of the 
bottom layer. Durran [1986], in his analysis of downslope 
windstorms, also showed that a significant response in the 
troposphere is still produced without the change in static sta- 
bility at the tropopause. In our analysis, amplification is pro- 
duced by a change in static stability due to the presence of a 
near-0øC melting layer. Both the melting layer and the reflec- 
ting interface are typically located in the lower troposphere. 
The presence of a stratosphere is thus not crucial in the ampli- 
fication mechanism discussed in this study. In section 7, we 
use data obtained from Canadian Atlantic Storms Program 
(CASP) to examine the potential importance of this mecha- 
nism for precipitation enhancement. 

VERTICRL NRVE NUHBER VS PRESSURE 
SHERRNRTER 1718 GHT FEB 5 1986 

I 

i 

i 

i 

-•. o -•. o o! o •,'. o e. o sZ o 
2 

M [Z ) KM 

LR ¾ER 3 

LRTER 2 

Fig. 16. As in Figure 14, but for the soundings of Figure 15. 
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Fig. 17. 
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As in Figure 13, but for Buffalo, New York, May 13, 1984, at 1200 UT (GMT) [from Stewart and King, 1986]. 

7. DATA FROM CANADIAN ATLANTIC STORMS 
PROGRAM 

We now examine the possible application of the theory to 
the atmosphere with a melting-induced elevated diabatic forc- 
ing. We investigate two cases during CASP [Stewart et al., 
1987] and one case over southern Ontario and surrounding 
areas [Stewart and King, 1987]. Rain/snow boundaries and 
melting are present in all these cases. Two of the three cases 
are examples of deep near-0øC isothermal layers. The first case 
period occured from 0600 UT on February 22, 1986, to 0600 
UT on February 23, 1986 (CASP, IOP # 9). Dry bulb temper- 
atures were above zero at the surface after 0900 UT. Shortly 
after that time, when melting started, precipitation was en- 
hanced and heavy rain was recorded for nearly 3 consecutive 
hours (1000-1300 UT). The sounding at Shearwater, Nova 
Scotia (Figure 13) shows a deep near-0øC isothermal layer 
below 760 mbar. A nearly conditionally unstable layer caps 
the melting layer. 

To calculate the structure of the vertical wave number the 

sounding can be divided into three layers. The top layer has a 
temperature profile, which is close to the moist adiabatic lapse 
rate, and a wind profile, which has a positive curvature 
(•20/•Z2 2> 0). This yields a small value for m3, according to 
(6). The middle layer is the melting layer located between 
about 760 and 850 mbar and shows little curvature of the 

wind profile (•20/•22 • 0). The resulting m 2 value is large 
because of relative stronger static stability. Finally, the third 
layer lies below 850 mbar, but no attempt was made to com- 
pute the vertical wave number because of the strong direc- 
tional change of the wind speed. Both m 2 and m 3 are calcu- 
lated using (6). Compressibility and moisture effects have been 
included in the calculation of the static stability for a moist 
atmosphere (N•), using the following expression from Lalas 
and Einaudi [ 1974]: 

Nw2= _g( 1 dPmø c5 ) ZZZ + (41) 

where Pmo "Po -t- Pwv is the total air density including both 
dry air (Po) and water vapor (Pwv); c,• is the speed of sound in 
a moist atmosphere. Equation (41) gives a more accurate rep- 
resentation of the static stability when the latter is close to 
moist adiabatic. The value of m was calculated at every 25- 

mbar interval, using (6) and (41); a smoothing 1-2-1 operator 
was also applied. The sounding for the first case period 
(Shearwater, February 22, 1986) and the resulting structure of 
the computed vertical wave number are shown in Figures 13 
and 14, respectively. The corresponding quantities for the 
second case period during CASP (Shearwater, February 5, 
1986, 1718 UT, CASP IOP #6) are shown in Figures 15 and 
16. There is again a near-0øC isothermal layer, occuring be- 
tween 800 and 975 mbar. The results for the final case are 

shown in Figures 17 and 18. This case (Buffalo, December 6, 
1983, 1200 UT) is taken from Stewart and King [1986], and is 
again characterized by melting. A summary of the results for 
the three cases, showing the average values of m 2 and m 3 
computed from the soundings, as well as the corresponding 
values required for resonant amplification, is contained in 
Table 2. The comparison shows that an enhanced response 
due to a discontinuity in the vertical wave number is quite 

VERTICAL NAVE NUMBER VS PRESSURE 
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As in Figure 14, but for the soundings of Figure 17. 



3424 ROBICHAUD AND LIN' MODELS OF DIABATICALLY FORCED MESOSCALE CIRCULATIONS 

TABLE 2. Results of Case Studies Compared to Theory 

Computed From Sounding 
Obtained 

From Theory 

Case Date Location m2(H-ho) m 2 m 3 a m2(H-h o) 

CASP IOP Feb. 22, 1986 Shearwater, Nova 1.72 1.87 0.02 0.98 •r/2 
# 9 Scotia (p=0) 

CASP IOP Feb. 5, 1986 Shearwater, Nova 3.38* 4.93* 0.54 0.80 •r 
# 6 Scotia (p=0) 

SRN Ontario Dec. 6, 1983 southern Ontario 2.6* 3.67* 0.55 0.74 •r 
(1200 UT) (p-0) 

*Values calculated using winds with rapidly changing direction in the vertical in layer 2; these results 
may thus be only qualitative. 

possible. This discontinuity results from the large chahge in 
static stability due to the presence of a near-0øC isothermal 
layer. This is an important result, because melting plays an 
important role in the formation of deep 0øC isothermal layers 
and other mesoscale circulations [Stewart, 1984; Szeto et al., 
1988b]. Thus the amplification mechanism identified in this 
study is potentially an important feedback mechanism in pre- 
cipitation enhancement associated with melting. 

8. CONCLUSIONS 

In this paper we have derived analytic solutions describing 
the nature of two-dimensional airflow over diabatic sources. 

In particular, we examine the response to elevated cooling 
sources due to melting. The latter frequently produces an iso- 
thermal layer capped by another layer of significantly weaker 
static stability, resulting in a strong variation in the vertical of 
the vertical wave number re(z). This variation is known to be 
important for airflow over topography. 

A piecewise uniform model for re(z) is used here to examine 
the effects of partial reflections from a layer interface. The 
results show that an amplification of the response due to dia- 
batic sources may be obtained. An analysis of CASP sounding 
data associated with melting shows that a two- or three-layer 
model is useful in investigating this amplification mechanism. 
This resonance mechanism is potentially important for pre- 
cipitation enhancement in melting-induced mesoscale circu- 
lations. 

We also show that the resonance conditions for a surface 

diabatic source are similar to those for an elevated source' this 
means simultaneous resonance is possible. This would be im- 
portant when the combined effects of surface and elevated 
diabatic forcings are Considered' the former might be associ- 
ated with heating over the Gulf Stream regions, and the latter 
due to melting. In linear theory the combined response is 
simply the sum of the responses due to the individual diabatic 
sources. A more sophisticated nonlinear model could signifi- 
cantly modify the linear response. Durran [1986] has shown 
that linear theory may not provide an accurate representation 
of the nonlinear response in the simulation of mountain waves 
in multilayer atmospheres. The prescribed diabatic forcings 
used in our study also do not allow feedbacks between the 
forced mesoscale circulations and the precipitating system. A 
coupled dynamical-microphysical numerical model is needed 
to further explore this important aspe:ct. 

The analytical solutions derived in our study are useful in 
identifying and clarifying dynamical mechanisms' they may 
also be used to verify the results from more sophisticated 
models. The results from our simple model demonstrate •he 
effects of vertical variation of re(z) associated with melting' a 

potentially important amplification mechanism is also identi- 
fied. Our results thus provide strong motivation for further 
numerical experiments to study melting induced mesoscale 
circulation. 

APPENDIX A 

The pressure must be continuous across the interface be- 
tween layers i and i + 1. 

Pi' = Pi+ 1' (A1) 

Integrating (1) with respect to x and using (3), gives 

-; f •w' dU p' = ,OoU •- dx - ,o o • w' dx (A2) 

Using (A 1) and (A2), we obtain 

Ui •w•' dU• a x - w , ' a x 

-- • •Wi+'11 dx -- Ui+ 1 82 dUi+ I ' dx (A3) -; Wi+ l 

Differentiating with respect to x and using the continuity con- 
ditions Ui = U•+i and w•--wi+ 1 at the interface z = h0 or 
z = H lead to the following interface condition' 

i•W i' i•Wi+' l•d__Ui •Z -- •Z 1 'q'- • L MZ d-•• w,' (A4) 
If we neglect the discontinuity of the basic wind shear across 
the interface, we obtain the following condition at the inter- 
faces z = ho, H. 

•Wi' •Wi + 1' 
- (AS) 

c•z •z 

which equals conditions 5 and 6 (equation (15)) in the text. 
Note that (A5) represents the continuity of pressure when 
there is no discontinuity in wind shear across the interface. 

APPENDIX B 

The scaling of the first term on the left-hand side of (8) is 
W/D 2, where D is the vertical scale of the heating. The first 
term can thus be neglected compared to the second, if 

1 

D • << m 2 
that is, when the thermally induced Froude number (Fr) is 



ROBICHAUD AND LIN' MODELS OF DIABATICALLY FORCED MESOSCALE CIRCULATIONS 3425 

much smaller than unity. 

1 U 
FF - - << 1 

mD ND 

When this condition holds, we have a positive phase re- 
lationship between the vertical velocity (w) and diabatic forc- 
ing (J). This result can also be obtained by setting U = 0 in 
(4). Conversely, when Fr >> 1, (8) reduces to 

632w gJoG(x)F(z) 
•Z 2 Cp•[• 2 

Assuming a sinusoidal structure for F(z), we obtain the result 
that the vertical velocity is exactly out of phase with the heat- 
ing. 

APPENDIX C 

We derive here the solution for flow over an elevated heat 

source having the following vertical profile 

F(z) = 1 z H-- d/2 < z < z H + d/2 

F(z) = 0 otherwise 

The elevated source is centered at z = z H and has a depth d. 
The Green's function method is more appropriate here for the 
given function F(z). We seek the solution for a two-layer 
model for m. When z H + d/2 < h o, with h 0 being the height of 
the discontinuity of m, the solution for the vertical velocity is 

2AA 
w(x, z)= {a[(1 +•2) cos mlZu+20• COS ml(Zu--2ho) ] 

ml 

+X(CZ2-- 1) sin mlZH} sin mlz sin mid/2 Z<ZH--d/2 

AA 
w(x, z)- {a[(1 + •2) cos m•z + 2• cos m•(z -- 2ho) ] 

ml 

-x(1 - •2) sin mlz } {cos ml(z H -- d/2) - cos mlz } 

AA sin 
+ {a[(1 + •2)(sin ml(z H q- d/2) - sin mlz ) 

ml 

+ 2•(sin m•(z H + d/2 - 2ho)- sin ml(z -- 2ho))-I 

d d 

+x[(•2-1)(cos mlz-cos mt(ZH+d/2))] } ZH--•<Z<ZH+• 

w(x, z)= 
2AA 

m 1 
[a[(1 + cz 2) cos mlz + 2y cos ml(z- 2ho)-I 

sin mlz } sin mlz u sin mid/2 zu+d/2 <z_<h o 

,v(x, z)=- 

with 

2AA 

m 1 
[a[(:z + 1) cos (mlh 0 -- m2h 0 + m2z ) 

+ •z(cx + 1) cos (m lh 0 + m2h 0 -- m2z)] 

--x[(• + 1) sin (mlh 0 -- m2h 0 q- m2z ) 

+•(• + 1) sin (m2z -- mlh 0 -- m2ho)]} 

.sin mlz n sin mid/2 z > h o 

AA Qøag ml 
Cp•2ml(1 + •2 + 2• cos 2mlho)(a 2 + x 2) ml +m2 

It is easy to show that the denominator of AA goes to zero 
when cz = 1 and when 2mlh o = rc(2n + 1). This is the condition 

already found in section 6 for a two-layer atmosphere. Notice, 
however, that "non-singular resonance" is not present here, 
because the function F(z) used earlier is nonsinusoidal. If the 
diabatic source is located in the top layer (z n - d/2 > ho), the 
resonance condition remains unchanged. 

NOTATION 

a half width of heating source profile. 
a o scale of compensative diabatic source. 
,4 amplification factor. 
c horizontal scale of surface diabatic forcing. 

C, specific heat capacity of air. 
c o horizontal scale of compensative diabatic forcing. 
c,, speed of sound in moist atmosphere. 
d e distance over which evaporation occurs. 
d m distance over which melting occurs. 

F(z) vertical structure function for heating. 
G(x) horizontal structure function for elevated heat 

source. 

Gs(x) horizontal structure function for surface heat 
source. 

g gravitational acceleration. 
H height at the top of middle layer. 
h o height at the top of first layer. 

H o heat flux. 
J heating rate. 
k horizontal wave number. 

L s latent heat of fusion. 
m vertical wave number. 

M vertical scale of elevated heat source. 

N,,, Brunt-Vfiisfilfi frequency in moist atmosphere. 
Po precipitation rate. 

p', p pressure perturbation. 
Jo amplitude of heating rate. 
T temperature of basic state. 

_ 

u 

W', W 

X, y, Z 

p',p 
Po 

Pi 

IO mo 

1014,t, 

wind perturbation. 
mean basic wind. 

perturbation vertical velocity. 
spatial coordinates. 
coefficient of reflection of internal gravity waves. 
perturbation density. 
air density of basic state. 
density of ice. 
air density in moist atmosphere. 
density of water vapor. 
stream function. 

streamline displacement. 
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