
IEEh TRANSACTIONS O N  MAGNETICS, VOL 3 2 ,  NO 3, MAY 1996 I357 

Optimal Discretization based Refinement Criteria for Finite Element Adaption 

Steve McFee and Dennis Giannacopoulos 
Computational Analysis and Design Laboratory 

Department of Electrical Engineering, McGill University 
3480 University Street, Montreal, PQ, H3A 2A7, Canada 

Abstract - One of the major research issues in adaptive finite 
element analysis is the feedback control system used to guide the 
adaption. Essentially, one needs to resolve which error data to 
feedback after each iteration, and how to use it to initialize the 
next adaptive step. Variational aspects of optimal discretizations 
for scalar Poisson and Helmholtz systems are used to derive new 
refinement criteria for adaptive finite element solvers. They are 
shown to be effective and economical for h-,p- and hp- schemes. 

I. INTRODUCTION 

Discretization of the problem region is an essential part of 
all finite element methods. The most efficient distribution of 
degrees of freedom (DOF) for a problem is that which yields 
a sufficiently accurate solution foi the lowest number of free 
parameters. Currently, the only pmctical way to achieve this 
objective is by using adaptive solution strategies [1-41. 

There are three main adaptive schemes: (i) h-type, which 
adapts the size of the elements in the mesh; (ii) p-type, which 
adapts the polynomial order of the elements; and (iii) hp-type, 
which is a hybrid approach that combines the strategies of h- 
and p-type. The perennial challenge for all types of adaption 
in finite element analysis (FEA) has been the efficient use of 
well-defined optimal solution properties as feedback criteria 
for guiding the solution process towards accurate results [5] .  
The purpose of this contribution i s  to introduce and evaluate 
new refinement criteria for h-, p-  and hp-adaption, which are 
based on the variational properties of optimal discretizations 
for the FEA of scalar Poisson ancl Helmholtz systems. 

11. OPTIMAL FEEDBACK CRITERIA 

The primary objective of adaplive finite element methods 
is to compute the solutions to engineering problems to within 
specified tolerances, at a reasonable cost. To meet this goal, 
an adaptive method needs to evolve and improve an efficient 
distribution of DOF over the problem domain. This requires 
establishing solution error distribulions, and then adding DOF 
to the discretization to correct them. One potential route to 
successful adaption is to employ local error measures that are 
closely related to the variational principle used to determine 
the solution to the finite element problem [6]. 

The ideal mesh for a given number of DOF, i.e. the mesh 
that produces the most accurate scalution, will exhibit optimal 
geometric node locations. For such an ideal discretization, the 
functional corresponding to the variational formulation of the 
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problem, will not only be stationary with respect to the field 
solution parameters - but also with respect to variations in the 
geometric node positions. Therefore, one way to detect and 
rank regions of inferior discretization in a finite element mesh 
is to evaluate the sensitivity of the functional to differential 
displacements of the geometric nodes, as illustrated in Fig. 1. 

Fig. 1. Differential vertex displacements for x and y directions. 

A small perturbation of the position of an element vertex in 
a region of adequate discretization will result in a relatively 
small change in the functional value. However, in a region of 
relatively poor discretization, a small perturbation in vertex 
positions will yield a significantly larger change. Therefore, 
by computing the gradients of the functional with respect to 
vertex positions, it is possible to determine where to improve 
the discretization, based on a purely local error measure that 
is closely related the variational principle of the solution. 

The gradients of the functional with respect to vertex 
positions may be computed directly. For Helmholtz systems 
the x-components of the functional gradients may be readily 
determined from the matrix form: 

- 1 u T V u  - b, ;2uTBu + b , u T B f  (1) 

evaluated over the elements connected to the vertex under 
consideration. Here, U and f are the vectors of the field 
solution and source term parameters, respectively, and k is the 
free-space wave number of the system. The square matrix V 
contains the derivative information that corresponds to the 
Laplacian part of the functional for vertex 1 (I = 1,2,3) of an 
element. The entries of V are defined by: 

2 

r 1 

where A is the element area; b, and c, are the geometric 
constants related to an element's vertex positions [7 ] ;  and Zijm 
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is the integral over the element (in homogeneous coordinates) 
of the product composed of the derivatives of the ith and jth 
basis functions, taken with respect to the mth and nth simplex 
coordinates. The gradients of the wave and source terms of 
the functional are given by the second and third terms in (l), 
respectively, where B,, is simply the integral over the element 
(in homogeneous coordinates) of the product of the ith and jth 
basis functions. The corresponding expressions for the y-  
components of the functional gradients may be obtained by 
exchanging all the b's and CIS and by replacing x( with y I ,  in 
(1) and (2). These Helmholtz results are valid for Poisson 
systems when the second term in (1) is neglected, and for 
Laplace systems when the second and third terms are omitted. 

It may be confirmed that a wholly equivalent alternative 
to the explicit computation of the functional gradients for 
Poisson systems is to evaluate the weighted integral of the 
scalar potential function U [SI: 

i'[$ IVu12Vg - (Vu.Vg)Vu] dQ 
R 

( 3 )  

over the elements connected to the vertex under consideration. 
The scalar g is continuous and piecewise linear on the mesh: 
g = 1 at the vertex in question; g = 0 at all other vertices. 
This mathematical equivalence makes it clear that the vertex 
functional gradients may be interpreted as nodal forces which 
tend to try to reposition the vertices in a finite element mesh. 

Once the gradients of the functional with respect to vertex 
positions have been computed, they may be used in various 
ways as error indicators within adaptive solvers. One simple 
approach is to assess a weighted sum or an average value of 
the vertex-based functional gradients for each element, then 
use these values to rank the elements for refinement (Type-A). 
A more directed approach is to employ a weighted sum or an 
average value of the projections of the vertex-based functional 
gradients onto vectors directed from the vertices towards the 
centroids of the elements (Type-B). Unlike the first approach, 
this scheme depends upon both the directions as well as the 
magnitudes of the functional gradients. In terms of the nodal 
force model, this approach uses the net compression forces 
acting on the elements as the error indicators. In this study, 
both of these types of methods are investigated to illustrate 
some of possible ways to exploit the new refinement criteria 
proposed for ndaptive finite element solvers. 

111. RESULTS 

The proposed adaptive refinement criteria were tested and 
evaluated on two benchmark problems: one Laplace system 
(Type-A), and one Helmholtz system (Type-B). In each case 
the performance of the scheme was examined with h-, p- and 
hp-adaptive solvers. Finally, the practical significance of the 
new approach was evaluated using performance comparisons 
with some of the best adaptive solvers currently available. 

The Laplace benchmark system is described by Fig. 2. It 
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Fig. 2. Laplace; initial h-mesh (8 triangles); initial p-mesh (128 triangles). 

standard "L" problem. The conductor boundary conditions are 
I and 0 as indicated; and the symmetry planes are labelled N .  
Performance results for the first-order h- and hp-adaption 
studies on functional convergence are presented in Fig. 3. In 
addition to the uniform h-refinement baseline, a practical field 
discontinuity h-adaption result is included for comparison [3].  
An example h-refined mesh is presented in Fig. 4 to illustrate 
the sharp focus of the new refinement criteria. The p-adaptive 
performance results are summarized in Table I. In addition 
to the uniform p-refinement baseline, the hierarchal coefficient 
p-adaption result [9] is presented for comparison. The p -  
discretizations ranged from orders 1 through 10. Finally, an 
example p-refined mesh is illustrated by Fig. 5, in which the 
element orders are proportional to the size of the black dots. 
In this case, the effectiveness of the new refinement criteria 
for p-adaption is shown by the strongly focused and efficient 
placement of the higher order elements. A 50% increment in 
the number of DOF per adaptive step was used to update the 
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Fig. 4. Example refinement due to new h-adaption (second-order run). 

TABLE I 
DISCRETIZATION LEVEL VERSUS PERCENT ERROR IN FUNCTIONAL 

Method / #DOF 1.00% 0.50% 0.10% 0.05% 

uniform p-adaption 230 290 1050 1670 

coef. p-adaption 230 290 530 675 

new p-adaption 110 200 550 700 

new ho-adaotion 100 120 280 375 

Fig. 5. Example refinement due to new p-adaption (orders 1 through 6). 

discretizations for the methods considered for this benchmark 
moblem. excluding the uniform refinement procedures. 

The Helmholtz benchmark system is described by Fig. 6. 
It is an octagonal microstrip patch of size d (34 units), where 
h = 0.616d (A is wavelength in the dielectric substrate below 
the patch). The device has only one port, at the end of the 
microstrip transmission line connected to the left hand side of 
the patch. In this study, the boundaries have been modelled 
as perfect magnetic walls to yield a two-Gmensional electric 
field system. The objective for this benchmark is to find the 
phase angle of the reflection coefficient at the input port P. 

I l l l l l l l l l l l l l l l l l l I ~ I  
0 8 18 32 42 

Fig. 6. Helmholtz; initial h-mesh and initial p-mesh (44 triangles). 

The performance results for the h- and hp-adaption studies on 
phase angle convergence are provided in Fig. 7. The uniform 
h-refinement baseline and field discontinuity h-adaption results 
are presented for comparison. For this benchmark, h-adaption 
results for second-order meshes are reported. However, as per 
the hp-adaption in the Laplace study, only the more efficient 
first-order h- followed by p-adaption performance is presented 
for the Helmholtz system. The p-adaption results are reported 
in Table 11. The uniform p-refinement baseline and hierarchal 
coefficient p-adaption results are presented for comparison. 
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Fig. 7. Cumulative G o s t  of adaption versus reflection phase error 

The p-discretizations ranged from orders 1 through 10. It is 
interesting to note that the hp-adaption is inferior to all the p -  
adaptive methods examined for this benchmark. This result, 
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TABLE I1 
DISCRETIZATION LEVEL VERSUS PHASE ERROR IN DEGREES 

Method / #DOF 1.5' 1.0' 0.5' 0.1' 

uniform p-adaption 400 530 690 865 

coef. p-adaption 385 465 550 851 

new p-adaption 361 405 445 677 

new hp-adaption 587 750 920 1100 

however, is not inconsistent with the undulating nature of the 
wave solution to the system. A plot of the electric field over 
the patch is illustrated in Fig. 8. Since the spatial variation of 
the field is not overly rapid anywhere over the device, and it 
is reasonably compatible with the DOF distribution provided 
by the initial p-mesh, methods which can efficiently produce 
a relatively uniform distribution of DOF may be expected to 
yield the best results. Finally, an example p-refined mesh is 
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Fig. 8. Converged electric field solution for Helmholtz system 

Fig. 9. Example refinement due to new p-adaption. 

illustrated in Fig. 9. The selectivity of the new refinement 
criteria, and the way it efficiently distributes the DOF over the 
problem domain, may be observed by comparing the relative 
field variations to the relative densities of DOF assigned to 
the finite element analysis. For this study, a 100% increase 
in the number of DOF per adaptive step was used to improve 
the discretizations for all methods considered, excluding the 
uniform refinement procedures. 

It should be noted that the selected results presented in this 
section comprise a representative sampling of the full findings 
obtained over the course of the complete investigation. 

IV. CONCLUSIONS 

New refinement criteria, based on variational aspects of 
optimal discretizations for scalar Poisson and Helmholtz FEA, 
have been introduced and evaluated for adaption. Stationarity 
of the functional corresponding to the variational formulation 
is the fundamental principle essential to the development of 
the new refinement criteria. Specifically, the gradients of the 
functional with respect to element vertex positions were used 
to determine the sensitivity of the functional to differential 
displacements of the geometric nodes, to distinguish and rank 
regions of insufficient discretization in a finite element mesh. 

The performance results for the benchmark systems that 
were investigated show that the proposed refinement criteria 
can be successfully used in adaptive finite element solvers to 
effectively and economically distribute DOF over the problem 
domain. In comparison with the state-of-the-art refinement 
criteria that were evaluated in this research, the new approach 
produced results that were as good or better, suggesting that 
further studies involving the new criteria may be warranted. 
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