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Abstract

This paper focuses on the stiffness and strength of lattices with multiple hier-
archical levels. We examine two-dimensional and three-dimensional lattices
with up to three levels of structural hierarchy. At each level, the topology
and the orientation of the lattice are prescribed, while the relative density is
varied over a defined range. The properties of selected hierarchical lattices
are obtained via a multiscale approach applied iteratively at each hierar-
chical level. The results help to quantify the effect that multiple orders of
structural hierarchy produces on stretching and bending dominated lattices.
Material charts for the macroscopic stiffness and strength illustrate how the
property range of the lattices can expand as subsequent levels of hierarchy
are added. The charts help to gain insight into the structural benefit that
multiple hierarchies can impart to the macroscopic performance of a lattice.

Keywords: lattice materials, periodic cellular materials, multiscale
mechanics, stiffness and strength properties, material property charts

1. Introduction

Materials with a hierarchical microstructure are very common in Nature
and are a remarkable source of inspiration for the development of new mate-
rials. Wood at the macroscopic level, for instance, can be loosely described
as made of an arrangement of hollow tubes, whose walls have a microstruc-
ture of hemicellulose reinforced with lignin [8]. In bone, up to seven orders
of hierarchical organization can be identified, each with a defined structural
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architecture. At the larger length scale we have the trabeculae, which make
up the cancellous bone; the trabeculae are made of a network of osteons,
which in turn are made of porous hollow fibres, each consisting of protein
fibrils [21, 30]. It is proven that nesting multiple hierarchical levels con-
fers significant benefits to the mechanical properties of biological materials
[2, 12, 15, 31, 10]. Structural hierarchy in biological materials is the result
of a lengthy optimization process, through which the material is constantly
prompted by the natural environment to simultaneously fulfil a broad range
of multifunctional and conflicting requirements [12, 6]. In wood, the cellular
tissue permits the circulation of vital fluids, and confers high compliance and
strength to each organ of the plant. The trabecular structure of bones allows
the continuous regeneration and maintenance of the structure, while bearing
the operational loads. Nacre, the material of seashells and turtle shells, is
made of a complex multi-layered arrangement of calcium carbonate tablets,
submerged in a soft organic matrix. It has been demonstrated that the ex-
ceptional toughness of Nacre, which far exceeds that of its constituents, is
controlled by the architecture of its microstructure [1, 5]. The high toughness
of Nacre is crucial to protect the soft organisms enclosed in the shell, and to
allow the growth of the shield.

Whereas environmental constraints guide the adaptive process of material
formation over millions of years, engineers can resort to additive manufac-
turing and nanotechnology to build - in a fairly short time frame and at
affordable cost - advanced materials with multiple orders of microstructural
organization [1, 8]. The latest advance in additive manufacturing has driven
recent research to the understanding of the properties of hierarchical materi-
als [32, 23, 9, 17, 19]. The concept of structural hierarchy has been exploited
in engineering for a long time, one notable example being the Eiffel tower,
a third order hierarchical structure whose relative density, the ratio between
the volume occupied by the structure and the volume occupied by the solid
material, is just 1.2 × 10−3 [14]. In the literature, a seminal work on mate-
rials with structural hierarchy is the one by Lakes, who examined a set of
natural and artificial hierarchical materials. In this work, Lakes first pro-
posed a compact expression for the stiffness and strength of materials with
isotropic structure at each hierarchical level. Parkhouse also showed that the
process of sub-structuring can be recursively applied to each element of a
macrostructure, thus no clear distinction exists, in principle, between struc-
ture and material [16]. The effect of material heterogeneity, which occurs
by structuring a material at multiple length scale with properties that are
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dissimilar from one order of scale to another, was also studied by Yao et al.
[33]. In an experimental and numerical work on the cortical bone of a bovine,
Yao et al. illustrated the benefit that structural hierarchy generates in reduc-
ing stress concentration at the nanoscale, as well in improving strength and
energy dissipation. Sen and Buehler [22] showed that structural hierarchy
enhances toughness and resistance to crack propagation in brittle materi-
als without the need to introduce additional materials. More recently, Fleck
et al. [6] suggested that materials with multiple orders of structural hierarchy
have the potential to further improve the performance of lattice materials, in
particular to yield higher stiffness, strength and fracture toughness at lower
density. Sandwich panels with hierarchical cores have been also the object of
recent investigations [28, 13]. From these works, it emerges that for a given
density the strength of a panel with two levels of hierarchy in its core can
be up to 12.5 times higher than the strength of a panel with a core with a
single hierarchical order. Another example is the work of Zhao et al. [34],
who designed, manufactured and tested a hierarchical woven lattice com-
posite. The lattice walls were made of a woven textile sandwich composite,
and at the highest level, three lattice topologies were considered: the square,
the triangular and the Kagome lattice. It was shown that the presence of a
level of hierarchy in the lattice elements significantly enhances the capacity
of the lattice to absorb energy. In a more recent study, Torrents et al. [25]
manufactured and tested a nickel-based microlattice materials with three or-
ders of structural hierarchy from the nanometer to the millimeter scale, and
relative density in the range 1 × 10−4 − 8.5 × 10−1. A macroscopic stiffness
and strength of one order of magnitude larger than those of existing materials
were observed in the lowest relative density range, and were attributed to the
existence of multiple hierarchical levels. In another recent work, Rayneau-
Kirkhope et al. [20] applied fractal theory to design beams with multiple
levels of hierarchy, thereby obtaining improved buckling strength to mass
ratio. The authors also manufactured a beam with two levels of hierarchy
by means of rapid prototyping to validate the theoretical results.

In this paper, we use a multiscale approach to quantify the effect of multi-
ple structural hierarchies on a material with a lattice architecture. We show
that by nesting multiple levels of lattice hierarchies, and by varying the rel-
ative density at each level, the property design space of the solid material
can be expanded to reach unexplored areas of the material charts. In the
first part of the paper, we examine the stiffness and strength of four planar
lattices with high relative density. As expected, when the relative density
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of all levels tends to unity, the overall properties converge to those of the
solid material. The results show that the lattice topology has a strong im-
pact on the overall properties of the material. Bending dominated lattices
tend to gain more benefit from the existence of multiple hierarchies, thereby
increasing significantly the specific stiffness. Stretching dominated lattices,
on the other hand, have already an optimal configuration with respect to
stiffness, and thus do not show a major improvement. With respect to plas-
tic yielding, a detriment of the overall material strength is observed in high
density lattices due to the recursive effect of stress concentration that occurs
at each hierarchical level. In the second part of the paper, we analyse four
three-dimensional lattices with both open and closed cells, and examine the
stiffness and buckling strength of the material.

2. The multiscale scheme

As an example of a hierarchical lattice, consider the planar structure
shown in Figure 1. At the topmost level, h − 3, the lattice has a hexagonal
topology and the material of the struts is made of a Kagome lattice, which
is the hierarchical level 2. The struts of the lattice at level 2 hold another
level of substructure, where the material consists of a square lattice. At the
level 1 of the hierarchy, the lattice is made of a uniform solid material, level
0. In this paper, we are interested in describing how the properties of the

component level
level 3 level 2 level 1

lattice material lattice material

level 0
solid material

Figure 1: Microlattice with multiple hierarchical levels

lattice at the top level change if the number of hierarchical orders and ge-
ometrical parameters of the lattices vary at each level. While the relative
density of a hierarchical lattice is simply the product of the relative densities
at each level, this does not hold for stiffness, strength and other properties.
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For example, the stiffness of the lattice at a given level is governed by the
lattice topology, the geometrical parameters of the unit cell at that level,
and the properties of the solid material. Only if we prescribe an isotropic
solid material and an isotropic topology at each order, the resulting lattice
displays isotropic macroscopic properties. In this case, we can resort to the
compact expressions proposed by Lakes [14] for the Young’s modulus and the
strength. However in the general case, when the parameters of the lattice
at each level are dissimilar, it is necessary to follow a bottom up approach
starting from the solid material level, and derive the properties of the lattice
at each level from the parameters of the material at the former level.

It is well known that the macroscopic properties of a lattice material are
governed by the properties of its microarchitecture, in particular by the ge-
ometry of the unit cell. In principle, a direct numerical approach, which
would involve the individual modelling of each lattice edge or wall, might
be possible. Yet, a detailed model of the lattice becomes unfeasible if the
length scale of the lattice is negligible with respect to the length scale of
the component. In these cases, a viable strategy is to resort to a homoge-
nization approach to calculate the macroscopic properties of the lattice, and
then model the component as a homogeneous medium. In previous papers
[26, 27], the authors presented a multiscale homogenization method that al-
lows determine the mechanical properties of a lattice material. Given a finite
element model of the unit cell, this method enables to calculate the macro-
scopic stiffness tensor of the lattice, and the internal forces in the lattice
elements to assess the lattice strength. This method is iteratively applied
in this paper to calculate the mechanical properties of lattices with multiple
levels of hierarchy.

We assume that the microscopic stiffness of the material at each level
is given by the macroscopic stiffness of the lattice at the former level. As
illustrated in Figure 3, given the material stiffness, Kµi , and the geometry of
the unit cell, we first find the stiffness matrix of the unconstrained unit cell,
Kuc1 . Then, by applying proper periodic boundary conditions on the unit
cell, we calculate the macroscopic stiffness of the lattice at that level, KMi

.
Starting from the first level, where the lattice is made of the solid material
(Kµ1 = Ks), we evaluate the macroscopic lattice stiffness tensor, KM1 , at
level 1, which represents the microscopic stiffness of the material at level 2,
(Kµ2 = KM1). Kµ2 is then used to obtain the macroscopic stiffness of the
lattice at the second level. This approach can be repeated recursively to
calculate the macroscopic stiffness of the material at the topmost level.
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KM1 KM2 KMn-1 KMn

KM1 KM2 KMn-1

Figure 2: Schematic protocol to recursively calculate the material stiffness
of a hierarchical material. B.C.: boundary conditions.

To obtain the strength of the material, we follow the reverse path. As shown
in Figure 3, starting from the topmost level, where macroscopic boundary
conditions are applied, we solve the structural problem by assuming the do-
main as a continuum with stiffness KMn , and we find the strain distribution
at the nth level. Before examining the material at the (n − 1)th hierarchi-
cal level, we first verify that macroscopic buckling does not occur at the
nth level. Then, let εµn be the components of the strain field in the most
stressed location, we solve the microscopic problem at level (n − 1)th con-
sidering εMn−1 = εµn as the macroscopic boundary conditions applied to the
lattice at the (n − 1)th level. The procedure is iteratively applied until we
reach the first hierarchical level, where the lattice is made of an unstructured
material. Here, the effective stress in the solid material is calculated to verify
whether plastic yield occurs.

Figure 3: Schematic protocol to recursively calculate the material strength
of a hierarchical material

We note that the procedure introduced in this paper is general; it can be
applied to any hierarchical structure with any arbitrary topology and orien-
tation of the lattice cell at each level. Here, we focus on hierarchical lattices
in which the topology and orientation of the cells do not change among levels,
and at each level we vary the relative density at each order of the structural
hierarchy.

We remark that the results obtained in this paper are valid under the
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assumption that the lattice remains periodic after the deformation. Thus,
the findings are strictly valid for an infinite lattice subjected to a uniform
field of macroscopic deformation. Following an engineering approach, the
results can be considered accurate as long as the length scale of the lattice is
negligible with respect to the length scale of the macroscopic strain. Recent
numerical investigations [18, 7] on discrete lattices showed that a bound-
ary layer regions forms in proximity of localised deformation, such as in the
neighbourhood of cracks, domain boundaries and where external loads are
applied. The extent of this region depends on the topology of the lattice.
For example, for triangulated and hexagonal lattice, the boundary region is
limited to a few strut lengths; for the Kagome, it can be up to 10 cells. The
lattice deformation returns then uniform in the material domain outside the
boundary layer. On the base of this observation, we can conclude that at
least one order of magnitude should separate the length scale of two levels in
the structural hierarchy. We note that the effects of length scale separation
among hierarchical orders is not considered in this paper; thus the results are
valid in the hypothesis of asymptotic separation. Yet, the findings provide
insight into the effect of multiple hierarchical levels on the stress distribution,
and into the existence of stress concentration in hierarchical lattices.

3. Analysis of high density two-dimensional lattices

If the unit cell is modelled with Euler Bernoulli beams and the solid ma-
terial is isotropic, closed-form expressions for the macroscopic stiffness and
the internal forces in the lattice elements can be obtained as a function of
the slenderness of the edges and the Young’s modulus of the solid material.
Table 1 reports the stiffness tensor for the lattices examined in this section
[26]. For comparison purposes, the stiffness tensor of an isotropic material is
also included. We remark that the expressions in Table 1 are valid under the
hypothesis that the edges behave as Euler Bernoulli beams; this applies to
low density lattice with slenderness ratio λ < 1/20. We also observe that the
homogenization method used to derive the expressions in Table 1 does not
retain any information about the actual length scale of the lattice; in fact
all the expressions are solely function of the Young’s modulus of the solid
material and of the slenderness of the beams; hence, the length scale of the
lattice does not appear in the expressions.
An important criterion to classify lattice materials is the mechanism of de-
formation of the unit cell members. In stretching dominated lattices, any ex-
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[
1 ν 0
ν 1 0
0 0 1−ν

2

]
ρ∗ = 1
µ1 = Es

1−ν
µ2 = Es

1+ν

µ3 = Es
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Table 1: Properties of selected low density two-dimensional lattices. In the
above expressions, λ = t/L is the slenderness ratio, where t is the edge
thickness and L is the length. Es is the Young’s modulus of the solid material
and ν the Poisson’s ratio. K is the macroscopic stiffness tensor of the lattice
that yields σ = Kε, with ε = [εx, εy, γxy], and σ = [σx, σy, τxy]. ρ∗ is the
relative density, µi are the eigenvalues of the stiffness tensor of the lattice.
The expressions are valid for λ < 1/20. For comparative purposes, the
corresponding expressions are also given for a uniform isotropic material.

ternal load generates axial forces in the lattice elements, as opposed to what
occurs in bending dominated lattices, where lattice edges deform mainly by
bending. Table 1 reports the stiffness matrices of the lattices analysed in
this paper: the Kagome and triangular, which are stretching dominated lat-
tices, and the square and hexagonal lattices, bending dominated. Deshpande
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et al. [3] showed that the deformation mode of a lattice depends on the nodal
connectivity and on the determinacy of the pin-jointed version of the lattice.
If the pin-jointed lattice is kinematically indeterminate, i.e. if it holds any
zero-energy deformation mode, then its rigid-joint version responds mainly
by bending. In general, a lattice is more compliant for the modes that pro-
duce bending in its element, and stiffer for the modes that are withstood by
axial force.

A suitable mean to compare the stiffness properties of lattices is to con-
sider the eigenspace of the matrix form of their stiffness tensor. The largest
eigenvalue corresponds to the deformation mode for which the lattice offers
the highest stiffness; the smallest eigenvalue refers to the deformation mode
for which the lattice is most compliant. Thus the eigenvalues of the lattice
stiffness matrix represent the actual bounds of the lattice stiffness. For the
lattices listed in Table 1, including the solid isotropic material, the eigenvec-
tors are given by

ε1 = [1, 1, 0] ε2 = [1,−1, 0] ε3 = [0, 0, 1] (1)

where the components of the strain are εi = [εxx, εyy, γxy], ε1 corresponds
to equibiaxial strain, ε2 corresponds to alternate tension-compression, and
ε3 corresponds to pure shear. For the lattices analysed in this paper, the
eigenvalues corresponding to each eigenvector are listed in Table 1. As we
can observe, the highest eigenvalue corresponds to the equibiaxial conditions,
whereas the lowest corresponds to the pure shear. Since any arbitrary macro-
scopic stress state can be decomposed as the sum of the eigenvectors of the
lattice stiffness matrix, it follows that the lattice will exhibit the largest de-
formation. Eventually, the lattice would fail, as determined by the mode
corresponding to the smallest eigenvalue, for which the lattice is the most
compliant. Thus, we can consider the stiffness and the strength of a lat-
tice be governed by the smallest eigenvalue of the stiffness matrix. We also
observe that the expressions of the eigenvalues (Table 1) follow dissimilar
scaling laws. For stretching dominated lattices, all modes produce mainly
axial forces, and all the eigenvalues scale with the first power of λ. On the
other hand for bending dominated lattices, the largest eigenvalue correspond-
ing to equibiaxial strain, for which the lattices responds by axial forces, scales
with λ. The smallest eigenvalue, corresponding to shear, for which the lat-
tice responds with the bending of the edges, scales with λ3. In general, for
stretching dominated modes µi scales with λ, because the stiffness is gov-
erned by the cross section area. For bending dominated modes, µi scales
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with λ3, as the stiffness is controlled by the second moment of area of the
cross section. It follows that reducing the relative density, and thus λ, by a
factor of 10, decreases the stretching eigenvalues by a factor of 10, and the
bending eigenvalues by a factor of 1000.

For high density lattices, the stubby elements of the unit cell should be
modelled with continuous plane stress elements. This choice enables not only
to account for the actual stress distribution in the edges if the hypothesis of
slenderness is not met, but also to accurately determine the joint stiffness and
relative density. In contrast in a discrete model, the cross-section properties
are assumed to be concentrated in the centre of the element cross-section,
and overlapping volumes at the joints are not correctly accounted. Figure
4 shows the finite element meshes of the topologies under investigation, for
three alternative values of relative density from high to low. In dark blue is
shown the unit cell used to tessellate the plane.

(a) Kagome lattice (b) Hexagonal lattice

(c) Triangular lattice (d) Square lattice

Figure 4: FE meshes of selected two-dimensional lattices for decreasing values
ρ∗

Figure 5 shows the stiffness maps for lattices with one, two and three
levels of hierarchy. For each lattice, we plot the highest and the lowest eigen-
value of the stiffness matrix, normalised by the Young’s modulus of the solid
material. The stiffness of the lattice with one hierarchical level, made of the
solid material, is shown by a continuous line, while the symbols refer to the
properties of the lattices with nested levels of structural hierarchy. As can be
observed, as the relative density approaches one, the stiffness of all lattices
approaches that of the solid material, i.e. the largest eigenvalue approaches
the equibiaxial stiffness eigenvalue, µ1 = Es/(1− ν), and the smallest eigen-
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value approaches the shear stiffness eigenvalue µ3 = Es/(2(1 + ν)), where
ν = 0.3. With reference to the lattices with one hierarchical level, we also
observe a substantial difference between stretching dominated and bending
dominated lattices. For the former, the equibiaxial and the shear stiffness
scale with the same power law. Thus no deformation mode prevails over the
other as the relative density decreases. Bending dominated lattices, on the
other hand, tend to be more compliant under shear loading as ρ∗ tends to
zero. We remark that due to the symmetries of the lattices here considered,
an equibiaxial load produces only normal stress in both the stretching and
the bending dominated topologies. In contrast, a shear macroscopic load
produces essentially bending in the edges of the square and of the hexagonal
lattices, whereas it generates axial forces in the elements of the triangular
and the Kagome lattices. This explains why the shear and the equibiaxial
eigenvalue of stretching dominated lattice follow the same scaling law, and
for bending dominated the lattice tends to be significantly more compliant
as the relative density decreases. These observation are consistent with the
stiffness expressions of low density lattices, obtained with discrete structural
elements and reported in Table 2.

Let us now consider the properties of lattices with two and three hierar-
chical levels. In Figure 5, the points relative to lattices with two hierarchical
levels are shown with an empty square marker, while the points relative to
three hierarchical level lattices are shown with a solid diamond. As can be
seen, the existence of more than one hierarchical level enables to remarkably
extend the design space of the lattice. Lattices with one hierarchical level
are restricted to a curve segment on the property space, whereas lattices
with multiple hierarchical levels can span over a wider region of the mate-
rial property space. Furthermore, Figure 5 illustrates that nesting multiple
hierarchical levels produces dissimilar effects in stretching and bending dom-
inated modes. For the former, the points representing lattices with two and
three hierarchical levels are located below the solid line. On the other hand,
for the latter the points relative to lattices with higher hierarchy are located
above the line representing the stiffness of plain lattices in solid material.
From this observation, we conclude that the shear stiffness (represented by
the minimum eigenvalue in Figure 5) of the hexagonal and square lattices
benefits from the presence of structural hierarchy. In fact, for a given rela-
tive density, configurations with multiple hierarchy produce stiffer lattices. In
addition, Figure 5 shows how the properties evolve with the number of hier-
archical levels. An increase in the number of hierarchical levels is beneficial to
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bending dominated deformation modes, whereas it results in a reduced per-
formance for stretching dominated modes. To explain the dissimilar trends,
we first recall that the stretching stiffness of the struts is governed by the
ratio (EsA)/L, while the bending stiffness depends on (EsI)/L3. Since for
stretching dominated lattices, each macroscopic load is withstood by an axial
force, reducing the density always corresponds to a reduction of the cross-
section area, and consequently to a decrease in stiffness. On the other hand,
bending dominated modes can benefit from the presence of multiple hierar-
chies, because the density of the strut cross section can be reduced if the
material is hierarchically structured. This would penalize, in relative terms,
the second moment of area not as much as the area.

We now consider the strength of two-dimensional hierarchical lattices.
Since this section focuses on high density lattices (λ > 1/20), we only con-
sider as a failure mode plastic yield, rather than buckling. We remark that
the Euler critical stress is given by

σcr = Esπχ
2λ2 (2)

where χ = 1 for pinned ends, and χ = 2 for fixed ends. Thus for higher
density lattices, the Euler critical stress is higher than the yield stress of
the material, and the lattice failure is governed by yielding. To obtain the
strength of a hierarchical lattice, we must first determine the location and
magnitude of stress concentration which emerges at each hierarchical level.
Figure 6 shows the stress distribution in response to a unitary macroscopic
shear stress applied at the component level.

Similar results were also obtained for other stress states. To obtain the
data plotted in Figure 6, the macroscopic stiffness of the lattice has been first
determined at each hierarchical level; then a unitary pure shear macroscopic
load has been applied at the third hierarchical level and the macroscopic
stress distribution, shown in the first column of the plots in Figure 6, has
been obtained. Here, the element with the highest effective stress has been
identified (circles in the plots) and the component of its strain state has been
used as boundary condition to determine the stress distribution in the lattice
at level 2. With an equivalent procedure, we calculate the stress of the lat-
tice material at level 1. We note that at each level the stiffness of the lattice
depends on both the cell topology at that level and the macroscopic stiffness
of the lattice at the lower level of the hierarchy. In addition, the microscopic
stress applied at a location of the lattice in a given level is controlled by the
macroscopic stress acting on the lattice at the upper level. For this reason,

12



10
−2

10
−1

10
010

−6

10
−4

10
−2

10
0

Relative density ( ρ* )

Ei
ge

nv
al
ue

s
µ
i

E
s

Sti�ness of the Kagome lattice

Min. eig.

Max. eig.

10
−2

10
−1

10
010

−6

10
−4

10
−2

10
0

Ei
ge

nv
al
ue

s
µ
i

E
s

Relative density ( ρ* )

Sti�ness of the hexagonal lattice

Min. eig.

Max. eig.

10
−2

10
−1

10
010

−6

10
−4

10
−2

10
0

Ei
ge

nv
al
ue

s
µ
i

E
s

Relative density ( ρ* )

Sti�ness of the triangular lattice

Min. eig.

Max. eig.

10
−2

10
−1

10
010

−6

10
−4

10
−2

10
0

Ei
ge

nv
al
ue

s
µ
i

E
s

Relative density ( ρ* )

Sti�ness of the square lattice

Min. eig.

Max. eig.

Figure 5: Stiffness of selected high density two-dimensional lattices with three
hierarchical levels. A solid line identifies the stiffness of a lattice with one
hierarchical level; the empty square markers denote the stiffness of lattices
with two hierarchical levels; the solid diamond marker refers to a lattice with
three hierarchical levels. The green colour refers to the stiffness for equibi-
axial stress, while the red corresponds to the shear stiffness. The Poisson’s
ratio of the solid material is ν = 0.3.

we can conclude that the problem is completely coupled. At each hierarchical
level, the stress distribution in the lattice depends on the properties of the
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lattice at the other levels.
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Figure 6: Effective stress amplification factor at each hierarchical level.
Colours indicate the dimensionless amplification factor between the applied
macroscopic stress and the resulting microscopic stress in the unit cell. At
the third hierarchical level, a unitary shear stress is applied, the element with
the highest effective stress is identified and the relative stress is applied at the
second level. The same procedure is applied at a lower level of the hierarchy
to obtain the stress regime.

Figure 7 maps the design space of the yield strength for lattices with
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more than one hierarchical level. In the figure, we plot the inverse of the
amplification factor, σe/σes, which represents the load that must be applied
at the highest hierarchical level to produce a unitary effective stress in the
most stressed location of the solid material. We observe that the existence of
multiple hierarchical levels is not beneficial for the lattice topologies under
investigation. The points corresponding to lattices with three levels of hi-
erarchy are located below the points corresponding to two hierarchical level
lattices, which are below the solid line representing the lattices with one hi-
erarchical level. We also note that the yield strength of the lattices, at each
hierarchical level, scales approximately with the first power of the relative
density, as expected in a first order approximation. This occurs because for
a given macroscopic load, the stress scales with the effective area, over which
the load is distributed and which corresponds to the relative density. Yet
as shown in Figure 6, material substructuring has the effect of generating
uneven stress distribution even if a uniform stress is applied. As a result,
high stresses localize in small areas, an effect that is further amplified by
structural hierarchy.

4. Analysis of low density three-dimensional lattices

Figure 8 shows the three-dimensional topologies examined in this work:
the body centred cube (BCC); the regular octet, an optimal truss topology
that has been extensively studied in the literature [4, 29]; the cuboctahedron,
the only stretching dominated Archimedean polyhedron; and the truncated
octahedron, which is the only Archimedean polyhedron, capable of regularly
tessellating the space with a unitary packing factor [24]. The truncated octa-
hedron is also of special interest since it is very similar to the tetradecahedron,
the polyhedron that minimises the surface to volume ratio. It differs from the
tetrakaidecahedron only for a slight curvature of the faces, and approximates
the shape under which foams self-arrange [11]. Among the lattices shown in
Figure 8, the truncated octahedron is the only bending dominated topology
in the open cell configuration, while the others are all stretching dominated
in the open cell configuration. All lattices are stretching dominated in their
closed cell configuration [27].

For each topology, we calculate the stiffness and the buckling strength of
open and closed cell lattices with up to three orders of structural hierarchy.
The lattice elements are modelled as beams and shells; hence it is necessary
to enforce the following limits on the slenderness ratio of the edges and of

15

bloret
Highlight
a bit ambiguous:we plot se/ses,the inverse of the amplification factor, which ...



10
−2

10
−1

10
010

−4

10
−3

10
−2

10
−1

10
0

Two hier. levels

Three hier. levels
σe
σes

= ρ*

Relative density ( ρ* )

Yield strength of the Kagome lattice

 

 

One hier. level

E�
ec

tiv
e 

st
re

ss
 ra

tio
σ e σ e

s
(  

)

10
−2

10
−1

10
010

−5

10
−4

10
−3

10
−2

10
−1

10
0

Relative density ( ρ* )

Yield strength of the hexagonal lattice

 

 

One hier. level

Two hier. levels

Three hier. levels
σe
σes

= ρ*

E�
ec

tiv
e 

st
re

ss
 ra

tio
σ e σ e

s
(  

)

10
−2

10
−1

10
010

−3

10
−2

10
−1

10
0

Relative density ( ρ* )

Yield strength of the triangulated lattice

 

 

One hier. level

Two hier. levels

Three hier. levels
σe
σes

= ρ*

E�
ec

tiv
e 

st
re

ss
 ra

tio
σ e σ e

s(  
)

10
−2

10
−1

10
010

−4

10
−3

10
−2

10
−1

10
0

Relative density ( ρ* )

Yield strength of the square lattice

 

 

One hier. level

Two hier. levels

Three hier. levels
σe
σes

= ρ*

E�
ec

tiv
e 

st
re

ss
 ra

tio
σ e σ e

s
(  

)

Figure 7: Yield strength of selected high density two-dimensional lattices
with three hierarchical levels. A shear macroscopic stress is applied at the
third hierarchical level. In contrast to the stiffness (Figure 6), for strength
the regions occupied by each hierarchical level are quite distinct; the points
relative to higher hierarchical levels are always located below the points rep-
resenting lower hierarchical levels. Thus, the performance of the lattice de-
creases with higher levels of hierarchy.

the walls of the lattice:
L

d
≤ 20 0 ≤ t

d
≤ 1

2
(3)
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(a) Body
Centred Cube
(BCC)

(b) Regular
octet

(c) Cuboctahe-
dron

(d) Truncated
Octahedron

Figure 8: Three-dimensional topologies under investigation

where t is the thickness of each beam, which we assume have a square cross
section, L is the edge length and d is the thickness of the walls. The first
inequality guarantees that the Euler-Bernoulli assumption for the beams is
fulfilled; the second is to prevent an overestimation of the cell stiffness due
to the overlapping portion of adjacent cell elements. To compare the lattice
performance for different configurations, we fix the slenderness ratio as L

d
=

20 and let t
d

vary in the range defined in (3). This choice accounts for the
effect of the thickness of the walls on the macroscopic properties of the lattice.

Because of the symmetry of the lattices analysed in this section, there
exist nine mutually orthogonal planes of symmetry; hence the stiffness matrix
can be written in a reference system with the axes defined by the intersection
of the symmetry planes [18] as

Kmat =


α β β 0 0 0
β α β 0 0 0
β β α 0 0 0
0 0 0 γ 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ

 (4)

where the expressions for α, β and γ depend on the topology and on the
properties of the solid material [26]. The eigenvalues and the eigenvectors
of Kmat are reported in Table 2. As can be observed, the eigenspace of the
stiffness matrix of the lattices examined in this section is similar to that
of the lattices analysed in the previous section. In particular, the largest
eigenvalue, µh, corresponds to the hydrostatic macroscopic stress and has
single multiplicity. The eigenvalue relative to alternate compression-tension
stress, µd, has both algebraic and geometric multiplicity equal to two and
defines deviatoric stress states without shear. The eigenvalue corresponding
to shear, µs, has both algebraic and geometric multiplicity equal to three
and corresponds to macroscopic stress states of pure shear. Similarly to the
previous section, the three-dimensional lattices show the highest compliance
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for a given shear macroscopic load. Thus in this section we only consider the
performance of the lattice for shear stress.

Solid material Lattice Eigenvector
µ1s = Es

1−2ν µh = α + 2β εh = [1, 1, 1, 0, 0, 0] 1√
3

µ2s = Es
ν+1 µd = α− β εd1 = [1,−1, 0, 0, 0, 0] 1√

2

εd2 = [1, 0,−1, 0, 0, 0] 1√
2

µ3s = Es
2(ν+1) µs = γ

εs1 = [0, 0, 0, 1, 0, 0]
εs2 = [0, 0, 0, 0, 1, 0]
εs3 = [0, 0, 0, 0, 0, 1]

Table 2: Eigenvalues and eigenvectors of the three-dimensional lattices anal-
ysed in the paper. For comparative purposes, the first column reports the
eigenvalues of an isotropic homogeneous material.

In Figure 9, the shear stiffness is plotted as a function of the relative
density for lattices with one, two and three hierarchical levels. The solid line
refers to lattices with one hierarchical level, while the dots refer to lattices
with multiple hierarchical levels. The point of the solid line with the small-
est relative density refers to the open-cell lattice configuration; for closed-cell
lattices, the thickness of the walls increases with the relative density. Figure
9 shows that for low-density lattices each region pertaining to a given hierar-
chical order is almost disjointed from the others; only a minor overlap exists
among them. Since in the closed-cell configuration, all three-dimensional lat-
tices behave as stretching dominated, the lattices with one hierarchical level
generally tend to perform better than the lattices with multiple hierarchical
orders, as shown by the dots below the solid lines. We also observe that
at very low density the shear stiffness of the truncated octahedron tends to
rapidly decrease as the bending dominated mode of its open-cell configuration
prevails over the stretching dominated behaviour of its close-cell configura-
tion.

Figure 10 shows the strength charts for an applied shear load. Since the
focus here is on lattices with low relative density at each level, buckling is
considered as the relevant failure mode. The lattice strength is obtained by
applying a unitary macroscopic load at the topmost level, the critical loads
at each level are calculated, and the smallest critical load is selected as a
measure of the global lattice strength. As can be observed in Figure 10,
the presence of multiple hierarchical levels has the effect of expanding the
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Figure 9: Shear stiffness of three-dimensional topologies. The solid line refers
to lattices with a single hierarchical level; the dots to lattice with multiple
hierarchical levels.

material properties space. For lattices with a single hierarchical order, the
attainable values of the strength are limited to a curve segment that spans
one order of magnitude on the abscissa and ordinate axes of the chart. In
contrast, the points relative to lattices with two and three hierarchical levels
occupy wider regions that span two and three orders of magnitude.
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Figure 10: Shear buckling strength for lattices with one, two and three hier-
archical levels.

5. Conclusions

A scheme based on multiscale mechanics has been applied to determine
the stiffness and strength of planar and three-dimensional lattices with multi-
ple orders of structural hierarchy. Four two-dimensional high-density lattices
and four three-dimensional low-density lattices have been examined. The
analysis has shown the remarkable impact that nesting multiple hierarchical
levels has on the stiffness and strength of a hierarchical lattice. The findings
provide insight into how the properties evolve with the number of hierarchi-
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cal orders. From the results, it emerges that the property space of a material
can be considerably extended without penalizing its specific structural per-
formance and without the need to recur to other materials.

The effect of introducing multiple hierarchical orders is mainly controlled
by the lattice topology at each hierarchical level. Bending dominated lat-
tices benefit from a multilevel sub-structuring to a larger extent than the
stretching dominated. The presence of micro-voids in bending dominated
lattices contributes to reduce the cross-section area without severely penaliz-
ing the second moment of area. Thus, the bending stiffness can be preserved
efficiently, and increasingly optimised as the relative density decreases. For
strength, we have observed that the presence of multiple hierarchical levels
in a perfectly periodic lattice produces stress concentrations that reduce the
yield strength of the material at the macroscale.

The method presented in this paper can help to guide the design of ultra-
lightweight microlattices, as well as it can be applied to other hierarchical
materials, such as nacre and other biological tissues, which do possess a pe-
riodic - although not cellular - microarchitecture.
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