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AVANT~PROPOS

Quand la vitesse d'écoulement & l'intérieur d'une
‘enveloppe cylindrique & base circﬁlaire, dont les extrémités
sonf encastrées ou libres, atteint une certaine wvaleur
critique, lienveloppe se met & vibrer spontanément et présente
une forme correspondant a4 un second mode circonférenﬁiel
de vibration.

Cette thése décrit ce phénoméne,'apparémment
nouveau, et propose une étude théorique. Bien que les vibra-
tions observées soient typiquement non-linéaires, une théorie
linéaire prédit de fagon satisfaisante le comportemerit du
syst@me, pour des vitesses d'écoulement inférieures ou
égales & celle du seuil 4'instabilité. Le modé&le mathéma-
tique est basé d'une part sur les équations de voiles minces
de Flagge, permettant la description des mouvements de
1'enveloppe, d'autre part éur une théorie classique d'écoule-
ﬁént 3 potentiel de vitesse pour tenir compte du couplage
avec les forces d'origine hydrodynamique. .

Cette théorie prédit 1l'existence de flambage et
de vibrations dues & un couplage de modes, dans le cas d'une
enveloppe encastrée a ses deux extremités; dans le cas d'une .
enveloppe encastrée-libre, des Vibfations spontanées
apparaissent. La théorie et l'expérience sont en accord

qualitatif et quantitatif.



ABSTRACT

When the flow velocity in a circular cylindrical
shell-— either cantilevered or with both ends clamped -
exceeds a certain critical value, flutter of the shell in
its second éircumferential mode develops spontaneously.

This thesis describes this phenomenon, which is
believed to be new, and presénts a theory used for its study.
Although the observed flutter is basically non-linear, a
linear theory provides an adequate description of the behaviour
of the system, to flow velocities up to and including the .
instability threshold. The mathematical model is based on
Fl&gge's shell equations for the descripfion of shell motion
and a classical, potential-flow theory to account for the
coupled hydrodynamic forces.

This theory predicts the existence of buckling
instability and coupled-mode flutter in the case of clamped-
clamped shells; for cantilevers, self-excited vibrations
are predicted. Theory and experiment are both in gualitative

and gquantitative agreement.
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CHAPTER I

INTRODUCTION

The following study is concerned with the flutter
of cylindrical shells containing flowing fluid. This
phenomenon was accidentally discovered, in March 1969, by
Dr. Paidoussis, who was performing experiments on lateral

oscillations of tubular cantilevers conveying fluid.

This problem of lateral oscillations of flexible
tubes conveying fluid is as follows: when the velocity of
£fluid flow in a tube, clamped at the upstream end and free
at the other, is increased beyond a certain critical wvalue,
the system becomes unstable and small random perturbations
grow into lateral oscillations of large amplitude.

This problem has received considerable attention
in the past. In 1953, the Danish scientist, Niordson(l),
investigated the vibrations of such a system, his aim being
' td estimate the natural frequencies of large steel tubes
conveying water from the Aswan Dam to the power plant. He
concluded that the naﬁural frequencies of bending vibrations
always decrease with flow velocity and that there exists

a critical velocity corresponding to a buckling form of

instability. (Buckling means large deflection of the tube,

without oscillation.)



In 1961, Dr. T.B. Benjamin(z), studying
articulated pipe systems conveying fluid, was the first
to report on the phenomenon of unstable oscillations,
which is possible when such systems ﬁossess one free end.
His analysis, dealing only with a small number of degrees
of freedom,.was extended to continuously flexible pipes

3)

by Dr. M.P. Paidoussis( .who established conditions.of

stability for a cantilever pipe constrained to move in a

horizontal plane.

The phenomenon of flutter'was observed from the
study of such lateral oscillations. ‘it occurred in the
following way:

Consider a flexible rubber tube, clamped at one
end and free at the other conveying air. If the velocity
of air flow is increased, the tube will become unstable
and oscillate laterally. If the velocity is increased
further, all of a sudden the tube will vibrate in what
appears to be a shell-type vibration. These.particular
vibrations are no longer lateral oscillations of the tube,.
but pefiodic deformations of the cross~section of the tube,
superposed on the flexural instability. With shorter
cantilevers, which are free of flexural instabilities up
to high flow velocities, these shell-type vibrations can

develop while the cantilever is still straighf and stable



in flexure.

The characteristic features of‘this flutter
phenomenon are the following:

' 1. Inception - the vibrations may develop
spbntaneously if the flow velocity is increased beyond
a certain critical value; otherwise, they may be induced
by pinching or disturbing the tube, in which case they
occur in a range of flow velocities below the critical
and persist to considerably lower flow velocities.

2. shape - when vibrating, the free end cross-
section presents a shape_corresﬁonding to the second
circumferential mode of the shell with no flow. At low
" flow velocities, this shape is regular (see photographs
- of a silastic.clamped—free tube) , whereas at higher flow
velocitiés, it becomes rather wobbly. The amplitude
is quite large and in the ensuing limit-cycle, the tube
opening at the free end closes almost completely at the
extremes of the cycle, the lips deforming alternately
inward and outward.

3. Location - the vibrations are concentrated
near the free end and do not extend beyond a few diameters
from it.

4. . Frequency - the frequency of vibration
ranges‘between 100 Hz and 800 Hz, producing a shrill sound

which can be recorded with a microphone (see experimental



sound frequencies resultS).

5. Velocity - the critical velocities of air
flow range between 30 ft/sec. and 100 ft/sec. for the tubes
used, and the outlet pressure is the atmospheric pressure.
The air flow is a fully-developed turbulent one, the
Reynolds number being generally of order 104.

- This phenomenon ﬁas thus been observed.with a
cantilever discharging air. Subsequent experiments indicated
that it also occurs when both ends of the tube are clamped, -
and here again, as in the clampéd-free case; the visible
deformations are concentrated near the downstream end of
the tube. This phenomenon does not seem to occur with water.
Experiments were carried out with water; lateral oscillations

were observed, but flutter did not happen.

The problem of unstable oscillatidns of flexible
tubes exposed to either an internal or an external inviscid
flow has received considerable attention in the past. The
flutter and aeroelastic stability of cylindrical shells in
the stream of an inviscid fluid has also been considered

by several authors inclﬁding_V.V. Bolotin(4), J.W. Miles(s),

. E.H. Dowell(s) and E.P. Kudryavtsev(7). Bolotin has studied
the case of an infinitely long cylindrical shell, using
potential flow theory. Although the equations are derived

for various types of compressible gas flow (external and



internal, subsonic or supersonic),‘ﬁhe applications are
limited to external, supersonic flow. Miles has examined
the supersonic flutter using Timoshenko's(s) shell
equations. Dowell has considered bofh subsonic and
supersonic flutter of infinitely long shells and discussed
' qualitatively the case of a shell of finite length; for
this latter case, he has indicated that aerodynamic buckling
wiil be the most important type of instability for external
subsonic flow. Finally, Kudryavtsev has studied the
flutter of elastic cylindrical co-axial shells of infinite
length between which flows a compressible fluid, giving,‘
as an example, some results in the cése of an absolﬁtely.
rigid outer shell.
It seems, therefore, at least to the author's

knowledge, that the flutter in the case of internal,

subsonic flow in a cylihdrical shell of finite length has
not been reported and studied so far. It is the aim of
this research'to describe andbexplain this apparently new

phenomenon.

N



CHAPTER II

PROBLEM FORMULATION

2.1 The Physical System

Before an analytical study can bhe attempted,
a mathematical model encompassing the major physical
characteristics of the system must be constructed. The
physical sysﬁem under consideration here consists of a
flexible cylindrical tube and a subsonic air flow. The
operative forces belong to the following three classes: .
i) inertial forces; |
ii) elastic forces:;
iii) aerodynamic forces.

The aerodynamic forces are not simply fixed driving forces

which excite the elastic structure, but are directly
affected by the elastic displacements. Therefore, the
phenomenon under study takes on the specific features of
an aeroelastic phenomenon, which justifies the name
"flutter" given to it.

Two major characteristics of the physical system
are:

i) non-linearity,

ii) coupling.

The system is non-linear because the vibrations have a

large amplitude. Therefore, the equations governing the



vibrations of the shell are non-linear, as well as tﬁe
fluid equations. There exists a coupling between the~
£luid and the tubé. When the tube vibrateé it deforms
and thus influences the flow of the fluid. Reciprocally,

the fluid acts through its pressure on the wall and

influences the vibrations of the tube.

2.2 The Mathematical Model

Based on the physical characteristics of the
system, a mathematical model may now be constructed.
Although this model should encompass all of the physical
characteristics of the phenomenon, the complexity of the
system necessitaﬁes some simplification, which of course,
should.be.consistent with the physical situation.

The principal difficulty arises from the
hon-lineérity of the system. To study the finite deflections
of the tube, only a non-linear theory is applicable. Such
theories exist, but they are not reliable as little
attention has been devoted to them until recently, and
moreover they involve complicated equations which can only
be solved in simple cases. Therefore, it is cliear that
some drastic simplification has to be made.

The important characteristics of the mathematical
model will be taken as follows:

1. We shall consider the limiting case of small

vibrations. This means that we shall be able to describe




the behaviour of the system up to and iﬁcluding the
threshold of instability. This siﬁplification has been
used to determine the conditions of stability in the
case of lateral oscillations of cylindrical tubes
conveying fluid, and has proven capable of predicting the
onset of instability fairly well. The important
consequences of this simplification are the following: _
i) a linear shell theory will be used;

ii) the boundary'conditions will be taken on
the wallé of the tube considered to be in
an undeformed state;

iii) the tube walls will be considered to be
purely elastic with constant elastic properties

(Hooke's law).

2. We shall consider the air flow as a potential
and incompressible flow. This means the £fluid is:
i) non-viscous,
ii) non-heat-conducting,
iii) incompressible.
We assume the laminar sub-layer to be of negligible
importance. These assumptions of course, neglect certain
physical effects, in particular possible secondary flows
at the outlet in the case of a clamped-free tube, but it

is felt that the model retains the essential physical



characteristics of the system and that neglected effects

are secondary in importance.



CHAPTER III

BASIC EQUATIONS AND BOUNDARY CONDITIONS

The basic characteristics of the mathematical

model having been described, the present chapter proceeds

as follows:

First, the fundamental equations of cylindrical

shells are derived. This is followed by the determination

of the natural frequencies of cylindrical shells with ends

either clamped or free. The effects of fluid flow inside

the tube are then introduced, followed by the general

solution corresponding to vibrations with flow.

’

3.1 Fundamental Equations of Cylindrical Shells

The fundamental equations of cylindrical shells

" are derived in three steps, as follows:

i)

ii)

iii)

the equations of motion are obtained from a
balance of the forces acting on some
fundamental element of the medium considered;
the strain-displacement relations are obtained
from a geometrical consideration of the
process of deformation;

the stress-strain relations are provided by

the law of elasticity (Hooke's law).
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The solution of problems in the three~
dimensional theory of elasticity invol&es serious
complications; thﬁs simplifying assumptioné consistené
‘'with the behaviour of shells are needed. The basic
assumptioné_of the classical tﬁeory Were proposed by
Love(gl i 1888. They are the following:

1. The thickness of the shell is small compared
with the least radius of curvature of the reference surface;

2. The strains and displacements are small,
so that the quantities of second and higher-order magnitudes
may be neglected in comparison with first-order terms in
the strain—displacement relations: .

3. The component of stress normal to the
reference surface is small compared with other normal
components of stress;

4, The normals to the undeformed reference
surface remain normal to the deformed reference surface
and undergo no extension.

The first assumption is the basic postuléte of the theory.
The second assumption, together with Hooke's law, ensures
the linearity of the resulting differential equations. The
third and fourth assumptions imply the neglect of transverse
normal stress and transverse shear deformation. The

classical theory cf shells (Love's first approximation) is

based on these four assumptions.
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Several additional theories have been proposed,
in which these basic assumptions are partially or
completely modified. A theory which retains second-ofder
" terms as compared to unity in the stress resultants and
strain-displacements relations, was derived by Flﬂgge(lo),
Lur'e and Byrne. This improved form of Lewve's £ixst .-
approximation theory has the advantage of removing an
inconsistencyqof the former; this inconsistency is that,
except for the special cases of a spherical shell, a flat
plate or a symmetrically loaded shell of revolution, the
strains do not all vanish for small rigid-body motions
of the shell (see Appendix A). Thisvis the theory we shall
use in our analysié.

In the case of a cylindrical shell, the fundamental
equations of this theory may be reduced to three coupled
linear differential equations relating the three components
of the displacement vector, and forming a system of the
eighth order; therefore, the  solution will have sufficient
arbitrariness to satisfy eight boundary conditions.

Because of the cylindrical nature of the system,
a cylindrical polar coordinate system (r,0,x) will be
employed, the origin being taken on the tube axis in the
flow inlet cross-section. The shell is allowed radial,
longitudinal and circumferential displacements (w,u and v

respectively, w being positive outward); its physical
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properties are defined by the density pg, Young's
modulus E and Poisson's ratio v. The equations of motion

of the shell walls may then be written: , )

" .o m
Wy =Y 1+ D+ ""’ ] -—-LL
> W+ > \I + R 2. w ‘3
| 7] /4 }?‘gkr
42wl 22 vl W 3 (-)v- 32 w] =Y &=
D vy S v Wi k| 5(0-2) > e

vd+v’+w+h{l:2%’ Wl W a2 -2 "y gho 205k w

L___..J
i
<
&

where the thickness h and radius a of the shell are contained

-2
in the coefficients k = h2/12a2 and y = azps lﬁﬁ_ . The
symbols (=)' and (-)° are used for a é ) and Eégl,
respectively.

The boundary conditions are specified on the edges.

If the edge is clamped, we may specify that there is neither
displacement ﬁor rotation:

W=V =W =0 ; Pwfox =0
In the case of a free edge, forces and moments may be
arbitrarily given. But they are five, Ny, Ngyg, My, Mg
and Q, whereas we have only four constants of integration.
It is usual to replace them by four essential forces and
moments which are:

i) the normal force N, = 0

ii) the bending moment M, = 0, and

iii) ZXirchoff's effective shearing stress resultants
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= Q 12 =

T =Nyg— -‘%-‘?.‘_9. =0

showing the twisting moment M, g to be statiqally equivalent
to a tangential shearing force - Mg& and'a normal shearing
force %_ﬁ%gﬁ . These two relations may be obtained either
by Hamilton's principle or by geometrical considerations.

As the equations of motion relate the three
displacement vector components, u, v and w, the boundary
conditions must also be expressed in terms of these components;
this can be done using the following relations:

- ]
wWiravrow) - K w
a_s

2
®
]
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~
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R
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{
F
§
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el
<
<D

| =‘7:5_(w-\-w"+vw")

Mex = 5 (-l -5 M= X (-0 W™= v')

Qx = L (MawMe) 5 Qp=L (Mo +Mxe)
where D =E\'\/\-y?' and K = E.hs/)z G-v%)

3.2 Natural Frequencies of Clamped-Clamped or Clamped-

Free Circular Cylindrical Shells

Free vibrations are time-dependent vibratory motions
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set up in the absence of external loads. The free
vibration analysis thus deals with a homogeneous system
of.pa_rtial differential equations with homogeneous boundary
conditions. Thes.e equations and boundary conditions may
be written in the symbolic form

L(uo,w) =V %“/at"

Lo (w,v,w) =V Svfp-

Ly (w,v,w) =Y Fw/y™

and :

EBU(LL,‘\J"(J) =0 s v = i,2,...,8
where the ,C.; and 53._-' are differential operators. We may
assume that space and .time variables are separable and

that the displacements may be expressed in the form
w(@,5,t) = We(O,%) et
o (8,x%x,t) = W (e,x),e,““’t
w (8,%,t) = w, (S,x) E.Lwt

The system now becomes

L, (wo,vo,w0) + W o =0

Ly (o, V0, w) + Y0 Vo =0

L3 (o, Vo, w5) + ¥ ™ wo

and
By (wo,ve,w00) =0 ; v =1,2,...,8

and defines a boundary-value problem where the natural

Ji
o}

frequencies are the eigenvalues and the normal modes of

free vibration are the eigenfunctions of the problem.



The vibrations of a circular cylindrical shell
may involve any number, n, of waves distributed around
thé circumference and any number of waves distributed
along the length of a generator. The number of axial
waves depends upon the end conditions of the cylinder; we
shall denote by m the number of axial half-waves.

In the case of homogeneous boundary conditions,

the modal frequency will be a function of a single value of

n, and a general solution may be written in the following

form:

w =

Me

i

A; exp Ea ()\3?&% +'ne+w‘t)]

L.
i

G
: M""

BJ QXF u (/\ =+ Mo + wt_)_j
{ \ |

C exp z,()\ +—ne+wt)

4
w =

amm

Substitutlon of these expressions into the homogeneous
differential equations leads to the following eighth-order

characterlstlc equatlon for A

e J'T”. (H-k)—_D. l-\:’ /\-n /\E)HQ.()\- n")]

+2 A-n 'n + .|_.... /\ (\+3k}‘-ﬂ. m 4 -—/\'Ylh

2. 2

A fU +k().\2-- =Y n’-)] M+ -———- )\ m h 1+ h&/\z-fh" ?; 27)14'9“_(12-

and two relatlons defining A and B, as functions of C

Aj = % ¢ ' ﬁs X

j:
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. ( ) _L‘*i‘:zl /\.n ('n-]- é%.?_}, )\z‘nh) .\ [fn?-';- '_‘?_-_7{Az(l+ 3h>—_ﬂ}][»+h(l\2:- '_‘2_?1\7-7
3 =Qv =
o 2 iy~ [ B Grany - ] (B A

B ooy L X B2 2 [ 1 k)] 22
D Ry ) 12 (o -0°] - (A

where

ﬂz=)’w?- = Q?'es "évq—a)z'

Also, substitution of the assumed solutions
into the homogeneous boundary conditions results in eight
homogeneous equations in the eight unknown C.; for non-
trivial solution of these equations, the determinant of
their coefficienté must vanish, and this yields the
frequency equation (see Appendix B).

It does not appear feasible to seek analytical
expressions for the quantities Xj. Therefore, at this
point in the analysis, a numerical evaluation of the
solution is introduced. We now select a given shell
(i.e. a, h, &, E, v, pg are now known), é number of
circumferential waves, n, and a set of béundary conditions

- at each end. The method of solution proceeds as follows:

1. An initial estimate for the frequency y is
taken and upon substitution info the characteristic
equation the eight characteristic roots Xj (i = 1,2,...,8)
are obtained;

2. The assumed frequency w and the characteristic

roots Aj are substituted into the frequency equation;
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3. If the fréquency equation is noﬁ satisfied,
the trial value of‘the frequency w is Véried in a
systematic way and the procedure is repeated until the -
frequency equation is satisfied.

For a given wéve pattern (fixed numbers of axial
half—waveé, m, and circumferential waves, n) there exist
three natural frequencies, corresponding to different
amplitude ratios. The lowest vélue of w. which corresponds

to predominantly transverse motion of the cylindrical shell,'
(11)

is of greatest interest in our analysis (cf. Kraus p.307).

It should also be noted that the number of axial
half-waves, m, cannot be specified in advance; thus, it is de-
sirable to determine the modal shavelas well asither freguency in
each case, since there is an infinite number.of frequencies
for any fixed value of n.

The theoretical results of this analysis will

be presented and compared with experimental results in

the following chapter,.

3.3 . Influence of Fluid Flow

(a) Pressurization and curvature effects

The influence of fluid flow manifests itself -
through forces acting upon the inner surface of the shell.
These surface loadings per unit area of the reference

surface are the longitudinal shear stress g, due to viscous



drag, and Pyr the stress due to internal pressure. We
shall also take into account the effect of changes of _
curvature.

Since we are interested in small perturbations
of the shell from its static equilibrium position, we may
write the forces and displacements in terms of a steady-
state component denoted by the subscript '0' and a small
time-~varying ¢omponent denoted by the subscript '1°'.

That is:

W=Ww, ; V=7 3 W= Wo + Wy

h = FB*'F|

Nae = Nyo+ Nxgy 5 N9=N80+N91' e 0

L

where the fact that u, = vy = 0 has been utilized. The
pressure po is measured with respect to the atmospheric
pressure.

Upon substituting these quantities in the
equations and separating zeroth order terms and first
order terms, we obtain the following differential equations
relating the time-varying displacements g, Vv and w

1 1
(see Appendix C).

2
17} - ALY Je / 1-¥ .o n -y Jes y . ¥ 2w

2 ot



_'i_?iu_,. .o ~2) [/} - [ _3- _ ". é:z wllo U ‘au"l
5 |+U"+.L2.-_'U’|+UJ, +R 2.<l 8)\7. 2. ! +‘8x ! Y rat‘)_

) . ) ife ) .e
Yu, o +wi+k ':5_3). wy - w, - 32 m+vqw,+2w,+w]

L X ] - l
=8y (wirw)) - T wy - a P =-Y '_a_“l'?_
2t
where
- —y* -2
Z'e'lhuNeo Zz=lez Nao 3P=Eha'l
The quantltles ZB and Zxare defined by the steady state
equatlons
= qx(q-' x)
and '

Neo = CLF;C!)
The pressure distribution is found by considering the.

condition of equilibrium between the shearing stress

resultant and the pressure forces

e A Q,

Upon integration, and since the outlet pressure is zero,
we obtain the pressure of the fluid acting on the shell

as a function of the x-coordinate.

% = :qu_ -2
R e (L-2)

We may estimate the viscous shear stress by considering

a fully-developed turbulent flow in a pipe. For air flow

at 60 feet per second in a .618 in, diameter pipe, the flow
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Reynolds number is

rY) 6 xiol %2

so that the boundary layer 'is turbulent. Using experimental
data (cf.:Schlichting(;z))¢~we find dy of the order of

2

2.6 x10™“ psi, Thus for a rubber pipe with characteristics

Y= 050 and E =130 psv

@ and 7{9 are of the order of lorsor less. We may,
therefore, neglect the quantities Zx_and-Zb except in the
last equation. At this stage, it is iméortaht to note
that the steady state tensile férces Nxo and Neo are
functions of the x—coordinate.' This means we have
dntroduced non-constant coefficients in the last differential
eqguation, so that supplementary simplification must later

be made, if the method of solution outlined in §3,2 is to

be used.
(b) Eguations of fluid flow

We must now determine the time-dependent pressure
exerted by the fluid on the shell and, therefore, solve
the equations of fluid flow. As stated previously, we
consider the fluid to be incompressible and the flow to be

irrotational so that it may be described by the potential

eguation: vzq) =0



where Y is the velocity potential. The pressure p is
given by Bernoulll 's equation.

Again we introduce steady-state and time-
varying components

Y = U

b = FB *'h

Vx,= L *'?ﬁf

Vo = L 2%
Y 20

Va = 29
(<2 W

Here ¢ is the perturbed potential and U is the free
stream vélocity in the axial direction under steady
conditions. The boundary conditions at the wall of the
shell require the matching of the radial velocities of
the shell and the fluid.

Assuming a separable solution of the form
b (0,0,25) = RE) exp (6 (A E +morat))
the solution may be expressed in terms of the modified
Bessel function of the first kind, I, and the displacement

w (see Appendix C); the preésure, Py is given by

v YR
- Pa | :2_.+ L).EL wr
P M+ A Enn ) 2t e
In (A

A further refinement involves taking into account the

vibrations of the fluid (generally air) surrounding the
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shell; this introduces an additional term involving the
modified Bessel function of the second kind, K, and the

displacement w, as follows:

+ Goxt. O é—_"_"_
- Kan(d i

KaX)
We shall show later that the influence of the fluid
surrounding the shell is negligible in comparison with
that of the fluid flowing inside the shell.
Before 1ooking for a solution of the system of
differential equations, it is of interest to examine the

new terms introduced in the eguations through the pressure

term

A I | S 2
Fl —_— PQ— K +2U dWwr +U‘2. . X2

I

The first term may be identified with the inertia of the
e
M+ A__][n-n(h)

' . . L vy CAY .
role of a virtual mass per unit surface area for the fluid

fluid in the tube:; the factor

then plays the

and is a function of the circumferential wave number, n,

and the wave length, A. I%_this term is combined with
[¥> 4

the inertia of the tube ? %tz , @ virtual mass may be

defined for the fluid-shell system. The third term,

involving the second derivative of w with respect to x is
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the centrifugal pressure of the moving_fluid. It will
tend to increase the curvature of the shell and therefore
corresponds to a.disturbing force. The miadle term,
involving the second derivative of w with respect to both
x and t, may be identified witﬁ the Coriolis force of the
moving fluid; it is due.to the rotation of the shell and

tends to oppose its movement.

3.4 General solution

Let us now write the equations of motion, in
non-dimensional form and includig the terms involving
the pressure and ﬁhe static tensile forces. We empley
as the reference for length the radius a, for velocity
[E / ?S (-2 )] and for time O.[P Q vz)/E] Hence we
introduce the non-dimensional barred quantltles defined

as follows:

= W .s_.g_w :F-L .0 & T-U
2 =%,\L—%,U-%,w-% ,t—ﬁ,ﬂ-—(‘b—oa‘nau-m
Where
1
[.i(‘_”_). Do and Uo=|-—E—[2
L?s (\— Ps (\ -ZJ?')

The quantities ze and Z‘x are already dimensionless since
Nxoandlﬂgo represent forces per unit length.

 The equations may now be written:

- -— e -—er e - oo
y 22Uy 2 F +vw+k(_ TR R ) w’]

2 2 z 2

T e
— w
= 28 (7" T7) = 2%
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From hereon we shé.ll drop the "bar" symbol specifying the

dimensionless quantities.

To proceed with the solutilon,of the equations,
it is now necessary to give particular attention to the
term Z,‘, since as stated previously it is a linear function
of x, introducing non-constant coefficients in the equations.
We shall také it into account using a smoothing 'technique'

replac:.ng it by its average value over the length of the

tuke, J Coe dx .
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Once again, we look for a solution of the form

W =2 A ex\o[ﬁ (Ax+mo -x-.\'Zt)_1

v =78 e.xp[& (Ax +mO+0b)]

w = ZCJ ex\»[b (AX+mn® +.Qt):]

which leads to the characteristic equation

2.

‘Zﬁ- =2 2 (14K) -.O.J (\-\-v 2-5:;) A ’\E"Z'Cx (X =) m")]
.‘."9_'_?- An {‘\11- ':_‘.’(ush)d }A n} (m-n- i_‘.af- X‘n h)

/\[U-l-k()\—' m )} ('n-l- 3-2 A'nk) { 1.0 .‘.h[(Lm) 2 +|]+K (ent2.¥)

_ s_(n.w).) . Eext a*
maA Yaer (A a_\ Basr (N
In () Kn (N

The freguency equation (boundary conditions) is unchanged.

Note - In the case of infinite wave-length, A = 0, and

circumferential wave number n = 1, corresponding

to lateral oscillations, we obtain the following

equations:

A -':}(Hh)-ﬂ"] +on_ + Cxo =0
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A xo +8 (1-02) + 'C.. =0

A xo +B8 - +C{:i—f)_z'(l-£-&ext‘)] =0

The solution is A:O andB.—_— C Q_z—C_ .
V |- &
The displacements are therefore:
W=0 3 V=-—HN SuudCswl
- w=—W Csd Coswt
The shell vibrates as a beam, which means that -
the cross-section of the shell remains unchanged
in the deformed state. The pressure force per

unit length acting on the inside walls of the

shell is:

n 5 2
F =J|o' Cos® add = - Pa"’<§é+ U %) (Wees at)Jcas"e 40
L B 0

F=- Pno."(;?—t-t— U%}L (W Cosoat>

This formula shows that the virtual mass of the

fluid in these lateral oscillations is
h4 2. .
v =0tllax per unit length

which is a well-known result.



CHAPTER IV

THEORETICAL RESULTS

Here we are concerned with the study of the
dynamics of thin circular cylindrical shells containing
flowing fluid. However, before proceeding with this,
it is important to first study the free-vibration character-
istics of these shells in the absence of flow both to
understand the fundamentals of the behaviour of a shell
and to test the method which is going to be the basis
for the remainder of the analysis. Thus this chapter
proceeds with the.study of free wvibrations first in the

absence of flow and then with flow.

4.1 Free Vibration Characteristics of Clamped-Clamped

and Clamped-Free Shells in Vacuo

The method for determining the natural frequen—
cies and modal shapes of circular cylindrical shells for
given boundary conditions has been outlined previousl?.

We now proceed to apply it to clamped—clambed and clamped-
free shells, with particular attention to the first case,

the study of which is quite detailed.

(a) Clamped-Clamped Cylinders

The boundary conditions are u = v = w = o, gz =

at both ends, x = 0 and x = 2. For a given set of wvalues

of n, h/a, &/a and v, the determinant A cdefining the

LN
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- characteristic equation yields the eight roots Aj,
j =1, 2,'....8, which play . the role of wave numbers;
the determinant D defining the frequency equation yields
the natural frequencies.

The characteristic equation may be ekpressed
in terms of the unknown A2 and constant,. real coefficients;
the roots Aj are generally complex numbers but may take

different forms, i.e.

(p + iq) for 0 < |w] < w_y

+ (a + ib) and +
+ ia, + ib and + (p + iq) for w_y < |w|<w,
+ ia, + b and + (p + iq) for lw] > w,

where w.j and w, are well-defined values of the circﬁlar

frequency w, independent of the boundary éénditions, and

a, b, p and q are real coefficients. The four values

of Aj involving the coefficients a and b vary réther rapidly

with the circular frequency, w, whereas the four values

of Aj involving the coefficients p and g are almost constant

with w; Typical variations with w of the first set of

roots Aj is shown on figure 3, for a particular tube made

of silastic (kind of silicone-rubber material).
Cerespondingly, the determinant D is either

real, for w less.than Wy, or purely imaginary, for w larger

than wy, because some roots Aj are multiple giving identical

columﬁs in the determinant D (see figure 4). These two

values w.j; and W, have no physical significance because,

once two roots A; and A, are identical, the general solution
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can no longer be given by an expression of the type

A tAr X 8 LA 2
AeME s p e TR T A e

but rather by an expression of the type
i / UA
A+Apx)e "< 4 z Aj e

Therefore, the domai% of natural frequencies is in the

LAJ

range for which the determinant D is purely imaginary;
the first frequency f, encountered in this domain corresponds
to a first axial mode of vibration, m = 1, as may be checked

by determining the corresponding modal shape.

For comparison, the results obtained with this
method are brought tqggther with resﬁlts of other analytical
approaches and experiments in figurés.s and 6. The lowest
natural frequencies are plotted versus the circumferential
wave—number, n, the paraﬁeter being the number of axial
half-waves, m.

Rayleigh's method(lz) is a variational method
which assumes an approximate solution satisfying the
boundary conditions. "Sanders' theory" is a matricial
approach using the theory of Sanders(lB). The experimental
data were obtained by Xoval and Cranch(l4) for the results

(15)

of figure 3 and by a NACA report for results of

figure 4.
We note that the different theoretical results
agree closely with one another and with the experimental

data, specially in the range where the freguency increases



with the circumferential wave-number, n, that is to say
for large n. At the lowest values of n, the results
obtained with the present method show an improvement in

agreement with the experimental results.

We next proceed to determine the modal shapes
of vibration. To this end we simply solve the eight
homogeneous equations with unknowns Cs:, j =1, 2, ...., 8,
corresponding to the eight boundary conditions, and express
seven of these’unknowns as functions of the eighth one.

Typical results are shown in figure 7; the
radial, longitudinal and circumferential displacements
u, v, w, respectively, are plotted versus the abscissa x
of the shell for the first three modes of vibration.

It is of interest to note that the displacement u exhibits

one more node than the displacements v and w, in each case.

The complexity involved in the use.of‘the shell
equations must be tolerated for problems that require
knowledge of the free-vibration characteristics of modes
having severai circumferential waves; in the case of
beam-type modes, n = 1, on the other hand, considerable
simplification may be introduced by considering the
cylinder as a compact beam. It is therefore interesting
to compare the results obtained by these two approaches:
by shell theory and by beam theory. Typical results

are shown in figure 8. The agreement is poor for short



cylinders, the differencé between the two results being
of order 10% for a length/radius ratio of 26; it seems,
therefore, that the extra complexity involved in the use
of shell theory is worth the effort for calculating the
natural frequencies of thin cylindrical shells vibrating
in a beam-type méde. A more detailed comparison of shell

and beam theories is given by K. Forsberg(lG).

We next examiné a point which will be of consider-
able importance in the subsequent analysis of the vibration
characteristics of the cylinder with flow; namely, what
is the effect, on the vibration characteristics, of incom-
plete specification of the boundary conditions? For
éxample, how would the calculated natural frequencies
determined by specification of only four boundary conditions
differ from those determined precisely by specification
of all eight?

As explained previously, the values of As;, j = 1,
2, «¢.e,; 8, may be divided into two sets: four values
which take different complex forms, depending on the wvalue
of the circular frequency, and four Vélues which keep
always the same complex form + (p + ig). It was found
that the magnitude of the real part of these latter A's is
generally ten to twenty times larger than the largest
real part of the values of the first set. A typical result

is the following:
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corresponding to the point wj = 955 in figure 4. Conse-
quently, the harmonics corresponding to the second set
of kj have much shorter wavelengths than those corrés—
ponding to the first set and their contribution to the
modal shape must be small.

It therefore seems reasonable to conéider oﬂly
the first set of values kj and reduce the number of
boundary cdnditions.from eighf to four, by dropping the
conditions involving the longitudinal and.circumferential
displacements and keeping only those involving the radial
displacement. This has been done and the results will
now be.compared with those of the more general approach.

The values of the frequency corresponding to four boundary
conditions are somewhat larger than the values corresponding
to eight boundary conditions; the difference between the
results is shown in percentage form in figure 9. The agree-
ment is fairly good for large length/radius ratios, showing

that this simplified approach may be used with success
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only for relatively long cylinders.

{b) Clamped-—-Free Cylinders

The boundary conditions, in this.case, specify
the displacements at the clamped end:

' ow .
u=v=w= 0 and X = o at x = o,

and forces and moments at the free end:
N, = S4 = T, = o and Mx = o at x = L.

The procedure for calculating the characteristics of
free vibration is the same as before.

The characteristic equation is independent of
the boundary conditions, so that the particular values
of the circular frequencies w_y and wgy.are unchanged. As
before, the deteiminant D is either real, for w less than‘
Wo, Or purely imaginary, for w larger than Wq e

The results obtained by this method are compared

with those obtained by other analytical approaches in

figures 10 and 11. The method of Warburton and Higgs(l7)

makes use of Fliigge's theory and is basically the samé
as the one we use here; it only differs in that it speci-
fies real displacements u, v and w instead of the more
general complex form. "Sanders' theory" is the same
matricial method referred to before. Wevseé that the
results agree very closely with one another.

Typical results of the modal shapes are shown
in figure 12. Again, the shapes are similar to those of

beam-type vibration. It is of interest to note that the



strain in the axial direction, ey, = %% is practically zero
at the free end.

The influence of incomplete specification of
boundary conditions was‘also examined in this case, and in
particular the possibility of reducing the number of
boundary conditions from eight to four. Unfortunately,
although it is possible to reduce that number at a clamped
end, it is not possible to do the same at a free end and

still obtain meaningfull results; no one condition having

been found to be preponderant among the four classical
ones:

NX = Sy = Tx = o and MX = O

4.2 Vibration Characteristics in the Presence of Fluid

Flow

The influence of fluid flow manifests itself
through forces coupled to the motions of the shell. These
forces act mainly in the radial direction, as seen previously,
and correspond to three types of forces: inertia forces,
Coriolis forces and centrifugal forces. The apparent mass
of the fluid appears to be a function of the wave-number,
A, through Bessel functions.

At this stage, it is very important to note
that, if we follow the method of solution used previously
for determining the natural frequencies in the absence of
flow, the characteristic equatiop, being transcendental
in 2, will have an infinite number of roots. This means

that the complete solution is no longer a combination of
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eight terms but ié now an infinite series.. The obvious
difficulty lies in the fact that the number of boundary
conditions is limited to eight. This method of solution

is therefore not well adapted to the problem at hand,
unless some further simplification can be made. Fortu-
.nately, this is the case. The values of A which contribute
most to the modal shapes are those with small modulus;
larger real parts correspond to vibrations of shorter
wavelength and larger imaginary parts correspond to ﬁibra—
tions with increased damping. In practical terms, the
modulus of the roots A;, j =1, 2, ....®, increase rapidly
with j and the displacements may be adequately represented
by the use of a finite series solution, corresponding

to a truncated set of A's. We shall test the wvalidity

of this assumption in the case of clamped-clamped cylinders,

in the next section.

(a) Clamped-Clamped Cylinders

The first case to be studied was that of a
clamped-clamped cylinder, as this presented the minimum
of numerical difficulties in the‘computer solution because
of the syﬁmetry and simplicity of the boundary conditions.
Moreover, this case was flexible in the sense that we could
reduce the number of specified boundary conditions from
eight to four and thus test the validity of the finite
series simplification for the displacements, as referred

to above.
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The geometrical and physical characteristics
of the cylindrical shell used in the calculations are

as follows:

length: £ = 8.00 in
radius: a = 0.309 in
thickness: h = 0.007 in
shell density: ps= 3.08 10”2 1b/in3

1]

Young's modulus: E 130 psi

Poisson's ratio: v = 90.50

They corréspond to a rubber tube used in the experiments.
The fluid flowing inside the shell is air. As the pressure
along the tube is almost constant and equal to the atmos-

pheric pressure, the air density is taken to be
air density: p = 0.0765 1b/ft3

The fluid outside the shell, and at rest at infinity, is
also air.

‘ In the following numerical analysis the coef-
ficient k = h2/12a2 (~ 4 x 1073) was neglected in comﬁarison
with unity in the characteristic equation; we shall come
back to this simplification shortly and question its
validity.

Four sets of calculations were performed to
study the respective influences of, the specification
of the boundary conditions (four or eight boundary condi-
tions), the fluid flow outside the cylinder and the defini-

tion of the Bessel functions.
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(1) The first set of calculations was performed
using the four-term displacement series corresponding to
the four roots Aj with the smallest moduli. Accordingly,

the boundary conditions are limited to four, namely
W =0 ; 5—m=0 at both x =0 and x = &

The Bessel functions were approximated by the finite

series
! = 1(i- X\ and 1 =-1(1-X); for m=2
Y (- %) o Ko@) 2%

I-n (’\) _ K'n ()\)

they are coherent with the values of A. The results are
presented for the first three axial modes of vibrations,
m=1, 2, 3, with the circumferential mode n eqﬁal to é,
(figure 13).

With increasing flow velocity the frequencies
of the first, second and third axial modes decrease with
increasing flow velocity (figute 13). They remain real
until, at sufficiently high flow velocities, they vanish
in turn - at U = 0.58 and 0.606 in -the case of first
and second axial modes - indicating the existence of
buckling—typé instabilities and implying collapse of the
shell cross-section. At higher flow velocities, the
frequencies become purely imaginary and at U = 0.607 the
first and second mode loci coalesce at symmetric points

and the frequencies become complex, indicating a coupled-
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mode flutter (figure 14). It is noted that the interval
of flow velocity between the onset of static instability
(buckling) and flutter is very small; buckling\and flutter
are pfactically coincident, and in that sense the theory
may be considered to be in qualitative agreement with the
observed behaviour, although, of course, strictly speaking
the theory ceases being applicable beyond the tﬁreshold
of the first buckling instability. |

(ii) The second set of calculations was performed
using the eight-term displacement series corresponding to
the eight roots Xj with smallest moduli. Acqordingly,
the eight classical boundary conditions were used,

u=v=w=0 ; %% = o0 at both x = 0o and x = 2
the previous results serving as a guide and points for
comparison. The Bessel functions were’no longer approxi-
‘mated by second degree polynonials but defined by the full
series, where a sufficient number of terms were retained
to ensure a good accuracy. Results are presented in figure
13, corresponding to the first two axial modes, m = 1,
2; and the second circumferential mode, n = 2.

(iii) To evaluate the respective effect of

the simplifications concerning the Bessel functions and
the boundary onditions, a third set of calculations was
performed using the four-term displacement series, the

Bessel functions being defined by the full series. Again,

the results are presented in figure 13, for the first



two axial modes m = 1, 2, and second circumfeféntial

mode, n = 2., We note tﬂat:the variations in frequency vis-a-vis
those of (i) are very small in ail cases;thev are limited to
approximately 2% for zero velocity and are practically hon—
existent at buckling Qelocity. Therefore, it seems that

the first approach invoiving four boundary conditions

and simplified Bessel functions is very satisfactory,

in particular for the prediction of the buckling insta-

bility. ‘

Aiv) It is aiso of interest to study the
influence of the fluid outside the cylinder. It should
be noted that this f£luid has no effect on the Buckling
velocity, because for buckling the frequency is zero and
so is the inertia force which is the only force exerted
by the outside fluid on the cylinder. Calculations were
carried out assuming vacuum outside the cylindexr and
using the first simplified approach. The results (£igure
13) show a slight increase in frequency for velocities
below the buckling velocity and no deviation in the zone
of buckling, as expected.

As stated previously, we have neglected the
coefficient k = h2/12a2 in comparison with unity in the
characteristic equation. This simplification is apparently
valid when the coefficient k is small, as is the case
.for the preceding calculations where k is equal to 4 x 10-3,
but in fact the magnitude éf all the terms should be examined

to decide whether this simplification is valid or not.



The dimensioﬁless frequency, Q, is. of order 2 x 10—2, the cir-
cumferential wave number is equal to 2, the roots A. have a
modulus bf order 2 x 10-1 and Poisson's ratio v is equal to
0.5. Thus the terms involving the coefficient k are of the same
ordef as 92 and, therefore, the coefficient k should not be ne-
glected. Only for tﬁinner shells, where k is small in compari-
son with 92, may it be neglected. A new set of results was ob-
tained this time without any simplification in the character-
istic equation and using four 5oundary conditions and the full
‘Bessel functions. The results are compared with the previous
ones for the first three axial modes in figure 13. They show
an increase in frequency of the order of 5% for zéro velocity,
the buckling velocity being also slightly increased. Accordingly,
although the effect of neglecting k in comparison with unity is
small, it should not be disregarded. The previous results are
thus slightly affected quantitatively but can still be relied
upon., In the following calculations no simplification will be
introduced in the full characteristic and frequéncy equations
and the full Bessel functions will be used.

Some further calculations for n other than n = 2
ha&e been conducted and the results are shown ih figure 15.

The next step in this analysis'was to studj>
the variations in instability thresholds with the length
of the cylinder: more precisely, the onset of buckling
inétability was considered because it can be predicted
by the present theory as a limiting case and it corresponds

to simple calculations. Four boundary conditions are
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used in these calculations. The dimensionless velocity
corresponding to buckling is plotted versus the length/
radius ratio for the firs£ two or three axial modes and
the first, second and third circumferenfial wave-numbers
(figure 16). I£ is noted that the curves tend to asymp-
totic values for large length/radius ratios. For n = 2
and n = 3, there is an "exchange" of loci between the
axial modes when two curves happen to cross each other;
so that the lower portions of curves always correspond
to first axial modes, the following upper to second
axial modes, then third.

For the case n = 1, the numerical analysis is
-particularly simple as an explicit.expression for the
velocity corresponding to buckling may be obtained. In
the case of buckling, the roots kj, j=1, 2, 3, 4, are
~simply

Al = -12 i A3 = hy =o0

Therefore, the solution takes the limiting form

w=A + Bx + C cos Al-g + D sin Ay g

Application of the boundary conditions

ow _ ow _ .
w(o) = w(l) = o and 5% (o) = 3R (2) = o

leads to the equation

<S£n. M A‘Q' Cos N\~ >‘Q Sim -—‘- =0
2Qa 2
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the solution of which if formed by the two sets of roots
/\.?, |
=PT 5 p=t2, amd Al _uougq,...

The value i%&; 7 corresponds to the first axial mode,
a _
the value kl£= 4.4934 corresponds to the second axial

2 . . N
mode. The %xplicit expression for the velocity is then

obtained from the characteristic equation

A ARG 2)]
e T+ B2 X Grak) 1432 Nk -0
)‘[y.g.k()\ l-—v)] |+ 3-Y l‘ Xk |+h\-_)\+l) \]— ,\I,_Q\)UL);L
I,

where the fact that © = o and n =>1 has been taken into
account. Returning now to the examination of figure 16,
the results show that for a short cylinder, the first
instability occurs in the second circumferential mode,
whereas above a certain length the first instability occurs
in the first circumferential mode. These results will

be compared with experimental ones. Finally, another
point of interest is the variation of modal shapes with
flow velocity. The method of calculation and associated
analysis are presented in Appendix D. The results are
presented in figures 17 a, b, ¢, d, e and 18 a, b, ¢, d, e
and correspond tom=1 and 2, and n = 2 throughout, for

different velocities ranging from zero to buckling velocity;
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each figure shows the time—dependencé over half a period

6f the modal shapes in‘terms of u(x,6t), v(x,6t) and W(x,qt).
It is noted that the modes change their form with increasing
velocity, thé first mode at zero velocity exhibits a second
mode shape just before buckling and the second mode at

zero veloecity exhibits a third mode shape just before

buckling.

(b) Clamped~Free Cylinders

For this particular set of boundary conditions
a single approach was used. The solution was assumed to
be an eight-term series, coherent with the eight classical

boundary conditions,

u=v=w=o0, %% = o0 at one end x = o
N, = Sy = Tx = o0 , Mx = o0 at the othe; end X = %.

The influence of fluid inside and outside the shell was
taken into account, using the full expressions for fhe
Bessel functions I and K. No simplification was introduced
in the characteristic and frequency equations.

The geometrical and physicai characteristics
of the cylindrical shell used in the calculations were
the same as before. Calculations were done for the first
two axial modes and for circumferential modes equal to
1, 2 and 3. The results are shbwn in figure 19; they
present the variations of the dimensionless frequency

in the frequency-plane (Argand diagram) with the parameter
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U, i.e. the dimensionless flow Veiocity.

It is noted that the effect of flow for small
values of U is to damp the system in all ﬁodes; the
frequencies become complex with positive imaginary parts.,
For higher wvalues of ﬁ, however, some of the modes (the
second axial modes) become less damped and the corres-
ponding frequency curves eventually cross the real axis,
at points where the real parts are finite, proving the
existence of ﬁnstable vibrations. Some other modes (the
first axial modes), on the contrary, become more damped
with flow and the corresponding frequency curves reach
the-imaginary axis, at points where the imaginary parts
are finite and positive, so that motion in these modes
then beéomes completely non-oscillatory. The second
axial médes.become unstable before the first axial modes
are damped without oscillations. The instability associated
with the second axial modes correspond to flexural (beam-
type) oscillations for n = 1 and to flutter for n = 2 and
n = 3. |

It is noted that these results are qualitatively
similar to those presented by R.W. Gregory and M.P. Paidouésis(3)
in the simple case of flexural oscillations (n = 1).

Next, the influence of the length of the cylinder
on the onset of instability was considered. Results
.presented in figure 20 show the variations of the critical
velocities with the length/radius ratio, for the‘second

axial modes corresponding to a = 1, 2 and 3. The system
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first becomes unstable in its second mode,An = 2, for short
cylinders; for long cylinderé, it first becomes unstable

in its first mode, n = 1, as would be expected. -

(c) Physical Interpretation of the Theoretical

Results

At this point in the analysis, it is interesting
to question the results just obtained and try to give a
physical intefpretation of the phenomenon. In particular,
is there a simple argument to énticipate the theoretical
results just derived and explain the differences between
a system with clamped-clamped tube and a sysﬁem with.
clampedjfree tube?

The basic difference between these two systems
is that the first one, with symmetrical clampedvend
conditions, is conservative whereas the second, with-asym—
metrical clamped-free end conditions is not. By conserva-
tive we mean that during a continuous vibration the transfer
of energy between fluid and tube must have a zero average,
or in other words, that the average supply of energy at
inlet is the same as the average loss at outlet.

It is interesting to define the energy accumu-
lated or rejected by the overall system, i.e. the pipe and
the fluid enclosed in it. Benjamin(z) considered this
mechanism of energy transfer in the problem of articulated
pipes conveying fluid; in a motion over a time 0 to ty

which concludes with the system in its original state, if
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the upstream end is clamped or simply supported, the

energy gained by the pipes is
t,
. - - o
AW=-|MU(R+UTR)dE 5 R = SF
0

where M is the mass per unit length of the contained
fluid andaznand-g’are the tangential and position vectors
at the end of the last pipe. Let us recall the hypotheses
which justify this formula:

(i) The system considered has a finite number
of degrees of freedom.

(ii) A set of Lagrangian equations is found
in terms of the enérgies of the finite part of the overall
system, i.e. the part comprising the pipes and the enclosed
volume of fluid, and condensed into an appropriate state-
meht of Hamilton's principle which remains correct in the
case of infinite freedom.

(1ii) The kinetic energy of the assembly of

pérticles momentarily filling the pipes is expressed as:
T =T1 + T2

where Tl is the kinetic energy contained at any time within
the space enclosed by the pipes and the second term T2 is
the time-dependent kinetic energy, correct to first order
of (t»ﬂ to).

It is important to note that the energy transfer
cannot be related to the time rate of change of some

'total energy' of the finite system, owing to the fact
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that the time variable t is explicitly involved.
Physically, the energy AW is the rate oflwork
by the non-conservative part of the hydrodynamic forces;
the first term MUR? represents the average work done
by the pipes against Co;iolis reactions of the fluid,
and the second term MU2¥JE represents the average
work déﬁe by the pipes against the 'equivalent force' of
the relative momentum flux M U2 out of the last pipe.
So far we have assumed that the upstream end
is clamped or simply supported, but we have not introduced
-the boundary condition at the downstream end. if this
end is also clamped or simply supported, we have AW = o.
This means that vibrations can neither be damped nor
amplified by the action of the flow; the hydrodynamic
forces are then of purely conservative type. In terms
of the complex frequency diagrams, the frequency of all
the modes remains real with increasing velocity and follows
the [Re ()]~ axis toward the origin. Thus, in the

absence of frictional forces, the only possible form of

instability is buckling. At the origin, the frequency
locus bifurcates and the two branches continue along the
positive and negative [Im (Q)]- axis. Thus, once buckling
occurs, the centrifugal force causes amplification of

the deformation. Beyohd that point, the theory ceases
being' applicable, as additional non-linear. forces will
come into effect. However, we may hope that the qualita-

tive prediction of this theory is still right after
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buckling. With a.further increase of velocity, the first
and second axial mode loci coalesce at symmetric points,
and the frequencies become complex, indicating a coupled-
mode flutter; in practical terms the interval of flow
velocity between static instability {(buckling) and flutter
is very small and the theory may be considered to be in
qualitative agreement with the observed behaviour. If
the downstream end is free, the hydrodynamic forces are
of non-conservative type. When the velocity U is small,
vibrations are damped since the first term in the inte-
grand predominates over the second and makes AW negative.
For sufficiently high velocity U, amplified vibrations
are possible (AW > o) provided the scalar product -'E' ._.1;
has a negative average value; this means that for the
greater éart of a cycle the downstream end of the pipe
must slope backwards to the direction of motion of its
free end and perform a 'dragging' sort of motion. This
'dragging' motion is obtained with the second and fourth
axial modes and indeed the theoretical results show that,
‘at a sufficiently high velocity, the amplitude of vibration
of theAsecond axial mode is amplified whereas those of
the first and third axiél modés are damped, whatever the
circumferential mode may bé. In this case, oscillatory
instabilities are possible, independently of frictional
forces.

These general remarks provide a clear physical

interpretation of the effects of the fluid upon the pirpe.
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Two different forms of instability are in evidence; one
is termed 'buckling' and the other is self-excited vibra-

tions.



CHAPTER V

EXPERIMENTS

5.1 Introduction-

The experimental work déscribed here was
suppleﬁentary to the theoretical study. The aim was
twofold: first, to study the dynamical behaviour oi
flexible cylinders conveying fluid and confirm some of
the leading ideas explained in the theoretical part;
secondly, to measure thejlimits of stability in a number
of cases, and compare them with the theoretical values.

The experiments were conducted with circular
cylinders of mean radius a, thickness h, length £, denSity
ps and flexural rigidity EI, in a fluid of density o
flowing with velocity U parallel to the rest position
of the cylinder axis. One end of the cylinder Was claﬁped,
i.e. tied to a rigid tube, the other was either clamped
or free. The cylinder was hanging down. No tension'
was applied externally. For comparison of the_experimehtal
with the theoretical results, the following dimensionless

parameters were used:

. e /2
ps (1= vZ)

R

. . w .
dimensionless frequency Q = oo with Woe =

dimensionless flow velocity U = g—-with U= T = Vo)
° s )

5.2 Apparatus

The experiments were carried out with tubes

- & ]1/2 |



made of "silastic" or rubber. "Silastic" is a silicone
rubber with physical characteristics defined by a Youné's
modulus, E ¥ 215 psi, a Poisson's ratio, Vv = 0.47, and

a density, pg = 3.72 X 1072 1b/in3; these cylinders were
cast in specially prepared moulds. The rubber tubes

were made of latex rubber colostomy tubing; this material
is characterized by E = 130 psi, v =0.50 and_ps = 3,08 X
1072 lb/in3. Typical dimensions of the tubes are given

by the following data:

mean radius, a = 0.28 in

Silastic tubes thickness , h = 0.06 in
length r 2 = 2 in to 10 in
mean radius, a = 0.309 in

Rubber tubes ' thickness. , h = 0.007 in
length , 2 =-1 in to 10 in

For almost all the experiments air was used as the fluid;
some observations were made when the fluid was water.

The apparatus consisted mainly of an air-compressor,
flow~-rators to measure the rate of air-flow, valves, and
connexions to fix the flexible tubes. For observation
of the vibrating tubes and measurement of frequencies a
stroboscope was used; it could be synchronized by any

" external periodic electrical signal; in the experiments
this-signai was given either by a wvariable frequency
generator or transmitted by a microphone recording the

sound produced by the vibrating tubes. This set—up allowed
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“freezing" or slow-motion observation of the tubes. A
schematic diagram of the experimental apparatus is pre-

sented in figure 21.

5.3 General Observations -

We first consider the clamped-free cylinders,
because in this case,>the downstream end of the cylinder
is free and the deformations of its cross-section are
directly observable from above, thus providing a simple
way of determining the circumferential mode of vibration.
In the experimental procedure the air-flow veiocity is
increased in small steps, starting from zero.

For a velocity below the flutter threshold,
the first vibiations to appear correspond to the second
circumferential mode. The amplitude of these Vibratiohs
is small, the end cross-section takes a qua51—elllpt1ca1
shape and deforms alternately between two extreme positions.
With increasing velocity the amplitude of these vibrations
increases slightly until at a certain threshold the vibra-
tions change and correspond then to a different circumfer-
ential mode. This mode corresponds to n = 4 for a rubber
tube; for a silastic ' tube, it is possible to observe
vibrations corresponding to n = 3. It should be noted
that the sound of these vibrafions is low and cannot be
easily recorded.

Increasing the velocity further, the flutter

threshold is reached. Vibrations of large amplitude appear
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in the regioﬁ near the free end and are of diminished

amplitude toward the clamped énd._ The shape of the

free-end cross-section ié irregular and becomes wobbly

with increasing velocity: its lips twist alternately

outward and inward and close the opening almost completely

at the two extremes of the cycle. The cross—section of

the free end exhibits a shape corresponding to the second

circumferential mode of the shell with no flow (see

photographs). Reducing the flow velocity, flutter per- —— ——

sists below the critical flow. .
The frequency of vibrations ranges between

100 Hz and 800 Hz and increases withiincreasing flow

velocity. The noise level is high; typical principal

frequencies of the emitted sound, recorded with a

microphone, are presented below for a silastic tube.
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Velocity in

Length ‘ft/sec’
2 in ‘in' 19.0 22.1 25.2 29.2 33.2 37.1
6 360 390 440 480 490 510
.8 “ 340 410 425 480 490 510
10 ? 395 410 450 480 500

e
Transition zone with superimposed

vibrations

TABLE 1 - Principal sound emitted (frequencies in H,)
for the flutter of a rubber tube (a = 0.309 in,
h = 0.007 ih). The flutter threshold is
slightly higher than the velocities presented

vhere.
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In the case of relatively thick shells (silastic
tubes in particular) and at high velocities, internal
stresses cause heating of the material and eventually -
ruptufe of the shell near the downstream end.

Flutter develops spontaneously but it may also
be induced at velocities lower than the critical by
pinching or disturbing the tube.

With a cylinder clamped at both ends, the
characteristics of flutter are the same as for a clamped-
free cylinder. For short cylinders, a flexural buckling
(n = 1) appears before the flutter. The vibrations in

this case also, appear in the region near the downstream

end.

5.4 Measurements of the Flutter Thresholds
The quantitative tests comprise measuring the
air flow-velocity at which flutter occurs, and comparing

the theoretical and experimental values.
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Clamped-clamped ends

Length, 2 (in) Velocity, U (ft/sec) | Dimensionless velocity, U
g 63.2 65.5 .51 , .53
8 63.2 65.5 .51 , .53
7 63.2 65.5 .51 , .53
6 65.5 67.8 .53 , .55
5 78.1 82.1 .64 , .67
4 78.1 82.1 .64 , .67
Clamped-free ends
Length, £ (in) Velocity, U (ft/sec) | Dimensionless velocity, U
10 40.3 41.2 .327 , .335
9 40.3 42.2 .327 , .343
8 38.3 42.2 .311 , .343
7 38.3 , 42.2 .311 , .343
6 40.3 42.2 -.327 , .343
5 40.3 44.2 .327 , .359
4 38.3., 42.2 .311 , .343
3.5 36.3 38.3 .295 , .311
3 36.3 38.3 .295 , .311
2.5 36.3 40.3 .295 , .327
2 38.3 40.3 .311 , .327
1.5 38.3 40.3 .311 , .327
1 40.3 42.2 .327 , .343

TABLE 2 - Experimental results, corresponding to the two

sets of boundary conditions for a rubber tube’

with following characteristics:

a

E

0.309 in ,

130 psi

0.50

r V

h = 0.007 in,




Comparison of these results with theoretical
ones is presented in figures 16 and 20.

In the clamped-clamped case, the theoretical
results correspond to the threshold of buckling instabili-
ties; this is admissible, however, as we have shown that
buckiing ana flutter instabilities are practically coinci-
dent. The general agreement betweeh theory and experiment
is good. As expected, the experimental results lie below
the theoretical ones; the margin of discrepancy varies
- between 0 and 16%. The divergence may be due to secondary
effects such as small irregalarities of the tube and the
clamped ends. '

In the clamped-free case, the theoretical results
are the instabilities of the second axial modes as we
have shown that they are the first to occur. The agreement
bétween theory and experiment is rather good for long
tubes (2 larger than 5 in, i.e. 2/a > 16) where the margin
ié about 20%. For shorter tubes however, (2/a < 16), the
divergence is more important, it may be due again to |
irregularities of the tube and the clamped end; moreover,
secondary flows at the outlet such.as vortices .and eddies
may also cause or, at least, affect the onset of, instabili-
ties. Experiments were carried out with smoke instead of
air, but no specific pattern or motion of the sﬁoke could
be 'seen at the free end. We do not here present any
experimental results concerning the frequencies of vibra-

tion of the shell. Such experiments were, however, carried

|-



out with a rubber tube. Before flutter occurs, the tube
vibrates in the fourth circumferential mode (n = 4) with
very small amplitude, whefeas in the present study,
theoretical results are given only for n = 1, 2, 3.

The frequencies are in the range (100 Hz, 120 Hz) and should
corresponq to the theoretical values for n = 4. After
flutter occurs, it is difficult to measure the frequencies
of vibrations, simply because several freguency components
are present - except at very low velocities where the

second circumferential mode is predominant.

Although the apparatus was of the simplest kind,
the experiments appeared to confirm the essential features
of the dynamical problem predicted by the theory. On the
whole, the comparison between theory and experiment is

reasonably favourable,



CHAPTER VI

CONCLUSION

The existence of unstable vibrations of circular
cylindrical shells conveying fluid has been established
and the conditions of stabilityﬁhave been determined for
some possible physical systems.

Discussion of the étability of equilibrium has
illuminated tﬁe remarkable and basic difference between a
system with clamped-clamped ends and one with clamped-free
ends; it lies in the fact that the hydrodynamic forces
on the tube are conservative when both ends are clamped,
whereas they are non-conservative when one end is free.
This important property explains in particular the two
different forms of possible instability. In the case
of a tube with clamped-clamped ends, buckling instability.
appears first, as the system is of conservative type;
beyond buckling, coupling between the first two axial
modes of vibration is predicted, giving rise to a coupled-
mode flutter. 1In the case of a tube with clamped-free
ends; instability consists of self—excited vibrations, as
the system is then of non—-conservative type; in agreement -
.with the conclusions drawn from the study of the stabilityi
of equilibrium, the system has been shown to become unstable
first in its second axial mode, the tube performing then
a "dragqing"‘sort of motion.

The conditions of stabilitv have bheen detérmined

for different values of the loncth/radics ratio, as this 1is
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the most significant physical parameter. For short
tubes, and whatever the end conditions'may be, the
system becomes unstable first in its second circﬁmfer—‘
ential mode, either by buckling for clamped-clamped end
conditions or self-excited vibrations for clamped-free
end conditidns; for longer tubes, it first becomes unstable
in its first circumferential mode, i.e. flexural or
beam-type buckling or vibrations; this behaviour is to be
expected. The system is also more easily destabilized
with increasing length/radius ratio.

Another interesting property of the system
under consideratioh is the exchange of stability loci
between axial modes with varying length/radius ratio,
in the case of clamped-clamped tubes. At certain points
different curves corresponding to buckling in different
axial modes (figure lﬁf converge and cross each other;
this means that buckling and coupling between modes are
tﬁen coincident and flutter is expected to happen with
buckling. |

In connection with the phenomenon of flow-induced
buckling, a complementary, simple method of approach was
used in the case of beam-type buckling (n = 1) where
the question of stability was conceived as a statical
problem (page 42), the effects of the flow beiné then
considered equivalent to the centrifugal force of the
moving fluid. This simple approach gives immedizte insight

into the physical mechanism of buckling and shows directlvy
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the forces acting on the system. However, this approach
cannot be extended to the general case, where a dynamic
theory must be used. Moreover, it should be noted that

a statical theory cannot predict the form of the equivalent
mass of fluid acting on the walls of the pipe, which in

our case is deduced from potential flow theory.

The more interesting results of the general

theory are those which illustrate the role of the fluid

as a source or sink of energy, just as the more interesting
experimental observations are concerned with this aspect.
The experiments, although conducted with apparatus of a
simple kind, appeared to confifm the essential features

of the dynamical problem predicted by the theory. Strictly
speaking, it cannot be expected that the behaviour of the
system with increasiﬁq flow velocity can be predicted

by the linear analysis beyond the point where instability
first occurs; the amplitude of motion then grows to the
extent that forces not considered in the analysis come

into play. It was particularly interesting, therefore,
that the predicted coupled-mode flutter instability for
clamped-clamped tube materialized as the flow velocity
increased beyond the point where buckling occurred. In
this case, and for relatively short tubes, buckling and
flutter instabilities in the second circumferential mode
were practically coincident; for longer tubes, the first
instability to occur was buckling in the first circum-

ferential mode, i.e. beam—-tvpe buckling, followed with
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increasing flow vélocity, by flutter instability, either
with n=10r n= 2 or even both of them. >In the case
of clamped-free tubés, self-excited flutter appeared;
depending on the length of the tube, the modes n =1 or
n = 2 would appear separately, the mode n = 3 could also
bé excited with particular initial conditions.

As mentioned in the introduction, tﬁese parti-
cular vibrations of aﬁ elastic tube had never been reported
or studied hitherto. The present paper provides a
description and theoretical investigation of this problem.
Although the proposed theory is involved and deals with
cumbersome equations, the key to understanding the undei—-
lying physieal mechanism remains the simple consideration
of the stability of equilibrium whereby the basic difference
between systems with clamped-~clamped and clamped-free end
conditions is introduced; this allows distinction between
conservative and non-conservative systems and proves to be
greatly enlightening as regards the physical side to the
problem.

Undoubtedly, this problem is worth supplementary -
investigations. The influeﬂce of the thickness/radius ratio
could first be studied; this should be straightforward, as
most of the results can be predicted. Similarly, the influ-
ence of the nature of the f£luid could be studied; in particular,
with water the nature of instabilities is different and
it would be interesting to examine the reasons Zfor this

behaviour. Also, and though it is perhaps a slight digres-

.



sion from the main problem, it would be interesting to
study the flow patterns and possible vortex generation
at the free end of a tube and see its perturbing influ-
ence on the étability of a clamped-free tubé.

Finally, in connection with possible applica-
tions of this problem,none is anticipated so far, but
no doubt some will show up in the future. This study
was aroused merely by scientific curiosity and its aim
was simply to obtain a deeper understanding and knowledge

in the mechanics of an intriguing physical phenomenon.'

|
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APPENDIX A

SMALL RIGID-BODY MOTIONS

We wish to show that the strains resulting
from rigid-body motions vanish for Flugge's theory.

An arbitrdry point in the space occupied by
a thin shell is defined by the vector
—= -
R («, , %2, %) = I(e(l ,0(1..) + ¥ N (K,o)
where :f is the position vector of a corresponding point

~— -

on the reference surface,” is the unit normal vector
from the reference surface and § denotes the distance of
the point from the corresponding point on the reference
surface along 'f_n’ . ocl and 0y are the parametric lines of
the reference surface. We now define a displacement vector

-3 . —ne —_
U (y,20,8) = Uy (&,42,8)E, + Uk, 8)t, + W G, ote )M

— = ) )
where t‘ 'tz are unit vectors along the lines oy and Oy

¥
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The assumption regarding the preservation of the normal

element in a thin shell implies that the displacements

are linearly distributed across the thickness of the
shell:

Uy (yota,8) = Uy Goyeta) +5 By (oracle, $0)
U, ("(l,da.,f) = W, Q’(l,"(:.) +3 P:.("(l,"('l., f"")
N Q’(l,dzlf) = w("‘u"(z}

The rotations B, and B, of tangents to the reference surface
1 2 g :

can be determined from the assumption that all strains in

the direction of the normal to the reference surface wvanish

(e'r\':?h'\ =7,_.n =0 ) .

where Rl' R2 are the principal radii of curvature and Al'

A2 are the coefficients in metric form of the reference
su:face.

$/Re

Using these notations and without neglecting

with respect to unity as is done in the classical
theory, the strains are given by the following equations:
—911-\ = \72-“ =0

I B e A 0
€ Ty i+sk) 35 e = l+$’/R,_Cez'+sz)
i

VO l—:S’L R +23’K°[|\ F(L+L
(H"g/RDQ*'S/R:) n( /g ’-) 12 +2<R\ R?)
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where: ) :
° o
VTR AR ke Ry 2 0 Az aka | A A9, Ra

= le — n°
"?lz. = é\?‘-' :aao( A'z- é\‘q. '-,53:(-.-_(73\1‘3 - P‘.‘-?‘:’
)
?

Ay A\A,_ 'aoc,_ Az. ’ad-;. AAz K,
T = Aa '3 A|
2klz- <+ _L + _el_..
B‘ =1 'Bt\bz. - IL‘ DA Bﬂ. = W . Wa  2A.
AA| CI A‘Am.'adz 'AZ K2, A Aq '3d1

-Let  us now. introduce small, constant, rigid-body motions;

they are defined by the vectors

R = 8T, +S;8, + S
N

—lp —p

For such motions, the displacement vector of points on the

reference surface of the shell is given by

—

™ = A-l-.Q.xA.

where
- —p
—p
= Q% + P2t +0.m
A A
R4 _ 24 PN _ 20N
Using the equations = =0 and = = 0
g 4 e, | 2z 24, s
stating that the motions are constant, and the classical

—_ e — B
relations for the derivatives of t‘ r £ 'M and s with

respect to Oqr CGoy the following relations may be derived:
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P o0 A - P RA Al R0 - 6 A
P2 = & A 3 20 _ Az__(:_l QA _ Afn
"5?, Az 23 Ddh Ay 2d, Ra
2fn . AB ; OPn o Axfa

L’aﬁ“ R\ ?0(2_ R‘L
28 __S: A _ ASn ;3 2% = 82 A

r'ao(\ As 2dr R, el A o«

282 _ B, A . 282 _ _ 81 2Ax_ AiSn

ﬁ'aoc. - _A—.!;_ DK g, } Ry Ay o . Ra
38n _ AS, ; 9% - Al

R« TRy - D eka. Re

." . Az A20n
2w W2 DA R0 _ Dz 28z | Axdm
’ao{: =7 -A—:_ ’aa(;_ 2 B A, od, Ra.
e _ @ DA L Adwm 3 W2 - D QA2
2d; . Ax dda R, ok YCE?
DWOm _ A Q2 5 W = Ay

With the use of these relations it can be shown that the

strains vanish when rigid~body displacements and rotations

0 o
are imposed. For example, let us consider {jp and Klz.'

o
=_1 U _ u 24 _ 1 2 (8 +P- WD+ ®On)— S1+-0n D -0 A
5| A| eo(l A\A'L ’30(7_ - A| ra“\( z e“ x ?l ‘n) A|A2_ o«

_ 1 .%_\’3_/_\_‘_ W1 QA A dn @. (Af _ A Q2
= L B ™ R R B) o (Bl 0 42
+ @ (A, — €2 2A1 _ Als ]_ 81 +Ond) - 0, 0m DA,
B‘: = Wy ( | A,z o Ri ) A Aq o2,
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(]
To obtain BZ , we change the suffices 1 to 2, 2 to 1 and
w_ to ~w SO that:

Bz = -

o o o
We therefore have '9”_:-. B‘*P"" = Wnp=-WOnm =0

z =L 2B _ B2 @A, .4 2B _ B A
= +
Al eo(I A|A2_ ’a°<| AQ_ Ko, A|A?.. CLYY

We replace the rotations Bl’ 62 by Wy and wo

T =L (2 2A | AOn\_©2 A | Dz 2Az_ A\ A1
ALN Az 2y T TR ARy T A\ A Bk TRy ) A\A %4z

R, R2 m
We therefore have
. o (-] o
2Kp=T+ B2 4 & (L - L \on—@n, ®n _
‘ 12 R, Ra (Rl Rz n R|+ Ra. =0
o

o o
Similarly we can show that K‘ -_-K?_ =0 and €.| =€, =0 .
-]
The evanescence of the coefficients e: , e;_ ’ K‘ » Ko, le.
o ;
and K|zsh0w3 that .the strains vanish for small rigid-body

motions.



APPENDIX B

NATURAL FREQUENCIES OF THIN CIRCULAR

CYLINDRICAL SHELLS IN VACUO

The boundary value problem consists of an
eighth-order homogeneous system of three partial -
differential equations

LY} leo

" -c' I' I in
- 1+ l -2 e -2 —
W= w4 vy prywh 8 w + wr =0

+v /- e '_» /4 . L-s- -y "- 3_» /0 =0
JTU‘"‘“’.'*"‘E‘"""W +k120 )ur_.._--2 w' ]
N,

- rEx . oe
W + U W h[_l-;- wio Wt 2oy V"'w+2w+uﬂ=o

and associated boundary conditions. [The symbols (-)' and

(-)* are used for a %éll and %é:l- respectively;
.1

On a clamped edge, these boundary conditions are u =v =w = 0,

kx = h%/12a%

dw/3x = 0, whereas on a free edge, the four essential forces
- and moments are zero: Ny = Sy = Tx =0, My = 0. Introducing

the displacements, these latter conditions give:

Nx =0 =5 Waruv+vw-kw’ =0
Mx =0 => W W - =0
Sx =0 => W' (2-2) - 32 v s T w =o
Tx =0 = W+ v'+R (@v-3aw’) =0
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A general solution of the form

W=7 Aj exp[.&()\j%-}-ne-\- co‘t):l
v = ‘82 'BJA exp i'()‘.l %-kne-\-cot):j

8
w = EL_(QS'QXP [?(LA& ;§.+'ne-f¢dti]
is assumed.
Substitution of these expressions in the

differential system leads to three linear, homogeneous equations

in the unknowns Aj, Bj and Cj’ :

A 152 (k) -] gy [ 2 M) - e AC [ R (- 2] =0

A; )\[z_)-\- R (V= ’-’-5?”"‘):}*33‘:“?’ 3= X"mb,]_l; C3E+h{(,\m+“z)'l-_zﬂz+%_ﬁ] -0

2.
where ) = Yw"._._ a'}Ps ‘_vz&'z. .
E
For non-trivial solutions, the associated determinant

must be zero,

2 z . 2 - .
R 12 ety -0 ]
| o,
12 An m*4 122 XQ+3R)-L  m+ 32 XnR. =0

2
2 1y _a 3-Y & 2, aNE z.]_
)\L;).\.\go\-li_m)] N+ T)vnk 1+h&>\+n 2ntei|-{)
this is the characteristic equation and the solution is

Aj=oLiCy 5 By=piCj

12 M (v 352 Smb) M i 2Ry ][0 v (A= 52 )
O D 220 0T [ 122 (el -0 ) - (‘-t?_iz\ )?"
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.

| 2 Z ST S _n% 2
and ﬁd'-"@b) Ev'-\-k(}\z- .!:?’__’i‘n )]1-'-"?-_2 AN —[1\ + .Lé_y- n (1+R) _Q._](’YH- ?Z’_J. A’nk)

€ L (R 2 2.
-y - =¥ - - Y \n

‘>\+._.i_n Q+R) =0 "“*’TQ"'”‘) _Q..i (___-)\ )

The boundary conditions must now be satisfied.

take,

Let us
for example, the case of a shell clamped at both

ends; this means

W=vV=w =03 9W/y =0 ,at both x =0 and x = &

These conditions lead to a system of eight linear

homogeneous equations in the unknowns C, (j = 1,2,...,8)

3
W =0 . JZ:tO(JC\S =0
. ' _ N =0 Z @JC‘S -
| At x=0 o o = C\j =
2wfax =0 T ANG =0
At x=0 vo=o0 Z 8G exp(LA;¢) =0
w =9 z CJ QX‘)((, }\J Q,Ia_) =0

Again for non-trivial solutions the associated determinant

must be zero,

d| °(?. . . . o °(8

By B . .- Ps

i , . .

M . : _
o exp(catfa) . ) =0

8 ez\»@ >~|%Ias) :
exp(L Me/a . .
Aexp(Ehtfa) . | Mg exp(thglfa)




this is the frequency equation.

If the frequency w is a natural frequency, the
frequency equation will be satisfied. The solution of. the
equations with unknowns Cj will allow the complete
determiﬁation of the functions u(x, 6, t), v(x, 0,t),

w(x, 6, t) and, hence, the determination of the modal
shapes.

Summarizing, the determination of ‘the natural
frequencies of thin circular cylindrical shells involves'
the simultaneous solution of the characteristic and
frequency equations, written in determinantal form. There:
are several ways to tackle the numerical aspect of the
problem. We chose a direct trial and error approach;
this method requires the use of a digital computer. Copies

of programs are given in Appendix E.



APPENDIX C

VIBRATIONS OF THE PIPE WITH FLOW

cC.1 Pressurization and Curvature Effects

In the derivation of the equations the change
of curvature of the element was not considered; if we take
it into consideration, the equations of equilibrium may

be written

ANx  INox 3w _aN 2 _Fw ’aw} =0
a = T 38 * + 0-Qx 2~ @ xs - Qe Q’ax. 'ax‘ael 5('a1'39 [F) ¥aq,
>
o 2Nxg Mo N _ v _ R )
a% 20 -~ Qo+aNa B - Qx ( 'ax’ae So5e )+ Nex e 26 « g

o 28« L 2% 2% _ W N\ _ l2v _19 2% _ 3@ N\ _ab=
2% T 9 +No +Naxo % 2x00 N2 o +N°Q0-'a o \"'N"* 2%~ 2x28 P

t
Q

where the normal and transverse shearing forces Qx and Qg

are governed by the equations-

M= "aM 'av 20 e
o ez_.a&. oM .- M W -
2= * = + e ° %20 + 2= =0
T
Q. ’BMxe ’aMe o - - DA W =0
Se- S+ M= Z ey Mex( T ™

Note - The notation here is that used by Timoshenko[gl;

in particular, W is changed to -w.

If the forces and moments N,

in comparison with their critical values at which lateral

Ne, are small

buckling of the shell may occur, their effect on bending

is negligible, and we can omit all terms containing products
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of the resultant forces or resultant moments with
derivativeé of the small displacements u,v and w.

In our case, the shell is very thin and collapses
in the absence of internal pressure; therefore, it is

prudent to examine the influence of these particular terms.

We assume that under the action of uniform internal

pressure the circular cylindrical shell remains circular
and we consider-small deflections from this uniformly
compressed form of equilibrium. The stress resultants

and couples are composed of steady components due to
pressurization and components due to deformation; but all
resultant forces except Ny and Ng and all resultant couples
are very small, and we can neglect the products of these

with derivatives of the displacements u,v and w, obtaining

LW=W; 3 U=V ; W=Wo+W since Wo=0 =0

P = Po"'h _ ‘
Nx= Neo+ Nt 3 Ng = Ngo + Ney
Naxo=Nxe1 5 Mz = Mgy

Since Nygy =0 3 Mxo=0; ...
A further refinement may be introduced by taking into
consideration the stretching of the reference surface which
amounts to replacing Ng by Ne U_+-ex) and P by
P(\-\-ex)(\.‘.ee) , where the strains €y and €g .are given

by the relations

H
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ex=’au. ; Cg =

%

<

1 wr
a -1

o
@

Thus, we introduce the following supplementary terms

in the equations:

1. First Equation:

: e L D 4 DU
- (Neo+Nes) a5t ,a,:-i-——-‘-?,,_)

' PR, —y* R
2. Second Equation: J_é.".:_— (Nxo + Nxx) #_
3. Third Equation: -\'_?L- (Neo+NeY(I+ & _,.a"_ L )Q-&- o

- gwo i) wi\.
- O ‘?:-”‘_—\-(N:o-%-Nzi)(;g; vy
Practically, the shell remains cylindrical under steady

pressurization, so that the term 3w'o/a,,_is equal to zero.

The zeroth—order equations are then

Nxo _
2% +C"‘ =0
dNgo =0
36

Neo — ap =0

and the first order equations of motion are

n . —3) .. oe moy o /- /

i
<
[

ot%
U] - /e " 2
B u e ...tk %_—(\-?J)\T\—é-?f’-w,]-\-z*m =y ¥
N 'atL
yuwi+ v w+ Ry V"‘w‘+2.ia"'+wﬂ-zg (@i+wy)
>
“Zew-aP =-y32¥



———————

Wheve Co = 1-2% Ngp 3 Bx = 1225 Naxo
Eh E
_at : 2 A

Eh

The normal and transverse forces NxoandNgo are defined

by the steady-state equations ‘which

, upon integration,
give:

Nx.o = q,,_ (Q.- x)

N o = & \:o(x.)

The pressure distribution Fo(x) is found by considering the

equilibrium of a small cylinder of fluid, of length dx
and radius a, i.e.

Q’o-i- %&:_‘dxv'rrof’— Po“d_l' + 9, 2na d= =0

'_a.EQ_ -+ qu -0
D% aC

Since the outlet pressure is zero, the integration leads
to

Fo (x) = %.Cg‘. (Q-x)
Eventually g, and gy are defined as

Zz =

Cp =

‘-?J C].&LQ-‘.BC)
2 \ vquﬁq_x> = 2Cx

where qx is determined experimentally.
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c.2 Equations of Fluid Flow

In cylindrical polar coordinates, the equation

defining the flow perturbation potential ¢ is

12 (20 29 L 3b _
F TS w."’;,_ s T 5 =0

The boundary conditions on the wall are
o~

- oW oW - T)
Vo = EUZE = CYe |
-\ 2¢ _
Vo = - -(jg | > ok A=
- 2
V—g = U+ ——'al )

We recall here that the boundary conditions are taken at
=G , which means that we assume the displacements of
the wall to be small and the shell to be thin. The pressure

on the wall is given by Bernoulli's equation

3¢ . v:_ P —

The square of the velocity may be writteh as follows:

2 2 2 2.
V= (%:?‘+U>+(.}:'%‘%>+ (%if:

2
or V = U (zeroth order term)-- ZU%%-E (first-order term)

+[(’%%.)7-+ - 'BBX +C%%32-] (second~order terms)
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Retaining only first-order terms we obtain

o () -
3"‘"“%%*'% =0
A=Q

or

Az

We assume a separable solution of the form
P(x,0,2,t) = R S$(,86,t)

The derlvatlve of ¢ with respect to')L taken at the wall,

is then

° ’
2| =Reseen = Ee—"i-w%#’z]

h=Q A=Q

where the boundary conditions on the wall were utilized.
The functioncpbg 6, r, t) may then be expressed as

y - R M ow
PGx.0,a5t) = R’(o.)[. U A=0

and similarly the pressure pl on the wall is

Rexo,t) =-p @[22 . y2 ° i
Ve R(@) Lol T N

2
" To obtain a solution of Laplace's equation.‘?cpggo , We
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assume the function g(x,6,t) to be of the form

S, 93‘-) =S, exp[u Mz + me+wt)]

This aésumption seems logical since we have already assumed
a similar form for the displacement w. Upon substitution

into Laplace's equation, we obtain

y % - =
A%( R') }2_ Rs o )

R + R (~q‘ 4+ A ') F{ =0

Using the change of variables la: A X , this equation

a
becomes
3R 4L 2R _ (1- YR =0 ;
we T 2y () ’

sts solution may be expressed in terms of Bessel functions

of the First and second kind, of order n,

R®) = 81 Tn(EL ) + Ba Yo (E2 )

or in terms of. the modified Bessel functions of the first

and second kind, of order n (cf. Watson(ls))

R =B In(24) + B2 Ka(&4)

This solution must be finite on the axis of the cylinder

(r = 0); tuis means we have to set 32 egual to zero, and
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hence :
Now if we want to take into account the inertia of the
fluid (of density Qext ) outside the shell, the previous
derivation is'perféctly valid. We simply have to set
U equal to zero, as this fluid is at rest under steady
conditions of the shell, and to impose that the solution
be finite at infinity (r-»«), which means we have to take
Bl equal to zero. In this case the solution is then
| R =BaKn (&)

Eventually, the pressure acting on the shell walls is

defined as

2
In(E» (2 .42 o ka3 3
h"" AN st Uk |C T Vet 5 >N D
TR = Kn C)
Some further manipulation allows us to transform this
expression to
R=-p — 2 +OE ]+ G = L
| M\ I [%E o% ext. n-\ Kaa(d) t*
In(M) Kn (W)

this last form will be used in the differential egquations

of motion.

At this stage, it is of interest to study the



case of long waves corresponding to small values of )
with respect to unity, and the limiting case of A equal

to zero. The functions In(\) and Rn(A) are defined by

the following series:

( / )‘T\-i-za.

AW

T =@ Tard) 5 Tuld) = zm

&' )" G-m-dl 2 0y T
KA =?‘>: nr:\\ (Alz)“‘”" e z—‘m\ (ﬂm)\[.'“ )
m=o0 '

- .!illl (n+ m+t) - Jiq}(mﬂ)]

where

W@y = -3
lndHd)=:%:+_%4.“..“f%5..9'

straight forward manipulation leads to the following

relations
];h+|()) _ X, _ )? s
I 2G+) 3(a)@+d) +0Q )
K.M.,Q‘) ~ Eﬂ.
Kn(A) A

In the limiting case of infinite wavelength (A-=0), the

pressure term is then
i
- ? m Lot % ext, “m Y

and for a circumferential wave number, n, equal to unity,

corresponding to lateral (i.e. beam-type) oscillationé of

R
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the shell, the pressure term is

2 2
d
‘9“‘[‘3' +\ 'ax}w_ Cexe & Se



APPENDIX D

EIGENFUNCTIONS IN THE PRESENCE OF FLOW

The general solution in complex form

w(x,06,t) = W(x) eJ'Qt elne

may be written as

w(x,0,t) = [Wg(x) + iW (x)] [cos(Qt + nb +¥) + i sin(Qt + né + ¥)]

The complete solution is the sum of six terms, such as the
one above., These térms correspond to the six frequencies
Q117 R12¢ 921, 922, Q3lvand 932, solutions of.the character-
istic equation. These frequencies are symmetrical, in
pairs, with respect to the frequency imaginary axis, which
means that if le, j =1, 2, 3 is of the form Qy + i Qy,

then sz, j=1, 2, 3 is of the form -Q, + iQ - Actually,

y.
we are only interested in the first pair (Qll, Q12). Once
we have the solution corresponding to Q11 it is easy to
obtain the solution corresponding to ;5. Changing

{211 to Q12 amounts to change

Q=0 +1i0y to -0 = -0, + iQy,
A=A F iy to —X:—xx+ixy,
W = Wp(x) + i W (x) to W= Wg - iWr,
U = Ur(x) + i Up(x) to U= ug - iU,
V = Vr(x) + iVy (x) to -V = -Vgp + V; .

The solution is then in real form (real part of the complex

solution)



w(x,8,t)="-

-+

ui({x,0,t)=

v(x,6,t)=

To eliminate
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WR cos (2t + nb6 +¥3) - Wy sin (Qt + nb + ¥q)

WR cos (-Qt + n6 + ¥5) + WI sin (-0t + §6 + WZ)

Ui cos (Rt + no + Wl)-— UI sin (2t + nb6 + Wl)

Ug cos (-Qt + no + ¥5) + Up sin (-0t + no + ¥,)

Vi cos (Qt + nb + Wl) - VI sin (Rt + nod + Wl)

Vg cos (-Qt + pe +'W2) - Vi sin (-Qt + nb + Wz)

the phase angles ¥; and Y,, we use the following

change of variables:

QT=Qt+EJ—5——‘£Zandn@=ne+E—l'—;—'—g?~

we then have

wi(x,0,t) = 2(WR cos QT - Wy sin >QT) cos n®,

u(x,0,t) = 2(UR cos QT - U

I sin QT) cos n@,

v(x,0,t) = —2(VR sin QT - V; cos QT) sin n@®,

If we take the imaginary part rather than the real part,

we. simply change [wT + n®] to [wT + n® ~ %] . The solution

of the boundary-condition equations provides the functions

W(x) = Wg + iy , U(x) = Ug + iU

and V(x) = Vg + iv,, and

Y y

the preceding relations define the modal shapes. The

displacements u, v and w are plotted versus the length

of the cylinder, over half a period; namely, at times tq,

T

. Uy T .
ty + 33, t3 + g +-e--- 4, t; + 5. They are normalized

with respect

to x, 6 and t, according to
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Al p2n AT _ .
'w(x'e'b)] dx d8dt = 1
K
o o o)
where the coefficient K appears to be defined as

A
2 2
Kz. - z-nj [_WRO‘) + wl(x):} cdx
o .

A



APPENDIX E

NUMERICAL METHOD -~ PROGRAM SAMPLE

The computation was carried out with the aid
of the 360/75 IBM Computer of the McGill Computing Centre.
'As an example, we briefly describe a computer
program which has béen written for the calculation of
the frequencies of a clamped-free shell conveying fluid;
the numerical results are presented in figure 19.

The program consists of the MAIN with the

following subprograms:

function CFREQ,
function CDET,
function CDLA,

subroutine BESSEL.

All calculations are carried out with double precision.

The MAIN program reads the data and pfedicts
the points on the curve §(U) using a three points prediction
formula.

The function subprogram CFREQ calculates the
frequency in the range of two initial frequencies (CX, CY)
and corresponding to a particular velocity UBAR. For a
given frequency, COM, the eight characteristic roots,

ciaM(1), 1 =1, 2, ..., 8, are determined, using a

classical secant method, and classified. Then the corres-



- B2 -~

ponding parameters, CALPHA(I) and CBETA(I) are calculated
and the boundary conditions are applied to define the
determinant of the frequency equation. As this determinant
introauces exponential terms of large positive argument
and also of large negative argument, great care was taken
to rearrangé it and obtain meaningful results.

The function subprogram CDET calculates the
determinant of the frequency equation. The method used
is basically the Gauss-Jordan reduction where the'largest
eligible term in the pivotal column is selected.

The function subprogram CDLA defines and calcu-
lates the determinant of the characteristic equation;
as this determinant is of order three, avdirect expansion
is used.

The subroutine BESSEL calculates the modified
Bessel functions of first kind, CBESI, and second kind,
CBESK, with complex argument CLA. These functions are
defined by series where a sufficient number of terms is

retained to ensure a good accuracy.
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a0

1000

1100

10

360

IMPLICIT COMPLEX¥16(C)aREAL%*B(A,ByD=H,0=7)

COMMON CI,ANU,ANUM;ANUP;A,AL,AK;UHAR;EPSI;STEP;IN;L
CLMMON/BODY/NC

DIMENSION CAM(6Q0)sDEL(6D)

INPUT DATA

READ(5,1000) AsALsHsEs ANUSRUSSNC
FURMAT(6D10,3515)

WRITE(6,1100) A AL,HsE2ANU,ROS,NC
FURMAT(6D1245215/7)
AK=H%H/12,000/A/A
ANUM=(1,000~ANU) /2,000
ANUP=(1,000+ANU)/2,000

Ci=¢{o0, oao:1.ooo>

EPSI=6,0-02

L=1

UBAR=0,00

STEP=0,05D0

STARTING POINTS FUR THE CALCULATIUN OF FREQUEMCIES

CLl=INITIAL VALUE UF FREQUENCY

C2=DIFFERENT INITIAL VALUE QOF FREQUENCY
CAM{1)=CFREQ(C1,C2)

UBAR=UBAR+STEP

Cl=CAM(1)

C2=CAM(1)+(0,D0,0,2000~03)
LAM{2)=CFREG(C12C2)

DEL(2)= STEP

UBAR=UBAR+STEP

Cl=CAn(2)

C2=CAH(2)+(0,0050.,200D=03)
CAM(3)=CFREQ(C1,C2)

DEL(3)= STEP

IP=4

UBAR=UBAR+STEP

VEL(IP)=STEP
Cl=CAN(IP=1)+RELCIP)/DELCIP=2) % ((DFELCIPY+DELLIP=Y )+ LEL(IP=2))
1/DEL{IP=1 )% (CAM(IIP=-1)=CANN(IP~ 2))+(DEL(IP)+DEL(IP-1’)
2/ (DEL(IP=1)+DEL(IP=2) )% (CAM(IP~3)=CAN(IP=1)))
C2=C1+(0,10=0450,10-04)

@AM(IP)-CFREQ(CI)CZ)

JE(UINGEQ10.ANDAIF,LTe4) GO TL 360
IFCINLEQ,10) GO TU 10

iP=1ipP+l

LFCLIPEQe22) GI TL 360

GU 10 19

STOP

END



ann

[aNeNel

410
400

2

1004

CUMPLEX FUNCTION CFREQ*16(CXsCY)

IMPLICIT COMPLEX®LO(C)»REAL#S(A)BsNwHs0=2)

COMMON CIaANULANIMIANUP A AL AKIUUBARSEPSIASTEPSINSL
COMMON/BODY/NC

COMMON/HDOLD/CLAT(20),CDELTA,CUM, KTUNT :
DIMENSTIUN CLAC40)2CNEL(40)sCNMEGA(4Q)sCV(40)CBA(32)5CLAM(8)y -

1CD(9)sCALPHA(S8)2(BETA(8)2CA(B,8)

COMEGA(L)=CX
CUMEGA(2)=CY
IF{L,NE,1) GU Tu 410

STARTING POINTS FUR THE CALCULATIOM DOF LAMBDAS

CBA(1)=( 0,540D0s 0,720D0)
CBA{2)=( 0,550D0s 0.73000)
CBA(3)=( 0,540005-0,72000)
CBA(4)=( 0,550D0s~0,73000)
CBA(5)=(~»0,540D0s 0,720D0)
CBA(6)=(=~0,550D0s 0,73000)
CBA(T7)=(=0,540005=0,72000)
CBA(8)=(=0,550D0+~0,73000)
CBA( 9)={ 0,790D0+01s 0,840D+01)
CBA(10)=( 0,8000+01s Q,3850N+01)
CBA(11)=( 0,790D+01s~0,840D+01)
CBA(12)=( 0,300D+01,~0,850DN+01)

CBA(13)=(-0,790D+01» 0,840D+01)
LBA(I#)-(-O 3000+01, O, 50D+01)
CBA(15)=2(=0,7900+01,=0.8400+01)
CBA(le)=(=0, 8000+01;-0.0500+01)
L=2

CUMPUTATIUN OF LAMBDAS (8 ROMNTS)

IN=]

CUM=COMEGA(IN)
COELTA=COM*CON

KUUNT=1

KL=2%KUJNT

CLA(1)=CBA(KL=1)
CLA{2)=CBA(KL)
COEL(1)=CDLACCLACLY)
WRITE(G6510064) CLACL)sCDEL(Y)
COEL(2)sCDLACCLAC2))
WRITE(O651004) CLA(2),CNEL{2)
1D=2
CLACID+L)=sCLACTID)=COELCID)R(CLAL T =CLA(ID=L) Y/ (CDFLLTUY -

L COEL(ID=1))

COELCID+1)=CODLA(CLALID+1))
WRITE(651004) CLACID+1YsCOEL(LIN+))
FURMAT(1H »62X54D15,8)

CHECK OF COMVERGENCE

X=CDEL(ID+1)
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laNale

1003

o8
10048

100

31
30

30

‘ - 1003

(e N el el

Y=CI%CDEL(ID+1)
L=DSQRT{XEx2+Yik%2)
IF(Z,LE,1,0D=14) GO TQ 5
X=CLA(ID+1)~CLACID)
Y=Cl={CLA{ID+1)=CLA(ID))
Z=DSQRT(XkX+YHkY)
IF(Z,LE1,0D=06) GN TO 5
ID=]1D+]1

IF{ID.LE.20) GO TO 2

GO TO 98

VALUES OF LAMBDAS

CLAT(KOUNT) =CLA(ID+1)
XK=CLAT(KOUNT)
YKs=CI*CLAT(KOUNT)
!F(DABS(XK)QLTOI;D-OQ, XK=0,DU
[F{DABS(YK)sLT41,sD~04) YK=0,DO
CLAT(KOUNT ) sXK+CT%YK

NR=8B

WRITE(6,5,1005) CLAT(KAUNT)
FORMAT(1H »80X,2D15,8)
CBA(KL=1)=CLAT(KOUNT)
CBA(KL)=CLAT(KCUNT) +(0,001DC»0,D0Q)
IF(KOUNT,L,EQ,NR)GO TO 100
RUOUNT=KJUNT+1

GU 7O 8

WRITE(621008)

FORMAT (6Xs YCANNIT GET LAMBDASH)
In=Ip=1

GO TQ 5

CLASSIFICATION OF THE LAMBDAS

DU 36 KK=1sNR

XK=CLAT({KK)

YK==CI#*CLAT(KK) .

IK=NR '

DO 30 JJ=1sNR

LF(KK,EQeJJ) GO TO 30
XJ=CLAT(JJ)

LECOXK=XJ) ,6T,1,D=-04) GO TO 31
IF(DABS(XK=XJ)oGT,1,0=04) G TJ 30
Yid==CI*CLAT(JJ)
LEL(YK=YJ) 4 LT41,D=04) GO TH 30
1K=1K=1

CONTINUE

CLAM(IK)=XK+CI*YK

CUNTINUE '
WRITE(O,1C03)  (CLAA(CI)»I=1sNK)
FURMAT(6X»2D15.8)

RATIOS JF ACI)/CLJ) AMD 5(J)/2C0Ld)
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200

211

212

213

210

DO 200 IS=1,8
COCL)=CLAMCIS)*CLAMLIS) +ANUMSNCHNCH (1 ,D0+AK) =CDELTA
CD(2)=CLAM( LS )*ANUPENC
CO(3)=CLAMCIS)*(ANU+AK*(CLAMCIS)%CLAMIIS) ~ANUMENCRNC) ) -
CD(4)=CD(2)

CO(S)=CLAMCIS)*CLAM{IS)I%ANUNK(1,D0+3,DO®AK) +NCENC~CDELTA
CD(6)=NC+CLAMCISY®CLANCLS ) #NC*AR® (3, D0-ANU) /2,00
CD(7)=CO(3)

CD(8)=CD(6)

CDEN=CD(1)%CD(5) =CDI2)%CD(4)
CALPHA(IS)={CU(4)*CD(8)=CLI5I%*CD(T))/CDEN %(0,D0s=1,00)
CBETA(IS)=(CD(2)%*CD(7)=CD(1)*CD(8))/CDEN #{04D03=1,D0)
CUNT INUE

BUUNDARY CONDITIONS

SIMP=0,D0

DU 210 IR=1,38

AREP=CLAM(IR) °

AIMP=~CI%CLAM({IR)

AIMA=AIMP®AL/A

CUEF=CDEXP (CI*AREPRAL/A)

CA(LsIR)=CALPHA(IR)

CA(25IR)=CBETACLIR)

CA(3,IR)=(1,D050.00)

CA(4sTR)=CLAM(IR)
CA(b;IR)-(CALPHA(IR)*CLAH(IR)*CBETA(IR)*NC#ANU
I =CI¥(ANU+AKHCLAM(IR) %2 ) )%CUEF
CA(S,IR)=(CALPHACIR)®CLAN(TRI+CBETA(TR)#NC*ANU
1 =CIX(CLAM(IR)*¥2+{CHNCRAND) Y *COEF

CACT2IR)=(CALPHACIR)*(CLAMCIR ) *%2=ANUM*NCHNC)Y+ 1, bDO-O 5nD0*ANU)
1 *CLAM(IR)*NC*CBETA(IR)-CI*CLA”(IR)*(CIAM(IR)*»2+(Z DO=-ANYY* -

2 NC*HNC))%CUEF
CA(ELIR)=(CALPHA(TIR)EMC+CBETACIRI*(1,00+3 ,DG*AK ) #=CLAM(IR)
1-3,00%CI*AK*CLAM{IRI¥NCY*CUEF
IF(AIHP GE,C,0D0Q) GI) TO 211
LF(AIMP,LE,GC,GD@)Y GO TO 212
Al4=1,000
IF(ATMAGGE,60,000) ASB=0,000
JE(ATHALLELZ60,00C) AS8=DEXF(=ATMA)
GO TOL 213
SIMP=STNP+AJMP
A58=1,000
LF(ATMAGLE.=6G.D0) Al4a=0,D0
IF(AIMA(GL ,=60,000) Al4=DEXPLAINMA)
CA(l,IR)=CA(LsIR)=ALA
CA(2,IR)=CA(2,IR)=%AL4
CA(3,IR)=CA(3,IR)*%AL4
LA(Gy IR)=CA(G42IR)I=AL 4
CA(D,IRY=CA(5,1R)=®A58
CACE,IR)=CALGS TR %258
CA(TsIR)I=CA(TIIR)I%A53
.u(ﬁ)l‘\)"CA(u) III)’V'\DR
CUNT IHUE
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aaom

201

10006

49
10Q1

42
1009

IF(INGEQ,1) ST=-S1HP

VALUE OF THE DETERMINAMT GF THE BUOUNDARY CONDITIONS

BRIE=DEXP((=SIMP- ST )%AL/A)
CV{IN)=CDET{CA,B8)=3RIE
WRITE(6,1006) CVLIN) > COMsNC
FORMAT(6Xs»/4D15,6215777)
IN=IN+])

IF(INGEQ.2) GU TOD 490

gDMEGA(IN):CUHEGA(1N-1)—CV(IN'1)[(CV(IN“I)-CV(!N-Z))*

L{COMEGA(IN~1)=COGMEGA(IN=2))
AK=CV(IN=-1)

Y=CIxCV{it~1)
L=DSQRT{X¥x%x2+¥%%k2)
IF(Z,LT,4,1,0-03) GO TO 40
X=CUMEGA(IN)°CDMEGA(IH—1)
Y=Cl*{(COMEGACIN)=COMEGA(IN-1))
L=DSQRT (XX +YxY)
IF(Z,LT,1,D=05) 60 TO 40
IF(IN,EQ,10) GO TU 42

GD TO 490

WRITE(621001) COMEGA(IN)»EPSISUSAR
FORMAT(1H ,60X,4015,.6///)
CFREQ=CJUMEGA(IN) '
RETURN

WRITE(S651009)

FURMAT ({H 26Xs'1H=10V)
UBAR=UBAR-STEP
STEP=STEP/2,D0

RETURN

END
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OO

10

20

22

25

109

333

COMPLEX FUNCTION CDET%16(A,N)
DIMENSION A(NsM)sL(B)sM(8)

CUMPLEX*16 AsPIVOTsHOLD

REAL*8 CDABS '
INTEGER ENDs ROWs COL, PIVROW, PIVCOL

DETERMINANT OF THE BOUNDARY CUNDITIONS

END =N=]

CDET=(1,00,0,00)

00 10 Iz1,N

L(I)=1

MiI)=1 ’

VO 100 LMKT=s1sEND
PIvOT=(0Q,D0,0,00)

bU 20 I=LMNTLN

ROW=L(I)

LU 20 JsLMNT.N

coLsMed) -
IF(CDABS(PIVOT) GE,CDABS(A(ROWLCOLY)) CO TG 20
PIVROW=1

PIVCOL=Y

PIVOT=A(RUW,COL)

COUNTINUE

IF(PIVRUWEQ,LMNT) GO TO 22
COET==CUET .
KEEP=L(PIVRUW)
L{PIVROW)=L(LMNT)
L{LMNT ) =KEEP
IF(PIVCOL,EQ,LMNT) GO TO 26
COET==CQET

KEEP=M(PIVCUL)
M(PIVCOL)sM(LMNT)
MOLMNT ) =KEEP

COET=CDET*PIVOT
IF(CDABS(PIVOT) Fwa0,00) GnR TO 333
JAUG=|MNT+1

PIVROW=L(LMNT)
PIVCOL=A(LHKT)

ull 100 I=JAUGsN

ROW=L(I)
HAOLD=A(ROWPIVCUL)/PIVAT

LU 100 J=JAUGsN

CoL=M(Y)
A(RIIWCOL)=A(ROW, CALY =~HULD®A(PIVFOW,COL)
COET=CDET=A(RIW,CUL)

RETURHN

END
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COMPLEX FUNCTION COLA%16(CLA)

"IMPLICIT COMPLEX%16(C)sREAL%B(AshsD=Hs0=2)

CUMMON CI,ANU,ANUMS ANUP s Ay AL s AKsUBAR,EPST,STEP, INsL
CUMMON/BOQY /NC
COMMON/HOLD/CLAT(20) s CDELTA, CUM, KOUNT

DIMENSIUN CD(9)

DETERMINANT (OF THE LAMBDAS

CALL BESSEL{CLAsCBES!,CBESK)

CO{LI=CLAXCLA+ANUMRNCHNC®( 1, DO+AK)}~CDELTA
CO(2)=CLA*ANUP*[C

CO(3)=CLAR(AMU+AK*(CLA%CLA=ANUMSRCHRNC ) )

CD(4)Y=CQ(2)
CO(S)=CLAXCLARANUMNY (L1 4DO+3 ,DO¥AKY+NCxNC~CDELTA
COCO)=NCHCLAXCLARNCHAK%(3,D0-ANL) /2,00

CD(7)=C0(3)

CD(8)=C(H)

CD(9)=1,DO~CRDELTA+AKX((CLARCLA+NCHNC)®¥2=2 ,DOUNCHNC+]1,D0)
1=EPSI* (CBESI*#(COM+UBARNCLA)Y *%Z+CBESK®RCNELTA)
COLA=SCO(L)®CD(5)I%RCD(I+CD(2)%CO(RIXCD(T7I+CD(3IXCD{4)*CD(8)
'CD(1)*50(6)*CD(8)-CD(2)*(o<4)~CD(9) ~CDU3)=CD(5)*+CD(T)
IF(KOUNTEQaL1) GO TR 2

KM=KOQUNT=~]

Ul 4 J=lsKM

4 GDLA=CDLA/(CLA= CLAT(J))
2 RETURN

END
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[aNaNal

C
c
c
10
1
18
32
C
C
4
100

SUBROUTINE BESSEL({CLA,CBESI,CBESK)
IMPLICIT COMPLEX*16(C)sREAL%8(Ay)ByD=H,0=2)
COMMON/BODY/NC

Ci=(0.0D021,C0D0O)

KTRC=}

X=CLA

Y=CI*CLA

Z=DSQART ( X&HX+YxY)

{F(Z,1T7,1,D=02) GU TO 101

CT=CLA/2,D0

1 BESSEL FUNCTION

CXX=(1,0D0,0,000)
CBESI=(1,000,0.090)

DO 1 1X=1.30
CXX=CXX/IX/INCHIX)*CT*RCT
A=CXX

B=CIxCXX -
XX=DSQRT (AxA+B*B)
IF(XX.LE41.90=12) GO TD 18
CBESI=CBESI+CXX

CONTINUE

DO 32 Id=1s1C
CBESI=CRESI=CT/IB

CUNT INUE

K BESSEL FUNCTIIN

CYY=CDLUG(CT)Y+0,077215664%0]1533
CZZ=(1,0D050,0D0)

IF(NC.EQ.1) GO TO 100

DU 4 IY=2,NC

CYY=CYY=-0,500/1Y

Czz=CZZ/1Y

CUNT INUE

CBESK=CYY#=CZ22Z

vy 5 [Z=1,30C
CYY=CYY—(1.DO/IZ+1,DO/(IZ*HC))/2,00
CZZ=CZZ*CT=CT/1Z/(12+NC)

CYZ=CYY*(C2Z

A=CY2

B=CIl=CYZ

YL=DSURT(ARA+DB%B)

IF(YZ,LEL1,.,0D=12) 0 TO 20
CBESK=C3ESK+(YZ

CUXTINUE :
CBESK=CHESK# (=1 0 s (MNC+Y ) =CT¥sm(
IF(HCoEQq1L) CRESKSCBISK+1,00/2.,u0/CT
IF(NC EQ,s2) CRBESK=CHFS=+(1.00/CT/07=140)/2,00
IF(iIiC4EQe3) CHESK=(CHFSK+ (2, 0C/CTH*2=1.0%/0T+CT/2°,00)/72,00

RATINS 3F BESSEL FUNCTIiMS



104

IF(KTRC,EQ,2) GO TD 6
NC=NC+)] .
KTRC=KTRC+1

CBI=CBES!

CBK=CBESK

GO 70 10

NC=NCw1l .
CRATI=NC+2,D0O%XCTXxCBESI/CHI
CRATK=NC=2,D0%CT*CBESK/CBK
CBESI=1,D0/CRATI]
CBESK=1,D0O/CRATK

RETURN

CBESI=1,D0/NC -
CBESK==1,00/NC

RE TURN

END




PHOTOGRAPHS AND FIGURES




Photographs showing the flutter of a silastic

clamped—~free tube

(a = 0.28 in, h = 0.06 in, shutter-speed = 1/500)
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IMAGINARY PART OF A

0.2 a = 0.28 in. -
, 2 = 5.5 in.
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FIGURE 3. ~ TYPICAL ARGAND DIAGRAM OF WAVE  NUMBER, 1A,

AS FUNCTION OF FREQUENCY, FOR A SILASTIC
TUBE WITH BOTH ENDS CLAMPED (n = 2).



Determinant (8~8) of the boundary conditions

CLAMPED-CLAMPED SILASTIC TUBE

Circumferential Mode n=2

w1=929.4
w0=945.2
w_1=929.4

w2991 ., -

900 950
Radius 0.28 in.
' Length 5.5 in.
Thickness 0.06 in.
'
‘ | E 215 psi.
Determinant Determinant v 0,147
is real purely imaginary : -V
n =2

Frequency (Cycles per second)

FIGURE 4, - VARIATION OF THE DETERMINANT OF THE BOUNDARY CONDITIONS, A,
VERSUS CIRCULAR FREQUENCY, FOR A SILASTIC TUBE WITH EOTH ENDS

CLAMPED (n = 2).
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FIGURE 7 - Modal shapes for the first
three axial modes of a clamped-clamped

rubber tube.

h/a = 2.27 x 1072
L/a = 25.9
v = 0.50

n =.2
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DIMENSIONLESS FREQUENCY
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DIMENSIONLESS FREQUENCY
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FIGURE 12 - Modal shapes for the first

two axial modes of a clémped—free tube.

h/a = 5 x 1072
%/a = 10.0
v = 0.30

n = 2
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FIGURE 13 - Variation of dimensionless frequency, €,
with dimensionless velocity, ﬁ; for the first three

axial modes of a clamped-clamped rubber tube, -

h/a = 2.27 x 102
2/a = 25.9 '

v = 0.50

n = 2
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- TYPICAL ARGAND DIAGRAM OF DIMENSIONLESS FREQUENCY, Q,
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FIGURE 15 - Variation of dimensionless frequency, 9,

with dimensionless velocity, U, for the first three
¢ircumferential modes of a.clamped-clamped rubber

tube (axial modes, m = l,'2, alsom = 3 for n = 2).:

h/a = 2.27 x 102
8/a = 25.9
v = 0.50
n =1, 2 and 3

m =1, 2 and 3



DIMENSIONLESS FREQUENCY , X107

D

W

SN\
N

T = T T 7

! Third Mode
%{/

~2‘Mode\g\ anz1
. S— o\o\ enz2
o\o\ on ='3

o

Third Mode \

.\l

First Mode

\
L

’\ \Second Mode

o) 02 04 06 08 10
DIMENSIONLESS VELOCITY

12

14



A

FIGURE 16 - Variation of dimensionless buckling velocity,
ﬁB, with length/radius ratio, for the first three circumfer-
ential modes of a clamped-clamped rubber tube (axial modes,

m=1, 2, alsom = 3 for n = 2).
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- FIGURES l7ia, b, ¢, d, e - Time-dependence of modal
shapes over half a period, as function of dimensionless
velocity, ﬁ.q First axial mode at zero velocity of a
clamped—-clamped rubber tube. |

| h/a = 2.27 x 1072

L/a 25.9

v

0.50

n = 2



VELGCITY

CIRCUMFERENTIAL WAVE NUMBER
NUMBER OF AXIAL HALF WAVES

DIMENSIONLESS

[~ o o
@ @ o
) [o =)
(=] [=] o
@ @ @
% & o
[-] [=] (=)
E ~ ~
"o S Fo
Q [=] [
@ e ©
=) =) =
Q [=] [
o 1 v
OV/A Ov/A GW
[ =] [=] (=]
s T =
o = =)
[~] [~] (@]
a " "
3 ) o
(-] o o
o N 5
) JTo =)
e e e
C) "o o
[~ [=] (=)
° / ° e
0s°2 s2°1 00’0 S2't-  0s°2¥ o0s°t SL'0 00°0  SL°0-  0S't 02y 08'0 00°0 09'0- g2'1°
M»01 HIOGYY N*001 IUNIGALIONDT . A*0T1  YILNIHILWNIYID

geIdid H 47H9H HY3IAD SIdUHS

THOOW 40 3INIANIJI0-3IWIL



e

=2
1
2

N
_ M
U=0

VELOCITY

CIRCUMFERENTIAL WAVE NUMBER
NUMBER OF AXIAL HALF WAVES

DIMENSIONLESS

.00

.00

.00

1

0.80 0.90

0.70

0.50 0.60
X/L

0.40

0.30

0.80

0.20 0.30 c.uo

L
0.10

o
o

X/L

{

.00

'0.00

00°8 _ s2'1- 052> o0s't

1
MeO1 HIOBY

UoIdad H  47HH  H3IAD

0s°2 se’

T i
SL°D 08°0

sL'0- _ 0§°1<

NeQ0T  TUNIGNLIONOT

S3dBHS

TH0ONW

.
[=]

02°

40

09°0 00°0 09°0- p2 1
A*01  HILNIHIAWNIYID

JINIAONILF0-IWT L

T
.



9h1xﬁq
non s
=z=0
1
o]
o
(TN {p)
mud
= >
DT -
Z3X -
—q
i O
>0
[ o @ S|
XTI uw
>
- o
c a
L B |
— >
pragia
L
[o i
w e
L
= c
2wl
L
=
— D
Loz

DIMENSIONLESS

0s’

[=] (=]
o [ =]
DO 4+ X o ¢ - -
[=] [=)
@ 12
o ©
[~] [=]
© o
!0; ﬁo
o [=]
~ ~
S S
[=] [=]
[ 1] w
o o
o o
N |5
5 ©
o [=)
s =
S )
[ [~
(] [ 2]
Fo o
o o
o 5
o =
= e
S =
[=] (=]
=1 \ij o
2 s2* 00°0 s2'1- 0s'2> o0s'1 - SL'D 00'0 SL 0~ 0s'1 o2’

1
M»01 QIOYY.

gpId3d Y 478H  d3AD

N*001 IBENIONLTONOT

S3IdBHS

THO0W

40

20

10

0.00

1 09'0 00°0 09°'0- 02°1
A*0T  HILNIYIIHNIYID

JINIANIJ30-IWT L



ao
.00
00

- - -
(=] [=] (o]
@ a ”
G G G
] 8 2
Ny G G ﬁnw
o s
=z=0
[
(o) 1R ~ R
« G S o
o W
= > o
oa - S S 9
prd = ” 10- 1nU- ro.
Wi O
>_10
T a ! o [ o
XTWw " [ .
> ©x 5
—
Ca
i et () o [ [=
= < = i a
=Z T o o fo
w2
L =
we o
zocwn Tm s S
Sw=
oW
rxz= o o
—t ) — ~ o~ &
LzZo0o G G G
e e e
o G Fo
3 S ]
0s'2 s2'1 000 _se't-  0s2C 081 SL°D 000 St'0- . 051°  02°1 09'0 00'0_ _ 08°0- _ 02°1°
M»01 UIQUH N*Q01 UNIONLIONOT - A%Q0T  HILN3HIJHNIYID

00Id3d H 47TBH H3AD  S3dUBHS TH00W 40 3JINIANILF0-IWIL



NUMBER OF AXIAL HALF WAVES
VELGBCITY

CIRCUMFERENTIAL WAVE NUMBER

DIMENSIONLESS

00
.00
a0

(=) Q [=]
[+)] [+)] [e;]
S S &
o o [ ]
@ © ©
o Fo =
1o [ o
~ = 5
[© o £=)
[=] [=] (o]
@ e °
5 Fo o
[~] o Q
w n %2}
>
(=] [+ ] [
= = z
e o o
[~) o o
1] (2] 2]
G o o
(=] o o
N N [\Y]
) G =)
e = e
) ) =)
(=] [=] (=]
: e ° S
0s°2 g2°1 00°0 s2'1~ 0s'2" 0s"1 SL°D 00°0 SL*0- 0s'1 0271 08°0 00°0 09°0- 02 1
M0l  THIOWY #0001 UNIGNLIONGT . A%0T  IUILNIYIJIWNIYID

00I43d Y 47YH HIAD S3IAUHS HOOW 40 JINIONIJIA-IWTL

xI/L



FIGURES 18 a, b, ¢, 4, =2 - Time-dependence of modal

shapes over half a period, as function of dimensionless
velocity, U. Second axial mode at zero velocity of

a clamped-clamped rubber tube. -

h/a = 2.27 x 1072
2/a = 25.9
v = 0.50

n = 2
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FIGURE 19 - Typical Argand diagram of dimensionless
' frequency, 2, as function of dimensionless velocity,
U, for a clamped-free rubber tube. First two axial

modes for n = 1, 2, 3 and third axial mode for n = 2.

‘h/a = 2.27 x 1072
8/a = 12.9 |
v = 0.50
n =1, 2 andr3

m =1, 2 and 3
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